必修一集合与简易逻辑知识点经典总结
集合与简易逻辑知识点整理
集合与简易逻辑 知识点整理班级: 姓名:1.集合中元素的性质(三要素): ; ; 。
2.常见数集:自然数集 ;自然数集 ;正整数集 ;整数集 ;有理数集 ;实数集 。
3.子集:A B ⊆⇔ ; 真子集:A B ≠⊂⇔ ; 补(余)集:A C B ⇔ ;【注意】空集是任意集合的子集,是任意非空集合的真子集。
4.交集:A B ⋂⇔ ; 并集:A B ⋃⇔ 。
笛摩根定律:()U C A B ⋂= ;()U C A B ⋃= 。
性质:A B A ⋂=⇔ ;A B A ⋃=⇔ 。
5.用下列符号填空: "","","","","",""≠∈∉⊂⊂=≠0 N ;{}0 R ;φ {}0;{}1,2 {}(1,2);{}0x x ≥ {}0y y ≥ 6.含绝对值的不等式的解法:【注意】含等号时端点要取到。
x a < (0)a >的解集是 ;x a > (0)a >的解集是 。
(0)ax b c c +<>⇔ a x b <+<;(0)ax b c c +<<⇔ 或 。
7.【注意】的情况可根据不等式的性质化归为的情况进行讨论。
8.一元二次不等式恒成立问题:【注意】二次项系数为0时的讨论。
一元二次不等式20ax bx c ++<(0)a ≠恒成立⇔ 。
一元二次不等式20ax bx c ++≤(0)a ≠恒成立⇔ 。
一元二次不等式20ax bx c ++>(0)a ≠恒成立⇔ 。
一元二次不等式20ax bx c ++≥(0)a ≠恒成立⇔ 。
9.简单分式不等式的解法:()0()f x g x > ⇔()()0f x g x ⋅>⇔()0()0f x g x >⎧⎨>⎩或()0()0f x g x <⎧⎨<⎩()0()f xg x ≥⇔ ⇔ 。
1集合与简易逻辑知识点梳理.
§1集合与简易逻辑一、理解集合中的有关概念(1)集合中元素的特征:确定性,互异性,无序性。
集合元素的互异性:如:A={x,xy,lg(xy)},B={0,|x|,y},求A;(2)集合与元素的关系用符号∈,∉表示。
(3)常用数集的符号表示:自然数集;正整数集、;整数集;有理数集、实数集。
(4)集合的表示法:列举法,描述法,韦恩图。
说说下列集合的区别:A={x|y;B={y|y=;C={(x,y)|y;D={x|x=;E={(x,y)|y=x∈Z,y∈Z}.(5)空集是指不含任何元素的集合{0}、φ和{φ}的区别;0与三者间的关系;空集是任何集合的子集,是任何非空集合的真子集;注意:条件为A⊆B,在讨论的时候不要遗忘了A=φ的情况,如:A={x|ax2-2x-1=0},如果A R+=φ,求a的取值。
二、集合间的关系及其运算(1)符号“∈,∉”是表示元素与集合之间关系的,如立体几何中的体现点与直线(面)的关系;符号“⊂,⊄”或“⊆,”或“”等是表示集合与集合之间关系的,立体几何中的体现面与直线(面)的关系。
(2)切记:A⊆B⇔A⋂B=A;A⊆B⇔A⋃B=B.(3)集合中元素的个数的计算:若集合A中有n个元素,则集合A的所有不同的子集个数为_ __ ,所有真子集的个数是__ _,所有非空真子集的个数是。
基础训练一、选择题1.下列表示方法正确的是A.1⊆{0,1,2}D.φ{0}2.已知A={1,2,a2-3a-1},B={1,3},A⋂B={3,1}则a等于B.{1}∈{1,2}C.{0,1,2}⊆{0,1,3}A.-4或1B.-1或4C.-1D.43.设集合M={3,a},N={x|x2-3x﹤0,x∈Z},M⋂N={1},则M⋃N为A.{1,2,a}B.{1,2,3,a}C.{1,2,3}D.{1,3}4.集合P={(x,y)|x-y=2,x∈R},Q={(x,y)|x+y=2,x∈R},则P⋂QA.(2,0)B.{(2,0)}C.{0,2}D.{y|y≤2}n18.设集合A={x|x=,n∈Z},B={x|x=n+,n∈Z},则下列能较准确表示A、B关22 系的是图是11.已知集合M={x|x≤1},P={x|x﹥t},若M⋂P=φ,则实数t满足条件是A.t﹥1B.t≥1C.t<1D.t≤112.当a﹤0时,关于x的不等式x2-4ax-5a2>0的解集是A.{x|x﹥5a或x﹤-a}B.{x|x﹤5a或x﹥-a}C.{x|-a﹤x﹤5a}D.{x|5a﹤x﹤-a}二、填空题:13.集合M中含有8个元素,N中含有13个元素,(1)若M⋂N有6个元素,则M⋃N含有______个元素;(2)当M⋃N含_______个元素时, M⋂N=φ。
集合与简易逻辑知识点总结- 高三数学一轮复习
知识点总结1 集合与简易逻辑一、集合(一)元素与集合1.集合的含义某些指定对象的部分或全体构成一个集合.构成集合的元素除了常见的数、点等数学对象外,还可以是其他对象.2.集合元素的特征(1)确定性:集合中的元素必须是确定的,任何一个对象都能明确判断出它是否为该集合中的元素.(2)互异性:集合中任何两个元素都是互不相同的,即相同元素在同一个集合中不能重复出现.(3)无序性:集合与其组成元素的顺序无关.3.元素与集合的关系元素与集合之间的关系包括属于(记作a A ∈)和不属于(记作a A ∉)两种.4.集合的常用表示法集合的常用表示法有列举法、描述法、图示法(韦恩图).5.常用数集的表示 数集 自然数集 正整数集 整数集 有理数集 实数集符号 NN ∗或N + Z Q R (二)集合间的基本关系1.集合A 为集合B 的子集 ,记作A B ⊆(或B A ⊇),读作“A 包含于B ”(或“B 包含A ”).(2)真子集:若A B ⊆,且存在b B ∈,但b A ∉,则集合A 是集合B 的真子集,记作AB (或B A ⊃≠). 读作“A 真包含于B ”或“B 真包含A ”.(3)相等:对于两个集合A 与B ,如果A B ⊆,同时B A ⊆,那么集合A 与B 相等,记作A =B .(4)空集:把不含任何元素的集合叫做空集,记作∅;(三)集合的基本运算(1)交集:由所有属于集合A 且属于集合B 的元素组成的集合,叫做A 与B 的交集,记作A B ⋂, 即{}|A B x x A x B ⋂=∈∈且.(2) 并集:由所有属于集合A 或属于集合B 的元素组成的集合,叫做A 与B 的并集,记作A B ⋃,(3) 即{}|A B x x A x B ⋃=∈∈或.(3)补集:对于一个集合A ,由全集U 中不属于集合A 的所有元素组成的集合称为集合A 相对于全集U 的补集,简称为集合A 的补集,记作U C A ,即{|,}U C A x x U x A =∈∉且.(四)集合的运算性质(1)集合的运算性质:①交换律:A ∪B =B ∪A ;A ∩B =B ∩A ;②结合律:(A ∪B )∪C =A ∪(B ∪C );(A ∩B )∩C =A ∩(B ∩C );③分配律:(A ∩B )∪C =(A ∪C )∩(B ∪C );(A ∪B )∩C =(A ∩C )∪(B ∩C );【集合常用结论】1.子集个数:含有n个元素的有限集合M,其子集个数为2n;其真子集个数为2n-1;其非空子集个数为2n-1;其非空真子集个数为2n-2.2. 是任何集合的子集,是任何非空集合的真子集.3.∁U(A∪B)=(∁U A)∩(∁U B);∁U(A∩B)=(∁U A)∪(∁U B);4.A∪B=A⇔B⊆A;A∩B=B⇔B⊆A.5.集合运算中的常用方法若已知的集合是不等式的解集,用数轴求解;若已知的集合是点集,用数形结合法求解;若已知的集合是抽象集合,用Venn图求解.二、简易逻辑(一).全称命题、特称(存在性)命题及其否定(1)全称命题p:∀x∈M,p(x),其否定为特称(存在性)命题:¬p:∃x0∈M,¬p(x0).(2)特称(存在性)命题p:∃x0∈M,p(x0),其否定为全称命题:¬p:∀x∈M,¬p(x).(二).充分条件与必要条件的判定方法(1)定义法:若p⇒q,则p是q的充分条件(或q是p的必要条件);若p⇒q,且q⇏p,则p是q的充分不必要条件(或q是p的必要不充分条件).(2)集合法:利用集合间的包含关系。
高一数学上册知识点汇总:集合与简易逻辑、函数的三要素
高一数学上册知识点汇总:集合与简易逻辑、函数的三要素一、集合与简易逻辑:一、理解集合中的有关概念集合中元素的特征:确定性,互异性,无序性。
集合元素的互异性:如:,,求;集合与元素的关系用符号,表示。
常用数集的符号表示:自然数集;正整数集、;整数集;有理数集、实数集。
集合的表示法:列举法,描述法,韦恩图。
注意:区分集合中元素的形式:如:;;;;;空集是指不含任何元素的集合。
空集是任何集合的子集,是任何非空集合的真子集。
注意:条件为,在讨论的时候不要遗忘了的情况二、函数的三要素:相同函数的判断方法:①;②函数解析式的求法:①定义法:②换元法:③待定系数法:④赋值法:函数定义域的求法:①,则;②则;③,则;④如:,则;⑤含参问题的定义域要分类讨论;如:已知函数的定义域是,求的定义域。
⑥对于实际问题,在求出函数解析式后;必须求出其定义域,此时的定义域要根据实际意义来确定。
如:已知扇形的周长为20,半径为,扇形面积为,则;定义域为。
函数值域的求法:①配方法:转化为二次函数,利用二次函数的特征来求值;常转化为型如:的形式;②逆求法:通过反解,用来表示,再由的取值范围,通过解不等式,得出的取值范围;常用来解,型如:;④换元法:通过变量代换转化为能求值域的函数,化归思想;⑤三角有界法:转化为只含正弦、余弦的函数,运用三角函数有界性来求值域;⑥基本不等式法:转化成型如:,利用平均值不等式公式来求值域;⑦单调性法:函数为单调函数,可根据函数的单调性求值域。
⑧数形结合:根据函数的几何图形,利用数型结合的方法来求值域。
求下列函数的值域:①;②;③;。
高中数学新教材必修第一册第一章 集合与常用逻辑用语基础知识
第一章集合与常用逻辑用语1元素:研究的对象统称为元素,用表示元素三大性质:,,.2集合:一些元素组成的叫做集合,简称集,用表示.3集合相等:两个集合BA,的一样,记作BA=.4元素与集合的关系:属于:a A; 不属于:a A.5常用的数集及其记法:自然数集;正整数集;整数集;有理数集;实数集.6集合的表示方法:①列举法:把集合中的所有元素一一列举出来,并用花括号括起来表示集合的方法;①描述法:把集合中所有具有共同特征)P的元素x所组成的集合表示为(x的方法;①图示法(Venn图):用平面上封闭曲线的内部代表集合的方法.7集合间的基本关系:子集:真子集:8空集:不含任何元素的集合,用表示;空集的性质,空集是任何集合的,是任何的真子集.9集合的基本运算:并集;交集;补集(U为全集,全集是含有所研究问题中涉及的所有元素).运算性质:A∪B=B⇔; A∩B=A⇔; A∪∅=;A∩∅=; C U(C U A)=; C U∅=; C U U=;(C U A)∩(C U B)=; (C U A)∪(C U B)=;10充分条件与必要条件:p⇒,称p是q的充分条一般地,“若p,则q”为真命题,p可以推出q,记作q件,q是p的必要条件;p是q的条件的四种类型:若则p是q的充分不必要条件;若则p是q的必要充分不条件;若则p是q的充要条件;若则p是q的既不充分也不必要条件.11全称量词及全称量词命题:短语,在逻辑中叫做全称量词,并用符号表示,含有全称量词的命题成为全称量词命题.12存在量词及存在量词命题:短语,在逻辑中叫做存在量词,并用符号表示,含有存在量词的命题成为存在量词命题.13全称量词命题与存在量词命题的否定:全称量词命题的否定是;存在量词命题的否定是.库尔勒市第四中学。
必修1、选修1-1 集合与简易逻辑
作“������或������” ;对于“������ ∨ ������”形式的命题判断真假的方法是:一真则真; (2)且:一般地,用联结词“且”把命题������和命题������联结起来,就得到一个新的命题,记作������ ∧ ������,读 作“������且������” ;对于“������ ∧ ������”形式的命题判断真假的方法是:一假则假; (3)非:一般地,对于一个命题全盘否定,就得到一个新的命题,记作“¬ ������” ,读作“非������”或读作 “������的否定” ;对于“¬ ������”形式的命题判断真假的方法是:真假相对; 4、全称量词与存在量词: (1)全称量词和全称命题: 全称量词:短语“所有的” “任意一个” “任意的”等在逻辑中通常称为全称量词,用符号“∀”表示; 全称命题:含有全称量词的命题称为全称命题; 全称命题的表达形式:������: ∀������ ∈ ������, ������ ������ ; 全称命题的否定形式:¬ ������: ∂������������ ∈ ������, ¬ ������ ������������ ; (全称命题的否定是特称命题) (2)存在量词和特称命题: 存在量词:短语“至少有一个” “存在一个”等在逻辑中通常称为存在量词,用符号“∂”表示; 特称命题:含有存在量词的命题称为特称命题; 特称命题的表达形式:������: ∂������������ ∈ ������, ������ ������������ ; 特称命题的否定形式:¬ ������: ∀������ ∈ ������, ¬ ������ ������ ; (特称命题的否定是全称命题)
(二)集合的运算——交集、并集、补集
1、交集: 一般地, 由所有属于集合������并且属于������的所有元素组成的集合, 称为集合������与集合������的交集, 记作������ ∩ ������, 读作������交������,即������ ∩ ������ = ������ ������ ∈ ������且������ ∈ ������ ;
高考数学必修1总复习《集合与简易逻辑》
具体化(具体求出相关的集合,
Venn 图、
函数的图像等,即数形结合的思想).
