数学北师大版七年级下册认识三角形(第2课时)

合集下载

七年级数学下册 认识三角形学案之二(无答案) 北师大版

七年级数学下册 认识三角形学案之二(无答案) 北师大版

40° 2 4 1 3 5.1认识三角形(第二课时)学案学习目标:1.通过实验活动的过程,得出三角形内角和定理。

2.能从三角形内角和定理中探索出直角三角形两锐角互余的性质。

3.能应用三角形内角和定理来解决一些简单的求三角形内角和问题。

4.会按角的大小关系对三角形分类,能从所给出的已知角中,判断出三角形的形状。

重点:1.了解三角形的内角,会用平行线的性质与平角的定义证明三角形的内角和等于180度。

2.会将三角形分成三类。

3.能发现“直角三角形两个锐角互余。

”难点:证明三角形内角和等于180度。

应用三角形内角和定理解决实际问题。

学习过程:一、自学课本138~139页“做一做”内容,思考并回答下列问题:1.(1)你有什么办法可以得到三角形的内角和为多少度?(2)小明用______的方法得到三角形的内角和为________.(3)图5-7中,∠1= ∠____,因此直线a ∥________.延长线段BC,可得到∠4= ∠____,理由是________________. ∠1+ ∠2+ ∠___=180度,因此∠A+ ∠B +∠C=________度。

(4)△ABC 中,∠C=90度,可表示为Rt △ABC,斜边是____________, ∠A+ ∠B=___________.2.跟进联系,巩固应用。

(1)、在⊿ABC ,∠A=80°,∠B=60°,则∠C= 。

(2)、在直角三角形中,一个锐角等于25°,另一个锐角= 。

(3)、在⊿ABC 中,∠A :∠B :∠C=1:2:3,则∠C= 。

(4)、在⊿ABC 中,∠B=∠C=21∠A ,则∠A= ,∠B= ,∠C= 。

(5)、在⊿ABC 中,∠B-∠A-∠C=30°,则∠B= 。

(6)如图,∠1+∠2+∠3+∠4= 。

师生交流做法,积累解题经验。

二.自学课本139页“猜一猜”部分,回答下列问题;1.(1)小明所拿的三角形是_______三角形,被遮住的角是______角,小颖拿的三角形是_______,被遮住的角是_______角。

北师大版数学七年级下册4.1认识三角形教学设计

北师大版数学七年级下册4.1认识三角形教学设计
2.让学生动手操作,使用三角板、直尺等工具画出不同类型的三角形,并判断其类型。
3.教师对学生的练习进行点评,针对共性问题进行讲解,提高学生的实际应用能力。
(五)总结归纳
1.让学生回顾本节课所学内容,总结三角形的性质、分类和应用。
2.教师进行补充和归纳,强调三角形知识在实际生活中的重要性。
3.鼓励学生继续探索三角形的奥秘,激发他们对数学学习的兴趣和热情。
2.培养学生勇于探索、善于思考的品质,让他们在学习过程中体验到成功的喜悦。
3.引导学生认识到数学知识在实际生活中的重要性,培养他们用数学的眼光观察世界、解决问题的能力。
在教学过程中,教师应关注学生的个体差异,因材施教,使每位学生都能在原有基础上得到提高。同时,注重培养学生的数学素养,将知识、技能、情感态度与价值观有机地结合在一起,为学生的全面发展奠定基础。
(3)利用三角板、直尺等工具,画出不同类型的三角形,并标注其内角度数。
3.结合本节课所学2)三角形的三边关系在实际生活中的应用实例有哪些?
(3)如何利用三角形的性质解决实际问题?
4.阅读拓展资料,了解三角形在建筑、工程等领域的应用,结合所学知识,撰写一篇关于三角形应用的小短文。
4.教学拓展:
(1)结合实际生活,让学生寻找身边的三角形,并运用所学的三角形知识进行解释。
(2)开展课外活动,如三角形知识竞赛、手抄报等,丰富学生的学习形式,提高他们的学习兴趣。
(3)引导学生在网上查阅三角形的相关资料,拓展他们的知识视野。
四、教学内容与过程
(一)导入新课
1.利用多媒体展示生活中常见的三角形物体,如自行车三角架、衣架等,引导学生观察并说出它们的共同特征。
北师大版数学七年级下册4.1认识三角形教学设计

北师大版数学七年级下册4.1.1《认识三角形》教案

北师大版数学七年级下册4.1.1《认识三角形》教案
五、教学反思
今天在教授《认识三角形》这一章节时,我发现学生们对三角形的定义和分类掌握得比较快,但在理解三角形稳定性和计算面积时遇到了一些困难。在教学中,我尝试了多种方法来帮助学生突破这些难点。
首先,通过生活中的实例引入三角形的概念,让学生们感受到三角形的普遍存在和实际应用。这种导入方式激发了他们的学习兴趣,使得课堂氛围变得更加活跃。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作。通过拼搭三角形,观察其稳定性,并探讨三角形的性质。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“三角形在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解三角形的基本概念。三角形是由不在同一直线上的三条线段首尾相连组成的封闭图形。它是几何图形中的基本组成部分,具有稳定性,广泛应用于日常生活和工程建筑中。
2.案例分析:接下来,我们来看一个具体的案例。以自行车三角架为例,讲解三角形在实际中的应用,以及它如何帮助我们解决问题。
-三角形的分类:掌握按边分类(不等边三角形、等腰三角形)和按角分类(锐角三角形、直角三角形、钝角三角形)。
-三角形的符号表示:熟练运用小写字母表示三角形的边,大写字母表示对应的角。
-三角形的周长和面积计算公式:理解并掌握三角形周长为三边之和,面积可通过底和高的乘积的一半计算。
举例解释:讲解三角形定义时,可通过实际操作教具或动态软件演示三条线段如何构成三角形,强调“不在同一直线上”的关键条件。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。

2020-2021学年七年级数学北师大版下册第四章1 认识三角形 第2课时 三边形的高、中线

2020-2021学年七年级数学北师大版下册第四章1 认识三角形   第2课时  三边形的高、中线

知识点3: 三角形的角平分线
【例5】如图4-1-19,在△ABC中,∠B=60°,∠C=30°,AD和 AE分别是△ABC的高和角平分线,求∠DAE的度数.
解:在△ABC中, ∠B=60°,∠C=30°, 所以∠BAC=180°-∠B-∠C=180°-60°-30°=90°. 因为AE是∠BAC的平分线,所以∠BAE= ∠BAC=45°. 因为AD是△ABC的高,所以∠ADB=90°. 所以在△ADB中,∠BAD=90°-∠B=90°-60°=30°. 所以∠DAE=∠BAE-∠BAD=45°-30°=15°.
【C组】 10. 如图4-1-31,△ABC中,AD是高,AE,BF是角平分线,它 们相交于点O,∠CAB=50°,∠C=60°,求∠DAE和∠BOA的度 数.
解:因为∠CAB=50°,∠C=60°, 所以∠ABC=180°-50°-60°=70°. 又因为AD是高,所以∠ADC=90°. 所以∠DAC=180°-90°-∠C=30°. 因为AE,BF是角平分线,所以∠CBF=∠ABF=35°, ∠EAF=25°. 所以∠DAE=∠DAC-∠EAF=5°, ∠AFB=180°-∠CAB-∠ABF=180°-50°-35°=95°. 所以∠AOF=180°-∠CAE-∠AFB=180°-25°-95°=60°. 所以∠BOA=180°-∠AOF=120°.故∠DAE=5°,∠BOA=120°.
∠BAC=40°.因为AD是△ABC的高,所以∠ADC=90°. 所以在△ADC中,∠DAC=180°-∠ADC-∠C=180°-90°60°=30°. 所以∠DAE=∠EAC-∠DAC=40°-30°=10°.所以∠AEC=90°10°=80°.所以∠AEB=100°.因为BF是∠ABC的平分线, 所以∠FBC= ∠ABC=20°.所以∠BOE=180°-20°-100°=60°.

4.1认识三角形 第二课时-七年级数学下册课件(北师大版)

4.1认识三角形 第二课时-七年级数学下册课件(北师大版)

数,所以x 的值只能是4或6,所以三角形的第三边Байду номын сангаас长
是4或6.
总结
通过多个条件确定三角形第三边的方法:
已知两边
第三边的范围
第三边小于已知两边的 和而大于已知两边的差
附加条件
确定第 三边
1 三角形两边长分别为3和5,第三边的长可以是8吗? 可以是2吗?说说你的理由.
解:不可以是8,也不可以是2.理由:三角形任意两 边之和大于第三边,任意两边之差小于第三边.
④三角形按角分类应分为锐角三角形、直角三角形和
钝角三角形.其中正确的有( C )
A.1个
B.2个
C.3个
D.4个
知识点 3 三角形的三边关系
议一议 (1)元宵节的晚上,房梁
上亮起了彩灯(如图), 装有黄色彩灯的电线 与装有红色彩灯的电线哪根长呢?说明你的理由. (2)在一个三角形中,任意两边之和与第三边的长度有 怎样的关系?为什么?
则该等腰三角形的底边长为( A )
A.2 cm
B.4 cm
C.6 cm
D.8 cm
2 如图,在△ABC 中,BC=BA,点D 在AB上,且 AC=CD=DB,则图中的等腰三角形有( C )
A.1个 B.2个 C.3个 D.4个
3 △ABC 的三边长a,b,c 满足关系式(a-b )(b-c )(c-a )
归纳
三角形任意两边之和大于第三边.
做一做 分别量出(图4-14)三个三角形的三边长度,并填入空格内.
(1)a=________, (2)a=________, (3)a=________, b=________, b=________, b=________, c=________, c=________, c=________,

(北师大版)七年级数学下册:第四章三角形4.3第2课时利用“角边角”“角角边”判定三角形全等授课典案

(北师大版)七年级数学下册:第四章三角形4.3第2课时利用“角边角”“角角边”判定三角形全等授课典案

图4-1-29处理方式:可让学生快乐地回答.【师】同学们都非常喜欢读书,那你们家里一定有漂亮的典案二导学设计4.3探索三角形全等的条件(2)一、学习目标1、探索出三角形全等的条件“ASA ”和“AAS ”并能应用它们来判定两个三角形 是否全等。

