@高压直流输电关键技术

合集下载

高压直流输电技术的关键问题分析

高压直流输电技术的关键问题分析

高压直流输电技术的关键问题分析在当今能源需求不断增长和能源分布不均衡的情况下,高压直流输电技术作为一种高效、可靠的输电方式,在电力系统中发挥着越来越重要的作用。

高压直流输电技术具有输电容量大、输电距离远、损耗低等优点,能够实现不同区域电网的互联,优化能源资源配置。

然而,在其应用过程中,也面临着一些关键问题需要解决。

一、换流器技术换流器是高压直流输电系统的核心设备,其性能直接影响着输电系统的可靠性和效率。

目前,常用的换流器主要有晶闸管换流器和绝缘栅双极型晶体管(IGBT)换流器。

晶闸管换流器技术相对成熟,成本较低,但存在换相失败的风险。

换相失败是指在换流器换相过程中,由于某些原因导致换相不能正常进行,从而引起直流电压下降、直流电流增大等问题,严重时可能会导致系统故障。

为了减少换相失败的发生,需要优化换流器的控制策略、提高交流系统的强度等。

IGBT 换流器具有开关速度快、可控性好等优点,但成本较高。

随着技术的不断进步和成本的降低,IGBT 换流器在高压直流输电领域的应用有望逐渐增加。

二、直流输电线路的绝缘问题高压直流输电线路的绝缘要求比交流输电线路更高。

这是因为直流电压下,绝缘子表面的积污更容易导致沿面放电,而且直流电场分布不均匀,容易引起局部放电。

为了解决绝缘问题,需要选用合适的绝缘子材料和结构。

目前,常用的绝缘子有瓷绝缘子、玻璃绝缘子和复合绝缘子。

复合绝缘子具有重量轻、耐污性能好等优点,但在长期运行中可能会出现老化问题。

此外,还需要对输电线路的电场分布进行优化设计,采用均压措施来减少局部电场集中。

三、直流输电系统的控制与保护高压直流输电系统的控制与保护是确保系统安全稳定运行的关键。

控制策略需要根据系统的运行状态实时调整直流电压、电流等参数,以实现功率的准确传输和系统的稳定运行。

在保护方面,需要快速准确地检测故障并采取相应的保护措施,如闭锁换流器、切除故障线路等。

同时,还需要考虑故障后的系统恢复策略,尽快恢复系统的正常运行。

±1100kV特高压直流输电的可行性及关键技术

±1100kV特高压直流输电的可行性及关键技术

±1100kV特高压直流输电的可行性及关键技术摘要:本文介绍了特高压直流输电的技术特点,并在现有±800kV特高压直流输电工程项目的基础上,结合近几年我国相关领域的技术研发成果,论述了发展±1100kV特高压直流输电工程的可行性,并针对发展±1100kV特高压直流输电工程提出了需要重点解决的技术问题和关键思路。

关键词:±1100kV 特高压直流输电换流站晶闸管电磁环境1、前言我国虽然地大物博,电力资源的分布却极不平衡,中部和东部发达地区的电力需求约占全国的69%,而水能和煤炭资源却不足全国的25%,电力供应紧张。

为了缓解这一形势,实现能源的优化配置,远距离、大容量的输电工程成为了必然的解决途径。

当前我国特高压直流输电工程的最高等级为±800kV,如云广特高压直流输电工程、向家坝至上海直流输电工程、锦屏至苏南直流输电工程等,为我国特高压直流输电的发展积累了工程实践经验。

随着输电距离和送电容量加大,考虑到设备的制造和运输难度、线路的损耗等,必须提高直流输电电压等级。

国家十二五特高压电网的重点工程——准东至重庆±1100kV特高压直流输电工程,是“疆电外送”的重要能源通道,全线总长度约2687千米,总投资370亿元,预计2014年投运,届时这一工程将打破世界输电工程电压等级、输送容量、输电距离三项纪录。

2、特高压直流输电的技术特点(1)特高压直流输电的输送容量更大、送电距离更远,且输电线路的走廊宽度为交流输电线路的一半;(2)直流输送的功率大小和方向可以实现快速控制和调节;(3)直流输电工程运行时,单极发生故障时,另一极还能够继续运行,并可以发挥过负荷能力,最大限度的减少输送功率的损失;(4)直流系统具有调制功能,可根据系统要求作出快速响应,提高电力系统暂态稳定水平;(5)采用直流输电线路使大电网之间互联,每个电网之间不会产生相互干扰和影响,并可在必要时迅速进行功率交换。

高压直流输电技术的发展趋势

高压直流输电技术的发展趋势

高压直流输电技术的发展趋势在当今能源需求不断增长、能源分布不均衡以及对电力供应质量要求日益提高的背景下,高压直流输电技术作为一种高效、可靠的电力传输方式,正发挥着越来越重要的作用。

