九年级数学上册导学案 第二十五章 25.4 概率初步
部编版人教初中数学九年级上册《第25章(概率初步)全章导学案》最新精品优秀整章每课导学单
最新精品部编版人教初中九年级数学上册第二十五章概率初步优秀导学案(全章完整版)前言:该导学案(导学单)由多位一线国家特级教师根据最新课程标准的要求和教学对象的特点结合教材实际精心编辑而成。
实用性强。
高质量的导学案(导学单)是高效课堂的前提和保障。
(最新精品导学案)第二十五章概率初步25.1随机事件与概率25.1.1随机事件1.通过对生活中各种事件的判断,归纳出必然事件,不可能事件和随机事件的特点,并根据这些特点对有关事件作出准确判断.2.归纳出三种事件的各自的本质属性,并抽象成数学概念.3.形成对随机事件发生的可能性大小作定性分析的能力,了解影响随机事件发生的可能性大小的因素.4.总结出随机事件发生的可能性大小的特点以及影响随机事件发生的可能性大小的客观条件.阅读教材第127至128页,完成下列知识探究.知识探究1.在一定条件下,必然发生的事件,叫做________.2.在一定条件下,不可能发生的事件,叫做____________.3.在一定条件下,可能发生也可能不发生的事件,叫做________.自学反馈1.下列问题哪些是必然发生的?哪些是不可能发生的?①太阳从西边下山;②某人的体温是100 ℃;③a2+b2=-1(其中a,b都是实数);④水往低处流;⑤酸和碱反应生成盐和水;⑥三个人性别各不相同;⑦一元二次方程x2+2x+3=0无实数解.2.在一个不透明的箱子里放有除颜色外,其余都相同的4个小球,其中红球3个、白球1个.搅匀后,从中随机摸出1个小球,请你写出这个摸球活动中的一个随机事件:__________.3.一副去掉大小王的扑克牌(共52张),洗匀后,摸到红桃的可能性________摸到J、Q、K的可能性.(填“<”“>”或“=”)4.从一副扑克牌中任意抽出一张,则下列事件中可能性最大的是( ) A.抽出一张红心B.抽出一张红色老KC.抽出一张梅花J D.抽出一张不是Q的牌5.某学校的七年级(1)班,有男生23人,女生23人.其中男生有18人住宿,女生有20人住宿.现随机抽一名学生,则:a.抽到一名住宿女生;b.抽到一名住宿男生;c.抽到一名男生.其中可能性由大到小排列正确的是( ) A.cab B.acb C.bca D.cba一般地,随机事件发生的可能性是有大小的,不同的随机事件发生的可能性的大小有可能不同.活动1小组讨论例15名同学参加演讲比赛,以抽签方式决定每个人的出场顺序.签筒中有5根形状大小相同的纸签,上面分别标有序号1,2,3,4,5.小军首先抽签,他在看不到纸签上的数字的情况从签筒中随机(任意)地取一根纸签.请考虑以下问题:①抽到的序号是0,可能吗?这是什么事件?②抽到的序号小于6,可能吗?这是什么事件?③抽到的序号是1,可能吗?这是什么事件?④你能列举与事件③相似的事件吗?解:①不可能;不可能事件.②可能;必然事件.③可能;随机事件.④抽到的序号是2或3或4或5.必然事件和不可能事件统称为确定事件.事先不能确定发生与否的事件为随机事件.活动2跟踪训练1.下列事件中是必然事件的是( )A.早晨的太阳一定从东方升起B.北京的中秋节晚上一定能看到月亮C.打开电视机正在播少儿节目D.小红今年14岁了,她一定是初中生2.一个鸡蛋在没有任何防护的情况下,从六层楼的阳台上掉下来砸在水泥地面上没摔破( )A.可能性很小B.绝对不可能C.有可能D.不太可能3.下列说法正确的是( )A.可能性很小的事件在一次实验中一定不会发生B.可能性很小的事件在一次实验中一定发生C.可能性很小的事件在一次实验中有可能发生D.不可能事件在一次实验中也可能发生4.下列事件:①袋中有5个红球,能摸到红球;②袋中有4个红球,1个白球,能摸到红球;③袋中有2个红球,3个白球,能摸到红球;④袋中有5个白球,能摸到红球.问上述事件哪些事件是必然事件?哪些是随机事件?哪些是不可能事件?5.指出下列事件中,哪些是必然事件,哪些是不可能事件,哪些是随机事件.①两直线平行,内错角相等;②刘翔再次打破110米栏的世界纪录;③打靶命中靶心;④掷一次骰子,向上一面是3点;⑤13个人中,至少有两个人出生的月份相同;⑥经过有信号灯的十字路口,遇见红灯;⑦在装有3个球的布袋里摸出4个球;⑧物体在重力的作用下自由下落;⑨抛掷一千枚硬币,全部正面朝上.活动1小组讨论例3袋中装有4个黑球,2个白球,这些球的形状、大小、质地等完全相同,在看不到球的条件下,随机地从袋子中摸出一个球.我们把“摸到白球”记为事件A,把“摸到黑球”记为事件B.(1)事件A和事件B是随机事件吗?哪个事件发生的可能性大?(2)20个小组进行“10次摸球”的试验中,事件A发生的可能性大的有几组?“20次摸球”的试验中呢?你认为哪种试验更能获得较正确结论呢?(3)如果把刚才各小组的“20次摸球”合并在一起是否等同于“400次摸球”?这样做会不会影响试验的正确性?(4)通过上述试验,你认为,要判断同一试验中哪个事件发生的可能性较大,必须怎么做?解:(1)是随机事件,B的可能性大.(2)略.(3)不会影响.(4)进行大量的,重复的实验.活动2跟踪训练1.从一副扑克牌中,任意抽取一张,抽到的可能性较小的是( )A.黑桃B.红桃C.梅花D.大王2.小红花2元钱买了一张彩票,你认为小红( )中大奖.A.一定B.很可能。
初中数学九年级上册《25.9 概率初步》导学案
第二十五章概率初步年级:九年级内容:25.4键盘上字母的排列规律课型:新授学习目标:1.知道键盘上的字母排列,既考虑手指打字的规律,又要考虑各键的使用概率。
2.了结概率问题在生活中的应用。
学习重点:键盘各键是按什么规律排列的。
学习难点:理论联系实际思想的形式。
学习过程:一.学前准备1.自学课本,写出内容提要。
2.回答:(1)计算机或打字机的键盘的英文字母表顺序从A依次排列到Z吗?(2)空格键为什么设计在键盘的下方中央的位置?二.自学,合作探究1.小组合作(1)通常的英文书面表达中:各字母出现的概率各是多少,那些字母出现的概率较大,制成下表:(2)空格键为什么设在下方中央位置?三、应用探究1、在第一次世界大战中,士兵们流行着这样一种想法:躲在新弹坑里比躲在旧弹坑里更安全。
他们的理由是炮弹不可能在很短的时间里两次落在同点。
你认为这种想法对吗?2、我们都知道生男生女的概率都是0.5,有一位妇女一连生了6个女孩,她认为下一个生男的可能性很大,必定超过0.5。
你认为这位妇女的想法对吗?四、学习体会1、键盘上字母排列与概率之间有什么关系?2、概率在现实生活中应用的广泛性。
五、检测提高1、将4根颜色一样的细绳握在手中,只露出头和尾,另一位同学在露出的头尾中各选一根,放开手会出现什么情况?同根的概率是多少?2、杨华和张红用5张同样规格的硬纸片做拼图游戏,正面如图所示,背面完全一样,将它们背当两张硬纸片上的图形可以拼成电灯或小人时,杨华得1分;1分;房子小山问题:游戏规则对双方公平吗?请说明理由,若你认为不公平怎样修改游戏规则才能对双方公平?数学选择题解题技巧1、排除法。
是根据题设和有关知识,排除明显不正确选项,那么剩下唯一的选项,自然就是正确的选项,如果不能立即得到正确的选项,至少可以缩小选择范围,提高解题的准确率。
排除法是解选择题的间接方法,也是选择题的常用方法。
2、特殊值法。
即根据题目中的条件,选取某个符合条件的特殊值或作出特殊图形进行计算、推理的方法。
人教版九年级数学上册第二十五章概率初步《25.1随机事件与概率》第2课时教案
人教版九年级数学上册第二十五章概率初步《25.1随机事件与概率》第2课时教案一. 教材分析本节课的主要内容是随机事件与概率的初步概念。
学生需要了解随机事件的定义,以及如何用概率来描述事件的可能发生性。
教材通过大量的实例来帮助学生理解概率的概念,并培养学生的实际应用能力。
二. 学情分析九年级的学生已经具备了一定的逻辑思维能力和抽象思维能力,对于一些基本的概念和原理能够理解和掌握。
但是,由于概率是一个相对抽象的概念,对于一些学生来说,理解起来可能会有难度。
因此,在教学过程中,需要通过大量的实例和实际操作来帮助学生理解和掌握概率的概念。
三. 教学目标1.了解随机事件的定义,理解必然事件、不可能事件和不确定事件的概念。
2.掌握概率的基本计算方法,能够计算简单事件的概率。
3.能够运用概率的知识解决实际问题。
四. 教学重难点1.随机事件的定义和分类。
2.概率的计算方法。
3.概率在实际问题中的应用。
五. 教学方法1.采用问题驱动的教学方法,通过提出问题,引导学生思考和探索,培养学生的思维能力。
2.使用多媒体教学,通过动画和实例的展示,帮助学生直观地理解概率的概念。
3.采用分组讨论的教学方法,让学生通过合作和交流,共同解决问题,培养学生的团队协作能力。
六. 教学准备1.多媒体教学设备。
2.教学课件和教学素材。
3.分组讨论的准备。
七. 教学过程1.导入(5分钟)通过一个简单的实例,如抛硬币实验,引导学生思考事件的可能发生性,并引入随机事件的定义。
2.呈现(10分钟)介绍必然事件、不可能事件和不确定事件的概念,并通过实例进行解释和展示。
3.操练(10分钟)让学生进行一些简单的概率计算练习,如抛硬币实验的概率计算,以及一些简单的实际问题的概率计算。
4.巩固(10分钟)通过一些实际问题,让学生运用概率的知识进行解决,巩固所学的知识。
5.拓展(10分钟)引导学生思考概率在实际生活中的应用,如彩票、赌博等,让学生了解概率在生活中的重要性。
九年级数学上册第二十五章概率初步25.1.2概率导学案2(新版)新人教版
25.1.2 概率(2)1. 进一步在具体情境中了解概率的意义;能够运用列举法计算简单事件发生的概率,并阐明理由.2.运用P(A)=m n 解决一些实际问题.重点:运用P(A)=m n解决实际问题. 难点:运用列举法计算简单事件发生的概率.一、自学指导.(10分钟)自学:阅读教材P 133.二、自学检测:学生自主完成,小组内展示,点评,教师巡视.(5分钟)1.从分别标有1,2,3,4,5号的5根纸签中随机地抽取一根.抽出的号码有多少种?抽到1的概率为多少?解:5种;15. 2.掷一个骰子,向上一面的点数有多少种可能?向上一面的点数是1的概率是多少?解:6种;16.3.如图所示,有一个转盘,转盘分成4个相同的扇形,颜色分为红、绿、黄三种颜色,指针的位置固定,转动转盘后任其自由停止.指针恰好指向其中的某个扇形(指针指向两个扇形的交线时,当作指向右边的扇形),求下列事件的概率.(1)指针指向绿色;(2)指针指向红色或黄色;(3)指针不指向红色.解:(1)14;(2)34;(3)12. 点拨精讲:转一次转盘,它的可能结果有4种——有限个,并且各种结果发生的可能性相等.因此,它可以运用“P(A)=m n”,即“列举法”求概率.一、小组合作:小组讨论交流解题思路,小组活动后,小组代表展示活动成果.(10分钟)1.如图是计算机中“扫雷”游戏的画面,在一个有9×9个小方格的正方形雷区中,随机埋藏着3颗地雷,每个小方格内最多只能埋藏1颗地雷.小王在游戏开始时随机地踩中一个方格,踩中后出现了如图所示的情况,我们把与标号3的方格相邻的方格记为A 区域(划线部分),A 区域外的部分记为B 区域,数字3表示在A 区域中有3颗地雷,每个小方格中最多只能藏一颗.那么,第二步应该踩在A 区域还是B 区域?思考:如果小王在游戏开始时踩中的第一个方格上出现了标号1,则下一步踩在哪个区域比较安全?2.(1)掷一枚质地均匀的硬币的试验有几种可能的结果?它们的可能性相等吗?由此怎样确定“正面朝上”的概率?(2)掷两枚硬币,求下列事件的概率:A .两枚硬币全部正面朝上;B .两枚硬币全部反面朝上;C .一枚硬币正面朝上,一枚硬币反面朝上.思考:“同时掷两枚硬币”与“先后两次掷一枚硬币”,这两种试验的所有可能结果一样吗?点拨精讲:“同时掷两枚硬币”与“先后两次掷一枚硬币”,两种试验的所有可能结果一样.二、跟踪练习:学生独立确定解题思路,小组内交流,上台展示并讲解思路.(8分钟)1.中国象棋红方棋子按兵种不同分布如下:1个帅,5个兵,“士、象、马、车、炮”各2个,将所有棋子反面朝上放在棋盘中,任取一个不是兵和帅的概率是( D ) A .116 B .516 C .38 D .582.冰柜中装有4瓶饮料、5瓶特种可乐、12瓶普通可乐、9瓶桔子水、6瓶啤酒,其中可乐是含有咖啡因的饮料,那么从冰柜中随机取一瓶饮料,该饮料含有咖啡因的概率是( D ) A .536 B .38 C .1536 D .17363.从8,12,18,32中随机抽取一个,与2是同类二次根式的概率为__34__. 4.小李手里有红桃1,2,3,4,5,6,从中任抽取一张牌,观察其牌上的数字.求下列事件的概率:(1)牌上的数字为3;(2)牌上的数字为奇数;(3)牌上的数字大于3且小于6.解:(1)16;(2)12;(3)13. 学生总结本堂课的收获与困惑.(2分钟)当一次试验要涉及两个因素并且可能出现的结果数目较多时,为不重不漏的列出所有可能的结果,通常采用列举法.学习至此,请使用本课时对应训练部分.(10分钟)。