2、体会利用转化的数学思想和方法解决问题的过程。

3、能够有条理的思考和理解简单的推理过程,并运用数学语言说明问题。

4、敢于面对数学活动中的困难,并能通过合作交流解决遇到的问题。

二、学习重点掌握三角形全等条件“ASA ”和“AAS ”,并能应用它们来判定两个三 角形是否全等。

三、学习难点 探索 “AAS ”的条件 四、学习设计: 1.温故而知新如图,在△ABC 中,AB =AC ,AD 是BC 边上的中线,△ABD 和△ACD 全等吗? 你能说明理由吗? 2、创设情景,引入新课提问:一张三角形的纸片,被斯成三部分,究竟用那部分可 画出原图一样的三角形? 探究练习1. 两角和它们的夹边将学生分组小组分工合作完成下列问题: 画一个△ABC 使它满足以下条件: 第一组:∠A=90°, ∠B=30°,AB=10cm 第二组: ∠A=60°, ∠B=45°,AB=9cm学生动手操作,完成问题后,小组交流比较,看看能得到什么结论?学生表述,老师板书: ________________________对应相等的两个三角形全等;(简写为_____________或者 ______________) 探究练习2.如果“两角及一边”条件中的边是其中一角的对边,比如三角形的两个内角分别是60° 和45°,一条边长为10cm ,情况会怎样呢?ABCD(1) 如果角60°所对的边为10cm ,你能画出这个三角形吗?(2) 如果角45°所对的边为10cm ,那么按这个条件画出的三角形都全等吗?结论___________________________对应相等的两个三角形全等简写为________________________________思考:若两个三角形具备两角和其中一个角的对边分别相等,哪么这两个三角形全等,你认为对吗?能举例说明吗?3.举例应用:例1.如图,已知AO=DO ,∠AOB 与∠DOC 是对顶角,还需补充条件______________=_______________,就可根据“ASA ”说明△AOB ≌△DOC ;或者补充条件_______________=_______________,就可根据“AAS ”,说明△AOB ≌△DOC 。