考点三 集合的运算
【例3】 (2010·全国)设全集U={x∈N+|x<6},集合A={1,3},B={3,5},则 ∁U(A∪B)=( )
A. {1,4} B. {1,5} C. {2,4} D. {2,5}
解 ∵A={1,3},B={3,5},∴A∪B={1,3,5},∴∁U(A∪B)={2,4},故选C.
考点二 集合之间的关系 【例2】 已知集合A={1,2},B={1,2,3,4,5},且A M⊆B,则满足上述 条件的集合M有________个. 解 ∵A M, ∴M中一定含有A的全部元素1,2,且至少含有一个不属于A的元素. 又∵M⊆B, ∴M中的元素除了含有A的元素1,2外,还有元素3,4,5中的1个、2个或3 个.故求M的问题转化为研究集合{3,4,5}的非空子集的问题,显然所求集 合M有23-1=7个.
正整数 集
整数集
有理数 集
实数集 复数集
符号
N
N*或N+
Z
Q
R
C
(4)集合的表示法: __列__举__法__、 __描__述__法__、 V__e_n_n_图_法__ 、 __区__间____、 __不__等__式__. 2. 集合间的基本关系
表示 关系
文字语言
符号语言
子集 相等 真子集
A中任意一个元素均为B中的元 素
(1)若A∩B≠∅,则实数a的取值范围是________;
(2)若A∩B≠A,则实数a的取值范围是________;
(3)若A∪B=B,则实数a的取值范围是________.
解析:A={x|-2≤x≤4},B={x|x>a},将集合A、B表示在数轴上(注:集 合B表示的范围随着a值的变化而在移动),如图所示,要注意的就是对于端 点值的取舍.
高考数学专题1 集合与简易逻辑
专题1 集合与简易逻辑一.知识网络以“集合”为基础,由“运算”分枝杈.二.高考考点1.对于集合概念的认识与理解,重点是对集合的识别与表达.2.对集合知识的综合应用,重点考查准确使用数学语言的能力以及运用数形结合思想解决问题的能力.3.理解逻辑联结词“或”“且”“非”的含义;命题的四种形式;相关命题的等价转换,重点考查逻辑推理和分析问题的能力.4.充分条件与必要条件的判定与应用.三.知识要点(一)集合1.集合的基本概念(1)集合的描述性定义:某些指定的对象集在一起就成为一个集合.认知:集合由一组指定的(或确定的)对象的全体组成,整体性是其重要特征之一.集合的元素须具备以下三个特性:(I)确定性:对于一个给定的集合,任何一个对象是否为这个集合的元素是明确的,只有“是”与“否”两种情况.(II)互异性:集合中的任何两个元素都不相同.(III)无序性:集合中的元素无前后顺序之分.(2)集合的表示方法集合的一般表示方法主要有(I)列举法:把集合中的元素一一列举出来的方法.提醒:用列举法表示集合时,须注意集合中元素的“互异性”与“无序性”,以防自己表示有误或被他人迷惑.(II)描述法:用确定的条件表示某些对象是否属于这个集合的方法.①描述法的规范格式:{x|p(x),x∈A}其中,大括号内的竖线之前的文字是“集合的代表元素”,竖线后面是借助代表元素描述的集合中元素的属性及范围(即判断对象是否属于集合的确定的条件).②认知集合的过程:认清竖线前的代表元素;考察竖线后面代表元素的属性及范围结合前面的考察与集合的意义认知集合本来面目.例:认知以下集合:; ;; ,其中M={0,1}.分析:对于A,其代表元素是有序数对(x,y),即点(x,y)点(x,y)坐标满足函数式y=x2-1(x∈R)点(x,y)在抛物线y=x2-1上集合A是抛物线y=x2-1(x∈R)上的点所组成的集合.对于B,其代表元素为y y是x的二次函数:y=x2-1(x∈R),再注意到集合的意义是范围集合B 是二次函数y=x2-1(x∈R)的取值范围集合B是二次函数y=x2-1(x∈R)的值域,故B={y|y≥-1}.对于C,其代表元素是x x是二次函数y=x2-1的自变量集合C是二次函数y=x2-1的自变量的取值范围集合C是二次函数y=x2-1(x∈R)的定义域,即C=R.对于D,其代表元素是x x是集合M的子集集合D由M的(全部)子集组成,故D={φ,{0},{1},{0,1}}.(III)数轴法和文氏图法:文氏图法是指用一条封闭曲线围成的区域(内部)表示集合的方法.此为运用数形结合方法解决集合问题的原始依据.评注:集合的符号语言与文字语言的相互转化,是师生研究集合的基本功.为了今后的继续性发展,这一软性作业必须高质量完成.2.集合间的关系(1)子集(I)子集的定义(符号语言):若x∈A x∈B,则A B(注意:符号的方向性)规定:空集是任何集合的子集,即:对任何一个集合A,都有φ A显然:任何一个集合都是自身的子集, 即A A.(II)集合的相等:若A B且B A,则A=B.(III)真子集定义:若A B且A≠B;则A B(即A是B的真子集).特例:空集是任何非空集合的真子集.(2)全集,补集(I)定义设I是一个集合,A I,由I中所有不属于A的元素组成的集合,叫做I中子集A的补集(或余集),记作A,即A={x|x∈I,且x A}.在这里,如果集合I含有我们所要研究的各个集合的全部元素,则将I称为全集,全集通常用U表示.(II)性质:φ=U;U=φ;(A)=A(III)认知:补集思想为我们运用“间接法”解题提供理论支持.对于代数中的探求范围等问题,当正面入手头绪繁多或较为困难时,要想到运用“间接法”进行转化求解.(3)交集,并集(I)定义:①由所有属于集合A且属于B的元素所组成的集合,叫做A与B的交集,记作A∩B,即A∩B={x|x ∈A,且x∈B};②由所有属于集合A或属于集合B的元素所组成的集合,叫做A与B的并集,记作A∪B,即A∪B={x|x ∈A,或x∈B}.(II)认知:上面定义①、②中的一字之差(“且”与“或”之差),既凸显交集与并集的个性,又展示二者之间的关系.在这里,要特别注意的是,并集概念中的“或”与生活用语中的“或”含义不同,并集概念中的“或”源于生活,但又高于生活中的“或”:生活用语中的“或”是“或此”.“或彼”.二者只取其一,并不兼有;而并集概念中的“或”是“或此”.“或彼”“或彼此”,可以兼有.因此,“x∈A或x∈B”包括三种情形:x∈A且x B;x∈B且x A;x∈A且x∈B.(III)基本运算性质①“交”的运算性质A∩A=A;A∩φ=φ;A∩B= B∩A;A∩ A =φ;(A∩B)∩C= C∩(A∩B)= A∩B∩C②“并”的运算性质A∪A=A;A∪φ=A;A∪B= B∪A;A∪A=I;(A∪B)∪C=A∪(B∪C)= A∪B∪C③交.并混合运算性质A∪(B∩C)= (A∪B)∩(A∪C);A∩(B∪C)=(A∩B)∪(A∩C);A∩(A∪C)=AA∪(A∩B)=A( IV )重要性质①A∩B=A A B; A∪B=B A B;②A∩B=(A∪B);A∪B=(A∩B)上述两个性质,是今后解题时认知、转化问题的理论依据.(二)简易逻辑1.命题(1)定义(I)“或”.“且”“非”这些词叫做逻辑联结词.(II)可以判断真假的词句叫做命题.其中,不含逻辑联结词的命题叫做简单命题,由简易命题与逻辑联结词构成的命题叫做复合命题.复合命题的构成形式:①p或q;②p且q;③非p(即命题p的否定).(2)复合命题的真假判断(I)当p、q同时为假时“p或q”为假,其它情况时为真;(II)当p、q同时为真时“p且q”为真,其它情况时为假;(III)“非p”与p的真假相反.(3)认知(I)这里的“或”与集合的“并”密切相关(并集又称为或集):集合的并集是用“或”来定义的:A∪B={x| x∈A或x∈B}.“p或q”成立的含义亦有三种情形:p成立但q不成立;q成立但p不成立,p,q同时成立.它们依次对应于A∪B中的A∩ B;B∩ A;A∩B.不过,A∪B强调的是一个整体,而“p或q”是独立的三种情形的松散联盟.(II)“或”、“且”联结的命题的否定形式:“p或q”的否定p且q;“p且q”p或q.它们类似于集合中的(A∪B)=(A)∩(B),(A∩B)=(A)∪(B)(4)四种命题(I)四种命题的形式:用p和q分别表示原命题的条件和结论,用p和q分别表示p和q的否定,则四种命题的形式为原命题:若p则q;逆命题:若q则p;否命题:若p则q逆否命题:若q则p.(II)四种命题的关系①原命题逆否命题.它们具有相同的真假性,是命题转化的依据和途径之一.②逆命题否命题,它们之间互为逆否关系,具有相同的真假性,是命题转化的另一依据和途径.除①、②之外,四种命题中其它两个命题的真伪无必然联系.2.充分条件与必要条件(I)定义:若p q则说p是q的充分条件,q是p的必要条件;若p q则说p 是q的充分必要条件(充要条件).(II)认知:①关注前后顺序:若p q则前者为后者的充分条件;同时后者为前者的必要条件.②辨析条件、结论注意到条件与结论的相对性.若条件结论,则这一条件为结论的充分条件;若结论条件,则这一条件为结论的必要条件.③充要条件即等价条件,也是完成命题转化的理论依据.“当且仅当”.“有且仅有”.“必须且只须”.“等价于”“…反过来也成立”等均为充要条件的同义词语.四.经典例题例1.判断下列命题是否正确.(1)方程组的解集为{(x,y)|x=-1或y=2};(2)设P={x|y=x2},Q={(x,y)|y=x2},则p Q;(3)设,则M N;(4)设,,则集合等于M∪N;分析:(1)不正确.事实上,方程组的解为有序实数对(-1,2),而-1或2不是有序实数对,故命题为假.正确解题:方程组解集应为(初始形式)=={(-1,2)}(2)不正确.在这里,P为数集,Q为点集,二者无公共元素,应为P∩Q=φ.(3)为认知集合中的元素的属性,考察代表元素的特征与联系:对两集合的代表元素表达式实施通分,对于集合M,其代表元素,2k+1为任意奇数;对于集合N,其代表元素,k+2为任意整数.由此便知M N,故命题正确.(4)不正确.反例:注意到这里f(x),g(x)的定义域未定,取,,则f(x)·g(x)=1(x≠-3且x≠1),此时f(x)g(x)=0无解.揭示:一般地,设函数f(x),g(x)的定义域依次为P、Q,且,,则有例2.设集合A={x|x2+4x=0},B={x|x2+2(a+1)x+a2-1=0}(1)若A∩B=B,求a的值;(2)若A∪B=B,求a的值.解:集合A={-4,0}(1)A∩B=B B A即B{-4,0}由有关元素与B的从属关系,引入(第一级)讨论.(I)若0∈B,则有a2-1=0a=1(以下由a的可能取值引入第2级讨论).又当a=-1时,方程x2+2(a+1)x+a2-1=0x2=0x=0此时B={0}符合条件;当a=1时,方程x2+2(a+1)x+a2-1=0x2+4x=0x(x+4)=0此时B=A符合条件.(II)若-4∈B,则有16+2(a+1)(-4)+a2-1=0a2-8a+7=0(a-1)(a-7)=0 a=1或a=7 当a=1时,由(I)知B=A符合条件;当a=7时,方程x2+2(a+1)x+a2-1=0x2+16x+48=0(x+12)(x+4)=0x=-12或x=-4此时B={-12,-4} A.