九年级数学上册 第25章 概率初步 精品导学案 新人教版
概率初步课题:第二十五章概率初步小结序号学习目标:1、知识和技能:1)。
.回顾本章内容,梳理本章的知识结构,建立有关概率知识的框架图。
2)。
用所学的概率知识去解决某些现实问题。
2、过程和方法:1)初步形成评价与反思的意识。
2)通过举例,进一步发展学生随机观念和统计观念。
3)体验解决问题策略的多样性,发展实践能力和创新精神。
3、情感、态度、价值观:1)积极参与回顾与思考的过程,对数学有好奇心和求知欲。
2)形成实事求是的态度。
学习重点:引导学生回顾本章内容,梳理知识结构,共同建立有关概率知识的框架图。
学习难点:结合事例,理解实验频率与理论概率的关系。
导学过程一、课前预习:阅读教材152页有关内容,思考下列问题:1、将本章知识结构图绘制的详细一些。
2.独立思考,回答“回顾与思考“中提出的问题。
二、课堂导学:1、导入同学们,学完本章后,初中阶段统计与概率部分就全部学完了,你能总结出在本章的学习中你学到的知识吗?2、出示任务、自主学习1)。
.回顾本章内容,梳理本章的知识结构,建立有关概率知识的框架图。
2)。
用所学的概率知识去解决某些现实问题。
3、合作探究阅读教材152页有关内容,回答下列问题:1.将本章知识结构图绘制的详细一些。
2.独立思考,回答“回顾与思考“中提出的问题。
三、展示反馈完成《问题导学》140—142页自主测评1---5题四、学习小结:本节课我们以问题的形式回顾本章的内容,梳理知识结构,在充分思考和交流的基础上,建立了有关概率知识的结果框架图,在自我回忆和总结中找出实验频率与理论概率的关系。
五、达标检测:1.下列事件是必然发生事件的是()A.打开电视机,正在转播足球比赛 B.小麦的亩产量一定为1000公斤C.在仅装有5个红球的袋中摸出1球,是红球 D.农历十五的晚上一定能看到圆月2.下列说法中,正确的是()A.买一张电影票,座位号一定是偶数 B.投掷一枚均匀的硬币,正面一定朝上C.三条任意长的线段可以组成一个三角形D.从1,2,3,4,5这五个数字中任取一个数,取到奇数的可能性大3.抛掷两枚各面分别标有1、2、3、4的四面体骰子,写出这个实验中的一个可能事件:;写出这个实验中的一个必然事件:.4.如图4,在这三张扑克牌中任意抽取一张,抽到“红桃7”的概率是.5.用6个球(除颜色外没有区别)设计满足以下条件的游戏:摸到白球的概率为12,摸到红球的概率为13,摸到黄球的概率为16.则应设个白球,个红球,个黄球.6.某中学七年级有6个班,要从中选出2个班代表学校参加某项活动,七(1)班必须参加,另外再从七(2)至七(6)班选出1个班.七(4)班有学生建议用如下的方法:从装有编号为1、2、3的三个白球的袋中摸出1个球,再从装有编号为1、2、3的三个红球的袋中摸出1个球(两袋中球的大小、形状与质量完全一样),摸出的两个球上的数字和是几,就选几班,你认为这种方法公平吗?请说明理由.7。
九年级数学上册 25 概率初步复习导学案 新人教版(1)(2021年整理)
九年级数学上册25 概率初步复习导学案(新版)新人教版(1)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(九年级数学上册25 概率初步复习导学案(新版)新人教版(1))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为九年级数学上册25 概率初步复习导学案(新版)新人教版(1)的全部内容。
第25章概率初步复习一、知识梳理1.概率的有关概念:(1)必然事件:在一定条件下,有些事件 ,这样的事件称为必然事件。
(2)不可能事件:在一定条件下,有些事件发生,这样的事件称为不可能事件。
(3)确定事件: 统称确定事件。
(4)随机事件:在一定条件下,有些事件事件,称为随机事件。
(5)不确定事件:许多事情我们无法确定它,这些事情称为不确定事件。
(6)概率的定义:对于一个随机事件A,我们把刻画数值,称为随机事件A发生的概率2.概率的计算:(1)概率的计算有理论计算和实验计算两种方式.其一是当试验次数很多时,一个事件发生的频率也稳定附近.因此,我们可以通过多次试验,用一个事件概率;其二对于某些特殊类型的试验,而通过列举法进行分析就能得到事件的概率。
例如掷一个骰子(骰子的构造相同,质地均匀),向上的一面的点数有6种可能,即1,2,3,4,5,6。
因此每种结果的可能性相等,都是16。
(2)试验的特点是:1.一次试验中,可能出现的结果有限多个;2.一次试验中,各种结果发生的可能性相等.具有这些特点的试验称为。
(3)如果一次试验中共有n种可能出现的结果,而且这些结果出现的可能性都相同,其中事件A包含的结果有m种,那么事件A发生的概率P(A)=mn,可以利用列表法或树状图来球其中的m、n,从而得到事件A的概率.(4)不可能事件发生的概率为,即P(不可能事件)= ;必然事件发生的概率为,即P(必然事件)= ;如果A为不确定事件,那么0〈P(A)〈1.二、题型、技巧归纳类型一、事件类型的辨别【主题训练1】(攀枝花中考)下列叙述正确的是( )A.“如果a,b是实数,那么a+b=b+a”是不确定事件,是指买7张彩票一定有一张中奖B。
人教版九年级数学上册第25章《概率初步》教案
第二十五章概率初步1.了解必然事件、不可能事件和随机事件的概念.2.在具体情境中了解概率的意义,体会概率是描述不确定现象发生可能性大小的数学概念,理解概率的取值范围的意义.3.能够运用列举法(包括列表、画树状图)计算简单随机试验中事件发生的概率.4.能够通过随机试验,获得事件发生的频率;知道通过大量重复试验,可以用频率估计概率,了解频率与概率的区别与联系.5.通过实例进一步丰富对概率的认识,并能解决一些简单的实际问题.经历试验、列表、统计、运算、设计等活动,学生在具体情境中分析事件,计算其发生的概率.渗透数形结合,分类讨论,由特殊到一般的思想,提高分析问题和解决问题的能力.在合作探究学习过程中,激发学生学习的好奇心与求知欲,体验数学的价值与学习的乐趣.通过概率意义和计算教学,渗透辩证思想教育.“概率初步”是“统计与概率”领域的重要内容,在日常生活和生产中有广泛的应用,它与“统计”有关知识联系紧密,同时也是以后学习更深的“概率与统计”知识的基础,对概率的意义、求法及应用的学习与探究可以发展思维能力,有效改善学习方式,掌握认识事物的一般规律,对社会生活中的一些现象作出预测.概率是初中数学的重要内容,从数量上刻画了某个事件发生的可能性的大小,在我们日常生活中有着重要的意义.本章的主要内容包括事件的类型,概率的意义、计算方法、应用以及用频率或通过模拟试验来估计概率的大小.具体内容有概率的意义、用列举法求概率、利用频率估计概率、统计与概率的实际应用.概率问题是近年中考的热点之一,由单一的选择题、填空题延伸到分值较高的解答和应用题,甚至可以设计成开放探索题.本章内容不论在基础知识和数学思想方法上,还是在对能力培养上都非常重要.【重点】运用列表法或树状图法计算事件的概率.【难点】能根据不同情况选择恰当的方法进行列举,解决较复杂事件概率的计算问题.1.通过实例让学生感受事件发生的可能性的大小及概率的意义.2.用列举法求概率时,首先要让学生准确判断在事件中每一种情况发生的可能性是相同的,较简单的可以直接利用公式P(A)=来求,需要两步或两步以上试验操作时,可以借助“树状图”来计算.3.要注意利用试验与估测的方法来理解概率和频率,尽管随机事件在每次试验中发生与否具有不稳定性,但只要试验的条件不变,这一事件出现的频率会随着试验次数的增加而趋于稳定,这个稳定的值就可以作为该事件发生的概率.4.通过对具体问题的模拟试验,感受通过统计数据推测的合理性,进一步体会统计与概率的关系.25.1随机事件与概率1.了解必然事件、不可能事件和随机事件的概念,知道随机事件发生有可能性大小之分.2.了解概率的意义.学生经历体验、操作、观察、归纳、总结的过程,发展学生从纷繁复杂的表象中,提炼出本质特征并加以抽象概括的能力.在合作探究学习过程中,激发学生的好奇心与求知欲,体验数学的价值与学习的乐趣.通过概率意义教学,渗透辩证思想教育.【重点】会判断现实生活中哪些事件是随机事件.【难点】随机事件的特点、概率的意义.25.1.1随机事件了解必然发生的事件、不可能发生的事件、随机事件的特点,会判断哪些事件是必然事件、不可能事件、随机事件,知道随机事件发生有可能性大小之分.经历试验操作、观察、思考和总结,归纳出三种事件的各自的本质属性,并抽象成数学概念.体验从事物的表象到本质的探究过程,感受到数学的科学性及生活中丰富的数学现象.【重点】随机事件的特点,会判断现实生活中哪些事件是随机事件.【难点】随机事件的概念.【教师准备】多媒体课件1~4,装有乒乓球的不透明袋子.【学生准备】复习小学学过的分数和初中学过的整式.导入一:播放一段天气预报,引出一句古语:“天有不测风云”.【课件1】请说明下列事件是否一定发生.(1)太阳从西边下山;(2)某人的体温是100 ℃;(3)a2+b2=-1(其中a,b都是实数);(4)水往低处流;(5)酸和碱反应生成盐和水;(6)一元二次方程x2+2x+3=0有实数解.教师给出上述问题并问“上述结果是确定的吗”.学生阅读、观察、思考、回答问题.[设计意图]首先,这几个事件都是学生能熟知的生活常识和学科知识,通过这些生动的、有趣的实例,自然地引出必然事件和不可能事件;其次,必然事件和不可能事件相对于随机事件来说,特征比较明显,学生容易判断,提出这些问题符合由浅入深的理念,容易激发学生学习的积极性.导入二:同学们,今天我们先来玩一个摸球游戏.三个不透明的袋子中均装有10个乒乓球,挑选多名同学来参加游戏.游戏规则:每人每次从自己选择的袋子中摸出一球,记录下颜色,放回,搅匀,重复前面的试验,每人摸球5次.按照摸出黄色球的次数排序,次数最多的为第一名,其次为第二名,最少的为第三名.教师事先准备的三个袋子中分别装有10个白色的乒乓球;5个白色的乒乓球和5个黄色的乒乓球;10个黄色的乒乓球.学生积极参加游戏,通过操作和观察,归纳猜测出在第1个袋子中摸出黄色球是不可能的,在第2个袋子中能否摸出黄色球是不确定的,在第3个袋子中摸出黄色球是必然的.教师适时引导学生归纳出必然发生的事件、随机事件、不可能发生的事件的特点.[设计意图]通过生动、活泼的游戏,自然而然地引出必然发生的事件、随机事件和不可能发生的事件,不仅能够激发学生的学习兴趣,并且有利于学生理解,能够巧妙地实现从实践认识到理性认识的过渡.一、认识必然事件、不可能事件、随机事件思路一在学生讨论、归纳的基础上,教师板书必然事件、不可能事件的定义:在一定条件下必然会发生的事件称为必然事件;必然不会发生的事件称为不可能事件,必然事件和不可能事件统称为确定性事件.【课件2】5名同学参加演讲比赛,以抽签方式决定每个人的出场顺序.签筒中有5根形状、大小均相同的纸签,上面分别标有出场的序号1,2,3,4,5.小军首先抽签,他在看不到纸签上的数字的情况下从签筒中随机(任意)地取一根纸签.请考虑以下问题:(1)抽到的序号是0,可能吗?这是什么事件?(2)抽到的序号小于6,可能吗?这是什么事件?(3)抽到的序号是1,可能吗?这是什么事件?(4)你能列举出与事件(3)相似的事件吗?提出问题,探索概念:(1)上述活动中的必然事件和不可能事件的区别在哪里?(2)怎样的事件称为随机事件呢?结合问题,师生总结随机事件的特点:可能发生也可能不发生.思路二请同学们把下面的事件根据发生的可能性进行分类.【课件3】(1)通常加热到100 ℃时,水沸腾;(2)姚明在罚球线上投篮一次,命中;(3)掷一次骰子,向上的一面是6点;(4)度量三角形的内角和,结果是360°;(5) 经过城市中某一有交通信号灯的路口,遇到红灯;(6)某射击运动员射击一次,命中靶心;(7)太阳东升西落;(8)人离开水可以正常生活100天;(9)正月十五雪打灯;(10)宇宙飞船的速度比飞机快.