随着科技的不断进步,高压直流输电技术也在持续发展和创新,展现出一系列令人瞩目的发展趋势。

高压直流输电技术具有诸多优点,如能够实现远距离、大容量输电,降低输电损耗,提高输电效率等。

它在实现能源资源的优化配置、促进区域间的电力互济等方面发挥着关键作用。

从技术层面来看,电压等级的不断提高是一个重要的发展趋势。

更高的电压等级意味着能够传输更大的功率,减少输电线路的数量,降低建设成本和土地占用。

目前,特高压直流输电技术已经取得了显著的成就,未来有望进一步提升电压等级,以满足更大规模的电力输送需求。

在换流器技术方面,新型的换流器拓扑结构不断涌现。

传统的基于晶闸管的换流器逐渐被基于绝缘栅双极型晶体管(IGBT)等全控型器件的换流器所取代。

这些新型换流器具有更快的开关速度、更好的控制性能和更低的损耗,能够提高输电系统的效率和稳定性。

直流断路器的研发也是一个关键领域。

快速可靠的直流断路器对于保障直流输电系统的安全运行至关重要。

目前,已经有多种直流断路器的技术方案在研究和试验中,未来有望实现更快速、更可靠、更经济的直流断路器,从而提高直流输电系统的故障处理能力。

随着电力电子技术的发展,多端直流输电系统正逐渐成为现实。

相较于传统的两端直流输电,多端直流输电能够更灵活地实现多个电源和负荷的连接,提高电力系统的可靠性和灵活性。

未来,多端直流输电系统有望在城市电网、区域电网互联等领域得到广泛应用。

在控制保护技术方面,智能化、自适应的控制保护系统是发展的方向。

通过先进的传感器和监测技术,实时获取输电系统的运行状态信息,利用智能算法进行分析和决策,实现对输电系统的精准控制和保护,提高系统的稳定性和可靠性。

在能源转型的大背景下,高压直流输电技术与可再生能源的结合将更加紧密。

高压直流输电技术的发展与应用

高压直流输电技术的发展与应用

高压直流输电技术的发展与应用随着工业化的快速发展和日益增长的能源需求,输电技术的研究和应用成为了关键的问题。

高压直流输电技术作为一种高效、稳定和可靠的输电方式,逐渐受到了人们的关注和重视。

本文将就高压直流输电技术的发展历程以及当前的应用情况进行探讨。

一、高压直流输电技术的发展历程高压直流输电技术最早可追溯到19世纪末,当时用直流电由康奇对Nikola Tesla的交流电进行了吹嘘。

然而,直流输电在输送电能的时候存在许多问题,比如电压损耗大、输电距离有限等,导致直流输电的实际应用受到了很大的限制。

直到20世纪60年代,随着功率电子技术的快速发展,高压直流输电技术迎来了显著的突破。

在功率电子技术的支持下,直流输电的可行性得到了大幅提升。

特别是随着特高压直流输电技术的引入,实现了远距离大容量的输电,为能源的长距离传输提供了可行的解决方案。

二、高压直流输电技术的优势与传统的交流输电方式相比,高压直流输电技术具有很多明显的优势。

首先,直流电的传输损耗较小,能够实现远距离的传输。

其次,高压直流输电能够提供更稳定、可靠的电力供应,降低了电力系统的故障风险。

此外,直流输电还能够有效地减少电力系统的谐波和干扰,提高了输电效率和质量。

高压直流输电技术还具有更好的环境适应性。

由于直流输电线路不需要频繁的绝缘开关操作,减少了对环境的影响。

此外,导线材料的使用也相对较少,减少了资源的消耗。

都了很大的贡献。

三、高压直流输电技术的应用高压直流输电技术目前已经在世界各地得到了广泛应用。

特别是在远距离、大容量的电力传输领域,高压直流输电技术展现出了独特的优势。

在中国,特高压直流输电已经成为了重点推进的项目。

例如“西部大开发”项目,通过特高压直流输电技术将西部地区丰富的能源资源输送到东部地区,实现了能源的均衡布局。

同时,随着技术的不断进步,高压直流输电的应用范围也逐渐扩大,涉及到交通、航天、通信等领域。

四、高压直流输电技术的面临的挑战尽管高压直流输电技术具有很多优势,但是也面临着一些挑战。

电力电子技术在高压直流输电中的应用

电力电子技术在高压直流输电中的应用

电力电子技术在高压直流输电中的应用随着现代社会对电力资源需求的不断增长,电力输送技术也在不断发展和创新。

其中,电力电子技术作为一项关键技术,在高压直流输电中起到了至关重要的作用。

本文将探讨电力电子技术在高压直流输电中的应用,并分析其在提高输电效率、稳定系统运行等方面的重要作用。

一、电力电子技术在高压直流输电中的基本原理高压直流输电是指通过将电能转换为直流并以高电压进行输送的一种电力输送方式。

而电力电子技术则是指利用电子器件和控制技术,将电能进行调整和控制的技术手段。

在高压直流输电中,电力电子技术主要包括换流器、逆变器、智能电网等等。

换流器是高压直流输电中最关键的设备之一,主要用于将交流电转换成直流电或将直流电转换成交流电。

换流器通过使用可控硅器件或晶闸管等元件,实现电能互换的功能,其过程中能够对电流进行调整,从而实现将交流电转化为直流电,或者将直流电转化为交流电。

逆变器则是将直流电转换为交流电的关键装置,其原理是通过将直流电分解成若干个单相的交流电波形,然后再将其通过逆变装置进行合并,最终输出为交流电。

逆变器的主要作用是在直流输电线路中将输送的直流电能转化成交流电,以满足消费者的用电需求。

此外,智能电网技术也是电力电子技术在高压直流输电中的重要应用之一。

智能电网通过运用现代通信和信息技术,实现对电力系统的实时监控、调度和管理,从而提高电力系统的安全性和可靠性。

智能电网能够对高压直流输电线路进行远程监控,及时发现并解决故障,使系统运行更加稳定和可靠。

二、电力电子技术在高压直流输电中的应用1. 提高输电效率在传统的交流输电系统中,电能在输送过程中会发生一定的损耗,导致系统效率下降。

而在高压直流输电系统中,通过电力电子技术的应用,可以实现对电压、电流的精确控制,减小电能的传输损耗,提高输电效率。

此外,高压直流输电还能够减少输电线路的电阻损耗,进一步提高输电效率。

2. 增强系统稳定性由于高压直流输电系统对电能的精确控制能力较强,可以根据系统的需求进行调整和控制,从而增强了系统的稳定性。

高压直流输电技术在特高压输电中的应用

高压直流输电技术在特高压输电中的应用

高压直流输电技术在特高压输电中的应用随着电力需求的不断增长以及可再生能源的快速发展,特高压输电技术越来越成为解决能源传输难题的重要手段。

而其中,高压直流输电技术则因其具有较大的输电功率、较远的传输距离和较小的损耗等优势而备受关注。

本文将探讨高压直流输电技术在特高压输电中的应用。

一、高压直流输电技术的基本原理高压直流(High Voltage Direct Current,简称HVDC)输电技术是指利用直流电流进行能量传输的一种输电方式。

与交流输电相比,HVDC技术具有以下优势:首先,HVDC输电系统中的直流电流不会遭受交流电损耗,因此损耗相对较小;其次,HVDC可以实现双向输电,即使在电站出现故障时,也能够将电流倒送回电网,从而保证电力稳定供应;此外,HVDC技术还可以通过增加输电电压,实现长距离的电力传输。

在HVDC输电系统中,主要包括换流站、输电线路和换流器等关键设备。

换流站起到将交流电能转换为直流电能的作用,同时它还能够将直流电能反向转换为交流电能,从而实现电力的双向传输。

输电线路则用于传输直流电能,其中直流电压达到极高水平,这就是所谓的特高压输电。

二、高压直流输电技术在特高压输电中的应用案例1. 青藏特高压直流工程青藏特高压直流工程是我国电力系统中的一项旗舰工程,该工程采用特高压直流输电技术,将青海、甘肃、宁夏等内陆地区的清洁能源输送到东海沿线的江苏、上海等发电集中地区。

该工程的特点是输电距离较长,同时输电功率也相对较大。

通过采用HVDC技术,青藏特高压直流工程在输电损耗上实现了较大的节约,并极大提升了电力系统的可靠性。

2. 某国特高压直流示范工程某国特高压直流示范工程是该国电力系统中的一项重要工程,该工程采用特高压直流输电技术,连接该国东北地区的火力发电厂与南方地区的大型工业城市。