北师大版七年级下册数学教案-第4章 三角形-1 认识三角形

北师大版七年级下册数学教案-第4章 三角形-1 认识三角形

1认识三角形第1课时三角形的内角和教学目标一、基本目标1.通过具体实例,认识三角形的概念及其基本要素,会将三角形按角分类.2.掌握“三角形三个内角的和等于180°”,能应用三角形内角和解决一些简单的求三角形内角的度数问题,能发现“直角三角形的两个锐角互余”并会利用.3.通过观察、操作、想象、推理“三角形三个内角的和等于180°”的活动过程,发展空间观念、推理能力和有条理的表达能力.二、重难点目标【教学重点】三角形三个内角的和等于180°;直角三角形的两个锐角互余.【教学难点】探究、发现和验证“三角形三个内角的和等于180°”.教学过程环节1自学提纲,生成问题【5 min阅读】阅读教材P81~P84的内容,完成下面练习.【3 min反馈】(一)三角形1.由不在同一条直线上的三条线段首尾顺次相接所组成的图形叫做三角形.2.“三角形”可以用符号“△”表示,如图中顶点是A、B、C的三角形,记作△ABC.△ABC的三边,有时也用a、b、c来表示,如图中,顶点A所对的边BC用a表示,边AC、AB分别用b、c来表示.(二)三角形的内角和1.利用三角板的三个角之和为多少度来探索三角形三个内角的和.图1图2图1:30°+60°+90°=180°;图2:45°+45°+90°=180°.2.探索任意三角形三个内角的和都等于180°.(1)如图,剪一张三角形的纸片,它的三个内角分别为∠1、∠2和∠3;(2)将∠1、∠2撕下,按图所示将这两个角拼在第三个角的顶点处,用量角器量出∠BCD 的度数,可得到∠A+∠B+∠ACB=180°;(3)将∠2、∠3撕下,按下图拼在一起,用量角器量一量∠MAN的度数,可得到∠BAC +∠B+∠C=180°;(4)三角形内角和定理:三角形三个内角的和等于180°.(三)三角形的分类1.三角形按内角大小可以分为三类:锐角三角形、直角三角形、钝角三角形.2.(1)通常,我们用符号“Rt△ABC”表示“直角三角形ABC”.把直角所对的边称为直角三角形的斜边,夹直角的两条边称为直角边,如图;(2)直角三角形的两个锐角互余,即上图中∠A+∠B=90°.环节2合作探究,解决问题活动1小组讨论(师生互学)【例1】如图,DF⊥AB,∠A=40°,∠D=43°,则∠ACD的度数是________.【互动探索】(引发学生思考)DF⊥AB,∠A=40°→∠AEF=50°(直角三角形两锐角互余)→∠CED=50°(对顶角相等),由∠D=43°→∠ACD=87°(三角形内角和定理).【答案】87°【互动总结】(学生总结,老师点评)“直角三角形的两个锐角互余”常常和三角形内角和定理综合起来求角的度数.【例2】如图是A、B、C三岛的平面图,C岛在A岛的北偏东50°方向,B岛在A岛的北偏东80°方向,C岛在B岛的北偏西40°方向.从B岛看A、C两岛的视角∠ABC是多少度?从C岛看A、B两岛的视角∠ACB是多少度?【互动探索】(引发学生思考)(方法一)A、B、C三岛的连线构成△ABC,所求的∠ACB 是△ABC的一个内角,如果能求出∠CAB、∠ABC,就能求出∠ACB;(方法二)过点C作AD 的垂线,求∠ACB的度数可转化为利用平角为180°来求解.【解答】(方法一)根据题意,得∠CAB=∠BAD-∠CAD=80°-50°=30°.因为AD∥BE,所以∠BAD+∠ABE=180°,所以∠ABE=180°-∠BAD=180°-80°=100°,所以∠ABC=∠ABE-∠EBC=100°-40°=60°,所以∠ACB=180°-∠ABC-∠CAB=180°-60°-30°=90°.即从B岛看A、C两岛的视角∠ABC是60°,从C岛看A、B两岛的视角∠ACB是90°.(方法二)∠ABC的求法同“方法一”中的求法.如图,过点C作CF⊥AD于点F,延长FC交BE于点H,则CH⊥BE.因为∠ACF=180°-∠F AC-∠AFC=180°-50°-90°=40°,∠BCH=180°-∠CBH-∠CHB=180°-40°-90°=50°,所以∠ACB=180°-∠ACF-∠BCH=180°-40°-50°=90°.即从B岛看A、C两岛的视角∠ABC是60°,从C岛看A、B两岛的视角∠ACB是90°.【互动总结】(学生总结,老师点评)由平行线的性质把已知角与三角形的内角相联系,进而利用三角形内角和定理可求出有关角的度数.活动2巩固练习(学生独学)1.已知一个三角形中一个角是锐角,那么这个三角形是(D)A.锐角三角形B.直角三角形C.钝角三角形D.以上都有可能2.在△ABC中,BC边的对应角是(A)A.∠A B.∠BC.∠C D.∠D3.在△ABC中,已知∠A=80°,∠B=∠C,则∠C=50°.4.已知三角形三个内角的度数之比为1∶3∶5,则这三个内角的度数分别为20°,60°,100°.5.如图,在Rt△ABC中,∠ACB=90°,∠1=∠B,∠2=∠3,则图中共有5个直角三角形.6.如图,D是△ABC中BC边延长线上一点,DF⊥AB交AB于点F,交AC于点E.若∠A=46°,∠D=50°,求∠ACB的度数.解:因为DF⊥AB,所以∠DFB=90°.又在△DFB中,∠D=50°,所以∠B=180°-∠DFB-∠D=40°.又在△ABC中,∠A=46°,所以∠ACB=180°-∠A-∠B=94°.活动3拓展延伸(学生对学)【例3】探究与发现:如图1,有一块直角三角板DEF放置在△ABC上,三角板DEF 的两条直角边DE、DF恰好分别经过点B、C.请写出∠BDC与∠A+∠ABD+∠ACD之间的数量关系,并说明理由.应用:某零件如图2所示,图纸要求∠A=90°,∠B=32°,∠C=21°,当检验员量得∠BDC=145°,就断定这个零件不合格,你能说出其中的道理吗?图1图2【互动探索】根据三角形内角和定理探究∠BDC 与∠A +∠ABD +∠ACD 之间的数量关系,然后利用得到的关系求解应用的问题.【解答】探究与发现:∠BDC =∠A +∠ABD +∠ACD .理由如下:因为∠BDC +∠DBC +∠DCB =180°,∠A +∠ABC +∠ACB =∠A +∠ABD +∠ACD +∠DBC +∠DCB =180°,所以∠BDC =∠A +∠ABD +∠ACD . 应用:能,连结BC .因为∠A =90°,∠ABD =32°,∠ACD =21°,所以由上述结论,得∠BDC =∠A +∠ABD +∠ACD =143°. 因为检验员量得∠BDC =145°≠143°, 所以这个零件不合格.【互动总结】(学生总结,老师点评)本题考查了三角形的内角和定理,能灵活运用定理进行推理是解此题的关键.环节3 课堂小结,当堂达标 (学生总结,老师点评) 1.三角形的定义由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形. 2.三角形内角和定理 三角形三个内角的和等于180°. 3.三角形按角分类 三角形⎩⎪⎨⎪⎧锐角三角形钝角三角形直角三角形4.直角三角形的性质 直角三角形的两个锐角互余.练习设计请完成本课时对应练习!第2课时 三角形的三边关系教学目标一、基本目标1.结合具体实例,认识等腰三角形和等边三角形的概念及基本要素.2.在度量三角形边长的实践活动中理解三角形三边的不等关系.3.掌握三角形的三边的不等关系,并能解决相关问题.4.经历观察、操作、推理、交流等活动,进一步发展推理能力和有条理的表达能力.二、重难点目标【教学重点】三角形的三边关系.【教学难点】探究三角形的三边关系及灵活应用三边关系解决生活中的实际问题.教学过程环节1自学提纲,生成问题【5 min阅读】阅读教材P85~P86的内容,完成下面练习.【3 min反馈】1.有两边相等的三角形叫做等腰三角形;三边都相等的三角形叫做等边三角形.2.三角形的三边关系:三角形任意两边之和大于第三边;三角形任意两边之差小于第三边.3.下列长度的三条线段能否组成三角形?(1)3,4,8;(不能)(2)2,5,6;(能)(3)5,6,10;(能)(4)5,6,11.(不能)环节2合作探究,解决问题活动1小组讨论(师生互学)【例1】以下列各组线段为边,能组成三角形的是()A.2,3,5B.4,7,10C.1,1,3D.3,4,9【互动探索】(引发学生思考)根据“三角形任意两边之和大于第三边”逐项判断即可.A中,2+3=5,不能组成三角形;B中,4+7>10,能组成三角形;C中,1+1<3,不能组成三角形;D中,3+4<9,不能组成三角形.【答案】B【互动总结】(学生总结,老师点评)判定三条线段能否组成三角形,只要判定两条较短线段长度之和大于第三条线段的长度即可.【例2】用一根长为18厘米的细铁丝围成一个等腰三角形.(1)如果腰长是底边的2倍,那么各边的长是多少?(2)能围成有一边的长为4厘米的等腰三角形吗?【互动探索】(引发学生思考)(1)理解题意,得出等腰三角形的周长是18厘米→列方程求解;(2)等腰三角形的周长为18厘米→已知边是腰还是底边→分类讨论→得三角形另外两边长→利用三角形三边关系进行判断→得出结论.【解答】(1)设底边长为x厘米,则腰长为2x厘米.根据题意,得x+2x+2x=18,解得x=3.6.所以三边长分别为3.6厘米、7.2厘米、7.2厘米.(2)分情况讨论:①当4厘米长为底边时,设腰长为x厘米,则4+2x=18,解得x=7.所以等腰三角形的三边长为7厘米、7厘米、4厘米.②当4厘米长为腰长时,设底边长为x厘米,则4×2+x=18,解得x=10.此时三边长为4厘米、4厘米、10厘米.而4+4<10,所以此时不能构成三角形.故能围成底边长为4厘米,腰长为7厘米的等腰三角形.【互动总结】(学生总结,老师点评)当已知等腰三角形的周长和一边长时,需要分类讨论已知的一边长是腰还是底边,再解决问题.活动2巩固练习(学生独学)1.下列说法:①等边三角形是等腰三角形;②三角形任意两边的和大于第三边;③三角形按边分类可分为等腰三角形、等边三角形和不等边三角形;④三角形按角分类应分为锐角三角形、直角三角形和钝角三角形.其中正确的有(C)A.1个B.2个C.3个D.4个2.已知a、b、c为三角形的三边,则|a+b-c|-|b-c-a|的化简结果是(D)A.2a B.-2bC .2a +2bD .2b -2c3.已知三角形两边的长分别是3和7,则此三角形第三边的长可能是( C ) A .1 B .2 C .8D .114.已知等腰三角形的两边长分别为4 cm 和6 cm ,且它的周长大于14 cm ,则第三边长为6 cm.5.已知三角形的三边长是三个连续的自然数,且三角形的周长小于20,求三边的长. 解:设三角形三边的长分别为x -1,x ,x +1.根据三角形的三边关系,得x -1+x >x +1,解得x >2. 因为三角形的周长小于20,所以x -1+x +x +1<20,解得x <203.所以2<x <203且x 为整数,所以x 为3,4,5,6.当x =3时,三角形三边长分别为2,3,4; 当x =4时,三角形三边长分别为3,4,5; 当x =5时,三角形三边长分别为4,5,6; 当x =6时,三角形三边长分别为5,6,7. 环节3 课堂小结,当堂达标 (学生总结,老师点评)1.等腰三角形:有两边相等的三角形. 2.等边三角形:三边都相等的三角形.3.三角形的三边关系:三角形任意两边之和大于第三边,任意两边之差小于第三边.练习设计请完成本课时对应练习!第3课时 三角形的中线、角平分线教学目标一、基本目标1.理解并掌握三角形的中线、角平分线的定义,认识三角形的重心. 2.能准确画出三角形的中线、角平分线. 3.理解并掌握三角形中线、角平分线的性质. 二、重难点目标【教学重点】三角形的中线、角平分线的定义及其性质. 【教学难点】三角形的中线、角平分线的画法及应用.教学过程环节1 自学提纲,生成问题 【5 min 阅读】阅读教材P87~P88的内容,完成下面练习. 【3 min 反馈】 (一)三角形的中线1.在三角形中,连结一个顶点与它对边中点的线段,叫做这个三角形的中线.三角形的三条中线交于一点,这点称为三角形的重心.2.如图,点D 、E 、F 分别是边BC 、AC 、AB 上的中点.(1)AB 边上的中线是CF ,BC 边上的中线是AD ,AC 边上的中线是BE ; (2)因为BE 是△ABC 中AC 边上的中线, 所以AE =CE =12AC .因为CF 是△ABC 中AB 边上的中线, 所以AB =2AF =2BF . (二)三角形的角平分线1.在三角形中,一个内角的角平分线与它的对边相交,这个角的顶点与交点之间的线段叫做三角形的角平分线.三角形的角平分线交于一点.2.(1)因为BE 是△ABC 的角平分线, 所以∠ABE =∠CBE =12∠ABC ;(2)因为CF 是△ABC 的角平分线, 所以∠ACB =2∠ACF =2∠BCF .环节2 合作探究,解决问题活动1小组讨论(师生互学)(一)画三角形的中线如图,线段AD是△ABC中BC边上的中线.讨论1:分别在下列锐角三角形、直角三角形、钝角三角形中画出所有的中线,观察中线与三角形的位置关系.作图:结论:由作图可得:(1)三角形的三条中线相交于一点;(2)锐角三角形、直角三角形、钝角三角形的三条中线都相交于三角形的内部.(二)画三角形的角平分线如图,线段AD是△ABC的一条角平分线,图中∠BAD=∠CAD.讨论2:分别在下列锐角三角形、直角三角形、钝角三角形中画出所有的角平分线,观察角平分线与三角形的位置关系.作图:结论:由作图可得:(1)三角形的三条角平分线相交于一点;(2)锐角三角形、直角三角形、钝角三角形的三条角平分线都相交于三角形的内部.活动2巩固练习(学生独学)1.如图,在△ABC中有四条线段DE、BE、EG、FG,其中有一条线段是△ABC的中线,则该线段是(B)A.线段DE B.线段BEC.线段EG D.线段FG2.如图,DE∥BC,CD是∠ACB的平分线,∠ACB=60°,那么∠EDC=30度.3.如图,CD为△ABC的AB边上的中线,△BCD的周长比△ACD的周长大3 cm,BC =8 cm,求边AC的长.解:因为CD为△ABC的AB边上的中线,所以AD=BD.因为△BCD的周长比△ACD的周长大3 cm,所以(BC+BD+CD)-(AC+AD+CD)=3 cm,所以BC-AC=3 cm.因为BC=8 cm,所以AC=5 cm.环节3课堂小结,当堂达标(学生总结,老师点评)三角形的中线:(1)定义;(2)画法;(3)三角形重心的定义.三角形的角平分线:(1)定义;(2)画法;(3)三角形的三条角平分线交于一点.练习设计请完成本课时对应练习!第4课时三角形的高教学目标一、基本目标1.认识三角形的高线,会画任意三角形的高线,了解三角形的三条高所在的直线交于一点.2.通过折纸、画图等活动,培养学生的动手能力,提高学生的识图技能,使学生的思维变得更灵活.二、重难点目标【教学重点】三角形高线的定义,会画任意三角形的高.【教学难点】画钝角三角形夹钝角的两边上的高和三角形高的应用.教学过程环节1自学提纲,生成问题【5 min阅读】阅读教材P89~P90的内容,完成下面练习.【3 min反馈】1.从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足之间的线段叫做三角形的高线,简称三角形的高.2.三角形的三条高所在的直线交于一点.3.分别指出下图中△ABC的三条高.图1图2(1)图1中,直角边BC上的高是AB,直角边AB上的高是BC,斜边AC上的高是BD;(2)图2中,AB边上的高是CE,BC边上的高是AD,AC边上的高是BF.环节2合作探究,解决问题活动1小组讨论(师生互学)用工具准确画出三角形的高如图,线段AD是△ABC中BC边上的高.注意:标明垂直的记号和垂足的字母.教师点拨:回忆并演示“过一点画已知直线的垂线”的画法.讨论:分别在下列锐角三角形、直角三角形、钝角三角形中画出所有的高,观察高与三角形的位置关系.作图:结论:由作图可得:(1)三角形的三条高线所在的直线相交于一点;(2)锐角三角形的三条高线相交于三角形的内部;(3)直角三角形的三条高线相交于三角形的直角顶点;(4)钝角三角形的三条高线所在的直线相交于三角形的外部.活动2 巩固练习(学生独学)1.如图,在△ABC 中,EF ∥AC ,BD ⊥AC 于点D ,交EF 于点G ,则下列说法错误的是( C )A .BD 是△ABC 的高B .CD 是△BCD 的高C .EG 是△ABD 的高D .BG 是△BEF 的高2.如图,CD 、CE 、CF 分别是△ABC 的高、角平分线、中线,则下列各式中错误的是( C )A .AB =2BF B .∠ACE =12∠ACBC .AE =BED .CD ⊥BE3.如图,在△ABC 中,AB 边上的高是CE ,BC 边上的高是AD ;在△BCF 中,CF 边上的高是BC .4.若一个三角形的三条高的交点恰是三角形的一个顶点,那么这个三角形是直角三角形.5.如图,AE是△ABC的角平分线,AD⊥BC于点D,若∠BAC=130°,∠C=30°,则∠DAE的度数是5°.环节3课堂小结,当堂达标(学生总结,老师点评)1.三角形的高:从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足之间的线段.2.三角形的三条高所在的直线交于一点.三角形的三条高的特性:锐角三角形直角三角形钝角三角形三角形内部高的数量31 1三条高是否相交是是否三条高所在直线的交点位置三角形内部直角顶点三角形外部练习设计请完成本课时对应练习!。