学生根据自己的观察,说出上述事件分三类:(1)(7)(10)、(4)(8)、(2)(3)(5)(6)(9).教师追问:各类事件各有什么特点?请同学们自己总结一下.学生思考后说:(1)(7)(10)是必然发生的事件;(4)(8)是不可能发生的事件;(2)(3)(5)(6)(9)是可能发生也可能不发生的事件.引导学生归纳必然事件、不可能事件、随机事件的定义.[设计意图]学生积极思考,回答问题,进一步夯实必然发生的事件、随机事件和不可能发生的事件的特点.在充分比较后,达到加深理解的目的.二、随机事件发生的可能性大小组织学生进行摸球试验:袋中装有4个黑球,2个白球,这些球的形状、大小、质地等完全相同,在看不到球的条件下,随机地从袋子中摸出一个球.教师提出问题:我们把“摸到白球”记为事件A,把“摸到黑球”记为事件B,(1)事件A和事件B是随机事件吗?(2)哪个事件发生的可能性大?教师提出要求:学生通过试验观察结果,思考并阐述自己得出的结论及理解.教师进一步引导学生试验,归纳得出结论:一般地,随机事件发生的可能性有大有小,不同的随机事件发生的可能性的大小有可能不同.[设计意图]“摸球”试验操作方便、简单且可重复,又为学生所熟知,学生做起来感觉亲切、有趣,并且容易依据生活经验猜到正确结论,这样易于激发学生的学习热情.三、例题讲解【课件4】在200件产品中,有192件一级品,8件二级品,则下列事件:①在这200件产品中任意选出9件,全部是一级品;②在这200件产品中任意选出9件,全部是二级品;③在这200件产品中任意选出9件,不全是一级品;④在这200件产品中任意选出9件,至少一件是一级品.其中,是必然事件;是不可能事件;是随机事件.在这200件产品中任意选出1件,级品的可能性大.(如果没有请填“无”)教师引导学生理解题意,尝试答题.学生完成解答过程:其中,④是必然事件;②是不可能事件;①③是随机事件.在这200件产品中任意选出1件,一级品的可能性大.[设计意图]学生利用所学内容进行解答,在巩固知识的同时,把随机事件和随机事件的可能性大小结合在一起.[知识拓展]必然事件是指一定能发生的事件,其发生的可能性是100%;不可能事件是指一定不能发生的事件,其发生的可能性是0;随机事件发生的可能性在0~1之间.1.在一定条件下,必然会发生的事件称为必然事件;必然不会发生的事件称为不可能事件,必然事件和不可能事件统称为确定性事件;可能发生也可能不发生的事件称为随机事件.2.一般地,随机事件发生的可能性有大有小,不同的随机事件发生的可能性的大小有可能不同.1.下列事件中,是必然事件的为 ()A.抛掷一枚质地均匀的硬币,落地后正面朝上B.江汉平原7月份某一天的最低气温是-2 ℃C.通常加热到100 ℃时,水沸腾D.打开电视,正在播放节目《男生女生向前冲》解析:选项A和D是随机事件;选项B是不可能事件;选项C是必然事件.故选C.2.下列说法正确的是()A.如果一件事情发生的机会只有十万分之一,那么它就不可能发生B.如果一件事情发生的可能性是100%,那么它就一定会发生C.买彩票的中奖率是1%,那么买100张彩票,就有一张中奖D.一个口袋中有10个质地均匀的小球,其中9个白球,只有一个红球,那么从中任取一个球,一定是白球解析:选项A中事件发生的可能性虽然很小,但也有可能发生;选项B中的事件是必然事件,所以它一定会发生;选项C中买彩票的中奖率是1%,说明中奖的可能性小,有时买100张彩票也可能不中奖;选项D中的事件是随机事件.故选B.3.下列事件:①在足球赛中,弱队战胜强队;②任意取两个有理数,这两个数的和为正数;③任取两个正整数,其和大于1;④长分别为3,5,9厘米的三条线段能围成一个三角形.其中确定性事件的个数是()A.1个B.2个C.3个D.4个解析:①在足球赛中,弱队战胜强队,此事件为随机事件.②两个有理数的和有可能是正数、负数或零,此事件为随机事件.③任取两个正整数,其和大于1,此事件为确定性事件中的必然事件.④长分别为3,5,9厘米的三条线段能围成一个三角形,此事件为确定性事件中的不可能事件.故确定性事件为③和④,一共有2个确定性事件.故选B.4.一个小球在如图所示的地面上随意滚动,小球“停在黑色方块上”与“停在白色方块上”的可能性哪个大?(方块的大小、质地均相同)解:图中有9块黑色方块,15块白色方块,所以停在白色方块上的可能性大.25.1.1 随机事件一、认识必然事件、不可能事件、随机事件二、随机事件发生的可能性大小三、例题讲解一、教材作业【必做题】教材第128页的练习,教材第129页练习的1~3题.【选做题】教材第135页习题25.1的7题.二、课后作业【基础巩固】1.在一个质地均匀的正方体的六个面上,分别标有1,2,3,4,5,6,“抛出正方体,落地后朝上的一面标有6”这一事件是()A.必然事件B.随机事件C.不可能事件D.以上都不对2.下列事件是不可能事件的是 ()A.某个数的绝对值小于0B.0的相反数为0C.某两个数的和为0D.某两个负数的积为正数3.某次国际乒乓球比赛中,只有甲、乙两名中国选手进入最后决赛,那么下列事件为必然事件的是 ()A.冠军属于甲B.冠军属于乙C.冠军属于中国人D.冠军属于外国人【能力提升】4.袋子中装有4个黑球和2个白球,这些球的形状、大小、质地等完全相同,在看不到球的条件下,随机地从袋子中摸出三个球.下列事件是必然事件的是 ()A.摸出的三个球中至少有一个球是黑球B.摸出的三个球中至少有一个球是白球C.摸出的三个球中至少有两个球是黑球D.摸出的三个球中至少有两个球是白球5.下列是随机事件的是 ()A.角平分线上的点到角两边的距离相等B.三角形任意两边之和大于第三边C.面积相等的两个三角形全等D.三角形内心到三边距离相等6.随意从一副扑克牌中抽到Q和K的可能性大小是 ()A.抽到Q的可能性大B.抽到K的可能性大C.抽到Q和K的可能性一样大D.无法确定7.如果一件事情不发生的可能性为99.99%,那么它()A.必然发生B.不可能发生C.很有可能发生D.不太可能发生8.在某校艺体节的乒乓球比赛中,李东同学顺利进入总决赛,且个人技艺高超,有同学预测“李东夺冠的可能性是80%”,对该同学的说法理解正确的是 ()A.李东夺冠的可能性比较小B.李东和他的对手比赛10局,他一定赢8局C.李东夺冠的可能性比较大D.李东肯定赢9.一个袋子中装有除颜色外都相同的6个红球和4个黄球,从袋子中任意摸出一个球,则:(1)“摸出的球是白球”是什么事件?(2)“摸出的球是红球”是什么事件?(3)“摸出的球不是绿球”是什么事件?(4)摸出哪种颜色球的可能性大?【拓展探究】10.如图所示,第一列表示各盒中球的颜色、个数情况,第二列表示摸到红球的可能性大小,请你用线把它们连接起来.【答案与解析】1.B(解析:抛掷一个质地均匀的正方体,落地后朝上的那一面有可能标有1,也有可能标有2,3,4,5,6,所以“抛出正方体,落地后朝上的一面标有6”是随机事件.)2.A(解析:任何实数的绝对值都不小于0,所以选项A是不可能事件;选项B 是必然事件;选项C是随机事件;选项D是必然事件.)3.C(解析:因为进入决赛的都是中国人,所以冠军一定属于中国人,即“冠军属于中国人”是必然事件.)4.A(解析:由于袋子中装有4个黑球和2个白球,摸出的三个球的情况有如下三种:两个白球和一个黑球,一个白球和两个黑球,三个黑球,因此摸出的三个球中至少有一个球是黑球,所以“摸出的三个球中至少有一个球是黑球”是必然事件.)5.C(解析:“角平分线上的点到角两边的距离相等”是必然事件;“三角形任意两边之和大于第三边”是必然事件;“三角形内心到三边距离相等”是必然事件;面积相等的两个三角形不一定全等,所以选项C是随机事件.)6.C(解析:因为在一副扑克牌中,Q和K的数量相同,所以抽到它们的可能性相同.)7.D(解析:一件事情不发生的可能性为99.99%,说明这个事件是随机事件,这个事件发生的可能性不大,即不太可能发生.)8.C(解析:李东夺冠的可能性是80%,只能说明李东夺冠的可能性较大,不能说明比赛10局,李东一定赢8局,也不能说明李东一定赢.)9.解:(1)“摸出的球是白球”是不可能事件. (2)“摸出的球是红球”是随机事件. (3)“摸出的球不是绿球”是必然事件. (4)摸出红球的可能性大.10.解:由题意知各盒中总球数都是10,所以摸到红球的可能性大小与每个盒中红球的个数有关.①中不可能摸到红球;②中不太可能摸到红球;③中可能摸到红球;④中很可能摸到红球;⑤中一定能摸到红球.连线如下图所示.本节课的设计旨在遵循从具体到抽象、从感性到理性的渐进认识规律,以学生感兴趣的摸球游戏、抽签、掷骰子游戏引导学生分清什么是必然事件,什么是不可能事件,什么是随机事件,增加学生的学习兴趣.学生分组讨论的质量不佳、活动的时间把握不够好,以致后面学生的练习量不足,对学生的易错点发现得不够,关注学生的学习过程不够全面.指导学生联系生活实际,思考事件发生的可能性.练习(教材第128页)解:(1)是必然事件;(4)是不可能事件;(2)(3)(5)(6)是随机事件.练习(教材第129页)1.解:“落在海洋里”的可能性更大.2.解:(1)不能. (2)抽到黑桃的可能性大. (3)增加一张红桃或减少一张黑桃,使黑桃与红桃张数相同,可使可能性大小相同.3.解:例如:明天会下雪;经过一个十字路口碰到红灯;买一张彩票中大奖等都是随机事件.在写有0,1,2,…,9的这十张卡片上,任取一张,得到一个大于10的数是不可能事件,得到一个小于10的数是必然事件.(答案不唯一)实施新课标以来,在数学教学中应该注意数学来源于生活又服务于生活的原则,为学生创设情境,使学生置身于这些情境中不知不觉地学习数学知识,并在学习过程中始终关注学生情感态度的变化和发展,以教师为引导,学生为主体来开展教学,在这样的背景下,教师组织教学就有更高的要求.当然,如果教师能时刻关注学生,运用人性化、充满灵性、悟性的教学,那么学生就更能感受到数学无处不在的魅力.在小学阶段,学生已经了解了随机现象发生的可能性,本节课主要是在此基础上对随机事件进行进一步的研究.本节课的重点为随机事件的特点,难点为判断现实生活中哪些事件是随机事件.为了能突破这一重难点,本节课设计了多个游戏,让学生真正地参与到活动中去,在参与中消化知识.(2014·南平中考)一个袋中只装有3个红球,从中随机摸出一个是红球.下列说法中正确的是()A.可能性为3B.属于不可能事件C.属于随机事件D.属于必然事件〔解析〕本题考查了事件可能性的判断,解题的关键是紧扣定义.因为袋子中只装有红球,所以摸出一个球是红球属于必然事件,并且必然事件的概率,即可能性大小为1.故选D.25.1.2概率1.在具体情境中了解概率的意义,体会事件发生的可能性大小与概率的值的关系.2.理解概率的定义及计算公式P(A)=.经历试验操作、观察、思考和总结,理解随机事件的概率的定义,掌握概率的求法.理解概率的意义,渗透辩证思想,感受数学与现实生活的联系,体会数学在现实生活中的应用价值.【重点】随机事件的概率的定义;“事件A发生的概率是P(A)=(在一次试验中有n种等可能的结果,其中事件A包含m种)”的求概率的方法及运用.【难点】了解概率的定义,理解概率计算的两个前提条件.【教师准备】多媒体课件1~8.【学生准备】1枚质地均匀的硬币.导入一:老师有一个小麻烦,请大家一起来想想办法.【课件1】周末市体育场有一场精彩的篮球比赛,老师手中只有一张球票,小强与小明都是班里的篮球迷,两人都想去.我很为难,真不知该把球票给谁.请大家帮我想个办法来决定把球票给谁.学生制订方案:抓阄、抽签、猜拳、投硬币……教师对学生的较好想法予以肯定.追问:为什么要用抓阄、投硬币的方法呢?由学生讨论:这样做公平,能保证小强与小明得到球票的可能性一样大.在学生讨论发言后,教师给予评价并归纳总结.[设计意图]提供的问题情境贴近学生生活,不仅能提高学生参与的积极性,而且让学生在潜意识中开始接触概率.导入二:同学们,我们一起玩一个游戏好不好?【课件2】抛出你手中的硬币,记录抛出结果.抛掷硬币向上一面的结果有几种可能?正面和背面朝上的可能性大小是多少?学生抛掷硬币、回答,教师引导学生注意到因为硬币质地均匀,所以每个面朝上的可能性大小相等.[设计意图]以学生熟悉的抛掷硬币为例,让学生初步体会用数值刻画随机事件发生的可能性大小,以及用数值刻画的合理性,从定性分析到定量刻画.一、概率的意义思路一在学生观察、归纳的基础上,教师板书概率定义:一般地,对于一个随机事件A,我们把刻画其发生可能性大小的数值,称为随机事件A发生的概率,记为P(A).思路二进行试验:抛掷一枚质地均匀的骰子,向上一面的点数有几种可能?每种点数出现的可能性大小是多少?学生思考、回答,教师引导学生注意到因为骰子形状规则、质地均匀,又是随机掷出,所以点数出现的可能性大小相等,我们用表示每一种点数6出现的可能性大小.刻画了试验中随机事件发生的可能性大小.一般地,对于一教师指出:6个随机事件A,我们把刻画其发生可能性大小的数值,称为随机事件A发生的概率,记为P(A).[设计意图]给出概率的定义,让学生通过抽签、掷骰子的实例初步了解概率的意义.二、求概率的方法【课件3】掷骰子、抛硬币等试验有哪些共同特点?学生思考、交流,教师适当引导,启发学生注意到,以上试验有两个共同特点:①每一次试验中,可能出现的结果只有有限种;②每一次试验中,各种结果出现的可能性相等.【课件4】从分别写有数字1,2,3,4,5的五个纸团中随机抽取一个,你能求出“抽到偶数”“抽到奇数”这两个事件的概率吗?学生思考、交流,教师适当引导,启发学生注意到对于具有上述特点的试验,用事件所包含的各种可能的结果数在全部可能的结果总数中所占的比,表示事件发生的概率.学生回答问题,教师进行纠正点拨.“抽到偶数”这个事件包含抽到2,4这两种可能的结果,在全部5种可能的结果中所占的比为.于是“抽到偶数”的概率P(抽到偶数)=;同理,“抽到奇数”的概率P(抽到奇数)=3.教师追问:对于具有上述特点的试验,如何求某事件的概率?师生归纳结论:一般地,如果在一次试验中,有n种可能的结果,并且它们发生的可能性都相等,事件A包含其中m种结果,那么事件A发生的概率P(A)=.【课件5】根据上述求概率的方法,事件A发生的概率P(A)的取值范围是怎样的?。