(III)注意到B A,考察B=φ的特殊情形:B=φ=4(a+1)2-4(a2-1)<0 a<-1,此时集合B显然满足条件.于是综合(I)、(II)、(III)得所求a的取值集合为{a|a=1或a≤-1}.(2)集合B中至少有两个元素①而方程x2+2(a+1)x+a2-1=0至多有两个实根集合B中至多有两个元素②∴由①、②得集合B中只含两个元素 B=A此时,由(1)知a=1,即所求a的的数值为a=1.点评:(1)在这里,对有关事物进行“特殊”和“一般”的“一分为二”的讨论尤为重要:对集合A.B的关系,分别考察特殊(相等)和一般(真包含)情形,引出第一级讨论;对集合B的存在方式,又分别考察特殊(B=φ)和一般(B≠φ)的两种情形,引出第二级讨论.“特殊”(特殊关系或特殊取值)是分类讨论的切入点.(2)空集φ作为一个特殊集合,既是解题的切入点,又是设置陷阱的幽灵,注意到“一般”与“特殊”相互依存的辩证关系,解题时应适时考察“特殊”,自觉去构建“特殊”与“一般”的辩证统一.例3.已知A={x|x2-4x+3<0,x∈R},B={x|21-x+a≤0且x2-2(a+7)x+5≤0,x∈R}若A B,试求实数a的取值范围.解:A={x|1<x<3}=(1,3)注意A B,故对任意x∈(1,3),不等式21-x+a≤0与x2-2(a+7)x+5≤0总成立.(1)对任意x∈(1,3),f(x)=x2-2(a+7)x+5≤0总成立,f(x)=0有两实根,且一根不大于1,而另一根不小于3①(2)令g(x)=-21-x, x∈(1,3),则对任意x∈(1,3),21-x+a≤0总成立.a≤g(x)总成立a≤g min(x) a≤-1 ②∴将①.②联立得-4≤a≤-1.∴所求实数a的取值范围为{a|-4≤a≤-1}.点评与揭示:在某个范围内不等式恒成立的问题,要注意向最值问题的等价转化:(1)当f(x)在给定区间上有最值时a≤f(x)恒成立a≤f min(x)a≥f(x)恒成立a≥f max(x)(2)当f(x)在给定区间上没有最值时a≤f(x)恒成立a≤f(x)的下确界a≥f(x)恒成立 a≥f(x)的上确界例4.已知p:-2≤x≤10,q:1-m≤x≤1+m(m>0),若是q的必要而不充分条件,求实数m的取值范围.分析:从认知与q入手,为了化生为熟,将,q分别与集合建立联系.解:由已知得:x<-2或x>10;q:x<1-m或x>1+m(m>0).令A={x|x<-2或x>10},B={x| x<1-m或x>1+m(m>0)},则由是q的必要而不充分条件B A或m9∴所求实数m的取值范围为[9,+∞).点评:从认知已知条件切入,将四种命题或充要条件问题向集合问题转化,是解决这类问题的又一基本策略.例5.设有两个命题,p:函数f(x)=+2ax+4的图像与x轴没有交点;Q:不等式恒成立,若“P或Q”为真,“P且Q”为假,则实数a的取值范围是()A.(-∞,-2]B.[2,+∞)C.[-2,2]D.(-2,2)分析:(ⅰ)化简或认知P、Q:函数f(x)=+2ax+4的图像与x轴没有交点,△=-2<a<2∴P: -2<a<2 ①又不等式恒成立a小于的最小值②+≥=2 ③∴由②、③得 a﹤2即Q: a﹤2(ⅱ)分析、转化已知条件“P或Q”为真P、Q中至少有一个为真a﹤2 ④“P且Q”为假P、Q中至少有一个为假或为真a≤-2或a≥2 ⑤于是由④⑤得,同时满足上述两个条件的a的取值范围是 a≤-2∴实数a的取值范围为(-∞,-2].例6. 若p:-2﹤m﹤0,0﹤n﹤1;q:关于x的方程有两个小于1的正根,试分析p是q的什么条件?分析:在这里,q是关于x的二次方程有两个小于1的正根的条件,为便于表述,设该方程的两个实根为,且.然后根据韦达定理进行推理.解:设,为方程的两个实根,且,则该方程的判别式为:△=又由韦达定理得∴当0﹤﹤1时,由②得-2﹤m﹤0,0﹤n﹤1即 q p ③另一方面,若在p的条件下取m=-1,n=0.75,则这一关于x的二次方程的判别式△===1-3﹤0,从而方程无实根∴p q ④于是由③④得知,p是q的必要但不充分的条件.点评:若令f(x)=,则借助二次函数y=的图像易得关于x的二次方程有两个小于1的正根的充要条件为在这里容易产生错误结论为:方程x2+mx+n=0有两个小于1的正根的充要条件是注意到这里的p由※式中部分条件构造而成,它关于m、n的限制当然更为宽松.五.高考真题1.设I为全集,S1,S2,S3是I的三个非空子集,且S1∪S2∪S3=I,则下面判断正确的是()A.S1∩(S2∪S3)=φ B. S1(S2∩S3)C.S1∩S2∩S3=φ D. S1(S2∪S3)分析:对于比较复杂的集合运算的问题,一要想到利用有关结论化简,二要想到借助特取法或文氏图筛选.解法一(直接法):注意到A∩B=(A∪B),A∪B=(A∩B)及其延伸,∴S1∩S2∩S3=(S1∪S2∪S3)=I=φ,故选C解法二(特取法):令S1={1,2},S2={2,3},S3={1,3}I={1,2,3}则S1={3}S2={1}S3={2}由此否定A、B;又令S1=S2=S3={a},则I={a},S2=S3=φ,由此否定D.故本题应选C2.已知向量集合,则M∩N等于()A.{(1,1)} B. {(1,1),(-2,-2)} C .{(-2,-2)} D.φ分析:首先考虑化生为熟.由向量的坐标运算法则得,又令=(x,y),则有,消去λ得4x-3y+2=0,∴M={(x,y)|4x-3y+2=0,x,y∈R}.同理={(x,y)|5x-4y+2=0,x,y∈R}∴M∩N=={(-2,-2)},∴本题应选C点评:从认知集合切入,适时化生为熟,乃是解决集合问题的基本方略.3.设集合I={(x,y)|x∈R,y∈R},A={(x,y)|2x-y+m>0},B={(x,y)|x+y-n≤0},那么点P(2,3)∈A∩(B)的充要条件是()A. m>-1,n<5 B m<-1,n<5 C m>-1,n>5 D m<-1,n>5分析:由题设知P(2,3) ∈A,且P(2,3)∈ B (※)又B={(x,y)|x+y-n>0},∴由(※)得,故本题应选A4.设函数,区间M=[a,b](a<b),集合N={y|y=f(x),x∈M},则使M=N成立的实数对(a,b)有()A.0个 B 1个 C 2个 D 无数多个分析:从认知集合切入.这里的集合N为函数f(x),(x∈M)的值域.注意到f(x)的表达式中含有|x|,为求f(x)的值域,先将f(x)化为分段函数的形式,以便于化整为零,逐段分析.∴当x>0时,f(x)<0;当x=0时,f(x)=0;当x<0时,f(x)>0.由此可知,当x≠0时,f(x) (x∈M)的值域与定义域M不可能相等;又当x=0时,f(x)的定义域为{0},故不存在a<b使区间[a,b]仅含元素0,因此,本题应选A.点评:解决分段函数问题的基本策略:分段考察,综合结论.在这里,认知集合N仍是解题成败的关键所在.5.函数,其中P,M为实数集R的两个非空子集,又规定f(P)={y|y=f(x),x∈P}f(M)={y|y=f(x),x∈M},给出下列四个判断:①若P∩M=φ,则f(P)∩f(M)= φ;②若P∩M≠φ,则f(P)∩f(M)≠φ;③若P∪M=R,则f(P)∪f(M)= R;④若P∪M≠R,则f(P)∪f(M)≠ R其中正确判断有()A. 1个 B 2个 C 3个 D 4个分析:首先认知f(P),f(M):f(P)为函数y=f(x)(x∈P)的值域;f(M)为函数y=f(x)(x∈M)的值域.进而考虑仿照第1题,从构造反例切入进行筛选.(1)取P={x|x≥0},M={x|x<0},则f(P)={x|x≥0}, f(M)={x|x>0}此时P∩M=φ,P∪M=R,但f(P)∩f(M) ≠φ,f(P) ∪f(M)≠ R由此判断①.③不正确(2)当P∩M≠φ时,则由函数f(x)的定义知P∩M={0}(否则便由f(x)的解析式导出矛盾),所以0∈f(P),0∈f(M),从而f(P)∩f(M)≠φ.由此判断②正确.(3)当P∪M≠R时,若0P∪M,则由函数f(x)的定义知,0f(P) ∪f(M)若存在非零x0P∪M, (※),易知x0f(P)当x0f(M)时,有x0f(P)∪f(M);当x0∈f(M)时,则易知-x0∈M.注意到这里-x0≠0,所以-x0P,从而-x0f(P).又∵x0M,∴-x0f(M),∴-x0f(P)∪f(M) (※※)∴由①.②知当P∪M≠R时,一定有f(P) ∪f(M)≠ R.故判断④正确.点评:认知f(P).f(M)的本质与特殊性,是本题推理和筛选的基础与保障.6.设全集I=R,(1)解关于x的不等式|x-1|+a-1>0(a∈R);(2)设A为(1)中不等式的解集,集合,若(A)∩B恰有3个元素,求a的取值范围.分析:(1)原不等式|x-1|>1-a,运用公式求解须讨论1-a的符号.(2)从确定 A与化简B切入,进而考虑由已知条件导出关于a的不等式(组),归结为不等式(组)的求解问题.解:(1)原不等式|x-1|>1-a当1-a<0,即a>1时,原不等式对任意x∈R成立;当1-a=0,即a=1时,原不等式|x-1|>0x≠1;当1-a>0,即a<1时,原不等式x-1<a-1或x-1>1-ax<a或x>2-a于是综合上述讨论可知,当a>1时,原不等式的解集为R;当a≤1时,原不等式的解集为(-∞,a)∪(2-a,+ ∞)(2)由(1)知,当a>1时,A=φ;当a≤1时, A={x|a≤x≤2-a}注意到==∴∴(A)∩B恰有3个元素A恰含三个整数元素.(A有三个元素的必要条件)(对A=[a,2-a]的右端点的限制)(对A=[a,2-a]的左端点的限制)故得-1<a≤0,∴所求a的取值范围为.点评:不被集合B的表象所迷惑,坚定从化简与认知集合B切入.当问题归结为A恰含三个整数时,寻觅等价的不等式组,既要考虑A含有三个整数的必要条件(宏观的范围控制),又要考虑相关区间的左\右端点的限制条件(微观的左右“卡位”),两方结合导出已知条件的等价不等式组.。
集合与简单逻辑知识点