北师大数学七年级下册三角形全章分课时习题及答案

北师大数学七年级下册三角形全章分课时习题及答案

北师大版数学七年级下册三角形全章分课时习题及答案1、认识三角形一、单项选择题1.以下长度的各组线段为边能构成一个三角形的是()A.9,9,1B.4,5,1C.4,10,6D.2,3,6假如CD均分含30°三角板的∠ACB,则∠1等于().°°°°3.以下说法正确的选项是()A.在一个三角形中起码有一个直角B.三角形的中线是射线C.三角形的高是线段D.一个三角形的三条高的交点必定在三角形的外面4.一个三角形的内角中,起码有()A.一个钝角B.一个直角C.一个锐角D.两个锐角5.如图,△ABC中BC边上的高为()A.AEB.BFC.ADD.CF6.知足以下条件的△ABC中,不是直角三角形的是()A.∠B+∠A=∠CB.∠A:∠B:∠C=2:3:5C.∠A=2∠B=3∠CD.一个外角等于和它相邻的一个内角7.如图为一张方格纸,纸上有一灰色三角形,其极点均位于某两网格线的交点上,若灰色三角形面积为平方厘米,则此方格纸的面积为()第1页/共88页A.11平方厘米B.12平方厘米C.13平方厘米D.14平方厘米8.具备以下条件的△ABC 中,不是直角三角形的是()∠A+∠B=∠CB.∠A-∠B=∠C C.∠A︰∠B︰∠C=1︰2︰3D. ∠A=∠B=3∠C9.以长为8cm 、6cm 、10cm 、4cm 的四条线段中的三条线段为边,能够画出三角形的个数为() 个个 个 个10.已知△ABC 中,∠A:∠B:∠C=2:3:5,则△ABC 是()A.直角三角形B.锐角三角形C.钝角三角形D.不可以确立三角形的形状11.已知三角形的两边长分别为 3cm 和8cm ,则这个三角形的第三边的长可能是( )A.4cmC.6cmD. 13cm12.三角形的以下四种线段中必定能将三角形分红面积相等的两部分的是( ) A.角均分线 B.中位线 C.高 D.中线二、填空题13.如图,在△ABC 中,∠ACB=58°,若P 为△ABC 内一点,且∠1=∠2,则∠BPC=________.14.画三角形内角的均分线交对边于一点,极点与交点之间的线段叫做三角形的________.2,15.如图,在△ABC 中,已知点D 为BC 上一点,E ,F 分别为AD ,BE 的中点,且S △ABC =8cm则图中暗影部分△CEF的面积是_____cm2.第2页/共88页16 .已知三角形两边长分别是3cm,5cm,设第三边的长为xcm,则x的取值范围是________.17.如图,△ABC的面积为18,BD=2DC,AE=EC,那么暗影部分的面积是_______.18.各边长度都是整数.最大边长为8的三角形共有________个.三、解答题19.如图,△ABC中,AD是高,AE、BF是角均分线,它们订交于点 O,∠CAB=50°,∠C=60°,求∠DAE和∠BOA的度数。