人教版-数学-九年级上册 第25章 概率初步 复习导学案
二十五章概率初步复习总结【课标要求】考点课标要求知识与技能目标了解理解掌握灵活应用事件能区分可能与确定事件∨概率了解概率的意义∨运用列举法计算简单事件发生的概率∨了解用实验法求概率∨能解决实际问题∨∨【知识梳理】1.生活中的随机事件分为确定事件和不确定事件,确定事件又分为必然事件和不可能事件,其中:①必然事件发生的概率为1,即P(必然事件)=1;②不可能事件发生的概率为0,即P(不可能事件)=0;③如果A为不确定事件,那么0<P(A)<12.随机事件发生的可能性(概率)的计算方法:①理论计算又分为如下两种情况:第一种:只涉及一步实验的随机事件发生的概率,如:根据概率的大小与面积的关系,对一类概率模型进行的计算;第二种:通过列表法、列举法、树状图来计算涉及两步或两步以上实验的随机事件发生的概率,如:配紫色,对游戏是否公平的计算。
②实验估算又分为如下两种情况:第一种:利用实验的方法进行概率估算。
要知道当实验次数非常大时,实验频率可作为事件发生的概率的估计值,即大量实验频率稳定于理论概率。
第二种:利用模拟实验的方法进行概率估算。
如,利用计算器产生随机数来模拟实验。
【能力训练】一、填空题:1.一个口袋中装有4个白球,2个红球,6个黄球,摇匀后随机从中摸出一个球是白球的概率是。
2.若1000张奖券中有200张可以中奖,则从中任抽1张能中奖的概率为______。
3.一只袋内装有2个红球、3个白球、5个黄球(这些球除颜色外没有其它区别),从中任意取出一球,则取得红球的概率是___________。
4.如图,在这三张扑克牌中任意抽取一张,抽到“红桃7”的概率是。
5.小华与父母一同从重庆乘火车到广安邓小平故居参观.火车车厢里每排有左、中、右三个座位,小华一家三口随意坐某排的三个座位,则小华恰好坐在中间的概率是。
6.某班有49位学生,其中有23位女生. 在一次活动中,班上每一位学生的名字都各自写在一张小纸条上,放入一盒中搅匀. 如果老师闭上眼睛从盒中随机抽出一张纸条,那么抽到写有女生名字纸条的概率是。
人教版数学九年级上册第二十五章《概率初步》导学案
第二十五章概率初步25.1随机事件与概率25.1.1随机事件1.了解必然发生的事件、不可能发生的事件、随机事件的特点.2.能根据随机事件的特点,辨别哪些事件是随机事件.3.有对随机事件发生的可能性大小作定性分析的能力,了解影响随机事件发生的可能性大小的因素.重点:对生活中的随机事件作出准确判断,对随机事件发生的可能性大小作定性分析.难点:对生活中的随机事件作出准确判断,理解大量重复试验的必要性.一、自学指导.(10分钟)自学:阅读教材P127~129.归纳:在一定条件下必然发生的事件,叫做__必然事件__;在一定条件下不可能发生的事件,叫做__不可能事件__;在一定条件下可能发生也可能不发生的事件,叫做__随机事件__.二、自学检测:学生自主完成,小组内展示,点评,教师巡视.(5分钟)1.下列问题哪些是必然发生的?哪些是不可能发生的?(1)太阳从西边落下;(2)某人的体温是100℃;(3)a2+b2=-1(其中a,b都是实数);(4)自然条件下,水往低处流;(5)三个人性别各不相同;(6)一元二次方程x2+2x+3=0无实数解.解:(1)(4)(6)是必然发生的;(2)(3)(5)是不可能发生的.2.在一个不透明的箱子里放有除颜色外,其余都相同的4个小球,其中红球3个、白球1个.搅匀后,从中随机摸出1个小球,请你写出这个摸球活动中的一个随机事件:__摸出红球__.3.一副去掉大小王的扑克牌(共52张),洗匀后,摸到红桃的可能性__>__摸到J,Q,K 的可能性.(填“>”“<”或“=”)4.从一副扑克牌中任意抽出一张,则下列事件中可能性最大的是(D)A.抽出一张红桃B.抽出一张红桃KC.抽出一张梅花J D.抽出一张不是Q的牌5.某学校的七年级(1)班,有男生23人,女生23人.其中男生有18人住宿,女生有20人住宿.现随机抽一名学生,则:a.抽到一名住宿女生;b.抽到一名住宿男生;c.抽到一名男生.其中可能性由大到小排列正确的是(A)A.cab B.acb C.bca D.cba点拨精讲:一般的,随机事件发生的可能性是有大小的,不同的随机事件发生的可能性的大小有可能不同.一、小组合作:小组讨论交流解题思路,小组活动后,小组代表展示活动成果.(8分钟)1.小伟掷一个质地均匀的正方形骰子,骰子的六个面上分别刻有1至6的点数.请考虑以下问题,掷一次骰子,观察骰子向上的一面:(1)出现的点数是7,可能吗?这是什么事件?(2)出现的点数大于0,可能吗?这是什么事件?(3)出现的点数是4,可能吗?这是什么事件?(4)你能列举与事件(3)相似的事件吗?点拨精讲:必然事件和不可能事件统称为确定事件.事先不能确定发生与否的事件为随机事件.2.袋中装有4个黑球,2个白球,这些球的形状、大小、质地等完全相同,在看不到球的条件下,随机地从袋子中摸出一个球.我们把“摸到白球”记为事件A,把“摸到黑球”记为事件B.(1)事件A和事件B是随机事件吗?哪个事件发生的可能性大?(2)20个小组进行“10次摸球”的试验中,事件A发生的可能性大约有几组?“20次摸球”的试验中呢?你认为哪种试验更能获得较正确结论呢?(3)如果把刚才各小组的20次“摸球”合并在一起是否等同于400次“摸球”?这样做会不会影响试验的正确性?(4)通过上述试验,你认为,要判断同一试验中哪个事件发生的可能性较大、必须怎么做?点拨精讲:(4)进行大量的、重复的试验.二、跟踪练习:学生独立确定解题思路,小组内交流,上台展示并讲解思路.(10分钟)1.下列事件中是必然事件的是(A)A.早晨的太阳一定从东方升起B.中秋节晚上一定能看到月亮C.打开电视机正在播少儿节目D.小红今年14岁了,她一定是初中生2.一个鸡蛋在没有任何防护的情况下,从六层楼的阳台上掉下来砸在水泥地面上没摔破(B)A.可能性很小B.绝对不可能C.有可能D.不太可能3.下列说法正确的是(C)A.可能性很小的事件在一次试验中一定不会发生B.可能性很小的事件在一次试验中一定发生C.可能性很小的事件在一次试验中有可能发生D.不可能事件在一次试验中也可能发生4.20张卡片分别写着1,2,3,…,20,从中任意抽出一张,号码是2的倍数与号码是3的倍数的可能性哪个大?解:号码是2的倍数的可能性大.5.指出下列事件中,哪些是必然事件,哪些是不可能事件,哪些是随机事件.(1)两直线平行,内错角相等;(2)刘翔再次打破110米跨栏的世界纪录;(3)打靶命中靶心;(4)掷一次骰子,向上一面是3点;(5)13个人中,至少有两个人出生的月份相同;(6)经过有信号灯的十字路口,遇见红灯;(7)在装有3个球的布袋里摸出4个球;(8)物体在重力的作用下自由下落;(9)抛掷一千枚硬币,全部正面朝上.解:必然事件:(1)(5);随机事件:(2)(3)(4)(6)(8)(9);不可能事件:(7).6.已知地球表面陆地面积与海洋面积的比值为3∶7.如果宇宙中飞来一块陨石落在地球上,“落在海洋里”与“落在陆地上”哪个可能性更大?解:“落在海洋里”可能性更大.学生总结本堂课的收获与困惑.(2分钟)1.必然事件、随机事件、不可能事件的特点.2.对随机事件发生的可能性大小进行定性分析.3.理解大量重复试验的必要性.学习至此,请使用本课时对应训练部分.(10分钟)25.1.2 概率(1)1.了解从数量上刻画一个事件发生的可能性的大小.2.理解P(A)=m n(在一次试验中有 n 种可能的结果,其中 A 包含 m 种)的意义.重点:对概率意义的正确理解.难点:对P(A)=m n(在一次试验中有 n 种可能的结果,其中 A 包含 m 种)的正确理解.一、自学指导.(10分钟)自学:阅读教材第130至132页.归纳:1.当A 是必然事件时,P(A)=__1__;当A 是不可能事件时,P(A)=__0__;任一事件A 的概率P(A)的范围是__0≤P(A)≤1__.2.事件发生的可能性越大,则它的概率越接近__1__;反之,事件发生的可能性越小,则它的概率越接近__0__.3.一般地,在一次试验中,如果事件A 发生的可能性大小为__m n __,那么这个常数m n就叫做事件A 的概率,记作__P(A)__.4.在上面的定义中,m ,n 各代表什么含义?m n的范围如何?为什么? 点拨精讲:(1)刻画事件A 发生的可能性大小的数值称为事件A 的概率.(2)__必然__事件的概率为1,__不可能__事件的概率为0,如果A 为__随机__事件,那么0<P(A)<1.二、自学检测:学生自主完成,小组内展示,点评,教师巡视.(5分钟)1.在抛掷一枚普通正六面体骰子的过程中,出现点数为2的概率是__16__. 2.十字路口的交通信号灯每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒,当你抬头看信号灯恰是黄灯亮的概率为__112__. 3.袋中有5个黑球,3个白球和2个红球,它们除颜色外,其余都相同.摸出后再放回,在连续摸9次且9次摸出的都是黑球的情况下,第10次摸出红球的概率为__15__.一、小组合作:小组讨论交流解题思路,小组活动后,小组代表展示活动成果.(6分钟)1.掷一个骰子,观察向上一面的点数,求下列事件的概率:(1)点数为2;(2)点数为奇数;(3)点数大于2小于5.解:(1)16;(2)12;(3)13. 2.一个桶里有60个弹珠,其中一些是红色的,一些是蓝色的,一些是白色的.拿出红色弹珠的概率是35%,拿出蓝色弹珠的概率是25%.桶里每种颜色的弹珠各有多少?解:红:21;蓝:15;白:24.二、跟踪练习:学生独立确定解题思路,小组内交流,上台展示并讲解思路.(12分钟)1.袋子中装有24个和黑球2个白球,这些球的形状、大小、质地等完全相同,在看不到球的条件下,随机地从袋中摸出一个球,摸到黑球的概率大,还是摸到白球的概率大一些呢?说明理由,并说明你能得到什么结论?解:摸到黑球的概率大.摸到黑球的可能性为1213,摸到白球的可能性为113,1213>113,故摸到黑球的概率大.(结论略)点拨精讲:要判断哪一个概率大,只要看哪一个可能性大.学生总结本堂课的收获与困惑.(2分钟)一般地,如果在一次试验中,有n 种可能的结果,并且它们发生的可能性都相等,事件A 包含其中的m 种结果,那么事件A 发生的概率为P(A)=__m n__且 __0__≤P(A)≤__1__.学习至此,请使用本课时对应训练部分.(10分钟)25.1.2 概率(2)1. 进一步在具体情境中了解概率的意义;能够运用列举法计算简单事件发生的概率,并阐明理由.2.运用P(A)=m n解决一些实际问题.重点:运用P(A)=m n解决实际问题. 难点:运用列举法计算简单事件发生的概率.一、自学指导.(10分钟)自学:阅读教材P 133.二、自学检测:学生自主完成,小组内展示,点评,教师巡视.