该工程采用了高压直流输电技术,将大量电力从东北输送到南方,有效缓解了南方电力供应压力。

同时,该工程还采用了光伏发电技术,使得该国的可再生能源得以更好地利用。

直流特高压输电关键技术——外绝缘配置与电磁环境控制

直流特高压输电关键技术——外绝缘配置与电磁环境控制

电磁环境控制
• 4、换 流 站 噪 声 控 制
运行经验表明,±500kV换流站的噪声已接近限值,±800kV换流站的声 源设备数量、容量和运行电压都比±500kV大,其噪声控制更加严峻,必须 从降低声源噪声功率、阻碍噪声传播途径和优化设备布置三个方面采取综合 措施。 降低声源噪声功率是控制噪声的根本,设备制造厂商为此对设备声结构 进行了优化、并大量采用了降噪降震材料。为阻碍噪声传播途径,中国特高 压换流站站界处均设置有声屏障,针对换流变等主要声源设备,采用了 “Box-in”降噪技术。在换流站设备布置方面,中国特高压换流站采用了阀厅 和换流变压器面对面布置方案,相比于阀厅和换流变压器一字形布置,其噪 声水平明显改善,两种布置方案下的噪声分布如图2和图3所示。
电磁环境控制
4、换 流 站 噪 声 控 制
图2 换流变和阀厅一字形布置时的噪声分布
图3 换流变和阀厅面对面布置时的噪声分布
小结
• 直流特高压输电大多应用于低海拔地带, 具有与交流特高压输电类似的间隙距离。
• 直流电的静电吸附效应导致污秽积聚对绝 缘子串的绝缘性能有更高要求。
• 直流特高压输电的通信干扰较低但是换流 站的噪声污染是不容忽视的环境污染因素。
表5 ±800kV直流输电线路导线截面,分裂型式和极间距
电磁环境控制
• 3、线 路 附 近 地 面 合 成 电 场 和 离 子 流 密度控制
中国直流特高压工程主要通过选择合适的极导线最小对地高 度将线路下的地面合成电场和离子流密度控制在限值要求的水 平。中国目前已建成的特高压直流线路均为单回水平排列,线 路的最小对地高度,在非居民区取18m,在居民区取21m。从而 将线路下的地面合成电场和离子流密度控制在国家环保限值内。

高压直流输电技术

高压直流输电技术
提高电网安全性和稳定性:高压直流输电技术能够增强电网的抗干扰能力和自适应能力,提高 电网的安全性和稳定性。
高压直流输电技术在电力系统中的实际应用案例
案例一:国家电网的特高压直流 输电工程
案例三:高压直流输电在海上风 电并网中的应用
添加标题
添加标题
添加标题
添加标题
案例二:南方电网的背靠背直流 输电工程
案例四:高压直流输电在跨国电 力联网中的应用
高压直流输电技术在电力系统中的未来发展方向
更高电压等级:随着技术的进步,高压直流输电系统的电压等级将进一步 提高,以实现更远距离、更大容量的电力传输。
智能控制:利用先进的控制算法和人工智能技术,实现对高压直流输电系 统的智能控制,提高电力系统的稳定性和可靠性。
添加标题
应用场景:广泛应用于电力系统、城市供电、铁路供电等领域。
添加标题
未来发展:随着新能源、智能电网等技术的不断发展,高压直流输电技 术的应用前景更加广阔。
高压直流输电技术的应用场景
跨大区电网互联 远距离大容量输电 分布式能源并网 城市供电和配电网
02
高压直流输电技术的发展历程
高压直流输电技术的起源和发展
起源:20世纪初,高压直流输电技术开始发展,主要用于城市供电和跨大 区输电。
发展历程:20世纪50年代,随着电力电子技术和控制技术的进步,高压直 流输电技术逐渐成熟并得到广泛应用。
技术特点:高压直流输电具有输送功率大、线路损耗小、输送距离远等优 点,尤其适用于大容量、远距离输电。
应用场景:高压直流输电技术广泛应用于电力系统互联、海上风电并网、 城市供电等领域。
04
高压直流输电技术的关键技术问题
高压直流输电系统的设计和优化

