部编版五年级上册数学第1课时 方程的意义教学教案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
部编版五年级上册数学教学教案
2.解简易方程
第1课时方程的意义
【教学内容】
教材第62、63页的内容,练习十四的第1~3题
【教学目标】
1.通过教学,使学生理解与掌握方程的意义和等式的基本性质
2.培养学生观察、归纳和概括的能力
3.培养学生仔细观察的良好习惯
【重点难点】
理解方程的意义
【教学准备】
多媒体课件,自制天平教具
【情景导入】
在下面算式的○里填上“>”、“<”或“=”。
3×6○19 7○1.8+5.2
2.5÷5○2×0.25 24+11○11+24
3.9-3○4÷5 15×8+2○120+2
小结:像7=1.8+5.2,2.5÷5=2×0.25,24+11=11+24,15×8+2=120+2这样的式子叫做等式。这节课我们就来研究有关等式的问题
【新课讲授】
1.激趣导入
师:同学们在游乐场玩过跷跷板的游戏吗?(多媒体出示小朋友玩跷跷板的画面)如果两端的小朋友重量一样,会出现什么情况呢?这就是平衡。
2.方程的意义
(1)认识天平
出示简易天平、砝码
提问:同学们知道这是什么?它是用来干什么的?怎样用天平来称物品的重量呢?
师:这是一台天平,用来称量物体的重量。在天平的左盘内放置所称的物品,右盘内放置砝码,当天平的指针在标尺中间时,表示天平平衡,也就是天平两端的重量相等,砝码上所标的重量就是所称物体的重量
(2)实验演示,引出方程
师:下面我来演示一下如何用天平称物品的重量
演示实验一:称出一只空杯子重100克
提问:天平平衡了吗?这说明一只空杯子重多少克?
板书:一只空杯子=100克
演示实验二:往空杯子里倒入约150毫升水(可在水中滴几滴红墨水显示)。
提问:现在天平怎样?如果水重x克,杯子和水共重多少克?你能用一个式子来表示吗?
板书:100+x>100
演示实验三:增加100克砝码
提问:增加100克砝码,发现了什么?(杯子和水比200克重)
如果将水设为x克,那么用一个式子该怎么表示杯子和水比200克重这个关系呢?
板书:100+x>200
演示实验四:再增加100克砝码,天平往砝码这边倾斜
提问:现在哪边重些?怎样用式子表示?
板书:100+x<300
演示实验五:把100克砝码换成50克,天平出现平衡
提问:现在天平怎样?你能用一个式子来表示天平是平衡的吗?
板书:100+x=250
(3)理解“等式”、“不等式”和“方程”的意义。
出示多幅天平图。
提问:这些图你能用式子表示吗?
板书:40+x=100,2x+50<180,80+70=100+50,3x=180,65+30>80,100+2x=50×3。
教师指出:像2x+50<180,65+30>80这样用大于、小于号连成的式子,它们左右两边不相等,就叫做不等式。像40+x=100,80+70=100+50这样用等号连接成的式子,它们左右两边相等,就叫做等式。
师:观察以上有几个是等式,你能不能分类,也说一说你分类的标准?(同桌
讨论)
可以分成两类:
第一类:80+70=100+50。
第二类:40+x=1003x=180100+2x=50×3
讲解:像第二类这样,含有未知数的等式叫做方程。
提问:说一说什么叫方程?必须具备哪几个条件?
(一必须是等式,二必须含有未知数)
师:你能举例说明什么是方程吗?(根据学生发言,教师板书。)
老师再板书几个一般的等式,如:
20+80=100 3×78=234 13-8=5
引导学生观察、对比、思考:方程有什么特点?方程与等式之间有什么联系呢?
小组讨论,先在组内说一说,再全班说。
根据学生发言,教师加以引导,使学生明确:等式包括方程,等式的范围比方程的范围大;方程都是等式,但等式不一定是方程。你能用图示表示出来吗?
板书:
【课堂作业】
1.完成课本第63页的“做一做”。
2.我是小法官,对错我来判(对的在括号内打“√”,错的打“X”)
(1)含有未知数的式子都是方程;()
(2)4m-9=0不是方程;()
(3)方程是等式;()
3.用方程表示下面的数量关系。
(1)
(2)
答案:1.(1)第4个和第6个是方程
(2)2x=50 x+73=166
2.(1)X(2)X(3)√
3.(1)8a=16(2)x+50=100
【课堂小结】
提问:这节课你学习了什么?有什么收获?
小结:这节课,我们学习了等式、不等式和方程。方程和等式既有区别又有联系,方程必须是含有未知数的等式,而等式只要等号两边数值相等即可,所以等式包括方程,但等式不一定是方程。
【课后作业】
1.完成教材练习十四的第1~3题。
2.《创优作业100分》本课时练习。
第1课时方程的意义
①100+x>100②100+x>200③100+x<300④100+x=250
像④这样含有未知数的等式,称为方程。方程与等式的关系如下图:
利用直观的天平平衡,初步感知物体质量与砝码质量直接自然产生的不等式、等式,初步体会数量之间的相等关系。等式是方程的生长点,为了能够更好地使学生理解方程的含义,在脱离天平之后,通过分类建立等式的概念,为后面方程概念的建立、认识方程的本质属性做好铺垫,并激发学生的学习兴趣,让学生明确学习目标。