(5分钟)1.从分别标有1,2,3,4,5号的5根纸签中随机地抽取一根.抽出的号码有多少种?抽到1的概率为多少?解:5种;15. 2.掷一个骰子,向上一面的点数有多少种可能?向上一面的点数是1的概率是多少?解:6种;16.3.如图所示,有一个转盘,转盘分成4个相同的扇形,颜色分为红、绿、黄三种颜色,指针的位置固定,转动转盘后任其自由停止.指针恰好指向其中的某个扇形(指针指向两个扇形的交线时,当作指向右边的扇形),求下列事件的概率.(1)指针指向绿色;(2)指针指向红色或黄色;(3)指针不指向红色.解:(1)14;(2)34;(3)12. 点拨精讲:转一次转盘,它的可能结果有4种——有限个,并且各种结果发生的可能性相等.因此,它可以运用“P(A)=m n”,即“列举法”求概率.一、小组合作:小组讨论交流解题思路,小组活动后,小组代表展示活动成果.(10分钟)1.如图是计算机中“扫雷”游戏的画面,在一个有9×9个小方格的正方形雷区中,随机埋藏着3颗地雷,每个小方格内最多只能埋藏1颗地雷.小王在游戏开始时随机地踩中一个方格,踩中后出现了如图所示的情况,我们把与标号3的方格相邻的方格记为A 区域(划线部分),A 区域外的部分记为B 区域,数字3表示在A 区域中有3颗地雷,每个小方格中最多只能藏一颗.那么,第二步应该踩在A 区域还是B 区域?思考:如果小王在游戏开始时踩中的第一个方格上出现了标号1,则下一步踩在哪个区域比较安全?2.(1)掷一枚质地均匀的硬币的试验有几种可能的结果?它们的可能性相等吗?由此怎样确定“正面朝上”的概率?(2)掷两枚硬币,求下列事件的概率:A .两枚硬币全部正面朝上;B .两枚硬币全部反面朝上;C .一枚硬币正面朝上,一枚硬币反面朝上.思考:“同时掷两枚硬币”与“先后两次掷一枚硬币”,这两种试验的所有可能结果一样吗?点拨精讲:“同时掷两枚硬币”与“先后两次掷一枚硬币”,两种试验的所有可能结果一样.二、跟踪练习:学生独立确定解题思路,小组内交流,上台展示并讲解思路.(8分钟)1.中国象棋红方棋子按兵种不同分布如下:1个帅,5个兵,“士、象、马、车、炮”各2个,将所有棋子反面朝上放在棋盘中,任取一个不是兵和帅的概率是( D )A .116B .516C .38D .582.冰柜中装有4瓶饮料、5瓶特种可乐、12瓶普通可乐、9瓶桔子水、6瓶啤酒,其中可乐是含有咖啡因的饮料,那么从冰柜中随机取一瓶饮料,该饮料含有咖啡因的概率是( D )A .536B .38C .1536D .17363.从8,12,18,32中随机抽取一个,与2是同类二次根式的概率为__34__. 4.小李手里有红桃1,2,3,4,5,6,从中任抽取一张牌,观察其牌上的数字.求下列事件的概率:(1)牌上的数字为3;(2)牌上的数字为奇数;(3)牌上的数字大于3且小于6.解:(1)16;(2)12;(3)13.学生总结本堂课的收获与困惑.(2分钟)当一次试验要涉及两个因素并且可能出现的结果数目较多时,为不重不漏的列出所有可能的结果,通常采用列举法.学习至此,请使用本课时对应训练部分.(10分钟)25.2 用列举法求概率1. 会用列表法求出简单事件的概率.2. 会用树状图法求出一次试验中涉及3个或更多个因素时,不重不漏地求出所有可能的结果,从而正确地计算问题的概率.重点:运用列表法或树状图法计算简单事件的概率.难点:用树状图法求出所有可能的结果.一、自学指导.(10分钟)自学:阅读教材P 136~139.二、自学检测:学生自主完成,小组内展示,点评,教师巡视.(5分钟)1.一个布袋中有两个白球和两个黄球,质地和大小无区别,每次摸出1个球,共有几种可能的结果?解:两种结果:白球、黄球.2.一个布袋中有两个白球和两个黄球,质地和大小无区别,每次摸出2个球,这样共有几种可能的结果?解:三种结果:两白球、一白一黄两球、两黄球.3.一个盒子里有4个除颜色外其余都相同的玻璃球,一个红色,一个绿色,两个白色,现随机从盒子里一次取出两个球,则这两个球都是白球的概率是__16__. 4.同时抛掷两枚正方体骰子,所得点数之和为7的概率是__16__. 点拨精讲:这里2,3,4题均为两次试验(或一次两项),可直接采用树状图法或列表法.一、小组合作:小组讨论交流解题思路,小组活动后,小组代表展示活动成果.(10分钟)1.同时掷两个质地均匀的骰子,计算下列事件的概率:(1)两个骰子的点数相同;(2)两个骰子点数的和是9;(3)至少有一个骰子的点数为2.讨论:(1)上述问题中一次试验涉及到几个因素?你是用什么方法不重不漏地列出了所有可能的结果,从而解决了上述问题?(2)能找到一种将所有可能的结果不重不漏地列举出来的方法吗?(介绍列表法求概率,让学生重新利用此法做上题).(3)如果把上例中的“同时掷两个骰子”改为“把一个骰子掷两次”,所得到的结果有变化吗?点拨精讲:当一次试验要涉及两个因素并且可能出现的结果数目较多时,为不重不漏的列出所有可能的结果,通常采用列表法. 列表法是将两个步骤分别列在表头中,所有可能性写在表格中,再把组合情况填在表内各空格中.2.甲口袋中装有2个相同的小球,他们分别写有A 和B ;乙口袋中装有3个相同的小球,分别写有C ,D 和E ;丙口袋中装有2个相同的小球,他们分别写有H 和I .从3个口袋中各随机取出1个小球.(1)取出的3个小球上恰好有1个、2个、3个元音字母的概率分别是多少?(2)取出3个小球上全是辅音字母的概率是多少?点拨:A ,E ,I 是元音字母;B ,C ,D ,H 是辅音字母.分析:弄清题意后,先让学生思考从3个口袋中每次各随机地取出一个球,共3个球,这就是说每一次试验涉及到3个因素,这样的取法共有多少种呢?打算用什么方法求得?点拨精讲:第一步可能产生的结果会是什么?——(A 和B ),两者出现的可能性相同吗?分不分先后?写在第一行.第二步可能产生的结果是什么?——(C ,D 和E ),三者出现的可能性相同吗?分不分先后?从A 和B 分别画出三个分支,在分支下的第二行分别写上C ,D 和E .第三步可能产生的结果有几个?——是什么?——(H 和I ),两者出现的可能性相同吗?分不分先后?从C ,D 和E 分别画出两个分支,在分支下的第三行分别写上H 和I .(如果有更多的步骤可依上继续)第四步按竖向把各种可能的结果竖着写在下面,就得到了所有可能的结果的总数.再找出符合要求的种数,就可计算概率了.合作完成树状图.二、跟踪练习:学生独立确定解题思路,小组内交流,上台展示并讲解思路.(8分钟)1.将一个转盘分成6等份,分别是红、黄、蓝、绿、白、黑,转动转盘两次,两次能配成“紫色”(提示:只有红色和蓝色可配成紫色)的概率是__118__.2.抛掷两枚普通的骰子,出现数字之积为奇数的概率是__14__,出现数字之积为偶数的概率是__34__. 3.第一盒乒乓球中有4个白球2个黄球,第二盒乒乓球中有3个白球3个黄球,分别从每个盒中随机的取出一个球,求下列事件的概率:(1)取出的两个球都是黄球;(2)取出的两个球中有一个白球一个黄球.解:16;12. 4.在六张卡片上分别写有1~6的整数,随机地抽取一张后放回,再随机的抽取一张,那么第二次取出的数字能够整除第一次取出的数字的概率是多少?解:718. 点拨精讲:这里第4题中如果抽取一张后不放回,则第二次的结果不再是6,而是5.5.小明和小刚用如图的两个转盘做游戏,游戏规则如下:分别旋转两个转盘,当两个转盘所转到的数字之积为奇数时,小明得2分;当所转到的数字之积为偶数时,小刚得1分.这个游戏对双方公平吗?若公平,说明理由;若不公平,如何修改规则才能使游戏对双方公平?解:P(积为奇数)=13,P(积为偶数)=23.13×2=1×23.∴这个游戏对双方公平.学生总结本堂课的收获与困惑.(2分钟)1. 一次试验中可能出现的结果是有限多个,各种结果发生的可能性是相等的.通常可用列表法和树状图法求得各种可能的结果.2.注意第二次放回与不放回的区别.3.一次试验中涉及3个或更多个因素时,不重不漏地求出所有可能的结果,通常采用树状图法.学习至此,请使用本课时对应训练部分.(10分钟)25.3用频率估计概率1. 理解当试验的可能结果不是有限个,或各种结果发生的可能性不相等时,一般用统计频率的方法来估计概率.2. 了解用频率估计概率的方法与列举法求概率的区别,并能够通过对事件发生频率的分析,估计事件发生的概率.重点:了解用频率估计概率的必要性和合理性.难点:大量重复试验得到频率稳定值的分析,对频率与概率之间关系的理解.一、自学指导.(20分钟)自学:阅读教材P142~146.归纳:对于一般的随机事件,在做大量重复试验时,随着试验次数的增加,一个事件出现的频率,总在一个固定数的附近摆动,显示出一定的稳定性.当重复试验的次数大量增加时,事件发生的频率就稳定在相应的概率附近,因此,可以通过大量重复试验,用一个事件发生的频率来估计这一事件发生的概率.二、自学检测:学生自主完成,小组内展示,点评,教师巡视.(2分钟)1.小强连续投篮75次,共投进45个球,则小强进球的频率是__0.6__.2.抛掷两枚硬币,当抛掷次数很多以后,出现“一正一反”这个不确定事件的频率值将稳定在__0.5左右.一、小组合作:小组讨论交流解题思路,小组活动后,小组代表展示活动成果.(5分钟)红星养猪场400头猪的质量(质量均为整数:千克)频率分布如下,其中数据不在分点上.从中任选一头猪,__0.1 .二、跟踪练习:学生独立确定解题思路,小组内交流,上台展示并讲解思路.(6分钟)某商场设立了一个可以自由转动的转盘(如图),并规定:顾客购物10元以上能获得一次转动转盘的机会,当转盘停止时,指针落在哪一区域就可以获得相应的奖品,下表是活动进行中的一组统计数据:(3)转动该转盘一次,获得铅笔的概率约是多少?(4)在该转盘中,标有“铅笔”区域的扇形的圆心角大约是多少?(精确到1°)【答案】:(2)0.69;(3)0.69;(4)0.69×360°≈248°.尽管随机事件在每次试验中发生与否具有不确定性,但只要保持试验条件不变,那么这一事件出现的频率就会随着试验次数的增大而趋于稳定,这个稳定值就可以作为该事件发生概率的估计值.学习至此,请使用本课时对应训练部分.(10分钟)。
《第二十五章概率初步》教案含教学反思教学设计人教版九年级数学上
第二十五章概率初步25.1随机事件与概率25.随机事件了解必然发生的事件、不可能发生的事件、随机事件的特点.了解随机事件发生的可能性是有大有小的,不同的随机事件发生的可能性的大小不同.重点随机事件的特点.难点判断现实生活中哪些事件是随机事件.一、情境引入分析说明下列事件能否一定发生:①今天不上课;②煮熟的鸭子飞了;③明天地球还在转动;④木材燃烧会放出热量;⑤掷一枚硬币,出现正面朝上.二、自主探究1.提出问题教师事先准备的三个袋子中分别装有10个白色的乒乓球;5个白色的乒乓球和5个黄色的乒乓球;10个黄色的乒乓球,分组讨论从这三个袋子里摸出黄色乒乓球的情况.学生积极参加,通过操作和观察,归纳猜测出在第1个袋子中摸出黄色球是不可能的,在第2个袋子中能否摸出黄色球是不确定的,在第3个袋子中摸出黄色球是必然的.2.概念得出从上面的事件可看出,对于任何事件发生的可能性有三种情况:(1)必然事件:在一定条件下必然要发生的事件;(2)不可能事件:在一定条件下不可能发生的事件;(3)随机事件:在一定条件下可能发生也可能不发生的事件.3.随机事件发生的可能性有大小袋子中有4个黑球,2个白球,这些球的形状、大小、质地等完全相同,在看不到球的情况下,随机地从袋子中摸出一个球.(1)是白球还是黑球?(2)经过多次试验,摸出的黑球和白球哪个次数多?说明了什么问题?结论:一般地,随机事件发生的可能性有大小,不同的随机事件发生的可能性的大小有可能不同.三、巩固练习教材第128页练习四、课堂小结(学生归纳,老师点评)本节课应掌握:(1)必然事件,不可能事件,随机事件的概念.(2)一般地,随机事件发生的可能性是有大小的,不同的随机事件发生的可能性的大小有可能不同.五、作业布置教材第129页 练习1,2.25. 概 率1.在具体情境中了解概率的意义,体会事件发生的可能性大小与概率的值的关系. 2.理解概率的定义及计算公式P(A)=mn ,明确概率的取值范围,能求简单的等可能性事件的概率.重点在具体情境中了解概率的意义,理解概率定义及计算公式P(A)=mn .难点了解概率的定义,理解概率计算的两个前提条件.活动1 创设情境(1)事件可以分为哪几类?什么是随机事件?随机事件发生的可能性一样吗?(2)在同样的条件下,某一随机事件可能发生也可能不发生,那么它发生的可能性究竟有多大?