高压直流输电技术及其在电力系统中的应用

高压直流输电技术及其在电力系统中的应用

高压直流输电技术及其在电力系统中的应用在当今的电力领域,高压直流输电技术正发挥着日益重要的作用。

它如同电力系统中的“高速公路”,为能源的高效传输和分配提供了强有力的支持。

高压直流输电技术,简单来说,就是将发电厂产生的交流电通过换流设备转换为直流电,然后进行远距离传输,到达目的地后再通过换流设备转换回交流电供用户使用。

与传统的交流输电相比,它具有一系列独特的优势。

首先,高压直流输电在远距离输电方面表现出色。

在远距离输电过程中,交流输电会因为线路的电抗而产生较大的能量损耗。

而直流电不存在电抗问题,因此能够减少线路损耗,实现更远距离、更高效的电力传输。

这对于能源产地和消费地相距较远的情况,如将西部的能源资源输送到东部沿海地区,具有重要意义。

其次,高压直流输电在海底电缆输电中具有明显优势。

由于交流电缆存在电容电流,其在海底输电时会导致较大的充电功率,限制了输电距离和容量。

而直流电缆不存在这个问题,可以实现更长距离的海底电力传输。

这对于实现海岛与大陆之间的电力联网,以及跨国的电力贸易等都具有重要价值。

再者,高压直流输电能够实现不同电网之间的非同步互联。

不同地区的电网可能存在频率、相位等差异,交流联网会面临诸多技术难题。

而直流输电可以在两个不同步的电网之间建立连接,实现功率的灵活交换和调节,增强了整个电力系统的稳定性和可靠性。

在电力系统中,高压直流输电技术的应用场景十分广泛。

一个典型的应用是大容量远距离输电。

例如,我国的西电东送工程,通过建设多条高压直流输电线路,将西部地区丰富的水电、火电等能源源源不断地输送到东部经济发达地区,满足了东部地区巨大的电力需求。

这些输电线路的电压等级通常达到±800 千伏甚至更高,输电容量可达数百万千瓦。

高压直流输电在新能源接入方面也发挥着关键作用。

随着风力发电和光伏发电等新能源的快速发展,其分布往往较为分散且不稳定。

通过高压直流输电技术,可以将分散的新能源发电集中起来,并稳定地输送到电网中,提高了新能源的消纳能力和利用效率。

高压直流输电系统设计

高压直流输电系统设计

高压直流输电系统设计随着电力传输距离的增加和电力需求的不断增长,高压直流输电系统成为一种重要的电力传输方案。

高压直流输电系统设计是确保电能的高效传输和稳定供应的关键步骤。

本文将从高压直流输电系统的基本原理、系统设计要素、关键技术和设计考虑等方面进行探讨。

一、高压直流输电系统基本原理高压直流输电系统是通过将交流电转换为直流电,利用高压直流将电能从发电站输送到远距离需求点。

主要由以下组成部分构成:1. 发电机组:将机械能转化为电能,产生交流电。

2. 运动转换装置:将交流电转化为直流电。

3. 整流器变流器组:将交流电整流和变压,通过变流装置转换为高压直流电。

4. 输电线路:将高压直流电能从发电站输送到需求点。

5. 变流器整流器组:将高压直流电转换为交流电,供电至用户。

二、高压直流输电系统设计要素1. 输电距离:确定输电线路的长度,是设计过程的首要考虑因素。

2. 输电容量:根据用户的需求和电力网络的供需关系,确定输电系统的容量。

3. 输电损耗:通过系统设计以降低输电过程中的电能损失,提高输电效率。

4. 可靠性要求:根据电力供应的重要性和可靠性要求,设计相应的输电系统。

5. 技术经济指标:考虑系统的成本、维护费用和综合经济性能。

三、高压直流输电系统设计关键技术1. 输电线路选择:根据输电距离、电流容量和输电能力需求,选择适当的线路类型和优化输电线路的结构。

2. 设备选型:根据设计要求选择合适的发电机组、变流器、整流器等设备,并进行合理的配置。

3. 控制策略设计:设计合理的控制策略,包括保护设备和系统、电压、频率和功率等方面的控制策略。

4. 绝缘与温升控制:确保输电过程中绝缘性能良好,以及控制设备的温升情况。

5. 污秽度控制:制定有效的污秽度控制计划,保持设备表面的清洁,减少电力损耗。

6. 地理环境因素考虑:根据输电线路所处的地理环境,设计合理的支架和防护措施,防止设备被外界环境影响。

四、高压直流输电系统设计考虑1. 系统可靠性:根据电力供应的可靠性要求,设计高可靠性的输电系统,以确保电能的稳定供应。

高压直流输电与其关键技术的研究

高压直流输电与其关键技术的研究

中国高 速发 展 的经济环 境 ,要求 更 多的 电力 的
供给 。与之 同时 , 电力 系统 也逐渐 增 大规模 ,发展 迅速 。在2 0 年 全 国装机 容量约4 0 04 4 GW,2 0 年达 05
考虑 到高压 直流 输 电的重要 性 ,本文将 从高 压
直流 发展进 程 、高压 直流输 电的特 点及 其关 键 的技 术 问题 予 以详细 阐述 ,最后 对其应 用前 景作 相应 总
H C Ima e o d ee ne o lahg o a e i c cr n as s o o c . VD .t yb g o fr c t -ihv lg r t ur trnmi in r et a r e tu r t de e t s pj
K e o ds H VD C ; k y t c no o y; a plc to r s e t ; r v e yw r : e e h l g p i ai n p o p c s e iw


高压 流 输 电与其 关键 技 术 的研 究 直
史 劲 陈 弘
( 成都 电业局 ,成都 6 0 2 ) 1ቤተ መጻሕፍቲ ባይዱ 1
摘 要 高压 直流 输 电 ( DC) 有增 加送 电距 离、扩展 输 电电容量 等优 点,能够 有效解 决 HV 拥 输 电网 中大容 量 、远距 离和 高 电压 输 电问题 , 可 以实 现 电网 的互联 ,其应用 前景相 当广 阔 本
结。
 ̄ 5 0 W ,新增装 机 约5 G 年 ,预 计2 2 年将 达 ] 10 G 0 W/ 00
到 1 0 GW 。 00
然 而 ,我 国资源 分布 不太 均 ,且大 多聚 集在 西

高压直流输电技术的研究现状

高压直流输电技术的研究现状

高压直流输电技术的研究现状在当今全球能源格局和电力需求不断变化的背景下,高压直流输电技术作为一种高效、可靠的电力传输方式,正经历着快速的发展和广泛的应用。

高压直流输电技术能够实现远距离、大容量的电力输送,对于优化能源资源配置、促进区域经济协调发展具有重要意义。

高压直流输电技术的基本原理是通过换流器将交流电转换为直流电进行传输,在接收端再通过换流器将直流电转换为交流电。

与传统的交流输电技术相比,高压直流输电具有许多显著的优势。

首先,在远距离输电方面,高压直流输电的线路损耗相对较低。

由于直流电没有电感和电容的影响,电流在导线中的分布更加均匀,从而减少了能量的损失。

这使得高压直流输电在跨越数千公里的输电距离时,仍然能够保持较高的输电效率。

其次,高压直流输电能够实现不同频率交流电网的互联。

在一些地区,由于历史原因或特殊需求,存在着不同频率的交流电网。

通过高压直流输电技术,可以将这些电网有效地连接起来,实现电力的互补和优化调配。

再者,高压直流输电对于提高电网的稳定性和可靠性也发挥着重要作用。

在交流电网中,故障容易迅速传播和扩散,而直流输电系统可以通过控制策略快速隔离故障,减少对整个电网的影响。

在高压直流输电技术的发展过程中,换流器技术的不断进步是关键之一。

早期的汞弧阀换流器由于存在诸多缺点,已经被淘汰。

目前,主流的换流器技术包括基于晶闸管的相控换流器(LCC)和基于全控型电力电子器件的电压源换流器(VSC)。

LCC 技术相对成熟,具有大容量、高效率的特点,但存在换相失败的风险,且对无功功率的需求较大。

VSC 技术则具有能够独立控制有功和无功功率、不存在换相失败问题、能够向无源网络供电等优点。

然而,VSC 技术在容量和成本方面目前还存在一定的局限性。

为了提高高压直流输电系统的性能,直流输电线路的设计和绝缘技术也在不断改进。

新型的架空输电线路和电缆技术能够降低线路的电阻和电晕损耗,提高输电容量和可靠性。

同时,对于直流线路的绝缘配合和防雷保护等方面的研究也在不断深入,以确保输电线路在复杂环境下的安全稳定运行。

高压直流输电技术及应用

高压直流输电技术及应用

高压直流输电技术及应用高压直流输电技术是一种用于远距离电能传输的先进电力输电技术。

相比传统的交流输电技术,高压直流输电技术具有更高的输电能力、更低的线损、更少的对环境的影响等优点,因此全球范围内越来越多的国家和地区开始采用高压直流输电技术来满足不断增长的电力需求。