一.集合与简单逻辑1.【1.1】集合的含义与表示(1)集合的概念集合中的元素具有确定性、互异性和无序性. (2)常用数集及其记法N 表示自然数集,N *或N +表示正整数集,Z 表示整数集,Q 表示有理数集,R 表示实数集.(3)集合与元素间的关系对象a 与集合M 的关系是a M ∈,或者a M ∉,两者必居其一. (4)集合的表示法①自然语言法:用文字叙述的形式来描述集合.②列举法:把集合中的元素一一列举出来,写在大括号内表示集合. ③描述法:{x |x 具有的性质},其中x 为集合的代表元素. ④图示法:用数轴或韦恩图来表示集合. (5)集合的分类①含有有限个元素的集合叫做有限集.②含有无限个元素的集合叫做无限集.③不含有任何元素的集合叫做空集(∅).【1.2】集合间的基本关系(6)子集、真子集、集合相等 名称记号意义性质 示意图子集B A ⊆(或)A B ⊇A 中的任一元素都属于B(1)A ⊆A(2)A ∅⊆(3)若B A ⊆且B C ⊆,则A C ⊆ (4)若B A ⊆且B A ⊆,则A B =A(B)或BA真子集A ≠⊂B(或B ≠⊃A )B A ⊆,且B 中至少有一元素不属于A(1)A ≠∅⊂(A 为非空子集)(2)若A B ≠⊂且B C ≠⊂,则A C ≠⊂BA集合 相等A B =A 中的任一元素都属于B ,B 中的任一元素都属于A(1)A ⊆B (2)B ⊆AA(B)(7)已知集合A 有(1)n n ≥个元素,则它有2n个子集,它有21n-个真子集,它有21n-个非空子集,它有22n-非空真子集.【1.3】集合的基本运算(8)交集、并集、补集名称记号意义性质示意图交集A B{|,x x A∈且}x B∈(1)A A A=(2)A∅=∅(3)A B A⊆A B B⊆BA并集A B{|,x x A∈或}x B∈(1)A A A=(2)A A∅=(3)A B A⊇A B B⊇BA补集U Að{|,}x x U x A∈∉且1()UA A=∅ð2()UA A U=ð【补充知识】含绝对值的不等式与一元二次不等式的解法(1)含绝对值的不等式的解法不等式解集||(0)x a a<>{|}x a x a-<<||(0)x a a>>|x x a<-或}x a>||,||(0) ax b c ax b c c+<+>>把ax b+看成一个整体,化成||x a<,||(0)x a a>>型不等式来求解(2)一元二次不等式的解法判别式24b ac ∆=-∆>0∆=0∆<二次函数2(0)y ax bx c a=++>的图象O一元二次方程20(0) ax bx c a++=>的根21,242b b acxa-±-=(其中12)x x<122bx xa==-无实根20(0) ax bx c a++>>的解集1{|x x x<或2}x x>{|x}2bxa≠-R ()()()U U UA B A B=痧()()()U U UA B A B=痧20(0)ax bx c a ++<>的解集12{|}x x x x << ∅ ∅2.简单逻辑用语1、命题:用语言、符号或式子表达的,可以判断真假的陈述句. 真命题:判断为真的语句.假命题:判断为假的语句.2、“若p ,则q ”形式的命题中的p 称为命题的条件,q 称为命题的结论.3、原命题:“若p ,则q ” 逆命题: “若q ,则p ” 否命题:“若p ⌝,则q ⌝” 逆否命题:“若q ⌝,则p ⌝”4、四种命题的真假性之间的关系:(1)两个命题互为逆否命题,它们有相同的真假性;(2)两个命题为互逆命题或互否命题,它们的真假性没有关系. 5、若p q ⇒,则p 是q 的充分条件,q 是p 的必要条件. 若p q ⇔,则p 是q 的充要条件(充分必要条件).利用集合间的包含关系: 例如:若B A ⊆,则A 是B 的充分条件或B 是A 的必要条件;若A=B ,则A 是B 的充要条件;6、逻辑联结词:⑴且(and ) :命题形式p q ∧;⑵或(or ):命题形式p q ∨; ⑶非(not ):命题形式p ⌝.pqp q ∧p q ∨p ⌝真 真 真 真 假 真 假 假 真 假 假 真 假 真真 假假假假真7、⑴全称量词——“所有的”、“任意一个”等,用“∀”表示;全称命题p :)(,x p M x ∈∀; 全称命题p 的否定⌝p :)(,x p M x ⌝∈∃。
集合与简易逻辑基础知识点总结
集合、简易逻辑知识梳理:1、 集合:某些指定的对象集在一起就构成一个集合。
集合中的每一个对象称为该集合的元素。
元素与集合的关系:A a ∈或A a ∉集合的常用表示法: 列举法 、 描述法 。
集合元素的特征: 确定性 、 互异性 、 无序性 。
常用一些数集及其代号:非负整数集或自然数集N ;正整数集*N ,整数集Z ;有理数集Q ;实数集R2、子集:如果集合A 的任意一个元素都是集合B 的元素,那么集合A 称为集合B 的子集,记为A ⊆B3、真子集:如果A ⊆B ,并且B A ≠,那么集合A 成为集合B 的真子集,记为A ⊄B ,读作“A 真包含于B 或B 真包含A ”,如:}{}{b a a ,⊆。
注:空集是任何集合的子集。
是非空集合的真子集结论:设集合A 中有n 个元素,则A 的子集个数为n 2个,真子集个数为12-n 个4、补集:设A ⊆S ,由S 中不属于A 的所有元素组成的集合称为S 的子集A 的补集,记为A C s ,读作“A 在S 中的补集”,即A C s =}{A x S x x ∉∈且,|。
5、全集:如果集合S 包含我们所要研究的各个集合,这时S 可以看作一个全集。
通常全集记作U 。
6、交集:一般地,由所有属于集合A 且属于B 的元素构成的集合,称为A 与B 的交集,记作B A ⋂即:B A ⋂=}{B x A x x ∈∈且,|。
7、并集:一般地,由所有属于集合A 或属于B 的元素构成的集合,称为A 与B 的并集,记作B A ⋃即:B A ⋂=}{B x A x x ∈∈或,|。
记住两个常见的结论:B A A B A ⊆⇔=⋂;A B A B A ⊆⇔=⋃; 9、命题:可以判断真假的语句叫做命题。
(全称命题 特称命题)⑴全称量词——“所有的”、“任意一个”等,用“∀”表示;全称命题p :)(,x p M x ∈∀; 全称命题p 的否定⌝p :)(,x p M x ⌝∈∃。
第1章+集合与简单逻辑知识点汇总
《人教A版必修一知识点汇总》第1章《集合与常用逻辑用语》知识点汇总1.1 《集合的概念》1.集合的概念一般地,由某些确定的对象组成的整体就称为集合,简称为集.组成这个集合的对象称为这个集合的元素。
注:集合通常用大写字母表示,如A,B,C…元素通常用小写字母表示,如a,b,c…2.集合与元素之间的关系(1)如果a是集合A的元素,就说a属于A,记作a ∈ A,读作“a属于A”;(2)如果a不是集合A的元素,就说a不属于A,记作a∉A,读作“a不属于A”;3.集合中元素的三种特性(1)确定性:给定的集合,它的元素必须是确定的,也就是说给定一个集合,那么任何一个元素在不在这个集合中就确定了(即x∈A与x∉A必居其一.)(2)互异性:一个给定的集合中的元素是互不相同的,即集合中的元素不能相同.(3)无序性:集合中的元素是无先后顺序的,即集合里的任何两个元素可以交换位置.4.集合的分类根据集合所含有元素的个数,将集合分为:(1)有限集:含有有限个元素的集合;(2)无限集:含有无限个元素的集合;(3)空集:特别的,把不含有任何元素的集合叫做空集,记作∅.5.常用的数集例如1∈N,−5∈Z,π∉ Q6. 用列举法表示集合当集合中元素的个数为有限个(或无限个但呈现出某种规律)时,可以把集合中所有的元素一一列举出来,中间用逗号隔开,并用大括号“{}”把它们括起来,这种表示集合的方法就称为列举法。
例1小于6的所有正整数组成的集合A用列举法可以表示为A={1,2,3,4,5}.7.用描述法表示集合当集合的元素是无穷多个时,我们可以利用元素的特征性质来表示集合,这种表示集合的方法就叫做描述法.注:用描述法表示集合时,在大括号{}中画一条竖线(分隔符),竖线的左侧表示的是组成集合的元素,竖线的右侧是元素所具有的特征性质(或元素满足的条件).解:小于1的所有整数组成的集合A用描述法表示为A={x ∣ x<1,且 x∈Z }1.2集合间的基本关系1.子集与包含关系(1)定义像上面这样,对于两个集合A,B,如果集合A中任意一个元素都是集合B中的元素,我们就说这两个集合有包含关系,并称集合A为B的子集.记作:A⊆B(或者B⊇A),读作:A包含于B(或B包含A).规定:空集是任何集合的子集,即 ∅⊆A.(2)用Venn图表示集合与集合之间的关系例如集合A={1,2,3}与B={1,2,3,4,5}的关系为A⊆B,用Venn图表示为(3)非子集与不包含关系如果集合A不是集合B的子集,记作A⊈B或B⊉A,读作“A不包含于B“(或B不包含A).例如:集合C={2,3},集合D={2,4,5},则集合C不是集合D的子集,即C⊈D.2.集合与集合相等若集合A和集合B的元素完全相同:即A的每个元素都是B的元素,而B的每个元素也都是A的元素,那么就说A和B相等,记作“A=B”例如A={1,2,3} 与B={3 , 1 , 2},则A=B.3.真子集与真包含于一般的,若集合A是集合B的子集,且B中至少有一个元素不属于A,则A叫做B的真子集,记作A⫋B(或B⫌A),读作A真包含于B(或B真包含A)注:空集是任何非空集合的真子集例如A={1,3}与B={1, 3,5},则A⫋B(即A是B的真子集).1.3《集合的基本运算》1.交集的概念及其运算(1)定义一般地,对于给定的集合A与集合B,由既属于集合A又属于集合B的所有元素组成的集合,称为集合A与集合B的交集,记作A∩B.读作“A交B”.即 A∩B={ x | x∈A 且 x∈B }.(2)实例运用例1设集合A={2,4,6}, 集合B={0,1,2},则A∩B={2}.例2 设集合A={x | −2<x≤1},集合B ={x|−1≤x < 3},则A∩B={x |−1≤x ≤1}.2.并集的概念及其运算(1)定义一般地,对于给定的集合A与集合B,由集合A与集合B的所有元素组成的集合称为集合A与集合B的并集,记作A∪B.读作“A并B”.即A∪B={x|x∈A或x∈B}.(2)实例运用例1 设集合A={1,3,5,7}, 集合B={0,2,3,4,6},则A∪B={0,1,2,3,4,5,6,7}.例2 设集合A={x |−1<x≤2}, 集合B={x |0<x≤3},则 A∪B={x |−1<x≤3}.3.补集的概念及其运算(1)定义一般地,如果集合A是全集U的一个子集,则由集合U中不属于集合A的所有元素组成的集合称为集合A在全集U中的补集,记作C U A,即C U A={ x | x∈U且x∉A }(2)实例运用例1设全集U={x∈N|x<7},集合A={1,2,4,6},则C U A={0,3,5}.例2设全集U= R,集合A={x|−2≤x<1},则CA={ x | x<−2或 x≥1 }.U1.4充分条件与必要条件1.充分条件与必要条件(1)定义一般地,“若p, 则q”为真命题,即由“条件p 可以推出条件 q ”,记作:p⇒ q那么就称:“p 是 q 的充分条件, q 是p的必要条件”注:如果“若p, 则 q ”为假命题,即由“条件p不能推出条件 q ”,记作: p⇏ q那么就称:“p不是 q 的充分条件, q 不是p的必要条件”(2)实例运用例1若四边形的两组对角分别相等,则这个四边形是平行四边形;解析:设题设“四边形的两组对角分别相等”为p,结论“这个四边形是平行四边形”为 q∵ p ⇒ q∴p是 q的充分条件, q是p的必要条件例2若x2=1,则x = 1;解:设题设“x2=1”为 p ,结论“x = 1”为 q∵由x2=1可得x=1或x=−1∴p ⇏ q故p不是q的充分条件,q不是p的必要条件2.