能否用数值进行刻画呢?这节课我们就来研究这个问题. 活动2 试验活动试验1:每位学生拿出课前准备好的分别标有1,2,3,4,5号的5根纸签,从中随机地抽取一根,观察上面的数字,看看有几种可能.(如此多次重复)试验2:教师随意抛掷一枚质地均匀的骰子,请学生观察骰子向上一面的点数,看看有几种不同的可能.(如此可重复多次)(1)试验1中共出现了几种可能的结果?你认为这些结果出现的可能性大小相等吗?如果相等,你认为它们的可能性各为多少?(2)试验2中共出现了几种可能的结果?你认为这些结果出现的可能性大小相等吗?如果相等,你认为它们的可能性各为多少?活动3 引出概率1.从数量上刻画一个随机事件A 发生的可能性的大小,我们把它叫做这个随机事件A 的概率,记为P(A).2.概率计算必须满足的两个前提条件:(1)每一次试验中,可能出现的结果只有有限个; (2)每一次试验中,各种结果出现的可能性相等.3.一般地,如果在一次试验中,有n 种可能的结果,并且它们发生的可能性都相等,事件A 包含其中的m 种结果,那么事件A 发生的概率P(A)=________.4.随机事件A 发生的概率的取值范围是________,如果A 是必然发生的事件,那么P(A)=________,如果A 是不可能发生的事件,那么P(A)=________.活动4 精讲例题例1 下列事件中哪些是等可能性事件,哪些不是? (1)运动员射击一次中靶心与不中靶心; (2)随意抛掷一枚硬币反面向上与正面向上;(3)随意抛掷一只可乐纸杯杯口朝上,或杯底朝上,或横卧;(4)分别从写有1,3,5,7,9中一个数的五张卡片中任抽1张结果是1,或3,或5,或7,或9.答案:(1)不是等可能事件;(2)是等可能事件;(3)不是等可能事件;(4)是等可能事件. 例2 学生自己阅读教材第131页~132页例1及解答过程.例3 教师引导学生分析讲解教材第132页例2.想一想:把此题(1)和(3)两问及答案联系起来,你有什么发现?例4 教师引导学生分析讲解教材第133页例3. 活动5 过关练习教材第133页 练习第1~3题.,这些球除了颜色外都相同.从袋子中随机地摸出一个球,它是红色与它是绿色的可能性相等吗?两者的概率分别是多少?2.一个质地均匀的小正方体骰子,六个面分别标有数字1,2,2,3,4,4,掷骰子后,观察向上一面的数字.(1)出现数字1的概率是多少?(2)出现的数字是偶数的概率是多少?(3)哪两个数字出现的概率相等?分别是多少?答案:,P(摸到红球)=58,P(摸到绿球)=38;2.(1)16;(2)23;(3)数字1和3出现的概率相同,都是16,数字2和4出现的概率相同,都是13.活动6 课堂小结与作业布置 课堂小结1.随机事件概率的意义,等可能性事件的概率计算公式P(A)=mn.2.概率计算的两个前提条件:可能出现的结果只有有限个;各种结果出现的可能性相同. 作业布置教材第134页~135页 习题第3~6题. 用列举法求概率(2课时)第1课时 用列举法和列表法求概率1.会用列举法和列表法求简单事件的概率.2.能利用概率知识解决计算涉及两个因素的一个事件概率的简单实际问题.重点正确理解和区分一次试验中涉及两个因素与所包含的两步试验. 难点当可能出现的结果很多时,会用列表法列出所有可能的结果.活动1 创设情境我们在日常生活中经常会做一些游戏,游戏规则制定是否公平,对游戏者来说非常重要,其实这就是一个游戏双方获胜概率大小的问题. 下面我们来做一个小游戏,规则如下:老师向空中抛掷两枚同样的一元硬币,如果落地后一正一反,老师赢;如果落地后两面一样,你们赢.请问:你们觉得这个游戏公平吗?学生思考计算后回答问题:把其所能产生的结果全部列出来,应该是正正、正反、反正、反反,共有四种可能,并且每种结果出现的可能性相同.(1)记满足两枚硬币一正一反的事件为A ,则P(A)=24=12;(2)记满足两枚硬币两面一样的事件为B ,则P(B)=24=12.由此可知,双方获胜的概率一样,所以游戏是公平的.当一次试验涉及两个因素,并且可能出现的结果数目比较少时,我们看到结果很容易被全部列出来;若出现结果的数目较多时,要想不重不漏地列出所有可能的结果,还有什么更好的方法呢?我们来看下面的这个问题.活动2 探索交流例1 为活跃联欢晚会的气氛,组织者设计了以下转盘游戏:A ,B 两个带指针的转盘分别被分成三个面积相等的扇形,转盘A 上的数字分别是1,6,8,转盘B 上的数字分别是4,5,7(两个转盘除表面数字不同外,其他完全相同).每次选择2名同学分别拨动A ,B 两个转盘上的指针,使之产生旋转,指针停止后所指数字较大的一方为获胜者,负者则表演一个节目(若箭头恰好停留在分界线上,则重转一次).作为游戏者,你会选择哪个装置呢?并请说明理由.在这个环节里,首先可以让学生自己用列举法列出所有的情况,很多学生会发现列出所有的情况会有困难,会漏掉一些情况.这个时候可以要求学生分组讨论,探索交流,然后引导学生将实际问题转化为数学问题,即“停止转动后,哪个转盘指针所指数字较大的可能性更大呢?”由于事件的随机性,我们必须考虑事件发生概率的大小.此时,首先引导学生观看转盘动画,同学们会发现这个游戏涉及A ,B 两个转盘,即涉及两个因素,与上节课所讲授单转盘概率问题相比,可能产生的结果数目增多了,变复杂了,列举时很容易造成重复或遗漏.怎样避免这个问题呢?实际上,可以将这个游戏分两步进行,教师指导学生构造下列表格:BA 45 7 1 68分析:首先考虑转动,可能出现的结果就会有3个;接着考虑转动B 盘:当A 盘指针指向1时,B 盘指针可能指向4,5,7三个数字中的任意一个.当A 盘指针指向6或8时,B 盘指针同样可能指向4,5,7三个数字中的任意一个,这样一共会产生9种不同的结果.学生独立填写表格,通过观察与计算,得出结论(即列表法).B A 4 5 7 1 (1,4) (1,5) (1,7) 6(6,4)(6,5)(6,7)8(8,4) (8,5) (8,7) 从表中可以发现:A 盘数字大于B 盘数字的结果共有5种,而B 盘数字大于A 盘数字的结果共有4种.∴P(A 数较大)=59,P(B 数较大)=49,∴P(A 数较大)>P(B 数较大),∴选择A 装置的获胜可能性较大.在学生填写表格过程中,注意向学生强调数对的有序性.由于游戏是分两步进行的,我们也可用其他的方法来列举.即先转动B 盘,可能出现4,5,7三种结果;第二步考虑转动A 盘,可能出现1,6,8三种情况.活动3 例题精讲通过上面例1的分析,学生对用列表法求概率有了初步的了解,为了帮助学生熟练掌握这种方法,教师引导学生分析解决教材第136页例2.然后引导学生进行题后小结:当一个事件要涉及两个因素并且可能出现的结果数目较多时,通常采用列表法.运用列表法求概率的步骤如下:(1)列表;(2)通过表格计数,确定公式P(A )=mn 中的m 和n 的值;(3)利用公式P(A )=mn计算事件发生的概率.活动4 过关练习教材第138页 练习第1~2题. 活动5 课堂小结与作业布置 课堂小结引导学生从知识、方法、情感三方面来谈一谈这节课的收获,要求每个学生在组内交流,派小组代表发言.作业布置教材第139页~140页 习题第1~3题和第5题.第2课时 用树状图求概率1.理解并掌握用树状图求概率的方法,并利用它们解决问题.2.正确认识在什么条件下使用列表法,在什么条件下使用树状图法.重点理解树状图的应用方法及条件,用画树状图的方法求概率. 难点用树状图列举各种可能的结果,求实际问题中的概率.一、复习引入用列举法求概率的方法.(1)总共有几种可能,即求出n ;(2)每个事件中有几种可能的结果,即求出m ,从而求出概率.什么时候用列表法?列举所有可能的结果的方法有哪些? 二、探索新知 画树状图求概率例1 甲口袋中装有2个相同的球,它们分别写有字母A 和B ;乙口袋中3个相同的球,它们分别写有字母C ,D 和E ;丙口袋中2个相同的球,. (1)取出的三个球上恰好有1个、2个和3个元音字母的概率分别为多少?(2)取出的三个球上全是辅音字母的概率是多少?例1与上节课的例题比较,有所不同:要从三个袋子里摸球,即涉及到三个因素.此时同学们会发现用列表法就不太方便,可以尝试树状图法.本游戏可分三步进行.分步画图和分类排列相关的结论是解题的关键.从图形上可以看出所有可能出现的结果共有12个,即:A A A A A AB B B B B BC CD DE E C C D D E E H I H I H I H I H I H I (幻灯片上用颜色区分)这些结果出现的可能性相等.(1)只有一个元音字母的结果(黄色)有5个,即ACH ,ADH ,BCI ,BDI ,BEH ,所以P (1个元音)=512;有两个元音的结果(白色)有4个,即ACI ,ADI ,AEH ,BEI ,所以P (2个元音)=412=13;全部为元音字母的结果(绿色)只有1个,即AEI ,所以P (3个元音)=112.(2)全是辅音字母的结果(红色)共有2个,即BCH ,BDH ,所以P (3个辅音)=212=16.通过例1的解答,很容易得出题后小结:当一次试验要涉及3个或更多的因素时,通常采用“画树形图”. 运用树状图法求概率的步骤如下:(幻灯片) ①画树状图;②列出结果,确定公式P (A )=mn 中m 和n 的值;③利用公式P (A )=mn 计算.三、巩固练习教材第139页 练习四、课堂小结本节课应掌握:1.利用树状图法求概率.2.什么时候用列表法,什么时候用树状图法,各自的应用特点:有两个元素且情况较多时用列表法,当有三个或三个以上元素时用树状图法.五、作业布置教材第140页习题6,9.用频率估计概率1.当试验的可能结果不是有限个,或各种结果发生的可能性不相等时,一般用统计频率的方法来估计概率.2.会设计模拟试验,能应用模拟试验求概率.重点对利用频率估计概率的理解和应用.难点对利用频率估计概率的理解.一、情境引入某篮球运动员在最近的几场大赛中罚球投篮的结果如下:投篮次数n 8 10 12 9 16 10进球次数m 6 8 9 7 12 7进球频率错误!(1)计算表中各次比赛进球的频率;(2)这位运动员投篮一次,进球的概率约为多少?解答:(1),,,,0.75,;(2)0.75.二、自主探究利用频率估计概率1.试验要求:(1)把全班分成10或12组,每组中有一名学生投掷硬币,另一名同学做记录,其余同学观察试验,计算结果,各组必须在同样条件下进行.(2)明确任务,每组掷币50次,认真统计“正面朝上”的频数,算出“正面朝上”的频率,整理试验的数据,并记录下来.2.各组汇报试验结果:把各组试验数据汇报给教师,教师积累后填入表格,板书,学生计算出累加后的频率.(由于试验次数较小,有可能有些组的最后结果和自己的猜想有出入)3.根据列表填在教材第142页图中,观察频率变化情况,小组交流后阐述所得结论.4.思考:教材第143页“思考”.5.问题1:教材第144页问题1.分析:幼树的成活率是实际问题中的概率,在这个实验过程中,移植总数无限,每一棵小苗成活的可能性不相等,所以不能用列举法求概率,只能用频率估计概率.解:教师引导学生完成方法总结:(1)先计算出每次试验的频率;(2)观察频率活动情况,选择最接近且围绕波动的频率数作为概率.用频率估计概率的应用教材第145页问题2分析:学生阅读表25-6提供的信息:(1)估测出损坏率.(实质也是概率问题)(2)算出完好柑橘的质量.(3)计算出实际成本,再确定定价.三、巩固练习教材第147页练习.四、课堂小结(1)利用频率估计概率,建立在大量重复试验的基础上.(2)利用频率估计概率,得到的概率是近似值.五、作业布置教材第147~148页习题1,2,5.。
九年级数学上册 第二十五章 概率初步 25.3 用频率估计概率教案 新人教版
25.3 用频率估计概率【教材分析】《利用频率估计概率》是人教版九年级上册第二十五章《概率初步》的第三节。
它是学习了前两节概率和用列举法求概率的基础上,即学习了理论概率后,进一步从试验的角度来估计概率,让学生再次体会频率与概率间的关系,通过这部分内容的学习可以帮助学生进一步理解试验频率和理论概率的关系。
概率与人们的日常生活密切相关,应用十分广泛。
纵观近几年的中考题,概率已是考查的热点,同时,对此内容的学习,也是为高中深入研究概率的相关知识打下坚实基础。
【教学目标】根据新课程标准的要求,课改应体现学生身心发展特点;应有利于引导学生主动探索和发现;有利于进行创造性的教学。