北师大数学七年级下册第三章-认识三角形

北师大数学七年级下册第三章-认识三角形

第03讲_全等三角形辅助线的作法知识图谱三角形的内角(北师版)知识精讲概念由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形表示三角形有三条边、三个内角和三个顶点,“三角形”可以用符号“”表示如图,顶点是A ,B ,C 的三角形,记作,的三边,有时也用a ,b ,c 来表示.顶点A 所对的边BC 用a 表示,边AC 、边AB 分别用b ,c 来表示.按角分类直角三角形三角形中有一个角是直角 斜三角形锐角三角形 三角形中三个角都是锐角 钝角三角形 三角形中有一个角是钝角思考:如何按边分类?内角和定理三角形三个内角的和等于.证明过点A 作BC 的平行线DE ∴∠B=∠1,∠C=∠3 ∵D 、A 、E 三点共线 ∴∠1+∠2+∠3=180° ∴∠B+∠2+∠C=180°直角三角形的性质直角三角形的两个锐角互余.表示在Rt △ACB 中,∠C=90°,则∠A+∠B=90°,即两个锐角互余.五.易错点1.求角度过程中计算错误.2.注意导角计算等角的补角相等,等角的余角相等. 3.会利用三角形内角和定理判定三角形形状.三点剖析一.考点:1.按角分类;2.内角和定理;3.直角三角形的性质二.重难点:利用内角和定理求角度.三.易错点:求角度过程中计算错误.按角分类例题1、 在△ABC 中,∠A :∠B :∠C=1:1:2,则△ABC 是( ) A.等腰三角形 B.直角三角形 C.锐角三角形D.等腰直角三角形231DBCA ECBA【答案】 D【解析】 设三个内角的度数分别为k°,k°,2k°,则 k°+k°+2k°=180°, 解得k°=45°, ∴2k°=90°,∴这个三角形是等腰直角三角形.随练1、 现有若干个三角形,在所有的内角中,有5个直角,3个钝角,25个锐角,则在这些三角形中锐角三角形的个数是( )A.3B.4或5C.6或7D.8【答案】 A【解析】 由题意得:若干个三角形,在所有的内角中,有5个直角,3个钝角,25个锐角时, ∴共有33÷3=11个三角形;又三角形中,最多有一个直角或最多有一个钝角,显然11个三角形中,有5个直角三角形和3个钝角三角形; 故还有11﹣5﹣3=3个锐角三角形.内角和定理例题1、 如图,在△ABC 中,46B ∠=︒,54C ∠=︒,AD 平分∠BAC ,交BC 于D ,DE ∥AB ,交AC 于E ,则∠ADE 的大小是( )A.45°B.54°C.40°D.50°【答案】 C【解析】 ∵46B ∠=︒,54C ∠=︒,∴180180465480BAC B C ∠=︒-∠-∠=︒-︒-︒=︒,∵AD 平分∠BAC ,∴11804022BAD BAC ∠=∠=⨯︒=︒,∵DE ∥AB ,∴40ADE BAD ∠=∠=︒.故选:C .例题2、 如图,△ABC 中,∠ACB =90°,沿CD 折叠△CBD ,使点B 恰好落在AC 边上的点E 处.若∠A =22°,则∠BDC 等于( )A.44°B.60°C.67°D.77°【答案】 C【解析】 △ABC 中,∠ACB =90°,∠A =22°, ∴∠B =90°-∠A =68°,由折叠的性质可得:∠CED =∠B =68°,∠BDC =∠EDC , ∴∠ADE =∠CED -∠A =46°,∴180672ADEBDC ︒-∠∠==︒.例题3、 (1)如图①,在△ABC 中,∠B =40°,∠C =80°,AD ⊥BC 于点D ,AE 平分∠BAC ,求∠EAD 的度数;EDC B A(2)将(1)中“∠B=40°,∠C=80°”改为“∠B=x°,∠C=y°,∠C>∠B”,①其他条件不变,你能用含x,y的代数式表示∠EAD吗?请写出,并说明理由;②如图②,AE平分∠BAC,F为AE上一点,FM⊥BC于点M,用含x,y的代数式表示∠EFM,并说明理由.【答案】(1)20°(2)①1122EAD y x∠=-;理由见解析②1122EFM y x∠=-;理由见解析【解析】(1)∵∠B=40°,∠C=80°,∴∠BAC=180°-∠B-∠C=60°∵AE平分∠BAC,∴1302CAE BAC∠=∠=︒∵AD⊥BC,∴∠ADC=90°,∵∠C=80°,∴∠CAD=90°-∠C=10°,∴∠EAD=∠CAE-∠CAD=30°-10°=20°;(2)①∵三角形的内角和等于180°,∴∠BAC=180°-∠B-∠C=180°-x-y∵AE平分∠BAC,∴11(180)22CAE BAC x y∠=∠=︒--,∵AD⊥BC,∴∠ADC=90°,∴∠CAD=90°-y,∴∠EAD=∠CAE-∠CAD111(180)(90)222x y y y x =︒---︒-=-;②过A作AD⊥BC于D,∵三角形的内角和等于180°,∴∠BAC=180°-∠B-∠C,∵AE平分∠BAC,∴11(180)22CAE BAC x y∠=∠=︒--,∵AD⊥BC,∴∠ADC=90°,∴∠CAD=90°-y,∴∠EAD=∠CAE-∠CAD111(180)(90)222x y y y x =︒---︒-=-∵AD⊥BC,FM⊥BC,∴AD∥FM,∴∠EFM=∠EAD,∴1122 EFM y x ∠=-.随练1、如果将一副三角板按如图方式叠放,那么∠1=____________.【答案】105°【解析】给图中角标上序号,如图所示.∵∠2+∠3+45°=180°,∠2=30°,∴∠3=180°﹣30°﹣45°=105°,∴∠1=∠3=105°.随练2、在△ABC中,AB=AC,∠BAC=100°,点D在BC边上,连接AD,若△ABD为直角三角形,则∠ADC的度数为_________-.【答案】130°或90°【解析】∵在△ABC中,AB=AC,∠BAC=100°,∴∠B=∠C=40°,∵点D在BC边上,△ABD为直角三角形,∴当∠BAD=90°时,则∠ADB=50°,∴∠ADC=130°,当∠ADB=90°时,则∠ADC=90°.直角三角形的性质例题1、如图,图中直角三角形共有()A.1个B.2个C.3个D.4个【答案】C【解析】如图,图中直角三角形有Rt△ABD、Rt△BDC、Rt△ABC,共有3个.例题2、如图为6个边长相等的正方形的组合图形,则∠1+∠2+∠3=________°.【答案】 135【解析】 观察图形可知:△ABC ≌△BDE , ∴∠1=∠DBE ,又∵∠DBE +∠3=90°, ∴∠1+∠3=90°. ∵∠2=45°,∴∠1+∠2+∠3=∠1+∠3+∠2=90°+45°=135°.例题3、 如图,ABC △中,AD 是高,AE 、BF 分别是BAC ∠和ABC ∠的平分线,它们相交于点O ,60A ∠=︒,70C ∠=︒.求DAC ∠,BOA ∠.【答案】 20︒;125︒【解析】 9020DAC C ∠=︒-∠=︒∵180C BAC ABC ∠+∠+∠=︒,70C ∠=︒,60BAC ∠=︒,∴50ABC ∠=︒∵AE ,BF 是角平分线,∴12302BAC ∠=∠=︒,13252ABC ∠=∠=︒∵23180BOA ∠+∠+∠=︒,∴125BOA ∠=︒.随练1、 如果一个直角三角形斜边上的中线与斜边成50°角,那么这个直角三角形的较小的内角是________度. 【答案】 25【解析】 暂无解析随练2、 图是一个6×6的正方形网格,每个小正方形的顶点都是格点,Rt △ABC 的顶点都是图中的格点,其中点A 、点B 的位置如图所示,则点C 可能的位置共有( )A.9个B.8个C.7个D.6个【答案】 A【解析】 暂无解析三角形的边知识精讲按角分直角三角形三角形中有一个角是直角斜三角形锐角三角形三角形中三个角都是锐角钝角三角形三角形中有一个角是钝角按边分不等边三角形三边都不相等的三角形等腰三角形底边和腰不相等的三角形有两条边相等的三角形等边三角形(正三角形)三边相等的三角形三角形任意两边的和大于第三边三角形任意两边的差小于第三边如果三角形的三条边固定,那么三角形的形状和大小就完全确定了,三角形的这个特征叫做三角形的稳定性.除了三角形外,其他多边形不具备稳定性,因此在生产建设中,为达到巩固的目的,把一些构件都做成三角形结构.四.易错点1.在做与三角形的边有关的计算时,最后一定要注意检验是否满足三边关系定理,即最能否组成三角形.2.在应用三边关系判断三条线段能否组成三角形时,要注意“任意”二字.三点剖析考点:1. 按边分类;2. 三边关系;3. 稳定性重难点:1. 在应用三边关系判断能否组成三角形时,可以简化为:当三条线段中最长的线段小于另两条线段之和时,或当三条线段中最短的线段大于另两条线段之差时,即可组成三角形.2. 由三角形三边关系可得,如果a, b, c三条线段能够组成三角形,那么b c a b c-<<+.易错点:在做与三角形的边有关的计算时,最后一定要注意检验是否满足三边关系定理,即最终能否组成三角形.按边分类例题1、若下列各组值代表线段的长度,以它们为边能构成三角形的是()A.6、13、7B.6、6、12C.6、10、3D.6、9、13【答案】D【解析】A、6+7=13,则不能构成三角形,故此选项错误;B、6+6=12,则不能构成三角形,故此选项错误;C、6+3<10,则不能构成三角形,故此选项错误;D、6+9>13,则能构成三角形,故此选项正确.例题2、各边长度都是整数、最大边长为11的三角形共有________个.【解析】 设另外两边长为x ,y ,且不妨设1≤x≤y≤11,要构成三角形,必须x +y≥12. 当y 取值11时,x =1,2,3,…,11,可有11个三角形; 当y 取值10时,x =2,3,…,10,可有9个三角形;当y 取值分别为9,8,7,6时,x 取值个数分别是7,5,3,1,∴根据分类计数原理知所求三角形的个数为11+9+7+5+3+1=36.三边关系例题1、 下列长度的三根小木棒能构成三角形的是( ) A.2cm ,3cm ,5cm B.7cm ,4cm ,2cm C.3cm ,4cm ,8cm D.3cm ,3cm ,4cm 【答案】 D【解析】 A 、因为2+3=5,所以不能构成三角形,故A 错误; B 、因为2+4<6,所以不能构成三角形,故B 错误; C 、因为3+4<8,所以不能构成三角形,故C 错误; D 、因为3+3>4,所以能构成三角形,故D 正确.例题2、 已知三角形两边的长分别是4和10,则此三角形第三边的长可能是( ) A.5 B.6 C.11 D.16 【答案】 C【解析】 设此三角形第三边的长为x ,则10﹣4<x <10+4,即6<x <14,四个选项中只有11符合条件. 故选:C .例题3、 如图,已知AD 是△ABC 的BC 边上的高,AE 是BC 边上的中线,求证:12AB AE BC AD AC ++>+【答案】 见解析【解析】 ∵AD BC ⊥∴AB AD >,在△AEC 中,AE EC AC +>.又∵AE 为中线,∴12EC BC =即12AE BC AC +>,∴12AB AE BC AD AC ++>+随练1、 已知一个三角形的第一条边长为(a+2b )厘米,第二条边比第一条边短(b ﹣2)厘米,第三条边比第二条边短3厘米.(1)请用式子表示该三角形的周长;(2)当a=2,b=3时,求此三角形的周长. 【答案】 (1)3a+4b+1 (2)19【解析】 (1)第二条边长为:a+2b ﹣(b ﹣2)=(a+b+2)厘米, 第三条边长为:a+b+2﹣3=(a+b ﹣1)厘米, 则周长为:a+2b+a+b+2+a+b ﹣1=3a+4b+1; (2)当a=2,b=3时, 周长为:3×2+4×3+1=19.随练2、 在△ABC 中,若AB =5,BC =2,且AC 的长为奇数,则AC =________.ED CBA【解析】暂无解析随练3、如图,若有一条公共边的两个三角形称为一对“共边三角形”,则图中以BC为公共边的“共边三角形”有________对.【答案】3【解析】暂无解析稳定性例题1、下列图形中,不具有稳定性的是()A. B. C. D.【答案】B【解析】本题考查的是三角形稳定性.A可以看成两个三角形,而三角形具有稳定性,则这个图形一定具有稳定性,故本选项错误;B可以看成一个三角形和一个四边形,而四边形不具有稳定性,则这个图形一定不具有稳定性,故本选项正确;C可以看成三个三角形,而三角形具有稳定性,则这个图形一定具有稳定性,故本选项错误;D可以看成7个三角形,而三角形具有稳定性,则这个图形一定具有稳定性,故本选项错误.故选B.随练1、王师傅用4根木条钉成一个四边形木架,如图.要使这个木架不变形,他至少还要再钉上几根木条?()A.0根B.1根C.2根D.3根【答案】B【解析】本题考查的是三角形稳定性.加上AC后,原不稳定的四边形ABCD中具有了稳定的△ACD及△ABC,故这种做法根据的是三角形的稳定性.故选B.三角形的高、中线、角平分线知识精讲一.三角形的高线、中线、角平分线概念从三角形的一个顶点向它的对边画垂线,顶点和垂足间的线段叫做三角形的高线在三角形中,连结一个顶点和它的对边中点的线段叫做三角形的中线三角形的一个角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线三.易错点1.画三角形的高时,只要向对边或对边的延长线作垂线,连接顶点与垂足的线段就是该边的高.特别是钝角三角形的高,有两条是在三角形外.2.三角形的角平分线是一条线段,而角的角平分线是一条射线.3.三角形的中线是线段4.三角形边上的高是线段,而该边的垂线是直线三点剖析考点:1.三角形的高、中线、角平分线;2.面积问题;重难点:1.锐角三角形的高均在三角形内部,三条高的交点也在三角形的内部;直角三角形两条高分别与两条直角边重合,三条高的交点也在三角形的直角顶点处;钝角三角形的高线中有两个垂足落在边的延长线上,这两条高落在三角形的外部.2.三角形三条中线的交点一定在三角形内部.3.每个三角形都有三条角平分线且交于一点,这个点叫三角形的内心,它也一定在三角形内部.易错点:1.画三角形的高时,只要向对边或对边的延长线作垂线,连接顶点与垂足的线段就是该边的高.2.三角形的角平分线是一条线段,而角的角平分线是一条射线.三角形的高、中线、角平分线例题1、如图,在△ABC中,∠C=90°,O为△ABC的三条角平分线的交点,OD⊥BC,OE⊥AC,OF⊥AB,点D、E、F分别是垂足,且AB=10cm,BC=8cm,CA=6cm,则点O到三边AB、AC和BC的距离分别为()A.2cm、2cm、2cmB.3cm、3cm、3cmC.4cm、4cm、4cmD.2cm、3cm、5cm【答案】A【解析】∵△ABC中,∠C=90°,AB=10cm,BC=8cm,CA=6cm,∵点O为△ABC的三条角平分线的交点,∴OE=OF=OD,设OE=x,∵S△ABC=S△OAB+S△OAC+S△OCB,∴12×6×8=12OF×10+12OE×6+12OD×8,∴5x+3x+4x=24,∴x=2,即点O到三边AB,AC和BC的距离都等于2.故选A.例题2、如图,每个小正方形的边长为1,在方格纸内将△ABC经过一次平移后得到'''A B C,图中标出了点B 的对应点'B.(1)补全'''A B C根据下列条件,利用网格点和三角板画图:(2)画出AB边上的中线CD;(3)画出BC边上的高线AE;(4)'''A B C的面积为________【答案】(1)如图所示:'''A B C即为所求;(2)如图所示:CD就是所求的中线;(3)如图所示:AE即为BC边上的高;(4)8.【解析】(1)连接BB',过A、C分别做BB'的平行线,并且在平行线上截取AA CC BB'='=',顺次连接平移后各点,得到的三角形即为平移后的三角形;(2)作AB的垂直平分线找到中点D,连接CD,CD就是所求的中线.(3)从A点向BC的延长线作垂线,垂足为点E,AE即为BC边上的高;(4)4421628⨯÷=÷=.故'''A B C的面积为8.随练1、如图,在△ABC中,CD是高线,点E在CD上,且∠ACD=∠DBE,则有()A.BE⊥ACB.BE平分∠ABCC.∠BCD=∠CBED.∠CBD=∠BED【答案】A【解析】延长BE到AC上一点F,∵CD是高线,∴∠BED=∠CEF,∠BDE=90°,则∠DEB+∠EBD=90°,∵∠ACD=∠DBE,∴∠ACE+∠CEF=90°,∴∠CFB=180°-(∠ACE+∠CEF)=90°,即BE⊥AC,故A选项正确;随练2、如图,在△ABC中,∠1=∠2,G为AD中点,延长BG交AC于点E,F为AB上一点,CF⊥AD于H.下面判断正确的有________.(1)AD是在△ABC的角平分线(2)BE是的△ABD的AD边上的中线(3)CH为△ACD边AD上的中线(4)AH是△ACF的角平分线和高线.【答案】(1)(4)【解析】(1)根据三角形的角平分线的概念,知AD是△ABC的角平分线,故此说法正确;(2)根据三角形的中线的概念,知BG是△ABD的边AD上的中线,故此说法不正确;(3)根据三角形的高的概念,知CH为△ACD的边AD上的高,故此说法不正确;(4)根据三角形的角平分线和高的概念,知AH是△ACF的角平分线和高线,故此说法正确.面积问题例题1、如图,D、E分别是△ABC边AB、BC上的点,AD=2BD,BE=CE,设△ADC的面积为S l,△ACE的面积为S2,若S△ABC=12,则S1+S2=________.【答案】14【解析】∵BE=CE,∴1112622ACE ABCS S==⨯=,∵AD=2BD,∴2212833ACD ABCS S==⨯=,∴S1+S2=S△ACD+S△ACE=8+6=14.例题2、如图,在△ABC中,∠C=90°,BC=8cm,AC=6cm,点E是BC的中点,动点P从A点出发,先以每秒2cm的速度沿A→C运动,然后以1cm/s的速度沿C→B运动.若设点P运动的时间是t秒,那么当t=________,△APE的面积等于6.【答案】 1.5或5或9【解析】如图1,当点P在AC上,∵△ABC中,∠C=90°,BC=8cm,AC=6cm,点E是BC的中点,∴CE=4,AP=2t.∵△APE的面积等于10,∴1124622APES AP CE t==⨯⨯=△,∴t=1.5;如图2,当点P在线段CE上,∵E是DC的中点,∴BE=CE=4.∴PE=4-(t-3)=7-t,∴11(7)6622S EP AC t==-⨯=,∴t=5,如图3,当P在线段BE上,同理:PE=t-3-4=t-7,∴11(7)6622S EP AC t==-⨯=,∴t=9,综上所述,t的值为1.5或5或9.例题3、如图,A、B、C分别是线段A1B、B1C、C1A的中点,若△A1B l C1的面积是14,那么△ABC的面积是()A.2B.143C.3D.72【答案】A【解析】如图,连接AB1,BC1,CA1,∵A 、B 分别是线段A 1B ,B 1C 的中点,∴S △ABB1=S △ABC ,S △A1AB1=S △ABB1=S △ABC ,∴S △A1BB1=S △A1AB1+S △ABB1=2S △ABC ,同理:S △B1CC1=2S △ABC ,S △A1AC1=2S △ABC ,∴△A 1B 1C 1的面积=S △A1BB1+S △B1CC1+S △A1AC1+S △ABC =7S △ABC =14.∴S △ABC =2.随练1、 如图所示,在△ABC 中,已知点D ,E ,F 分别为边BC ,AD ,CE 的中点,且S △ABC =4cm 2,则S 阴影等于( )A.2cm 2B.1cm 2C.12cm 2D.14cm 2 【答案】 B 【解析】 2111cm 24BCE ABC S S S ===△△阴影. 随练2、 如图,在△ABC 中,E 为AC 的中点,点D 为BC 上一点,BD ︰CD =2︰3,AD ,BE 交于点O ,若S △AOE -S △BOD=1,则△ABC 的面积为________.【答案】【解析】 ∵点E 为AC 的中点,∴S △ABE=12S △ABC . ∵BD :CD=2:3, ∴S △ABD=25S △ABC , ∵S △AOE -S △BOD=1,∴S △ABE -S △ABD=12S △ABC -25S △ABC=1, 解得S △ABC=10.故答案为:10随练3、 阅读下列材料:某同学遇到这样一个问题:如图1,在ABC ∆中,AB AC =,BD 是ABC ∆的高.P 是BC 边上一点,PM ,PN 分别与直线AB ,AC 垂直,垂足分别为点M ,N .求证:BD PM PN =+.他发现,连接AP ,有ABC ABP ACP S S S ∆∆∆=+,即111222AC BD AB PM AC PN ⋅=⋅+⋅.由AB AC =,可得BD PM PN =+. 他又画出了当点P 在CB 的延长线上,且上面问题中其他条件不变时的图形,如图2所示.他猜想此时BD ,PM ,PN 之间的数量关系是:请回答:(1)请补全以下该同学证明猜想的过程;∵ABC APC S S ∆∆=-___________,∴1122AC BD AC ⋅=⋅_____12AB -⋅______, ∵AB AC =,∴BD PN PM =-.(2)参考该同学思考问题的方法,解决下列问题:在ABC ∆中,AB AC BC ==,BD 是ABC ∆的高.P 是ABC ∆所在平面上一点,PM ,PN ,PQ 分别与直线AB ,AC ,BC 垂直,垂足分别为点M ,N ,Q .图3,若点P 在ABC ∆的内部,则BD ,PM ,PN ,PQ 之间的数量关系是:_________________;②若点P 在如图4所示的位置,利用图4探究得出此时BD ,PM ,PN ,PQ 之间的数量关系是:________________________.【答案】 (1)见解析(2)①BD PM PN PQ =++②BD PM PQ PN =+-【解析】 该题考查的是等面积方法的应用.(1)由图可知∵ABC APC APB S S S ∆∆∆=-∴111222AC BD AC PN AB PM ⋅=⋅-⋅, ∵AB AC =∴BD PN PM =-(2)①连接AP 、BP 、CP参考该同学思考问题的方法,则有∵ABC APB APC BPC S S S S ∆∆∆∆=++,∴11112222AC BD AB PM AC PN BC PQ ⋅=⋅+⋅+⋅,∵AB AC BC ==,∴BD PM PN PQ =++.②过点P 分别作直线AB ,AC ,BC 的垂线P ,垂足分别为点M ,N ,Q ,分别连接接AP 、BP 、CP ,参考以上的思考方法,则有∵ABC APB BPC APC S S S S ∆∆∆∆=+-, ∴11112222AC BD AB PM BC PQ AC PN ⋅=⋅+⋅-⋅, ∵AB AC BC ==,∴BD PM PQ PN =+-.拓展1、 若一个三角形的三个内角的度数之比为3:4:2,那么这个三角形是( )A.锐角三角形B.直角三角形C.钝角三角形D.不能确定【答案】 A【解析】 ∵三个内角的度数之比为3:4:2,∴三个内角的度数分别是60︒,80︒,40︒;∴该三角形是锐角三角形.2、 如图,将三角尺的直角顶点放在直线a 上,a b ∥,150∠=︒,260∠=︒,则3∠的度数为( )A.50︒B.60︒C.70︒D.80︒【答案】 C 【解析】 由题意:354∠=∠=∠,由124180∠+∠+∠=︒,故123180∠+∠+∠=︒,故370∠=︒。