充要条件(1)定义一般地,如果 p ⇔ q (即情况1:原真逆真)我们就称 p 是 q 的充分必要条件,简称为“ 充要条件”.注1(情况2:原真逆假)如果 p ⇒ q ,且 q ⇏p , 我们就称 p是 q 的充分而不必要条件;注2(情况3:原假逆真)如果 p ⇏ q ,且 q ⇒p , 我们就称 p是 q 的必要而不充分条件;注3(情况4:原假逆假)如果 p ⇏ q ,且 q ⇏p , 我们就称 p是 q 的既不充分也不必要条件;(2)实例运用例1 p:两个三角形相似,q:两个三角形三边成比例;解:①原命题:“若p,则q”∵ 已知两个三角形相似∴ 两个三角形三边成比例即 p ⇒ q (相似三角形的性质)∴ p是q的充分条件②逆命题:“若 q ,则 p ”∵ 已知两个三角形三边成比例∴ 两个三角形相似即 q ⇒ p (三边定理)∴ p 是 q 的必要条件.综上所述,∵ p ⇔ q,即原真逆真,∴ p 是 q 的充要条件例2 p:四边形是正方形,q:四边形的对角线互相垂直且平分;解:①原命题:“若 p ,则 q ”∵ 已知四边形是正方形∴ 四边形的对角线互相垂直且平分即 p ⇒ q∴ p 是 q 的充分条件②逆命题:“若 q ,则 p ”∵ 已知四边形的对角线互相垂直且平分∴ 四边形是菱形,即 q ⇏ p∴ p 不是 q 的必要条件综上所述,∵ 原真逆假,∴ p 是 q 的充分而不必要条件1.5 全称量词与存在量词1.全称量词与全称量词命题一变:∀ (任意)变 ∃(存在) 二变:结论 p(x) 变 它的反面 ¬p(x) 像上面这样,短语“所有的”“任意一个”在逻辑中通常叫做全称量词,并用符号“∀”表示;含有全称量词的命题,叫做全称量词命题.例如,命题“对任意的n ∈Z,2n +1 是奇数”;“所有的正方形都是矩形” 等都是全称量词命题注:通常,将含有变量 x 的语句用 p(x),g(x),r(x),… 表示,变量x 的取值范围用 M 表示 那么,全称量词命题“对 M 中任意一个 x , p(x)成立”可用符号简记为:∀x ∈M ,p(x)2.存在量词与存在量词命题像上面这样,短语“存在一个”“至少有一个”在逻辑中通常叫做存在量词,并用符号“ ∃ ”表示;含有存在量词的命题,叫做存在量词命题.例如,命题“有的平行四边形是菱形”;“有一个素数不是奇数” 等都是存在量词命题注:通常,将含有变量 x 的语句用 p(x),g(x),r(x),… 表示,变量x 的取值范围用 M 表示 那么,存在量词命题“存在M 中的元素 x , p(x)成立”可用符号简记为:∃ x ∈M ,p(x)3. 全称量词的否定(1)概念一般地,对于全称量词命题:∀x ∈M , p(x)它的否定为:∃x ∈M , ¬p(x)注1:符号 “ ¬p(x) ” 表示 “ p(x) 的反面 ”注2:全称量词命题的否定是存在量词命题(2)实例运用例1所有能被3整除的整数都是奇数;解:原全称量词命题的否定为:“存在一个能被 3 整除的整数不是奇数”一变:∃ (存在)变 ∀(任意) 例2对 ∀ x ∈R , x 2≥0 ;解:原全称量词命题的否定为:“ ∃ x ∈R ,x 2<0 ”4.存在量词命题的否定(1)概念一般地,对于存在量词命题:∃ x ∈M , p(x)它的否定为:∀x ∈M , ¬p(x)注1:符号 “ ¬p(x) ” 表示 “ p(x) 的反面 ” 注2:存在量词命题的否定是全称量词命题(2)实例运用例1 ∃x ∈R,x +2 ≤ 0 ;解:原存在量词命题的否定为“ ∀x ∈R,x +2 > 0” 例2 有的三角形是等边三角形;解:原存在量词命题的否定为“ 所有的三角形都不是等边三角形 ”二变:结论 p(x) 变它的反面 ¬p(x)。
高一数学集合与简易逻辑综合知识精讲
高一数学集合与简易逻辑综合【本讲主要内容】集合与简易逻辑综合集合、子集、交集、并集、补集等概念,绝对值不等式、一元二次不等式的解法,简易逻辑。
【知识掌握】 【知识点精析】1. 集合:一般地,某些指定的对象集在一起就成为一个集合;2. 子集:一般地,对于两个集合A 与B ,如果集合A 的任何..一个元素都是集合B 的元素,我们就说集合A 包含于集合B ,或集合B 包含集合;3. 交集:一般地,由所有属于A 且属于B 的元素所组成的集合,叫做A ,B 的交集;4. 并集:一般地,由所有属于集合A 或属于集合B 的元素所组成的集合,叫做A ,B 的并集;5. 补集:一般地,设S 是一个集合,A 是S 的一个子集(即S A ⊆),由S 中所有不属于A 的元素组成的集合,叫做S 中子集A 的补集(或余集);6. )0a (a x ><的解集是。
{}a x x |x <<-;)0a (a |x |>>的解集是{}a x a x |x -<>或;7. 一元二次不等式的解法;8. 简易逻辑:命题:可以判断真假的语句叫做命题。
逻辑联结词:“或”、“且”、“非”这些词叫做逻辑联结词。
简单命题和复合命题不含逻辑联结词的命题叫做简单命题。
简单命题是不含其他命题作为其组成部分(在结构上不能再分解成其他命题)的命题。
由简单命题和逻辑联结词构成的命题叫做复合命题。
四种命题及它们的关系【解题方法指导】例1. 已知全集{}的质数不大于20U ,A ,B 是U 的两个子集,且满足{}5,3B C A U = ,{}19,7A C B U = ,(U C A ) (U C B)= {}17,2。
求集合A 和B 。
解法一:(直接解法)依题意,{}5,3B C A U = ,则{}A 5,3⊆,且{}B C 5,3U ⊆。
从而知3,5A ∈,且∉B 。
同理,由B A C U {}19,7,知7,19,且7,19∉A由(A C U ) (U C B ){}17,2,知2,17∉A ,且2,17 ∉B因为{}19,17,13,11,7,5,3,2U ,观察11和13这两个元素,不外乎下面几种情况:①若11 ,11 ,则A C U ,且 U CB ,这与(AC U ) (U C B )={}17,2矛盾;②若11∈A ,11B ∉,则 U C B ,这与A U C B ={}5,3矛盾;③若11 ∉A ,11∈B ,则A C U ,这与B AC U = {}19,7矛盾;④若11 ∈A ,11 ∈B ,则11∈(A B )。
必修第一册·第一章《集合与常用逻辑用语》知识点总结
必修第一册·第一章《集合与常用逻辑用语》1.元素 把研究的对象统称为元素.(用小写字母表示:···a b c 、、) 2.集合把一些元素组成的总体叫做集合.(用大写字母表示:···A B C 、、) 3.元素的特征 确定性、互异性、无序性. ①求集合或元素时,一定要检验集合中元素的互异性. 4.元素与集合的关系 ①属于:a A ∈;②不属于:a A ∉.5.常用数集①自然数集 N (包含0和正整数) ②正整数集 *N 或+N③整数集 Z ④有理数集 Q ⑤实数集 R6.集合的分类 ①有限集;②无限集;③空集.7.集合的表示方法①列举法:把集合的所有元素一一列举出来,并用{}括起来.例如{}1,3,5,7、{}2,4,6,8⋅⋅⋅,②描述法:把集合A 中所有具有共同特征()P x 的元素x 所组成的集合表示为{}()x A P x ∈.例如{}1020x x ∈<<Z 、{}21,x x k k =+∈Z③图示法(Veen 图):用平面上封闭曲线的内部代表集合.例如8.常见集合的表示方法①方程的解集:{}230x x +=②不等式的解集:{}230x x +>③奇数集:{}21,x x n n =+∈Z ④偶数集:{}2,x x n n =∈Z⑤函数图象上的点构成的集合:(){},23x y y x =+⑥方程组的解: 或{}(1,1)①做题时,要认清集合中元素的属性(点集、数集···),以及元素的范围(x ∈N 、*N 、Z 、R ···).9.子集 集合A 中任意一个元素都是集合B 中的元素.记作:A B ⊆或B A ⊇ 读作:A 包含于B 或B 包含A①任何一个集合是它本身的子集.②若A B ⊆,且B C ⊆,则A C ⊆.10.集合相等若A B ⊆,且B A ⊆,则A B =.①若A B =,且B C =,则A C =. ②欲证A B =,只需证A B ⊆,且B A ⊆.11.真子集如果集合A 是集合B 的子集,并且B 中至少有一个元素不属于A .记作:A ⫋B 读作:A 真包含于B 或B 真包含A()2,0x y x y x y ⎧⎫+=⎧⎪⎪⎨⎨⎬-=⎩⎪⎪⎩⎭①若A ⫋B ,且B ⫋C ,则A ⫋C ②若A B ⊆,且A B ≠,则A ⫋B .③⊆和⫋用于集合和集合之间,∈和∉用于元素和集合之间.12.空集 不含任何元素的集合. 符号:∅①空集是任何集合的子集.②空集是任何非空集合的真子集.③解决有关A B =∅、A B ⊆等问题时,一定要先考虑∅ 的情况,以防漏解.13.子集个数与元素个数的关系设有限集合A 有()n n *∈N 个元素,则其子集个数是2n ,真子集个数是21n -,非空子集个数是21n -,非空真子集个数是22n -.14.交集 属于集合A 且属于集合B .(A 和B 的公共部分)记作:A B 读作:A 交B 含义:{},A B x x A x B =∈∈且①A B B A =;②A A A =;③A A ∅=∅=∅;④()A B A ⊆;⑤()A B B ⊆;⑥A B A B A ⊆⇔=.15.并集属于集合A 或属于集合B .(包含A 和B 的所有元素)记作:A B 读作:A 并B 含义:{},A B x x A x B =∈∈或①A B B A =;②A A A =;③A A A ∅=∅=;④()A A B ⊆;⑤()B A B ⊆;⑥A B A B B ⊆⇔=.16.全集 研究问题中涉及的所有元素. 符号:U17.补集 由全集U 中不属于集合A 的所有元素组成的集合.符号:A C U 含义:{}A U A C U ∉∈=χχχ,且①U A C U ∈;②Φ=U C U ;③U C U =φ;④A A C C U U =)(;⑤U A C A U=⋃; ⑥φ=⋂A C A U ;⑦)()()(B A C B C A C U U U =;⑧)()()(B A C B C A C UU U =. ⑨注意补集思想在解题中的运用,“正难则反”.18.命题可以判断真假的陈述句叫做命题.判断为真的语句是真命题;判断为假的语句是假命题.表示:“若p ,则q ”、“如果p ,那么q ”.其中p 为命题的条件,q 为命题的结论.19.充分条件与必要条件①“若p ,则q ”是真命题,即p q ⇒,则p 是q 的充分条件,q 是p 的必要条件;②“若p ,则q ”是假命题,即p q ⇒,则p 不是q 的充分条件,q 不是p 的必要条件.