因此,我把本节课的教学目标确定为以下三个方面:知识目标:1.理解当事件的试验结果不是有限个,或各种可能结果发生的可能性不相等时,要用频率来估计概率,进一步发展概率观念。
2.进一步理解概率与频率之间的联系与区别,培养学生根据频率集中趋势估计概率的能力。
方法与过程目标:1.选择生活中的实例进行教学,使学生在解决实际问题过程中加强对概率的认识,突出用频率的集中趋势估计概率的思想,体现数学与生活的紧密联系.2.通过对问题的分析,理解用频率来估计概率的方法,渗透转化和估算的思想方法.情感态度与价值观目标:1.利用生活实例,介绍数学史,激发学生学习数学的热情和兴趣。
2.结合试验的随机性和规律性,让学生理解试验频率和理论概率的关系。
【重点与难点】重点:1.体会用频率估计概率的必要性和合理性。
2.学会依据问题特点,用频率来估计事件发生的概率。
难点:1.理解频率与概率的关系,2.用频率估计概率解决实际问题。
【学生分析】学习统计概率的学生并不是难在用频率估计概率,而是难在多大程度上感受用频率估计概率的必要性以及体会用频率估计概率所蕴含的基本思想,然后自觉地运用到实际生活中。
所以,要发动学生积极参与,动手实验,在实践中感悟。
【教学方法】树立以学生为本的思想,通过创设问题情境,利用《问题生成评价单》,以多媒体为教学平台,通过精心设计的问题串和活动系列,采取精讲多练、讲练结合的方法来落实知识点并不断地制造思维兴奋点,让学生脑、嘴、手动起来,充分调动了学生的学习积极性,达到事半功倍的教学效果。
人教版数学九年级上册导学案25.1 概率初步
第二十五章概率初步年级:九年级内容:25.1.1 随机事件(第1课时)课型:新授执笔:审核:定稿:使用时间:学习目标:知识与技能:通过对生活中各种事件的判断,归纳出必然事件,不可能事件和随机事件的特点,并根据这些特点对有关事件作出准确判断。
过程与方法:历经实验操作、观察、思考和总结,归纳出三种事件的各自的本质属性,并抽象成数学概念。
情感态度和价值观:体验从事物的表象到本质的探究过程,感受到数学的科学性及生活中丰富的数学现象。
学习重点:随机事件的特点学习难点:对生活中的随机事件作出准确判断学习过程一、学前准备1.自学课本,写下疑惑摘要。
2.下列问题哪些是必然发生的?哪些是不可能发生的?(1)太阳从西边下山;(2)某人的体温是100℃;(3)a2+b2=-1(其中a,b都是实数);(4)水往低处流;(5)酸和碱反应生成盐和水;(6)三个人性别各不相同;(7)一元二次方程x2+2x+3=0无实数解。
3.引发思考我们把上面的事件(1)、(4)、(5)、(7)称为必然事件,把事件(2)、(3)、(6)称为不可能事件,那么请问:什么是必然事件?什么又是不可能事件呢?它们的特点各是什么?二、自学、合作探究(一)自学、相信自己活动1:5名同学参加演讲比赛,以抽签方式决定每个人的出场顺序。
签筒中有5根形状大小相同的纸签,上面分别标有出场的序号1,2,3,4,5。
小军首先抽签,他在看不到的纸签上的数字的情况从签筒中随机(任意)地取一根纸签。
请考虑以下问题:(1)抽到的序号是0,可能吗?这是什么事件?(2)抽到的序号小于6,可能吗?这是什么事件?(3)抽到的序号是1,可能吗?这是什么事件?(4)你能列举与事件(3)相似的事件吗?根据学生回答的具体情况,教师适当地加点拔和引导。
活动2:小伟掷一个质地均匀的正方形骰子,骰子的六个面上分别刻有1至6的点数。
请考虑以下问题,掷一次骰子,观察骰子向上的一面:(1)出现的点数是7,可能吗?这是什么事件?(2)出现的点数大于0,可能吗?这是什么事件?(3)出现的点数是4,可能吗?这是什么事件?(4)你能列举与事件(3)相似的事件吗?(二)思索、交流(1)上述两个活动中的两个事件(3)与必然事件和不可能事件的区别在哪里?(2)怎样的事件称为随机事件呢?三、应用练习,巩固新知练习:指出下列事件中,哪些是必然事件,哪些是不可能事件,哪些是随机事件。
人教版数学九年级上册导学案25.4 概率初步
第二十五章 概率初步年级:九年级 内容:25.2用列举法求概率(第1课时) 课型:新授执笔: 审核:孙万生 定稿: 使用时间:学习目标:1. 理解 P (A )=nm (在一次试验中有 n 种可能的结果,其中 A 包含 m 种)的意义。
2.应用 P (A )=nm 解决一些实际问题。
学习重点:理解 P (A )=nm 并运用它解决实际问题。
学习难点:通过试验理解 P (A )=nm 并运用它解决一些具体问题。
学习过程:一、课前准备: (1)概率是什么?(2)P(A) 的取值范围是什么?(3)A 是必然事件,B 是不可能事件,C 是随机事件,请你画出数轴把三个量表示出来。
二、试验探究:试验1从分别标有1、2、3、4、5号的5根纸签中随机抽取一根,抽出的签上的号码有( )种可能,即( )由于纸签的形状、大小相同,又是随机抽取的,所以我们认为:每个号码抽到的可能性( )都是( )。
试验2掷一个骰子,向上一面的点数有( )种可能,即( )由于骰子的构造、质地均匀,又是随机掷出的所以我们断言:每种结果的可能性( )都是( )。
观察与思考:以上两个试验有两个共同特点:1.( )2.( )如何分析出此类试验中事件的概率?归纳:一般地,如果在一次试验中,有n 种可能的结果,并且它们发生的可能性都相等,事件A 包含其中的m 种结果,那么事件A 发生的概率为P(A)=( )。
且( )≤ P(A) ≤ ( )。
三、实践应用:1.掷一个骰子,观察向上的一面的点数,求下列事件的概率:(1)点数为2;(2)点数为奇数;(3)点数大于2小于5;2、如图(2)是计算机中“扫雷”游戏的画面,在一个有9 ×9个小方格的正方形雷区中,随机埋藏着10颗地雷每个小方格内最多只能埋藏1颗地雷。
小王在游戏开始时随机地踩中一个方格,踩中后出现了如图所示的情况,我们把与标号3的方格相邻的方格记为A区域(划线部分),A区域外的部分记为B区域,数字3表示在A区域中有三颗地雷,那么,第二步应该踩在A区域还是B 区域?思考:如果小王在游戏开始时踩中的第一个方格上出现了标号1,则下一步踩在哪个区域比较安全?3、(1)掷一枚质地均匀的硬币的试验有几种可能的结果?它们的可能性相等吗?由此怎样确定“正面向上”的概率?(2)掷两枚硬币,求下列事件的概率:A.两枚硬币全部正面朝上;B.两枚硬币全部反面朝上;C.一枚硬币正面朝上;一枚硬币反面朝上;思考:“同时掷两枚硬币”与“先后两次掷一枚硬币”,这两种试验的所有可能结果一样吗?四、巩固练习:袋子中装有红、绿各一小球,随机摸出一个小球后放回,再随机摸出一个,求下列事件的概率:(1)第一次摸到红球,第二次摸到绿球;(2)两次都摸到相同颜色的小球;(3)两次摸到的球中有一个绿球和一个红球;五、学习小结:这节课有哪些收获?说说自己哪些不懂,与同学交流一下。
新人教版九年级数学上册第二十五章概率初步全章教案.
)))))))第二十五章概率课题: 25.1 随机事件教课目的:知识技术目标认识必定发生的事件、不行能发生的事件、随机事件的特色.数学思虑目标学生经历体验、操作、察看、归纳、总结的过程, 发展学生从纷纷复杂的表象中,提炼出实质特色并加以抽象归纳的能力.解决问题目标能依据随机事件的特色 , 鉴别哪些事件是随机事件.感情态度目标引领学生感觉随机事件就在身旁, 加强学生珍惜时机,掌握时机的意识.教课要点:随机事件的特色 .教课难点:判断现实生活中哪些事件是随机事件.教课过程<活动一 >【问题情境】摸球游戏三个不透明的袋子均装有10 个乒乓球 . 精选多名同学来参加游戏.游戏规则每人每次从自己选择的袋子中摸出一球 , 记录下颜色 , 放回 , 搅匀 , 重复前面的试验 . 每人摸球 5 次. 依照摸出黄色球的次数排序 , 次数最多的为第一名 , 其次为第二名 , 最少的为第三名 .【师生行为】教师预先准备的三个袋子中分别装有 10 个白色的乒乓球; 5 个白色的乒乓球和5 个黄色的乒乓球; 10 个黄色的乒乓球 .学生踊跃参加游戏, 经过操作和察看, 归纳猜想出在第1 个袋子中摸出黄色球是不行能的, 在第2 个袋子中可否摸出黄色球是不确立的, 在第3 个袋子中摸出黄色球是必定的 .教师合时指引学生归纳出必定发生的事件、随机事件、不行能发生的事件的特点 .【设计企图】经过生动、开朗的游戏 , 自但是然地引出必定发生的事件、随机事件和不行能发生的事件 , 不单能够激发学生的学习兴趣 , 并且有利于学生理解 . 能够奇妙地实现从实践认识到理性认识的过渡 .<活动二 >【问题情境】指出以下事件中哪些是必定发生的, 哪些是不行能发生的,哪些是随机事件?1.往常加热到 100°C 时,水沸腾;2.姚明在罚球线上投篮一次,命中;3.掷一次骰子,向上的一面是 6 点;4.胸怀三角形的内角和,结果是 360°;5.经过城市中某一有交通讯号灯的路口,碰到红灯;6.某射击运动员射击一次,命中靶心;7.太阳东升西落;8.人走开水能够正常生活 100 天;9.正月十五雪打灯;10.宇宙飞船的速度比飞机快 .【师生行为】教师利用多媒体课件演示问题, 使问题情境更具生动性 .学生踊跃思虑 , 回答以下问题 , 进一步夯实必定发生的事件、随机事件和不行能发生的事件的特色 . 在比较充足的感知下,达到加深理解的目的 .教师在学生达成问题后应注意指引学生发此刻我们生活的四周大批地存在着随机事件 .【设计企图】引领学生经历由实践认识到理性认识再从头认识实践问题的过程 , 同时引入一些知识问题 , 使学生进一步感悟数学是认识客观世界的重要工具 .<活动三 >【问题情境】情境 15 名同学参加演讲比赛 , 以抽签方式决定每一个人的出场次序 . 签筒中有 5 根形状、大小相同的纸签 , 上边分别标有出场的序号 1,2,3,4,5. 小军第一抽签 , 他在看不到纸签上的数字的状况下从签筒中随机地抽取一根纸签 .情境 2小伟掷一个质地平均的正方体骰子,骰子的六个面上分别刻有1到6的点数.在详细情境中列举不行能发生的事件、必定发生的事件和随机事件.【师生行为】学生第一独立思虑 , 再把自己的看法和小组其余同学沟通 , 并提炼出小构成员列举的主要事件,在全班公布 .【设计企图】开放性的问题有利于培育学生的发散性思想和创新思想 , 也有利于学生加深对学习内容的理解 . <活动四 >【问题情境】请你列举一些生活中的必定发生的事件、随机事件和不行能发生的事件.【师生行为】教师指引学生充足沟通,热忱议论.【设计企图】随机事件在现实世界中宽泛存在. 经过让学生自己找到大批丰富多彩的实例,使学生从不同侧面、不同视角进一步深入对随机事件的理解与认识.<活动五 >【问题情境】李宁运动品牌打出的口号是“全部皆有可能”,请你说说对这句话的理解.【师生行为】教师注意指引学生独立思虑, 沟通合作 , 提高学生对问题的理解与判断能力.【设计企图】存心识地引领学生从数学的角度从头审察现实世界,初步感悟辩证一致的思想.<活动六 >【问题情境】归纳、小结部署作业设计一个摸球游戏 , 要求对甲乙公正 .【师生行为】学生反省、议论 . 学生在设计游戏的过程中,进一步感悟随机事件的特色 . 作业的开放性为学生创建了更大的学习空间 .【设计企图】讲堂小结采纳学生反省报告形式 , 帮助学生形成较完好的认知结构 . 作业使讲堂内容得以丰富和延展 .教课方案说明现实生活中存在着大批的随机事件,而概率正是研究随机事件的一门学科 . 本课是“概率初步”一章的第一节课 . 教课中,教师第一以一个学生喜闻乐道的摸球游戏为背景,经过试验与剖析,使学生体验有些事件的发生是必定的、有些是不确立的、有些是不行能的,引出必定发生的事件、随机事件、不行能发生的事件 . 而后,经过对不同事件的剖析判断,让学生进一步理解必定发生的事件、随机事件、不行能发生的事件的特色 . 联合详细问题情境,引领学生设计提出必定发生的事件、随机事件、不行能发生的事件,拥有相当的开放度,鼓舞学生的逆向思想与创新思想,在必定程度上知足了不同层次学生的学习需要 .做游戏是学习数学最好的方法之一,依据本节课内容的特色,教师设计了摸球游戏,力争引领学生在游戏中形成新认识,学习新看法,获取新知识,充足调换了学生学习数学的踊跃性,表现了学生学习的自主性 . 在游戏中参加数学活动,在游戏中剖析、归纳、合作、思虑,意会数学道理 . 在快乐轻松的学习氛围中,显性目标和隐性目标自然达成 , 在必定程度上 , 创始了一个崭新的数学讲堂教课模式 .课题 : 25.1.2 概率的意义教课目的 :〈一〉知识与技术1.知道经过大批重复试验时的频次能够作为事件发生概率的预计值2.