高压直流输电技术基于直流电的传输方式,通过将交流电转换为直流电,再将直流电输送至目标地点后再转换为交流电,从而实现电能的传输。

这种技术主要由三个部分组成:直流变电站、直流输电线路和直流输电电缆。

直流变电站用于将交流电转换为直流电,并将直流电输送至目标变电站,然后再将直流电转换为交流电。

直流输电线路是将直流电输送至目标变电站的通道,通常采用大规模的金属材料制成,以保证输电效率和安全性。

直流输电电缆则用于短距离传输直流电能,常见于城市用电和地下输电。

高压直流输电技术的应用可在多个领域中发挥重要作用。

首先,在远距离大容量电能传输方面,高压直流输电技术具有明显的优势。

由于高压直流输电线路的电压可达到数百千伏甚至上千千伏,因此能够远距离传输大容量的电能而减少输电损耗。

此外,高压直流输电技术还可以有效地解决交流输电中的电压损耗和传输线路过载等问题,提高了电力系统的稳定性和效率。

其次,高压直流输电技术在跨海、跨山地区的电力传输方面具有独特优势。

传统的交流输电技术在跨海、跨山地区存在困难,而高压直流输电技术则可以轻松实现这一任务。

高压直流输电线路在电力传输过程中,由于直流电的特性,可有效抵抗电压下降和传输损耗,并且能够在海底或高山等复杂地形中进行输电。

因此,高压直流输电技术在连接离岛地区或山区地区与主电网之间的电力传输中具有重要意义。

此外,高压直流输电技术还可应用于新能源发电和大规模储能等领域。

随着新能源技术的不断发展,如风能、太阳能等可再生能源逐渐成为主流,高压直流输电技术为这些能源的输电提供了有效的解决方案。

由于可再生能源发电设备通常位于偏远地区,采用高压直流输电技术可以将大量的电能远距离传输至城市或工业区域,以满足用电需求。

高压直流输电系统的电能转换技术

高压直流输电系统的电能转换技术

高压直流输电系统的电能转换技术近年来,高压直流输电系统已经成为电力传输领域的一项重要技术。

相比传统的交流输电系统,高压直流输电系统具有更高的传输效率、更远的传输距离以及更小的电力损耗。

在高压直流输电系统中,电能转换技术起着至关重要的作用,可以有效地将交流电转换为直流电,实现长距离电力传输。

一、电能转换的概述电能转换是高压直流输电系统中的核心技术之一。

它通过将交流电转换为直流电,从而实现电力在长距离传输中的高效率转换和传输。

电能转换主要包括两个过程:交流-直流(AC-DC)转换和直流-交流(DC-AC)转换。

1. 交流-直流(AC-DC)转换交流-直流转换是将输电线路上的交流电转换为直流电的过程。

这种转换通常通过使用整流器来完成,整流器将交流电转换为具有固定电压和电流方向的直流电。

整流器的设计和选型对于高压直流输电系统的性能和稳定性至关重要。

2. 直流-交流(DC-AC)转换直流-交流转换是将直流电转换为交流电的过程。

在高压直流输电系统中,直流-交流转换一般发生在终端站点,将直流电能转换为适用于本地电网的交流电能。

这种转换通过使用逆变器来实现,逆变器将直流电转换为具有可调频率和电压的交流电。

二、电能转换技术的发展与应用随着科技的不断进步和电力需求的增加,高压直流输电系统的电能转换技术也在不断发展和应用。

下面将介绍几种常见的电能转换技术及其应用。

1. 线路串联换流技术线路串联换流技术是一种常用的电能转换技术,它将输电线路串联连接,并通过换流器将电能从串联的线路中提取出来。

这种技术适用于长距离的高压直流输电,具有传输效率高、电力损耗小的特点。

2. VSC技术VSC(Voltage Source Converter)技术是一种新型的电能转换技术,它采用可控硅器件作为主要元件,能够根据电网需求实时调整输出电压和电流。

VSC技术适用于电力系统中的各种工况,能够有效地提高电能转换效率。

3. MMC技术MMC(Module Multilevel Converter)技术是一种多模块结构的电能转换技术,它可以实现高电压、高功率的电能转换。

高压直流输电技术简析

高压直流输电技术简析

高压直流输电技术简析1. 引言高压直流输电技术是一种将电能以直流形式进行长距离传输的技术。

相比于传统的交流输电技术,高压直流输电技术具有许多优势,如输电损耗小、线路占地面积小、环境影响小等。

本文将对高压直流输电技术进行简要分析和介绍。

2. 高压直流输电的原理高压直流输电是利用变流器将交流电转换为直流电,并通过高压直流线路进行传输。

在送端,变流器将交流电转换为直流电,并通过高压直流线路输送到接收端。

在接收端,变流器将直流电转换为交流电供给用户使用。

3. 高压直流输电的优势3.1 输电损耗小相比于交流输电,高压直流输电的输电损耗更小。

这是因为在高压直流线路上,由于没有交变磁场的存在,导线的电阻损耗和感应损耗都会减小,从而提高了输电效率。

3.2 线路占地面积小由于高压直流输电线路的输电损耗小,所以可以采用较小的导线截面积,从而减小了线路的占地面积。

这对于在城市中进行输电非常重要,可以减少对土地资源的占用。

3.3 环境影响小相比于交流输电,高压直流输电对环境的影响更小。

由于高压直流线路没有交变磁场的存在,所以对周围环境和生物没有产生明显的影响。

这对于保护生态环境具有重要意义。

4. 高压直流输电的应用4.1 远距离输电由于高压直流输电技术具有输电损耗小的优势,所以适用于远距离输电。

在远距离输电中,高压直流输电可以减少能量损耗,提高能源利用效率。

4.2 海底输电高压直流输电技术还适用于海底输电。

由于海底环境复杂,传统的交流输电技术很难实现海底输电。

而高压直流输电技术可以通过特殊设计的海底线缆实现海底输电,具有较高的可靠性和稳定性。

4.3 新能源接入随着新能源的快速发展,高压直流输电技术也被广泛应用于新能源接入。

由于新能源发电站通常位于偏远地区,而用户需求集中在城市中,传统的交流输电技术无法满足需求。

而高压直流输电技术可以将新能源从发电站输送到城市,实现新能源的大规模接入。

5. 高压直流输电技术的挑战虽然高压直流输电技术具有许多优势,但也面临一些挑战。

电力电子技术在高压直流输电中的应用

电力电子技术在高压直流输电中的应用

电力电子技术在高压直流输电中的应用随着电力需求的不断增长,高压直流输电作为一种高效、可靠的电力传输方式得到了广泛的应用和研究。

而电力电子技术作为高压直流输电的关键技术之一,在提高电力传输效率、稳定电力供应等方面发挥着重要作用。

本文将重点讨论电力电子技术在高压直流输电中的应用。

一、高压直流输电的概念和优势高压直流输电(High Voltage Direct Current Transmission,HVDC)是一种以直流电方式进行能量传输的技术。