判断充分条件、必要条件的三种方法:①定义法:直接判断“若p ,则q ”以及“若q ,则p ”的真假;②集合法:利用集合的包含关系判断;③传递法:充分条件、必要条件、充要条件都具有传递性,若12p p ⇒,23p p ⇒,则13p p ⇒.20.充要条件如果“若p ,则q ”和“若q ,则p ”都是真命题,即既有p q ⇒,又有q p ⇒,则可记作p q ⇔,这时称p 是q 的充分必要条件,简称充要条件.充分条件、必要条件的判断:①p q ⇒且q p ⇒ p 是q 的充分不必要条件 ②p q ⇒且q p ⇒ p 是q 的必要不充分条件③p q ⇔ p 是q 的充要条件 ④p q ⇒且q p ⇒ p 是q 的既不充分也不必要条件21.全称量词 短语“所有的”“任意一个”通常叫做全称量词. 符号:∀ 含有全称量词的命题,叫做全称量词命题.“对M 中任意一个x ,()p x 成立”用符号记为:,()x M p x ∀∈22.存在量词 短语“存在一个”“至少有一个”通常叫做存在量词. 符号:∃ 含有存在量词的命题,叫做存在量词命题.“存在M 中元素的x ,()p x 成立”用符号记为:,()x M p x ∃∈23.全称量词命题和存在量词命题的否定①全称量词命题,()x M p x ∀∈的否定为:,()x M p x ∃∈⌝.②存在量词命题,()x M p x ∃∈的否定为:,()x M p x ∀∈⌝.①命题的否定的书写:既要转换量词,又要否定结论.②全称量词命题的否定是存在量词命题;存在量词命题的否定是全称量词命题.③一个命题和它的否定,只能是一真一假.【常见考法】一 集合的含义及表示1.已知集合A ={(x ,y )|x 2+y 2≤3,x ∈Z ,y ∈Z },则A 中元素的个数为( )A .9B .8C .5D .42.下列集合中,表示方程组 的解集的是( ) 31x y x y +=⎧⎨-=⎩A .{}2,1B .{}2,1x y ==C .(){}2,1D .(){}1,23.已知集合{}1,2,3,4,5A =,()(){},,,B x y x A y A x y A =∈∈-∈,则B 中所含元素的个数为( )A .4B .6C .8D .104.下列各式中,正确的个数是:①{0}{0,1,2}∈;②{0,1,2}{2,1,0}⊆;③{0,1,2}∅⊆;④{0}∅=;⑤{0,1}{(0,1)}=;⑥0{0}=.A .1B .2C .3D .4二 集合间的基本关系1.已知集合{}22A x x x =∈-≤Z ∣,{1,}B a =,若B A ⊆,则实数a 的取值集合为( ) A .{1,1,0,2}-B .{1,0,2}-C .{1,1,2}-D .{0,2}2.已知(){}ln A x y a x ==-,{}2540B x x x =-+<,若B C A U ⊆,则实数a 的取值范围为( )A .(),1-∞B .(],4-∞C .(],1-∞D .[)1,+∞3.集合,{}21,B y y x x A ==+∈,则集合B 的子集个数为 A .5 B .8 C .3 D .24.已知集合{}2|230A x N x x *=∈--<,则满足条件B ⊆A 的集合B 的个数为A .2B .3C .4D .85.已知集合{|A x y ==,集合{|}B x x a =≥,若A B ⊆,则实数a 的取值范围是( )A .(),2-∞-B .(],2-∞-C .()2+∞,D .[)2+∞,三 集合间的基本 运算 1.已知集合{}2log 1A x x =<,集合{B y y ==,则A B =( )A .()0,∞+B .[)0,2C .()0,2D .[)0,+∞ 2.已知集合{|A x x =是1~20以内的所有素数},{}8B x x =≤,则A B =( )A .{}3,5,7B .{}2,3,5,7C .{}1,2,3,5,7D .{}0,1,2,3,5,73.已知集合||32M x x =-<<∣, ,则( ) A .(2,2)M N ⋂=- B .(3,2)M N ⋂=-C .[2,)M N ⋃=-+∞D .()3,M N ⋃=-+∞103x A x Z x ⎧⎫+=∈≤⎨⎬-⎩⎭1|42x N x ⎧⎫⎪⎪⎛⎫=≤⎨⎬ ⎪⎝⎭⎪⎪⎩⎭4.设集合()(){}10A x x x a =--≥,{}1B x x a =≥-,若A B R =,则实数a 的取值范围是( )A .(),1-∞B .(],2-∞C .1, D .[)2,+∞ 5.已知集合(){}22,1A x y x y =+=,(){},1B x y x y =+=,则A B =( ) A .{}0,1 B .∅ C .(){}1,0 D .()(){}0,1,1,06.若集合M={x|x2+x-6=0},N={x|ax-1=0},且N ⊆M,则实数a 的值为7.设集合A={x|a-2≤x ≤2a+3},B={x|x2-6x+5≤0}.(1)若A ∩B=B,求实数a 的取值范围;(2)若φ=)(B C A R ,求实数a 的取值范围;四 充分条件与必要条件1.若a ∈R ,则“a =1”是“|a |=1”的( )A .充分条件B .必要条件C .既不是充分条件也不是必要条件D .无法判断2.已知,x y R ∈,则“220x y +=”是“0xy =”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分又不必要条件 3.设,m n R ∈,则“m n >”是 的( ) A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件4.已知,a b 为实数,则“0a >且0b >”是“0a b +>且0ab >”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件5.已知 p :0≤2x -1≤1, q :(x -a )(x -a -1)≤0,若p 是q 的充分不必要条件,则实数112m n -⎛⎫< ⎪⎝⎭a 的取值范围是( )A .[0,12] B .(0,12) C .(-∞,0]∪[12,+∞) D .(-∞,0)∪(12,+∞) 6.若“3x >”是“x m >”的必要不充分条件,则m 的取值范围是________.7.已知集合{}|A x x a =<,{}2|540B x x x =-+≥,若P :“x A ∈”是Q :“x B ∈”的充分不必要条件,则实数a 的取值范围为______.8.已知命题p : ,q :B ={x |x ﹣a <0},若命题p 是q 的必要不充分条件,则a 的取值范围是_____.9.已知{}22|320,0A x x ax a a =-+>>,{}2|60B x x x =--≥,若x A ∈是x B ∈的必要不充分条件,求实数a 的取值范围.10.设集合{}2|320A x x x =++=,(){}2|10B x x m x m =+++=;(1)用列举法表示集合A ;(2)若x B ∈是x A ∈的充分条件,求实数m 的值.11.己知()2:253,:220p x q x a x a -≤-++≤.(1)若p 是真命题,求对应x 的取值范围;(2)若p 是q 的必要不充分条件,求a 的取值范围.五 全称量词与存在量词1.已知{}|12A x x =≤≤,命题“2,0x A x a ∀∈-≤”是真命题的一个充分不必要条件是( )2|01x A x x -⎧⎫=≤⎨⎬-⎩⎭A .4a ≥B .4a ≤C .5a ≥D .5a ≤2.下列命题中是全称量词命题,且为假命题的是( )A .所有能被2整除的正数都是偶数B .存在三角形的一个内角,其余弦值为C .m ∃∈R ,210x mx ++=无解D .x ∀∈N ,32x x >3.将“222x y xy +≥对任意实数,x y 恒成立”改写成符号形式为( ).A .,x y ∀∈R ,222x y xy +≥B .,x y ∃∈R ,222x y xy +≥C .0x ∀>,0y >,222x y xy +≥D .0x ∃<,0y <,222x y xy +≥ 4.已知:R p x ∃∈,220mx +≤,:R q x ∀∈,2210x mx +>﹣,若q p 为假命题,则实数m 的取值范围是( )A .{}1m m ≥B .{}1m m ≤-C .{}2m m ≤-D .{}11m m -≤≤5.若命题“∃x ∈R ,使2(1)10x a x +-+<”是假命题,则实数a 的取值范围为A .()1,3-B .[]1,3-C .()(),13,-∞-+∞ D .(][,13,)-∞-⋃+∞ 6.下列命题中,真命题的个数是( ) ① 的最小值是22;②x N ∃∈,2x x ≤;③若x A B ∈,则x A B ∈;④集合{}210A x kx x =-+=中只有一个元素的充要条件是14k =. A .1 B .2 C .3 D .47.下列叙述正确的是( )A .已知0x >,则 的最小值是2B .已知a ,b 为实数,则a b >是 的充要条件C .已知,x y R ∈,“1xy <”是“x ,y 都小于1”的必要不充分条件D .若命题p :1,x ∀>213x +>,则p 的否定是:1,x ∃>213x +≤8.命题“x R ∀∈,使20x a -≥”是真命题,则a 的范围是________.9.四个命题:①x R ∀∈,2320x x -+>恒成立;②0x Q ∃∈,202x =;③0x R ∃∈,2010x +≠;④x R ∀∈,224213x x x >-+.其中真命题为________.10.设命题P :实数x 满足,命题q :实数x 满足 若 a=3 且 q p 为真,求实数 x 的取值范围;32224y x +42x x ++11a b<12.若“p或q”为真命题,“p且q”为假命题,求m的取值范围命题p:方程x2+mx+1=0有两个不等的负实数根;命题q:方程4x2+4(m﹣2)x+1=0无实数根..。
集合与数理逻辑知识点总结
集合与数理逻辑知识点总结
1. 集合基础知识
- 集合是由一组元素组成的整体。
- 集合中的元素是无序的,并且每个元素只能在集合中出现一次。
- 可以用大写字母来表示集合,例如:A,B,C。
- 可以使用集合的描述法来定义集合,例如:A = {1, 2, 3}。
- 两个集合相等当且仅当它们具有相同的元素。
2. 集合运算
- 并集:两个集合A和B的并集,表示为A ∪ B,包括A和B 中的所有元素。
- 交集:两个集合A和B的交集,表示为A ∩ B,包括同时属于A和B的元素。
- 差集:集合A相对于集合B的差集,表示为A - B,包括在A中但不在B中的元素。
- 补集:集合A相对于全集U的补集,表示为A',包括在U 中但不在A中的所有元素。
3. 数理逻辑基础知识
- 数理逻辑是研究逻辑关系和推理过程的数学分支。
- 命题是陈述句,可以为真或假。
- 逻辑运算包括合取(与)、析取(或)和否定(非)运算。