湘乡市第五中学七年级数学下册第四章三角形1认识三角形第2课时三角形的三边关系教案新版北师大版

湘乡市第五中学七年级数学下册第四章三角形1认识三角形第2课时三角形的三边关系教案新版北师大版

第2课时三角形的三边关系【知识与技能】掌握三角形三条边的关系,并能运用三边关系解决生活中的实际问题.【过程与方法】通过观察、操作、想象、推理、交流等活动,开展空间观念、推理能力和有条理表达的能力.【情感态度】学生通过观察、操作、交流和反思,获得必需的数学知识,激发学生的学习兴趣. 【教学重点】掌握三角形三条边的关系。

【教学难点】三角形三条边关系的应用.一、情景导入,初步认知警察抓劫匪〔一名罪犯实施抢劫后,经AB-—BC的路线往山上逃窜。

警察为了能尽快抓到逃犯,经路线AC追赶,终于在山顶将罪犯捉拿归案.〕警察为什么能在这么短的时间内抓到罪犯呢?〔学生各抒已见)2。

引入:警察的追击路线和罪犯的逃跑路线正好围成了一个三角形,那警察能在这么短的时间内抓到罪犯,是不是与三角形的三条边有关系呢?是不是任意的三条线段都能围成一个三角形呢?今天我们就通过实际操作,分组讨论来研究三角形三条边之间的关系.【教学说明】创设情境,激发学生探究知识的欲望。

二、思考探究,获取新知分别量出下面三个三角形的三边长度,并填空。

计算每个三角形的任意两边之差,并与第三边比拟,你能得到什么结论?【归纳结论】三角形任意两边之和大于第三边;三角形任意两边之差小于第三边.【教学说明】通过小组的合作交流,得出“三角形任意两边之差小于第三边〞的性质,同时培养学生合作学习的能力及语言表达能力。

三、运用新知,深化理解1。

见教材P86例题2。

三条线段的长度分别为:〔1)3cm、4cm、5cm;〔2〕8cm、7cm、15cm;〔3〕13cm、12cm、20cm;〔4〕5cm、5cm、11cm.能组成三角形的有〔 B 〕组。

A。

1 B。

2 C.3 D.43.现有3cm,4cm,7cm,9cm长的四根木棒,任取其中三根组成一个三角形,那么可以组成的三角形的个数是〔 B 〕。

A.1 B。

2 C。

3 D.44。

已知三条线段的比是:①1∶3∶4;②1∶2∶3;③1∶4∶6;④3∶3∶6;⑤6∶6∶10;⑥3∶4∶5.其中可构成三角形的有( B 〕A。

七年级数学北师大版下册第四章三角形1认识三角形第2课时导学课件

七年级数学北师大版下册第四章三角形1认识三角形第2课时导学课件

周长是 5.在△ABC中,AB=9,AC=2,并且BC的长为偶数,求△ABC的周长.
解:设这个等腰三角形的腰长为x cm,则底边长为(32-2x) cm. ∴三角形各边的长为10 cm,10 cm,5 cm.
(B )
∴32-2x=32-2×10=12.
A.17 3.三角形按边分类可以用如图所示的圆圈表示,那么图中小椭圆圈里的A表示
数学·北师大版·七年级下册
解:(1)图中的三角形有6个,分别为
△ABC,△ABD,△ABE,△ACD,△ACE,△ADE.
综上所述,图中共有6个三角形.
(2)图中有2个等腰三角形,分别是△ACD和△ADE.
数学·北师大版·七年级下册
5.在△ABC中,AB=9,AC=2,并且BC的长为偶数,求△ABC 的周长.
(D ) B.等腰三角形有三个内角 D.等腰三角形只有两条边
数学·北师大版·七年级下册
2.(2020年唐山一模)已知三角形的三边长为3,x,5,则x的值不可
能是
(D )
A.3
B.4
C.6
D.8
3.已知△ABC是等边三角形,且AB=10 cm,则△ABC的周长是
__3_0___ cm.
数学·北师大版·七年级下册
解:(1)图中的三角形有6个,分别为
AB+AC>BC,AB-AC<BC. 解得a=5,得2a=10.
当BC=10时,△ABC的周长=9+2+10=21.
(1)请问图中一共有多少个三角形,分别是哪些?
2.三角形三边之间的关系
三角形三边之间的关系:三角形任意两边之和大于________边,或者三角形任意两边之差小于________边.用字母可表示为在△ABC中,AB+AC>BC,AB-AC<BC.