与传统的交流输电方式相比,高压直流输电具有以下优势:1. 较低的输电损耗:由于直流输电不受交流电缆的电感和电容影响,能够大幅降低输电线路的电阻损耗和磁场损耗,提高能量传输效率。

2. 较小的电压损失:高压直流输电的电压损失较小,能够有效减少长距离输电时的电压降低,提高电力传输质量。

3. 稳定的电力供应:高压直流输电系统具有较好的电压和频率调节能力,能够稳定地提供电力供应,避免因交流网络故障而引发的停电事故。

二、1. 半控制桥式整流器高压直流输电系统中的半控制桥式整流器是实现交流电转换为直流电的关键设备。

半控制桥式整流器采用一定的逻辑控制方法,能够通过开关元件的控制实现对整流电压的精确调节,从而确保直流电的质量和稳定性。

2. 直流电压源变流器直流电压源变流器是将直流电转换为交流电的重要电力电子设备。

它通过逆变技术将高压直流输电线路上的直流电转换为交流电,实现电能的有效传输。

直流电压源变流器不仅能够实现电能的变换,还能对系统进行频率和电压的调节,确保高压直流输电的稳定性和可靠性。

3. 高压直流断路器由于高压直流系统在发生故障时电弧容易维持,传统的交流断路器难以满足高压直流系统的要求。

而高压直流断路器作为一种专用的断路保护装置,在高压直流输电系统中起到了至关重要的作用。

它能够迅速切断故障电流,防止故障扩大,保障高压直流输电系统的安全运行。

4. 附加功能设备在高压直流输电系统中,还涉及到一些附加功能设备,如重复器、滤波器、线路电流开关等。

高压直流输电技术的研究进展

高压直流输电技术的研究进展

高压直流输电技术的研究进展在当今能源需求不断增长和能源分布不均衡的背景下,高压直流输电技术因其独特的优势,成为了电力传输领域的关键技术之一。

高压直流输电能够实现远距离、大容量的电能输送,并且具有更好的控制性能和经济性。

本文将对高压直流输电技术的研究进展进行详细的探讨。

高压直流输电技术的发展历程可以追溯到上世纪中叶。

早期的高压直流输电工程采用汞弧阀作为换流元件,但其存在造价高、运行维护复杂等问题,限制了其广泛应用。

随着电力电子技术的不断进步,晶闸管的出现为高压直流输电带来了新的机遇。

晶闸管换流器具有更高的可靠性和更低的成本,使得高压直流输电技术逐渐走向实用化。

近年来,绝缘栅双极型晶体管(IGBT)等新型电力电子器件的发展,为高压直流输电技术注入了新的活力。

基于 IGBT 的电压源换流器(VSC)高压直流输电技术,具有有功和无功功率独立控制、不存在换相失败、能够向无源网络供电等优点,在可再生能源接入、城市电网供电等领域展现出了广阔的应用前景。

在高压直流输电系统的拓扑结构方面,传统的两端直流输电系统已经得到了广泛的应用和成熟的发展。

在此基础上,多端直流输电系统(MTDC)成为了研究的热点。

MTDC 能够实现多个电源和负荷的灵活连接,提高了系统的可靠性和经济性。

例如,通过 MTDC 可以将多个风电场和太阳能电站连接起来,实现大规模可再生能源的整合和外送。

高压直流输电的控制策略是保证系统稳定运行和高效输电的关键。

目前,常见的控制策略包括定电流控制、定电压控制、功率控制等。

为了提高系统的动态性能和适应性,智能控制算法如模糊控制、神经网络控制等也被引入到高压直流输电控制中。

同时,考虑到高压直流输电系统与交流系统的相互作用,交直流混联系统的协调控制也是当前研究的重要方向。

在高压直流输电线路的设计和建设方面,随着电压等级的不断提高,对绝缘材料和杆塔结构提出了更高的要求。

新型的复合绝缘材料和紧凑型线路设计,有助于减少线路走廊占地,降低建设成本。

电气工程中高压直流输电技术研究

电气工程中高压直流输电技术研究

电气工程中高压直流输电技术研究在当今的电气工程领域,高压直流输电技术正发挥着日益重要的作用。

它不仅在长距离、大容量输电方面具有显著优势,还为电力系统的稳定运行和优化配置提供了有力支持。

高压直流输电技术的原理并不复杂,简单来说,就是将发电厂发出的交流电通过换流站转换为直流电,然后通过直流输电线路进行传输,到达目的地后再通过换流站转换为交流电,供用户使用。

这种技术的核心在于换流站中的换流器,它们能够实现交流电和直流电的相互转换。

高压直流输电技术具有诸多优点。

首先,在长距离输电中,它的线路损耗相对较小。

由于直流电没有交流电的电感和电容效应,电流在导线中的分布更加均匀,从而减少了能量的损失。

这使得在远距离输电时,高压直流输电能够更加高效地传输电能。

其次,高压直流输电技术对于电网的稳定性有着积极的影响。

它能够快速地调节功率,有效地应对电网中的各种故障和波动,提高了电力系统的可靠性和稳定性。

再者,高压直流输电线路的造价相对较低。

在相同的输电容量和距离下,直流输电线路所需的导线数量较少,杆塔结构也相对简单,从而降低了建设成本。

然而,高压直流输电技术也并非完美无缺。

其技术难度较高,对换流站的设备要求严格,这增加了建设和维护的成本。

同时,直流输电系统的控制和保护也相对复杂,需要先进的技术和管理手段来保障其安全稳定运行。

在实际应用中,高压直流输电技术已经取得了显著的成就。

例如,我国的西电东送工程中就广泛采用了高压直流输电技术,将西部地区丰富的能源资源转化为电能,并输送到东部地区,有效地缓解了东部地区的能源紧张局面。

另外,高压直流输电技术在跨区域电网互联方面也发挥了重要作用。

通过直流输电线路将不同区域的电网连接起来,可以实现电力资源的优化配置,提高整个电网的运行效率。

随着技术的不断发展,高压直流输电技术也在不断创新和完善。

新型的换流器技术,如模块化多电平换流器(MMC),具有更高的性能和更好的适应性,为高压直流输电技术的发展注入了新的活力。

高压直流输电系统电压控制技术研究

高压直流输电系统电压控制技术研究

高压直流输电系统电压控制技术研究高压直流输电技术是一种目前最为可靠、高效的输电方式,其主要优势在于可以节省大量的输电线路和充电电缆,同时还具备稳态和暂态稳定性能优异等特点。