- 命题逻辑是研究命题之间的逻辑关系的数理逻辑分支。
4. 数理逻辑运算
- 合取:命题p和q的合取,记作p ∧ q,表示当且仅当p和q 都为真时的命题。
- 析取:命题p和q的析取,记作p ∨ q,表示当p和q中至少有一个为真时的命题。
- 否定:命题p的否定,记作¬p,表示p的反命题,即当p为真时,¬p为假;当p为假时,¬p为真。
以上是集合与数理逻辑的一些基础知识点总结,希望对您有所帮助。
高一数学必修一知识点:集合、不等式和简易逻辑
高一数学必修一知识点:集合、不等式和简易逻辑重点知识归纳、总结(1)集合的分类(2)集合的运算①子集,真子集,非空子集;②A∩B={x|x∈A且x∈B}③A∪B={x|x∈A或x∈B}④A={x|x∈S且xA},其中AS.2、不等式的解法(1)含有绝对值的不等式的解法①|x|0)-a|x|;a(a;0)x;a,或x;-a.②|f(x)||f(x)|;g(x)f(x);g(x)或f(x);-g(x)。
③|f(x)|;|g(x)|[f(x)]2;[g(x)]2[f(x)+g(x)]·[f(x)-g(x)];0.④对于含有两个或两个以上的绝对值符号的绝对值不等式,利用“零点分段讨论法”去绝对值。
如解不等式:|x+3|-|2x-1|;3x+2.3、简易逻辑知识逻辑联结词"或”、“且”、“非”是判断简单合题与复合命题的依据;真值表是由简单命题和真假判断复合命题真假的依据,理解好四种命题的关系,对判断命题的真假有很大帮助;掌握好反证法证明问题的步骤。
(2)复合命题的真值表非p形式复合命题的真假可以用下表表示。
p非p真假假真p且q形式复合命题的真假可以用下表表示。
p或q形式复合命题的真假可以用下表表示。
(3)四种命题及其相互之间的关系一个命题与它的逆否命题是等价的。
(4)充分、必要条件的判定①若pq且qp,则p是q的充分不必要条件;②若pq且qp,则p是q的必要不充分条件;③若pq且qp,则p是q的充要条件;死记硬背是一种传统的教学方式,在我国有悠久的历史。
但随着素质教育的开展,死记硬背被作为一种僵化的、阻碍学生能力发展的教学方式,渐渐为人们所摒弃;而另一方面,老师们又为提高学生的语文素养煞费苦心。
其实,只要应用得当,“死记硬背”与提高学生素质并不矛盾。
相反,它恰是提高学生语文水平的重要前提和基础。
④若pq且qp,则p是q的既不充分也不必要条件。
观察内容的选择,我本着先静后动,由近及远的原则,有目的、有计划的先安排与幼儿生活接近的,能理解的观察内容。
高中数学集合与简易逻辑知识要点
§01.集合与简易逻辑知识要点一、知识结构:本章知识主要分为集合、简单不等式的解法(集合化简)、简易逻辑三部分:二、知识回顾:(一)集合1. 基本概念:集合、元素;有限集、无限集;空集、全集;符号的使用2. 集合的表示法:列举法、描述法、图形表示法集合元素的特征:确定性、互异性、无序性.集合的性质:①任何一个集合是它本身的子集,记为 A ;= A;②空集是任何集合的子集,记为 A ;③空集是任何非空集合的真子集;如果A-B,同时B-A,那么A = B.如果A^B,B^C,那么A := C .[注]:①Z= {整数}(V) Z ={全体整数}(X)②已知集合S中A的补集是一个有限集,则集合A也是有限集.(X)(例:S=N ;A= N ,则CA= {0})③空集的补集是全集④若集合A=集合B,则C A = .一,C A B = C S (C B) = D (注:C B = ._ ).3. ①{ ( x, y)|xy =0,x€ R, y€ R}坐标轴上的点集.②殳(x, y) |xy v0, x€R, y€R 匸、四象限的点集.③殳(x, y) |xy>0, x€R, y€R} 一、三象限的点集.[注]:①对方程组解的集合应是点集•f例:』x+y=3 解的集合{(2 , 1)}.gx —3y =12②点集与数集的交集是'■.(例:A ={( x, y)| y = x+1} B={ y|y =x +1} 则AQB = •_ )4. ①n个元素的子集有2n个.②n个元素的真子集有2n- 1个•③n个元素的非空真子集有2n- 2个.5. ⑴①一个命题的否命题为真,它的逆命题一定为真.否命题:=逆命题.②一个命题为真,则它的逆否命题一定为真.原命题逆否命题.例:①若a 7=5,则a =2或b =3应是真命题.解:逆否:a = 2且b = 3,贝V a+b = 5,成立,所以此命题为真.② x =1 且y = 2、=. x y =3.解:逆否:x + y =3 =1或y = 2..x胡且丫屮2 =' x亠y =3,故x ■ y沁是x泪且y厂2的既不是充分,又不是必要条件⑵小范围推出大范围;大范围推不出小范围3. 例:若x '5, : x '5或x 2 .4. 集合运算:交、并、补.交:A CIB U {x|x A,且x B}并:AU B= {x|x A或x B}补:C U A 二{x U ,且x ' A}5. 主要性质和运算律(1)包含关系:A- A,H A,A-U ,G A-U,A B,B 0 = A C;AP]B A,Af]B B; A U B 二A, AU B 二B.(2)等价关系:A Bu Af]B 二A= AUB 二Bu C J AUB二U(3)集合的运算律:交换律:A B=B A; A B = B A.结合律:(A B) C 二A (B C);(A B) C 二A (B C)分配律:.A (B C)=(A B) (A C); A (B C)=(A B) (A C)0-1 律:;」"A -:」,;」IjA =A,U Pl A = A,U U A=U等幂律:A A 二A, A A 二A.求补律:A n C U A=0A U C U A=U C J U= 0」C U0=U反演律:C U(A n B)= (C U A)U (C UB) C U(A U B)=(C U A) n(QB)6. 有限集的元素个数定义:有限集A的元素的个数叫做集合A的基数,记为card( A)规定card( 0) =0.基本公式:(1) card (A IjB) =card (A) card (B) -card (Ap] B)(2) card (AU B UC)二card (A) card (B) card (C)-card (A Cl B) - card (B Pl C) - card (C 门A) card(AClBnc)(3) card ( 'U A)= card(U)- card(A)(二)含绝对值不等式、一元二次不等式的解法及延伸1. 整式不等式的解法根轴法(零点分段法)①将不等式化为a o(x-x i)(x-x 2)…(x-x m)>0(<0)形式,并将各因式x的系数化“ +”;(为了统一方便)②求根,并在数轴上表示出来;③由右上方穿线,经过数轴上表示各根的点(为什么?);0 =④ 若不等式(x 的系数化“ +”后)是“ >0 ”,则找“线”在x 轴上方的区间;若 不等式是“ <0 ”,则找“线”在x 轴下方的区间.则不等式a 0x n a 1x nJ - a 2x n ^■ a n .0(:::。
(word完整版)集合与常用逻辑用语重要知识点,推荐文档.docx
集合与简易逻辑重要知识点一、知识结构:本章知识主要分为集合、简单不等式的解法(集合化简)、简易逻辑三部分:二、知识回顾:(一)集合1. 基本概念:集合、元素;有限集、无限集;空集、全集;符号的使用.2. 集合的表示法:列举法、描述法、图形表示法.集合元素的特征:确定性、互异性、无序性.集合的性质:①任何一个集合是它本身的子集,记为 A A;②空集是任何集合的子集,记为 A ;③空集是任何非空集合的真子集;如果 A B ,同时 B A ,那么 A = B.如果 A B, B C,那么 A C .[ 注] :① Z= { 整数 } (√)Z ={ 全体整数 }(×)②已知集合S 中 A 的补集是一个有限集,则集合 A 也是有限集 .(×)(例: S=N; A= N,则C s A= {0} )③空集的补集是全集.④若集合 A=集合 B,则 C B A SA A).A=,C B = C ( CB)=D(注:C B =3.① { ( x,y) |xy =0 ,x∈ R,y∈ R} 坐标轴上的点集 .② { ( x,y) |xy< 0, x∈ R, y∈R二、四象限的点集 .③ { ( x,y) |xy> 0, x∈ R, y∈R}一、三象限的点集 .[ 注] :①对方程组解的集合应是点集 .例:x y32 x3y解的集合 {(2 , 1)}. 1②点集与数集的交集是. (例: A ={( x, y)| y =x+1} B={ y|y =x2+1}则 A∩B =)4. ① n 个元素的子集有2n个.② n个元素的真子集有2n- 1 个.③ n个元素的非空真子集有2n- 2 个 .5.⑴①一个命题的否命题为真,它的逆命题一定为真. 否命题逆命题.②一个命题为真,则它的逆否命题一定为真. 原命题逆否命题.例:①若 a b 5,则 a 2或 b 3 应是真命题.解:逆否: a = 2 且 b = 3 ,则 a+b = 5,成立,所以此命题为真.② x 1且y 2,x y 3.解:逆否: x + y =3x = 1 或 y = 2.x 1且y 2x y 3,故x y 3 是 x 1且 y 2 的既不是充分,又不是必要条件.⑵小范围推出大范围;大范围推不出小范围.3.例:若 x 5,x 5或 x 2 .4.集合运算:交、并、补 .交: A I B{ x | x A, 且 x B}并: A U B{ x | x A或 x B}补: C U A{ x U ,且 x A}5.主要性质和运算律( 1)包含关系:A A,A, A U , C U A U ,A B,BC A C ; A I B A, A I B B; A U B A, A U B B.( 2)等价关系: A B A I B A A U B B C U A U B U( 3)集合的运算律:交换律: A B B A; A B B A.结合律 : ( A B)C A (B C ); ( A B)C A ( B C )分配律 :.A(B C)( A B)( A C ); A ( B C )( A B) ( A C )0-1 律:I A,U A A,U I A A,U U A U等幂律: A A A, A A A.求补律: A∩ C A=φ A ∪ C A=U C U=φCφ =UU U U U反演律: C U(A ∩ B)= (C U A) ∪ ( C U B)C U(A∪B)= (C U A)∩( C U B)6. 有限集的元素个数定义:有限集 A 的元素的个数叫做集合 A 的基数,记为card( A) 规定 card(φ ) =0.