新北师大版七年级数学下册第四章《认识三角形》第二课时优秀课件

新北师大版七年级数学下册第四章《认识三角形》第二课时优秀课件
北师大版七年级数学(下)
和老师一起学数学!
• • • •
假如有人问你:“你了解三角形吗?” 你打算如何回答?( ) A 回答三角形定义 B 回答你所知道的三角形全部概念 C 回答你所清楚的三角形模糊概念 D 回答“不了解”
在我们的生活中几乎随处可见三角形。它简单、 有用, 可以帮助我们更好的认识周围的世界,可以帮 助我们解决很多实际问题…… 上节课我们认识了三角形,知道了三角形的定义, 知道了三角形的内角和,还知道了三角形按角分类, 这节课让我们继续去认识三角形的更多知识吧……
学案练习部分的 挑战自我(二)
1. 下列每组数分别是三根小木棒的长度,用它们能
(1)3cm, 4cm, 5cm ; (2)8cm, 7cm, 15cm
(1)(3) 摆成三角形吗?实际摆一摆,验证你的结论。
(3) 13cm, 12cm, 20cm;
(4)5cm,
5cm,
11cm
2.现有长度分别为1cm,2cm,3cm,4cm,5cm的五条线段, 从其中选三条线段为边可以构成 3 个不同的三角形。
3.如果三角形的两边长分别是2和4,且第三边是奇 数,那么第三边长为 3或5 。若第三边为偶数,那么 三角形的周长 10 。 4.已知一个三角形的三边a=7,b=3,第三边c是一个正 整数,满足这些条件的三角形共有 5 种, 当c= 9 时,所作出的三角形的周长最长。 5.一个等腰三角形的两边长分别为25和12,则第三 边长为 25 。 6.若△ABC的三边为a,b,c,则化简 ︳a+b-c ︳– ︳b-a-c ︳的结果是(C).(A) 2a-2b (B) 2a+2b+2c (C) 2b-2c (D) 2a-2c
挑战自我(一)(学案第一部分练习) (1)两边为2和3的等腰三角形的周长 7cm或8cm 是—— (2)两边为2和5的等腰三角形的周长 12cm 是—— 一定要注意哟

北师大版七年级下册第三章三角形讲义

北师大版七年级下册第三章三角形讲义

三角形 1.认识三角形1、它的三个顶点分别是 ,三条边分别是 ,三个内角分别是 。

2、分别量出这三角形三边的长度,并计算任意两边之和以及任意两边之差。

你发现了什么?结论:三角形任意两边之和大于第三边三角形任意两边之差小于第三边例:有两根长度分别为5cm 和8cm 的木棒,用长度为2cm 的木棒与它们能摆成三角形吗?为什么?长度为13cm 的木棒呢?长度为7cm 的木棒呢? 二、稳固练习:1、以下每组数分别是三根小木棒的长度,用它们能摆成三角形吗?为什么?〔单位:cm 〕 〔1〕 1, 3, 3 〔2〕 3, 4, 7 〔3〕 5, 9, 13 〔4〕 11, 12, 22 〔5〕 14, 15, 302、已知一个三角形的两边长分别是3cm 和4cm ,则第三边长X 的取值范围是 。

假设X 是奇数,则X 的值是 。

这样的三角形有 个;假设X 是偶数,则X 的值是 , 这样的三角形又有 个3、一个等腰三角形的一边是2cm ,另一边是9cm ,则这个三角形的周长是 cm夯实基础1、填空:〔1〕当0°<α<90°时,α是 角; 〔2〕当α= °时,α是直角;〔3〕当90°<α<180°时,α是 角; 〔4〕当α= °时,α是平角。

2、如右图,∵AB ∥CE ,〔已知〕 ∴∠A = ,〔 〕∴∠B = ,〔 〕 〔第2题〕 二、探索练习:根据知道三角形的三个内角和等于180°,那么是否对其他的三角形也有这样的一个结论呢?〔提出问题,激发学生的兴趣〕结论:三角形三个内角和等于180°〔几何表示〕 练习1: 1、判断:〔1〕一个三角形的三个内角可以都小于60°; 〔 〕 〔2〕一个三角形最多只能有一个内角是钝角或直角; 〔 〕 2、在△ABC 中,A BC a bcABCDE123〔1〕∠C=70°,∠A=50°,则∠B= 度; 〔2〕∠B=100°,∠A=∠C ,则∠C= 度; 〔3〕2∠A=∠B+∠C ,则∠A= 度。

《义务教育教科书》北师大版数学 七级 下册 第四章第节认识三角形教学课件(共23张PPT)

《义务教育教科书》北师大版数学 七级 下册 第四章第节认识三角形教学课件(共23张PPT)

或周长; ∣ x –4∣=2的解,求△ABC的周长,并判断△ABC的形状.
若三角形的两边长分别为a和b, 设a≥b,则第三边c的范围是___________ (2)4cm,5cm,9cm;
40cm,50cm,60cm,
2.探索三角形三边的关系,懂得判断三条线段能否构成___;
(1)1cm,2cm,; (2)4cm,5cm,9cm;
(3)6cm , 8cm, 13cm
解:(1)∵ 1+2=3 <
不满足任意两边之和大于第三边
∴不能组成三角形
2、现有木棒4根,长度分别为12、 10、 8、 4, 选其中3根组成三
角形,则能组成三角形的个数是( )
C
12,10,8
12,10,4
D
解:连接BD,AC交于点M,点M即为建水厂处.
A
理由:取不同于M点的任意一点N,连接AN,BN,
CN,DN.
M
在△ACN中,AN+CN >AC; 在△BDN中,BN+DN >BD;
B
∴AN+BN+CN+DN >AC+BD;
即AN+BN+CN+DN >AM+CM+BM+DM.
所以当水厂建在AC , BD 交于点M处时,可使MA+MB+MC+MD最小.
40cm,50cm,60cm,
已有
40cm 90cm
90cm,130cm
商 店
光头强要做一个三角 形的铁架子,现已有两条 长分别为40cm和90cm的铁 条,需要再买一根铁条,把
它们首尾焊接在一起.
北师大版数学七年级下册第四章
认识三角形(2)

北师大版数学七年级下册4.1.2《认识三角形—三边关系》说课稿

北师大版数学七年级下册4.1.2《认识三角形—三边关系》说课稿

北师大版数学七年级下册4.1.2《认识三角形—三边关系》说课稿一. 教材分析《认识三角形—三边关系》这一节是北师大版数学七年级下册第4章第1节的一部分。

本节课的主要内容是让学生了解并掌握三角形的特性,即任意两边之和大于第三边,任意两边之差小于第三边。

教材通过实例引导学生探究三角形三边之间的关系,培养学生的动手操作能力和抽象思维能力。

二. 学情分析面对七年级的学生,他们已经具备了一定的观察能力、动手操作能力和初步的抽象思维能力。

他们对平面几何图形有了一定的了解,但对于三角形三边关系的认识还是初步的。

因此,在教学过程中,我将以学生为主体,引导学生通过观察、操作、思考、交流等活动,深入理解三角形三边关系的内涵。

三. 说教学目标1.知识与技能目标:让学生了解并掌握三角形的特性,能够判断任意三条线段能否构成三角形。

2.过程与方法目标:通过观察、操作、思考、交流等活动,培养学生探究问题的能力。

3.情感态度与价值观目标:培养学生对数学的兴趣,增强学生自信心,培养学生的团队协作精神。

四. 说教学重难点1.教学重点:让学生掌握三角形三边关系,即任意两边之和大于第三边,任意两边之差小于第三边。

2.教学难点:如何引导学生从实例中发现三角形三边关系的规律,并能够一般性地表述出来。

五. 说教学方法与手段在本节课的教学过程中,我将采用启发式教学法、小组合作学习法和多媒体辅助教学法。

1.启发式教学法:通过提问、引导、探讨等方式,激发学生的思维,引导学生主动探究三角形三边关系。

2.小组合作学习法:学生进行小组讨论、交流,培养学生的团队协作能力和沟通能力。

3.多媒体辅助教学法:利用多媒体课件,直观地展示三角形三边关系的实例,帮助学生更好地理解和掌握知识。

六. 说教学过程1.导入:通过展示一些生活中的三角形实例,如自行车三角架、自行车的座椅等,引导学生关注三角形,激发学生学习兴趣。

2.探究三角形三边关系:让学生分组进行动手操作,每组发一些线段,让学生尝试组成三角形,并观察、记录组成三角形的条件。

七年级数学北师大版下册初一数学--第四单元 4.1《认识三角形》课件

七年级数学北师大版下册初一数学--第四单元 4.1《认识三角形》课件

直 角
斜边
与斜边之间的大小关系吗?
(hypotenuse) 它的两个锐角之间有什么关系吗?

B 直角边 (leg) C
直角三角形的斜边大于任一直角边。
直角三角形的两个锐角互余。




⑤ 锐角三角形
③⑤
⑥ 直角三角形
① ④⑥
⑦ 钝角三角形
②⑦
2、在下面的空白处,分别填入“锐角” “钝角”或“直 角”:
认识三角形
忆一: 三角形三边的关系
a
b
c
三角形任意两边之和大于第三边。 三角形任意两边之差小于第三边。
两边之差
2
3
这是一个直角三角形,∠1、∠2、∠3是它的三个内角。 平时,它们三兄弟非常团结。可是有一天,∠2突然不高兴, 发起脾气来,它指着∠1说:“你凭什么度数最大,我也要 和你一样大!”“不行啊,老弟”∠1说:“这是不可能的, 否则,我们这个家就再也不成家了……”“为什么?”∠2
2.如图线段DG ,EM ,FN两两相交于B ,C ,A三 点 则 ∠D+ ∠E + ∠F+∠G+∠M+∠N的度数 是( )
N
M
A
D
B
C G
E
F
很纳闷。同学们,你们知道其中的道理吗?学了今天的知识 以后你们就会知道三兄弟之间的关系了。
三角形的三个内角有什么关系
三角形三个内角的和等于180º
小学里,用什么方法得到三角形内 角和的结论的?
请同学们动手验证一下!
2 1
你能用什么方法得到 三角形内角和1800
的结论?
练1:
1、在△ABC中,∠C=900 , ∠ A=300 求∠B