在高压直流输电中,电压控制技术是一项十分关键的技术,它不仅关系到整个系统的运行安全性、稳定性和效率,还关系到能否实现电力系统的长期可持续发展。

一、高压直流输电系统电压控制技术的概念及其作用高压直流输电系统电压控制技术,旨在通过调节直流系统的各种电气参数来达到控制系统电压的目的。

其中,直流侧电压的控制可采用开环控制或闭环控制方式,通过监测直流侧电压的变化来实时调节直流侧电压;交流侧电压的控制可采用开环控制或闭环控制方式,通过监测交流侧电压的变化来实时调节交流侧电压。

在高压直流输电系统中,电压控制技术扮演着其中的重要角色。

首先,电压控制技术可调节电压和电流的相互作用,实现电力系统的平稳运行。

其次,电压控制技术可以调整电力系统的电力流动,从而尽可能地减少能量损失,提高系统的输电效率。

此外,电压控制技术也可以调整电流流向和电压水平,以避免电力系统出现电力负荷过大,系统不稳定等问题。

二、高压直流输电系统电压控制技术的研究方向随着科技的不断发展,高压直流输电系统电压控制技术也在不断创新和升级,主要有以下研究方向:1. 新型电压控制器的研究。

新型电压控制器采用了新型的互联芯片与调整器来实现高效可靠的电压控制,同时还新增了接触方式判别器、控制方式切换控制器等功能模块,增强了控制功能和掌控感。

2. 电力系统仿真技术的研究。

电力系统仿真技术是高压直流输电系统电压控制技术中一个十分关键的研究方向。

该技术可基于电力系统模型,对系统的性能、稳定性等进行仿真模拟,找出系统中可能存在的风险、异常状态等问题,有助于提高系统的稳定性和性能。

3. 大电阻率介质的研究。

大电阻率介质是目前高压直流输电系统中接收、传输电能的一种新型介质,与传统导体相比具有体积小、重量轻、导电性能良好等特点。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高压直流输电关键技术一、国内外技术现状及发展趋势高压直流(HVDC)技术,自50年代兴起后,已经历了40多年的发展,成为一项日趋成熟的技术。

至1995年,世界上已成功投运的HVDC工程已达62项,预计至2002年,世界还将有约20项HVDC工程投入运行。

80年代,随着可控硅技术以及世界电网技术发展,HVDC技术得到一个阶跃性的发展。

其一,由于联网的要求,背靠背工程有14项,约占新建工程的一半;其二,建成了目前世界上最长的直流线路.1700KM的扎伊尔英加—沙巴工程以及电压等级最高(士600KV)、输送容量最大(3150MW)的巴西伊太普工程。

90年代,世界第一个复杂的三端HVDC工程(魁北克—新英格兰工程)完成,并建成了世界上最长的海缆(250km)HVDC工程(瑞典—德国的BALTIC工程)。

亚洲地区的HVDC技术开始兴起。

菲律宾、南韩、马束西亚、泰围、印度、日本和中国都相继开始HVDC工程的建设和研究,已建和计划中的工程约有15项。

随着电网技术和电力电子技术的发展,HVDC技术将会继续深化其可控性强的特点,同时克服其对电网带来的一些不利因素(如谐波)及投流站造价较高的弱点,加强其在电网发展中的作用。

二、技术开发的总体目标和重点任务根据葛上和天广HVDC工程及三峡工程、西电东送工程以及全国联网工程的需要,发展我为的HVDC技术;重点开发远距离高压直流输电和背靠背HVDC技术,借鉴国内外的经验,确保三峡HVDC工程的成功建设和运行;实施HVDC主设备国产化工程。

三、主要技术开发内容及指标(一)制定与国际接轨HVDC技术标准及HVDC工程设计规范。

(二)工程运行技术1.直流系统控制保护策略研究;2.直流与交流系统和设备控制保护的协调配合的研究;3.交直流系统相互影响的研究;4.换流站交流谐波及其滤波器的研究;5.新型换流站运行人员监控系统的开发研究;6.接地极的研究。

(三)HVDC技术研究手段的完善与开发l.HVDC工程系统研究、设计软件包的完善与规范;2.HVDC一、二次设备新型数学模型的完善与开发;3.HVDC接地极研究软件的开发。

(四)背靠HVDC系统的研究,包括电压等级的选择、主设备参数列选、系统及其控制策略的研究等。

(五)直流输电新技术的研究,包括自动可调交流滤波器与有源直流滤波器的开发研究,户外阀技术、串联电容器的换流器技术(CCC)、深埋接地极技术、多端直流技术等。

(六)HVDC主设备国产化。

四、经济、社会效益和市场前景上述研究开发工作将直接服务于我国三峡输变电工程和全国联网工程以及已建和在建中的HVDC工程,可促进我国自行进行工程规范设计、以及部分主设备国产化的需求,并能提高HVDC工程运行的可靠性,将产生世大的社会经济效益。

直流输电特点一、输送相同功率时,线路造价低:对于架空线路,交流输电通常采用3根导线,而直流单极只需1根,双极只需2根。

对于电缆线路,其投资费和运行费都更为经济,这也是越来越多的大城市采用地下直流电缆的原因。

二、线路有功损耗小:直流线路没有感抗和容抗,也就没有无功损耗。

而且由于直流架空线路具有“空间电荷”效应,即集肤效应,其电晕损耗和无线电干扰均比交流架空线路要小。

三、适宜于海下输电:如果用交流,除了心线的电阻损耗外,还有绝缘中的介质损耗以及铅包和铠装中的磁感应损耗等。

而用直流,则基本上只有心线的电阻损耗。

四、没有系统的稳定问题:交流系统有一定的电抗,输送的功率有一定的极限,如果超过这极限,送端的发电机和受端的发电机可能失去同步而造成系统的解列。

五、能限制系统的短路电流:六、调节速度快,运行可靠:在交、直流线路并联运行时,当交流系统发生短路,可暂时增大直流输送的功率以减小发电机转子加速,就可以提高系统运行的可靠性了。