基本公式:(1)card ( AU B) card ( A) card ( B) card ( A I B) (2) card ( A U B U C ) card ( A) card (B)card (C )card (A I B) card (B I C ) card (C I A)card ( A I B I C )(3) card (UA)= card(U)- card(A)( 二 ) 含 不等式、一元二次不等式的解法及延伸 1. 整式不等式的解法根 法 (零点分段法)12m①将不等式化 a (x-x)(x-x ) ⋯ (x-x)>0(<0) 形式,并将各因式 x 的系数化 “+”;(了 一方便 )②求根,并在数 上表示出来;③由右上方穿 , 数 上表示各根的点( 什么?);④若不等式( x 的系数化“ +”后)是“ >0”, 找“ ”在x 上方的区 ;若不等式是“ <0”, 找“ ”在x 下方的区 .++x 1x 2x3xm-3-xm-2 x m-1-x mx(自右向左正 相 )不等式 a 0 x na 1 x n 1 a 2 x n 2a n 0( 0)(a 0 0) 的解可以根据各区 的符号确定 .特例① 一元一次不等式ax>b 解的 ;20 0二次函数y ax 2 bx c(a 0 )的 象一元二次方程有两相异 根有两相等 根ax 2 bx c 0( x 1 x 2 )x 1 x 2ba 0 的根x 1 , x 2 2a无 根ax 2 bx c 0x 1或 x x 2x xb(a 的解集x x2aR0)ax 2 bx c 0x x 2(a 0)的解集x x 12. 分式不等式的解法( 1)准化:移通分化 f ( x)>0( 或f ( x)<0) ;f ( x)≥0( 或f ( x)≤0) 的形式,g( x)g( x)g ( x)g( x)(2)化整式不等式()3.含不等式的解法f ( x) f ( x) g(x) 0; f ( x)0 f ( x)g (x) 0g ( x)g ( x) 0g (x)( 1)公式法:ax b c , 与ax b c(c0) 型的不等式的解法.( 2)定法:用“零点分区法”分.( 3)几何法:根据的几何意用数形合思想方法解.4.一元二次方程根的分布一元二次方程ax2+bx+c=0(a ≠ 0)( 1)根的“零分布” :根据判式和达定理分析列式解之.( 2)根的“非零分布” :作二次函数象,用数形合思想分析列式解之.(三)易1、命的定:可以判断真假的句叫做命。
高考数学复习要点点点清
一、 集合与简易逻辑(必修一第一章、选修2-1第一章)1. 含有n 个元素的有限集合,共有n2个子集,其中非空子集有n2 – 1 个; 非空真子集有n2 – 2 个。
2. 在解决A ⊂B 或A ⊆B 的有关问题时,易忽略A =φ的情况;同时应注意空集不能写成{φ}和{0}, 写集合的常见错误有:{– 1 < x < 2 }、x = {x| x ∈– 1 < x < 2 }3. 看一个集合,首先看集合以什么为元素,其次是元素满足的条件。
4. 集合的相等指的是两集合的元素完全相同,并非要求集合的结构或表述完全相同。
如:A = {x| x = 2k + 1 ,k ∈Z }与 B= {x| x = 2k - 1 ,k ∈Z }M = {y| y = x + 1} 与N = {x | y = x 2 }5.韦恩图能很好地帮助我们理解集合间的关系和运算。
6.复习一下“或”、“非”、“且”三种复合命题的真值表。
7.四种命题的相互关系、充分必要条件的概念要清楚。
如:“α≠3π是cos α≠21的什么条件?”等价于“cos α=21是α=3π的什么条件?”二、函数、导数(必修一第二、三章、选修2-2第一章) 1.映射是高考的重点内容,常与其它知识联系在一起考查。
2.研究函数问题的基本思想是数形结合,在可能的条件下尽量把图象画出来(那怕是草图) 3.忽略定义域,是解函数问题的“多发病”。
4.形如:y =d cx b ax ++的值域为y ∈R 且y ca≠5. 形如:y = ax +c bx +的值域:a 、b 同号时用单调性;a 、b 异号时用换元法(即设u = c bx +, 则x =bcu 2-. 注意u ≥0)6. 有关指数、对数函数的问题,应注意底数的范围,若底数不确定要讨论。
同时还要小心真数大于0的隐含条件。
对数函数的图象和对数运算法则默一遍,注意:y = log 2 x 与y = log 3 x ,y = log x 21与y = x log 31的位置关系.7. 若y = log m (ax 2 + bx + c )的定义域是R ,则a > 0 且 Δ< 0; 若y = log m (ax 2 + bx + c )的值域是R ,则a > 0 且 Δ≥0;9.方程实根的个数、图象的交点个数问题,可先考虑用数形结合解决,再考虑用判别式法。
集合与简易逻辑知识点总结
集合、简易逻辑知识梳理: 1、集合:某些指定的对象集在一起就构成一个集合。
集合中的每一个对象称为该集合的元素。
元素与集合的关系:a A或a : A集合的常用表示法:列举法、描述法。
集合元素的特征:确定性、互异性、无序性。
常用一些数集及其代号:非负整数集或自然数集N ;正整数集N*,整数集Z;有理数集Q;实数集R2、子集:如果集合A的任意一个元素都是集合B的元素,那么集合A称为集合B的子集,记为A B3、真子集:如果A B,并且A = B,那么集合A成为集合B的真子集,记为A二B,读作“ A真包含于B或B真包含A”,如:{a}g{a,b}。
注:空集是任何集合的子集。
是非空集合的真子集结论:设集合A中有n个元素,则A的子集个数为2n个,真子集个数为2n -1个4、补集:设A S,由S中不属于A的所有元素组成的集合称为S的子集A的补集,记为C s A,读作“ A在S中的补集”,即C s A=仪| x • S,且x Ai。
5、全集:如果集合S包含我们所要研究的各个集合,这时S可以看作一个全集。
通常全集记作U。
6、交集:一般地,由所有属于集合A且属于B的元素构成的集合,称为A与B的交集,记作A' B 即:A「B =汉| x A,且x B ;07、并集:一般地,由所有属于集合A或属于B的元素构成的集合,称为A与B的并集,记作A _ B 即:B=,x|x A,或x B』。
记住两个常见的结论:A-B^A u A B ; A_. B=A=B A ;9、命题:可以判断真假的语句叫做命题。
(全称命题特称命题)⑴全称量词一一“所有的”、“任意一个”等,用“-”表示;全称命题p:_ X,M , p(x);全称命题p的否定—p:T x • M,—p(x)。
⑵存在量词一一“存在一个”、“至少有一个”等,用“”表示;特称命题p:_x ■ M , p(x);特称命题p的否定—p:一X,M , — p(x);10、或”、且”、非”这些词叫做逻辑联结词;不含有逻辑联结词的命题是简单命题;由简单命题和逻辑联结词或”、且”、非”构成的命题是复合命题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
集合、简易逻辑
集合知识梳理:
1、 集合:某些指定的对象集在一起就构成一个集合。
集合中的每一个对象称为该集合的元素。
元素与集合的关系:A a ∈或A a ∉
集合的常用表示法: 列举法 、 描述法 。
集合元素的特征: 确定性 、 互异性 、 无序性 。
常用一些数集及其代号:非负整数集或自然数集N ;正整数集*N ,整数集Z ;有理数集Q ;实数集R
2、子集:如果集合A 的任意一个元素都是集合B 的元素,那么集合A 称为集合B 的子集,记为A ⊆B
3、真子集:如果A ⊆B ,并且B A ≠,那么集合A 成为集合B 的真子集,记为A ⊄B ,读作“A 真包含于B 或B 真包含A ”,如:}{}{b a a ,⊆。
注:空集是任何集合的子集。
是非空集合的真子集
结论:设集合A 中有n 个元素,则A 的子集个数为n 2个,真子集个数为12-n 个 4、补集:设A ⊆S ,由S 中不属于A 的所有元素组成的集合称为S 的子集A 的补集,记为A C s ,读作“A 在S 中的补集”,即A C s =}{A x S x x ∉∈且,|。
5、全集:如果集合S 包含我们所要研究的各个集合,这时S 可以看作一个全集。
通常全集记作U 。
6、交集:一般地,由所有属于集合A 且属于B 的元素构成的集合,称为A 与B 的交集,记作B A ⋂即:B A ⋂=}{B x A x x ∈∈且,|。
7、并集:一般地,由所有属于集合A 或属于B 的元素构成的集合,称为A 与B 的并集,记作B A ⋃即:B A ⋂=}{B x A x x ∈∈或,|。
记住两个常见的结论:B A A B A ⊆⇔=⋂;A B A B A ⊆⇔=⋃;
命题知识梳理:
1、命题:可以判断真假的语句叫做命题。
(全称命题 特称命题)
⑴全称量词——“所有的”、“任意一个”等,用“∀”表示;
全称命题p :)(,x p M x ∈∀; 全称命题p 的否定⌝p :)(,x p M x ⌝∈∃。
⑵存在量词——“存在一个”、“至少有一个”等,用“∃”表示;
特称命题p :)(,x p M x ∈∃; 特称命题p 的否定⌝p :)(,x p M x ⌝∈∀;
2、逻辑连接词:“或”、“且”、“非”这些词叫做逻辑联结词;不含有逻辑联结词的命题是简单命题;由简单命题和逻辑联结词“或”、“且”、“非”构成的命题是复合命题。
构成复合命题的形式:p 或q ;p 且q ;非p(记作┑q) 。
逻辑联结词符号表示:
(1)且(and ) :命题形式p q ∧; (2)或(or):命题形式p q ∨; (3)非(not ):命题形式p ⌝.
3、“或”、“且”、“非”的真值判断: 非p 与p 真假相反;“p 且q ”:同真才真, 一假即假;“p 或q ”:同假才假,一真即真
4、命题的四种形式与相互关系: • 原命题:若P 则q ; • 逆命题:若q 则p ; • 否命题:若┑P 则┑q ; • 逆否命题:若┑q 则┑p • 原命题与逆否命题互为逆否命题,同真假;
• 逆命题与否命题互为逆否命题,同真假;
5、从逻辑推理关系上看:
若q p ⇒,则p 是q 的充分条件,q 是p 的必要条件,即“前者为后者的充分,后者为前者的必要”。
若q p ⇔,则p 是q 的充分必要条件,简称p 是q 的充要条件。
若q p ⇒,且q p ,那么称p 是q 的充分不必要条件。
若p q , 且q ⇒p ,那么称p 是q 的必要不充分条件。
若p q , 且q
p ,那么称p 是q 的既不充分又不必要条件。
原命题
,p q
若则逆命题,q p
若则逆否命题,q p
若非则非否命题,p q
若非则非互为逆命题
互为逆命题
互为逆否命题
互为否命题
互为否命题
从集合与集合之间的关系上看:
条件p、q对应集合分别为A、B,则
若B
A⊆,则p是q的充分条件,若B
A⊂,则p是q的充分非必要条件若B
A⊇,则p是q的必要条件,若B
A⊃,则p是q的必要非充分条件若A=B,则p是q的充要条件
若A
⊄且,则p是q的非充分必要条件
A⊄
B
B。