七年级数学下册 第四章 三角形 1 认识三角形第2课时 三角形的三边关系教学课件 北师大版

七年级数学下册 第四章 三角形 1 认识三角形第2课时 三角形的三边关系教学课件 北师大版
谢谢观赏
You made my day!
我们,还在路上……
பைடு நூலகம்
课程讲授
2 三角形的三边关系
问题1:任意画出一个△ABC,从其中一个顶点B出发,
沿三角形的边到点C,有几条线路可以选择,各条线路
的长有什么关系?
A
两点之间线段最短.
由此可以得到: AC BC AB
B
C
AB BC AC AC AB BC
提示:两点之间,线段最短.
课程讲授
2 三角形的三边关系
问题1:观察下图中的三角形,试着比较它们之间的不 同之处.
提示:可根据三角形三边的长度关系进行比较.
顶角
腰 底角
不等边三角形 (三条边长度均不相等)
等腰三角形 底边
(两条边长度相等)
等边三角形 (三条边长相等)
课程讲授
1 等腰三角形和等边三角形
以“是否有边相等”,可以将三角形分为两类: _三__边__都__不__相__等__的__三__角__形_和__等__腰__三__角__形_. 三条边各不相等的三角形叫做__不__等__边__三__角__形____. 有两条边相等的三角形叫做__等__腰__三__角__形_. 三条边都相等的三角形叫做_等__边__三__角__形_.
等腰三角形与等边三角形的关系: 等边三角形是特__殊__的等边三角形,即_底__边__和__腰__相__等__ 的等腰三角形.
课程讲授
1 等腰三角形和等边三角形
三边都不 相等的三 角形
等腰三角形
等边三 角形
三角形
课程讲授
1 等腰三角形和等边三角形
练一练:根据三角形的分类,判断下列说法是否正确。
(1)一个钝角三角形可能是等腰三角形.( √ ) (2)等边三角形是特殊的等腰三角形.( √ ) (3)等腰三角形的腰和底一定不相等.( × ) (4)等边三角形是锐角三角形.( √ ) (5)直角三角形一定不是等腰三角形.( × )

北师大版初中七年级下册数学:认识三角形

北师大版初中七年级下册数学:认识三角形

实际问题
如图,一艘轮船按箭头所示方向行驶, C处有一灯塔,轮船行驶到哪一点时距离 灯塔最近?当轮船从A点行驶到B点时, ∠ACB的度数是多少?当轮船行驶到距离 灯塔最近点时呢?
C
30 °
70 °
A
B
课前导学 | 课中引学 | 课后固学
课堂小结
1、三角形三个内角的和等于180 ˚ 。 2、三角形按角的大小分类:
观察下列图片,找出三角形形状
课前导学 | 课中引学 | 课后固学
学习目标:
• 通过观察、操作、想象、推理“三角形内 角和等于180°”的活动过程,发展空间观 念,推理能力和有条理地表达能力.
• (2)过程与方法:让学生在数学活动中通 过相互间的合作与交流,培养学生的相互 协作意识及数学表达能力.
⑴锐角三角形 :三个内角都是锐角; ⑵直角三角形 :有一个内角为直角; ⑶钝角三角形 :有一个内角为钝角 。 3、直角三角形的两个锐角互余。
课前导学 | 课中引学 | 课后固学
见课堂精练P61当堂检测
课前导学 | 课中引学 | 课后固学
@YourName
Thank you for listening
探究二:你能用学过的知识解释“三角形的三个内
角和是180˚”吗?
1
a 3
2
1
4b
三角形三个内角的和等于180˚
课前导学 | 课中引学 | 课后固学
猜角游戏
下面的图⑴、图⑵、图⑶中的三角形被遮住 的两个内角是什么角?试着说明理由。
(1)
(2)
(3)
将图⑶的结果与图⑴、图⑵的结果进行比较,
可以将三角形如何按角分类?
课前导学 | 课中引学 | 课后固学
按三角形内角的大小把三角形分为三类
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第四章三角形
1认识三角形(第2课时)
一.学生起点分析
学生的知识技能基础:学生在上节已经学习了有关三角形的一些初步知识,能在生活中抽象出三角形的几何图形,并能明确给出三角形的概念及三角形内角和为180°.
学生活动经验基础:学生在以前的几何学习过程中,已对图形的概念、线段及角的表示法、线段的测量及三角形概念、表示法、内角和有了初步认识.同时在以前的数学学习中学生已经经历了很多合作学习的过程,具有了一定的合作学习的经验,具备了一定的合作与交流的能力。

二. 教学任务分析
本节课基于学生在上一节中学习了有关三角形的一些初步知识,并对三角形的角关系也能很好理解.教学中注重三角形三边关系在生活中的应用,渗透数学来源于实践又能应用于实践的思想,在解题中培养学生的合作交流意识,逐步达成学生的有关情感态度目标.因此,本节课设计了如下的教学目标:
(1)知识与技能:让学生认识等腰三角形,会按边对三角形分类并掌握三边关系,并能运用三边关系解决生活中的实际问题. 结合具体实例,进一步掌握三角形三条边的关系.
(2)过程与方法:通过观察、操作、想象、推理、交流等活动,发展空间观念,推理能力和有条理地表达能力.
(3)情感与态度:学生通过观察、操作、交流和反思,获得必需的数学知识,激发学生的学习兴趣.
三. 教学设计分析
本节课设计了七个环节:现实情境引入、认识等腰三角形及按边对三角形分类、探索三角形三边关系、基础巩固、课堂小结、布置作业、自我检测。

第一环节现实情境引入
活动内容:
活动一
(1)观察下面的三角形,并把它们的标号填入相应的椭圆框内:
锐角三角形直角三角形
钝角三角形
(2
)在上面的三角形中各自的边长有什么关系?有等腰三角形吗?
活动目的:
本活动在于渗透分类的数学思想,使学生在操作的过程中感悟分类的方法,做到不重复不遗漏.
实际教学效果:
学生能够根据上节课的内容,将所给的三角形按角进行分类,在复习上节课知识的基础上,类比想到第二问,体会如何按边来分类,教学过程中渗透类比的数学思想。








第二环节认识等腰三角形及三角形按边分类
活动内容:
1.等腰三角形和等边三角形的定义
有两边相等的三角形叫等腰三角形;
有三边相等的三角形叫等边三角形;
问题一:从定义上你能看出等腰三角形与等边三角形的关系吗?(学生讨论给出)2.三角形按边分类:
按边分:
:
:








不等边三角形三边都不相等的三角形
三角形普通等腰三角形等腰三角形有两条边相等的三角形
等边三角形
活动目的:通过对等腰三角形的认识,引出等腰三角形的定义以及三角形按边分类,进一步体现数学分类的思想。

第三环节探索三角形三边关系
活动内容:
小组活动二:
问:是不是任意三条线段都能够组成三角形?三条线段满足什么条件才能组成一个三角形?
准备5根木棒长分别为3cm,4cm,5cm,6cm,9cm,任意取出3根首尾相接搭三角形,并填表:
小组活动三:
(1)任意画一个三角形,量出它的三边长度,并填空:
a=______;b=_______;c=______。

(2)计算并比较:
a+b____c; b+c____a;c+a____b。

a-b____c;b-c____a;c-a____b。

(3)通过以上的计算你认为三角形的三边存在怎样的关系?
整理得到:三角形任意两边之和大于第三边,任意两边之差小于第三边。

例如在△ABC中,根据两点之间线段最短,我们有点A到点B,C的距离
之和要大于线段BC的长,即 AB+AC>BC。

问题二
活动目的:通过设计两个活动,让学生经历“三角形任意两边之和大于第
三边,任意两边之差小于第三边。

”这一结论得出的过程,并通过练习的设
计进一步加深对这一结论的理解。

实际教学效果:学生能在活动中合作学习,共同探讨三角形的三边关系,
经历活动的过程,积累活动经验,加深对结论的理解。

第四环节基础巩固
活动内容:
1.有两根长度分别为5cm和8cm的木棒,用长度为2cm的木棒与它们能摆成三角形吗?为什么?长度为13cm的木棒呢?动手摆一摆。

学生回答完上面问题后想一想能取一根木棒与原来的两根木棒摆成三角形吗?
2.下列每组数分别是三根小木棒的长度,用它们能摆成三角形吗?实际摆一摆,验证你的结论。

(1)3cm, 4cm, 5cm ; (2)8cm, 7cm, 15cm;
(3 ) 13cm, 12cm, 20cm; (4)5cm, 5cm, 11cm
3.现有长度分别为1cm,2cm,3cm,4cm,5cm的五条线段,从其中选三条线段为边可以构成个不同的三角形。

4.如果三角形的两边长分别是2和4,且第三边是奇数,那么第三边长
为。

若第三边为偶数,那么三角形的周长。

5.一个等腰三角形的两边长分别为25和12,则第三边长为。

6.若等腰△ ABC周长为26,AB=6 ,求它的腰长.
7.有四个汽车停车场,位于如图所示的四边形ABCD的四个顶点,现在要建立一个汽车维修站,你能利用“三角形任意两边之和大于第三边”在四边形ABCD的内部找一点P,使点P到A,B,C,D四点的距离之和最小吗?
第五环节课堂小结
活动内容:
学生自我谈收获体会,说说学完本节课的困惑。

教师做最终总结并指出注意事项。

(让学生畅所欲言,谈收获体会,教师给予鼓励。

主要是让学生熟记新知能应用新知解决问题。

培养学生概括总结的能力。


实际教学效果:学生对本节内容归纳为以下两点:
1.了解了三角形的概念及表示方法;
2.三角形的任意两边之和大于第三边,三角形的任意两边之差小于第三边.
注意事项为:判断a,b,c三条线段能否组成一个三角形,
应注意:a+b>c,a+c>b,b+c>a三个条件缺一不可。

当a是a,b,c三条线段中最长的一条时,只要b+c>a就是任意两条线段的和大于第三边。

第六环节布置作业
课本习题4.2
四教学设计反思
本节设计的成功之处为:一是创设情境引入等腰和等边三角形及三角形按边分类;二是在验证三边和差时充分的调动了学生的积极性,在实践中总结了结论。

学生能印象深刻,为理论的应用奠定基础。

同时通过观察、操作、想象、推理、交流等活动,发展了学生的空间观念,推理能力和有条理地语言表达能力;三是注重了理论联系实际,适时的对学生进行德育教育。

培养了学生善于观察生活、乐于探索研究的学习品质,从而更大地激发学生学习数学的兴趣.
今后注意改进的方面,应该留给学生充分的独立思考的时间,不要一些思维活跃的学生的回答代替了其他学生的思考,掩盖了其他学生的疑问。

平时要多注重学生几何语言的培养,多让学生在生活中发现数学学习数学。

相关文档
最新文档