高压直流输电方式与高压交流输电方式相比,有明显的优越性.历史上仅仅由于技术的原因,才使得交流输电代替了直流输电.下面先就交流电和直流电的主要优缺点作出比较,从而说明它们各自在应用中的价值.交流电的优点主要表现在发电和配电方面:利用建立在电磁感应原理基础上的交流发电机可以很经济方便地把机械能(水流能、风能……)、化学能(石油、天然气……)等其他形式的能转化为电能;交流电源和交流变电站与同功率的直流电源和直流换流站相比,造价大为低廉;交流电可以方便地通过变压器升压和降压,这给配送电能带来极大的方便.这是交流电与直流电相比所具有的独特优势.直流电的优点主要在输电方面:①输送相同功率时,直流输电所用线材仅为交流输电的2/3~l/2直流输电采用两线制,以大地或海水作回线,与采用三线制三相交流输电相比,在输电线载面积相同和电流密度相同的条件下,即使不考虑趋肤效应,也可以输送相同的电功率,而输电线和绝缘材料可节约1/3.如果考虑到趋肤效应和各种损耗(绝缘材料的介质损耗、磁感应的涡流损耗、架空线的电晕损耗等),输送同样功率交流电所用导线截面积大于或等于直流输电所用导线的截面积的1.33倍.因此,直流输电所用的线材几乎只有交流输电的一半.同时,直流输电杆塔结构也比同容量的三相交流输电简单,线路走廊占地面积也少.②在电缆输电线路中,直流输电没有电容电流产生,而交流输电线路存在电容电流,引起损耗.在一些特殊场合,必须用电缆输电.例如高压输电线经过大城市时,采用地下电缆;输电线经过海峡时,要用海底电缆.由于电缆芯线与大地之间构成同轴电容器,在交流高压输线路中,空载电容电流极为可观.一条200kV的电缆,每千米的电容约为0.2μF,每千米需供给充电功率约3×103kw,在每千米输电线路上,每年就要耗电2.6×107kw·h.而在直流输电中,由于电压波动很小,基本上没有电容电流加在电缆上.③直流输电时,其两侧交流系统不需同步运行,而交流输电必须同步运行.交流远距离输电时,电流的相位在交流输电系统的两端会产生显著的相位差;并网的各系统交流电的频率虽然规定统一为50Hz,但实际上常产生波动.这两种因素引起交流系统不能同步运行,需要用复杂庞大的补偿系统和综合性很强的技术加以调整,否则就可能在设备中形成强大的循环电流损坏设备,或造成不同步运行的停电事故.在技术不发达的国家里,交流输电距离一般不超过300km而直流输电线路互连时,它两端的交流电网可以用各自的频率和相位运行,不需进行同步调整.④直流输电发生故障的损失比交流输电小.两个交流系统若用交流线路互连,则当一侧系统发生短路时,另一侧要向故障一侧输送短路电流.因此使两侧系统原有开关切断短路电流的能力受到威胁,需要更换开关.而直流输电中,由于采用可控硅装置,电路功率能迅速、方便地进行调节,直流输电线路上基本上不向发生短路的交流系统输送短路电流,故障侧交流系统的短路电流与没有互连时一样.因此不必更换两侧原有开关及载流设备.在直流输电线路中,各级是独立调节和工作的,彼此没有影响.所以,当一极发生故障时,只需停运故障极,另一极仍可输送不少于一半功率的电能.但在交流输电线路中,任一相发生永久性故障,必须全线停电.另外提醒一下:在直流输电系统中,只有输电环节是直流电,发电系统和用电系统仍然是交流电.特高压直流输电的技术特点特高压直流输电的电压等级概念与交流输电不一样。

对于交流输电来说,一般将220kV 及以下的电压等级称为高压,330~750kV的称为超高压,1000kV及以上的称为特高压。

直流输电则稍有不同,±100kV以上的统称为高压;±500kV和±600kV仍称为高压,一般不称为超高压;而超过±600kV的则称为特高压。

对于单项直流输电工程而言,通常根据其送电容量、送电距离等因素进行技术、经济方面的综合比较,对工程进行个性化设计而确定相应的直流电压等级。

我国对特高压直流输电的电压等级进行研究和论证时,考虑到我国对直流输电技术的研发水平和直流设备的研制能力,认为确定一个特高压直流电压水平是必要的,并把±800kV确定为我国特高压直流输电的标称电压。

这有利于我国特高压直流输电技术和设备制造的标准化、规范化、系列化开发,有利于进行我国特高压直流输电工程的规划、设计、实施和管理。

特高压直流输电技术不仅具有高压直流输电技术的所有特点,而且能将直流输电技术的优点更加充分发挥。

直流输电的优点和特点主要有:①输送容量大。

现在世界上已建成多项送电3GW的高压直流输电工程。

②送电距离远。

世界上已有输送距离达1700km的高压直流输电工程。

我国的葛南(葛洲坝-上海南桥)直流输电工程输送距离为1052km,天广(天生桥-广东)、三常(三峡-常州)、三广(三峡-广东)、贵广(贵州-广东)等直流输电工程输送距离都接近1000km。

③输送功率的大小和方向可以快速控制和调节。

④直流输电的接入不会增加原有电力系统的短路电流容量,也不受系统稳定极限的限制。

⑤直流输电可以充分利用线路走廊资源,其线路走廊宽度约为交流输电线路的一半,且送电容量大,单位走廊宽度的送电功率约为交流的4倍。

如直流±500kV线路走廊宽度约为30m,送电容量达3GW;而交流500kV线路走廊宽度为55m,送电容量却只有1GW。

⑥直流电缆线路不受交流电缆线路那样的电容电流困扰,没有磁感应损耗和介质损耗,基本上只有芯线电阻损耗,绝缘水平相对较低。

⑥直流输电工程的一个极发生故障时,另一个极能继续运行,并通过发挥过负荷能力,可保持输送功率或减少输送功率的损失。

⑦直流系统本身配有调制功能,可以根据系统的要求做出反应,对机电振荡产生阻尼,阻尼低频振荡,提高电力系统暂态稳定水平。

⑧能够通过换流站配置的无功功率控制进行系统的交流电压调节。

⑨能够通过换流站配置的无功功率控制进行系统的交流电压调节。

⑩大电网之间通过直流输电互联(如背靠背方式),2个电网之间不会互相干扰和影响,必要时可以迅速进行功率交换。

特高压直流输电的特点:①压高,高达±800kV。

对与电压有关的设备,如高压端(±800kV)的换流变压器及其套管、穿墙套管、避雷器等研发提出了高要求;对承受±800kV的外绝缘,如支持瓷柱、线路绝缘子等需要进行新的研发。

②送电容量大。

规划的特高压直流输电工程的送电容量高达5GW和6.4GW,相应的直流额定电流将达到3125A和4000A。

②送电距离长,长达1500km,甚至超过2000km。

相关文档
最新文档