在详细情境中认识概率的意义〈二〉教课思虑让学生经历猜想试验--采集数据--剖析结果的研究过程,丰富对随机现象的体验,领会概率是描绘不确立现象规律的数学模型 . 初步理解频次与概率的关系 .〈三〉解决问题在分组合作学习过程中累积数学活动经验,发展学生合作沟通的意识与能力.锻炼怀疑、独立思虑的习惯与精神,帮助学生逐渐成立正确的随机看法.〈四〉感情态度与价值观在合作研究学习过程中,激发学生学习的好奇心与求知欲 . 体验数学的价值与学习的乐趣 . 经过概率意义教课,浸透辩证思想教育 .【教课要点】在详细情境中认识概率意义.【教课难点】对频次与概率关系的初步理解【教具准备】壹元硬币数枚、图钉数枚、多媒体课件【教课过程】一、创建情境,引出问题教师提出问题:周末市体育场有一场出色的篮球比赛,老师手中只有一张球票,小强与小明都是班里的篮球迷,两人都想去 . 我很犯难,真不知该把球给谁 . 请大家帮我想个方法来决定把球票给谁 .学生:抓阄、抽签、猜拳、投硬币,,,教师对同学的较好想法予以必定 . (学生必定有很多较好的想法,在众多方法中推选出大家较认同的方法 . 如抓阄、投硬币)追问,为何要用抓阄、投硬币的方法呢?由学生议论:这样做公正. 能保证小强与小明获取球票的可能性相同大在学生议论讲话后,教师评论归纳.用扔掷硬币的方法分派球票是个随机事件,只管预先不可以确立“正面向上”还上“反面向上”,但同学们很简单感觉到或猜到这两个随机事件发生的可能性是相同的,各占一半,因此小强、小明获取球票的可能性相同大.怀疑:那么,这类直觉能否真的是正确的呢?指引学生以扔掷壹元硬币为例,不如着手做扔掷硬币的试验来考证一下.说明:现实中不确立现象是大批存在的,新课标指出:“学生数学学习内容应当是现实的、存心义、富裕挑战的”,设置实质生活问题情境切近学生的生活实际,很简单激发学生的学习热忱,教师应付此予以必定,并鼓舞学生踊跃思虑,为讲堂教课创建民主和睦的氛围,也为下一步指引学生展开研究沟通活动打下基础.二、着手实践,合作研究1.教师部署试验任务 .(1)明确规则 .把全班分红 10 组,每组中有一名学生扔掷硬币,另一名同学作记录,其余同学察看试验一定在相同条件下进行 .(2)明确任务,每组掷币 50 次,以脚踏实地的态度,仔细统计“正面向上”的频数及“正面向上”的频次,整理试验的数据, 并记录下来 ..2.教师巡视学生疏组试验状况. 注意:(1).察看学生在研究活动中,能否踊跃参加试验活动、能否愿意沟通等,关注学生能否踊跃思虑、勇于战胜困难.(2).要求真切记录试验状况. 关于合作学习中有可能产生的纪律问题予以调控 . 3. 各组报告实验结果 .因为试验次数较少,因此有可能有些组试验获取的“正面向上”的频次与先前的猜想有进出 . 提出问题:能否是我们的猜想出了问题?指引学生剖析议论产生差别的原由 .在学生充足议论的基础上,启迪学生剖析议论产生差别的原由 . 使学生认识到每次随机试验的频次拥有不确立性,同时相信随机事件发生的频次也有规律性,指引他们小组合作,进一步研究 .解决的方法是增添试验的次数,基于讲堂时间有限,指引学生进行全班沟通合作 . 4.全班沟通 .把各组测得数据一一报告,教师将各组数据记录在黑板上 . 全班同学对数据进行累计,依照书上 P 140要求填好 25-2. 并依据所整理的数据,在 25.1-1 图上标明出对应的点 , 达成统计图 .表 25-2n想想 1(投影出示) . 察看统计表与统计图,你发现“正面向上”的频次有什么规律?注意学生的语言表述状况,意思正确予以必定与鼓舞. 正“面向上”的频次在 0.5 上下颠簸 . 想想 2(投影出示)跟着扔掷次数增添,“正面向上”的频次变化趋向有何规律?在学生议论的基础上,教师帮助归纳. 使学生认识到每次试验中随机事件发生的频次拥有不确立性,同时发现随机事件发生的频次也有规律性. 在试验次数较少时,“正面向上”的频次起伏较大,而跟着试验次数的渐渐增添,一般地,频次会趋于稳固,“正面向上”的频次愈来愈靠近0.5. 这也与我们刚开始的猜想是一致的. 我们就用 0.5 这个常数表示“正面向上”发生的可能性的大小 .说明:注意帮助解决学生在填写统计表与统计图碰到的困难 . 经过以上实践研究活动,让学生真切地感觉到、清楚地察看到试验所表现的规律,即大批重复试验事件发生的频次靠近事件发生的可能性的大小(概率) . 鼓舞学生在学习中要踊跃合作沟通,思虑研究 . 学会聆听他人建议,勇于表达自己的看法 .为了给学生供给大批的、快捷的试验数据, 利用计算机模拟掷硬币试验的课件,丰富学生的体验、提高讲堂教课效率,使他们能直观地、便利地察看到试验结果的规律性 --大批重复试验中,事件发生的频次渐渐稳固到某个常数邻近.其实,历史上有很多有名数学家也做过掷硬币的试验. 让学生阅读历史上数学家做掷币试验的数据统计表(看书P 141 表 25-3). 表 25-3经过以上学生亲身着手实践 , 电脑协助演示 , 历史资料展现 , 让学生真切地感觉到、清楚地察看到试验所表现的规律,大批重复试验中,事件发生的频次渐渐稳固到某个常数附近 , 即大批重复试验事件发生的频次靠近事件发生的可能性的大小(概率) . 同时 , 又感觉到不论试验次数多么大 , 也没法保证事件发生的频次充足地靠近事件发生的概率 .在研究学习过程中 , 应注意评论学生在活动中参加程度、自信心、能否愿意交流等,鼓舞学生在学习中不怕困难踊跃思虑,敢于表达自己的看法与感觉, 养成实事求是的科学态度 .5.下边我们可否研究一下“反面向上”的频次状况?学生自然可依照“正面向上”的研究方法,很简单总结得出:“反面向上”的频次也相应稳固到 0.5.教师归纳:(1)由以上试验,我们考证了开始的猜想,即扔掷一枚质地平均的硬币时,“正面向上”与“反面向上”的可能性相等(各占一半) . 也就是说,用扔掷硬币的方法能够使小明与小强获取球票的可能性相同 .(2)在实质生活还有很多这样的例子,如在足球比赛中,裁判用掷硬币的方法来决定两方的比赛场所等等 .说明:这个环节,让学生亲身经历了猜想试验——采集数据——剖析结果的研究过程,在真切数据的剖析中形成数学思虑,在议论沟通中达成知识的主动建构,为下一环节概率意义的教课作了很好的铺垫 .三、评论归纳,揭露新知问题 1. 经过以上大批试验,你对频次有什么新的认识?有没有发现频次还有其余作用?学生研究沟通 . 发现随机事件的可能性的大小能够用随机事件发生的频次渐渐稳固到的值(或常数)预计或去描绘 .经过猜想试验及研究议论,学生不难有以上认识 . 对学生可能存在语言上、描绘中的不正确等注意予以纠正,但要求不用过高 .归纳:以上我们用随机事件发生的频次渐渐稳固到的常数刻画了随机事件的可能性的大小 . 那么我们给这样的常数一个名称,引入概率定义 . 给出概率定义(板书):一般地,在大批重复试验中,假如事件 A 发生的频次nm会稳固在某个常数p 邻近,那么这个常数p 就叫做事件 A 的概率(probability ), 记作 P (A ) = p.注意指出:1.概率是随机事件发生的可能性的大小的数目反应.2.概率是事件在大批重复试验中频次渐渐稳固到的值,即能够用大批重复试验中事件发生的频率去预计获取事件发生的概率,但两者不可以简单地等同.想想 (学生沟通议论问题 2.频次与概率有什么差别与联系?从定义能够获取两者的联系 , 可用大批重复试验中事件发生频次来预计事件发生的概率 . 另一方面 , 大批重复试验中事件发生的频次稳固在某个常数 (事件发生的概率邻近,说明概率是个定值 , 而频次随不同试验次数而有所不同 , 是概率的近似值 , 两者不可以简单地等同 .说明:猜想试验、剖析议论、合作研究的学习方式十分有利于学生对概率意义的理解,使之明确频次与概率的联系,也使本节课教课重难点得以打破 . 为下节课进一步研究概率和此后的学习打下了基础 . 自然,学生随机看法的养成是顺序渐进的、长久的 . 这节课教课应掌握教课难度,注意关注学生接受状况 .四.练习稳固,发展提高. 学生练习1.书上 P143. 练习 .1. 稳固用频次预计概率的方法. 2.书上 P143. 练习 .2 稳固对概率意义的理解 .教师应当关注学生对知识掌握状况,帮助学生解决碰到的问题. 五.归纳总结,沟通收获:1.学生相互沟通这节课的领会与收获,教师可将学生的总结与板书串一同,使学生对知识掌握条理化、系统化.2.在学生沟通总结时,还应注意总结评论这节课所经历的研究过程,领会到的数学价值与合作沟通学习的意义.【作业设计】(1)达成 P144 习题 25.1 2、 4(2)课外活动分小组活动,用试验方法获取图钉从必定高度落下后钉尖着地的概率 . 【教课方案说明】这节课是在学习了25.1.1 节随机事件的基础上学习的,学生经过大批重复试验,体验用事件发生的频次去刻画事件发生的可能性大小,进而获取概率的定义.1.对概率意义的正确理解,是成立在学生经过大批重复试验后,发现事件发生的频次能够刻画随机事件发生可能性的基础上 . 联合学生认知规律与教材特色,这节课以用掷硬币方法分派球票为问题情境,指引学生亲身经历猜想试验—采集数据—剖析结果的研究过程 . 这切合《新课标》“从学生已有生活经验出发,让学生亲身经历将实质问题抽象为数学模型并进行解说与应用的过程”的理念 .切近生活现实的问题情境,不单易于激发学生的求知欲与研究热忱,并且会促进他们面对要解决的问题勇敢猜想,主动试验,采集数据,剖析结果,为追求问题解决主动与他人沟通合作. 在知识的主动建构过程中,促进了教课目的的有效达成.更重要的是,主动参加数学活动的经历会使他们终生得益.2.随机现象是现实世界中广泛存在的,概率的教课的一个很重要的目标就是培育学生的随机看法 . 为了实现这一目标,教课方案中让学生亲身经历对随机事件的研究过程,经过与他人合作研究,使学生自我主动修正错误经验,揭露频次与概率的关系,进而逐渐成立正确的随机看法,也为此后进一步学习概率有关知识打下基础 .3.在教课中,本课力争向学生供给从事数学活动的时间与空间,为学生的自主研究与伙伴的合作沟通供给保障,进而促进学生学习方式的转变,使之获取宽泛的数学活动经验 . 教师在学习活动中是组织者、指引者与合作者,应注意评论学生在活动中参加程度、自信心、能否愿意沟通等,给学生以合时的指引与鼓舞.课题 : 25.2 列举法求概率教课目的:知识与技术目标学惯用列表法、画树形图法计算概率,并经过比较概率大小作出合理的决议。
人教版九年级数学上册(教案)第二十五章 概率初步 教材分析
第二十五章概率初步一、教学目标1.了解必然事件、不可能事件和随机事件的概念.2.在具体情境中了解概率的意义,体会概率是描述不确定现象发生可能性大小的数学概念,理解概率的取值范围的意义.3.能够运用列举法(包括列表、画树状图)计算简单随机试验中事件发生的概率.4.能够通过随机试验,获得事件发生的频率;知道通过大量重复试验,可以用频率估计概率,了解频率与概率的区别与联系.5.通过实例进一步丰富对概率的认识,并能解决一些简单的实际问题.二、教材分析本章主要内容是随机事件和概率的概念,用列举法求简单随机试验中事件的概率,利用频率估计概率.它是在第二学段定性描述随机现象发生可能性基础上,对随机事件发生的可能性(概率)进行定量研究.三、教学建议1.正确理解概率与频率的联系与区别初学概率的学生容易混淆概率与频率两个概念,更不容易理解两者的联系与区别.相同条件下,某一事件发生的概率是一个常数,是由事物固有的属性决定的.而相同条件下进行随机试验,即使是相同次数的重复试验,某一事件的频率也不一定相同,也即频率具有随机性.但随着试验次数的增加,一般来说频率会越来越稳定于某个常数附近,这个数就是概率.2.注意数学数据分析能力的建构数据分析与概率是初中数学的主干内容,在教学中应有意识、有目的地为学生创造收集、记录分析数据的实践机会,引导学生加工有用的信息,运用数据分析的方法进行辨析和讨论.3.鼓励学生动手试验,注意现代信息技术的应用为了让学生通过具体的试验操作获得一定的活动经验,体会随机试验中频率的随机性以及大量重复试验中频率的稳定性,进而加强对概率意义的理解,教科书在25.3节设置了一个投掷硬币的试验,为学生提供一个体验随机试验的机会.由于在这个试验中需要获得的投掷次数相对较多,因此这里需要发动全体学生积极参与,动手试验,靠集体的力量快速地获得试验频率.4.注意把握教学难度必须注意的是,本学段的概率内容还处在一个比较初级的水平,教学重点是概率意义的理解和随机观念的培养.用列举法求概率,应该重视学生对古典模型两个前提条件的理解,不应在计算繁难上作高要求.教师在教学中要注意把握重点,控制难度.5.强调结合实际,选取与生活密切联系的素材概率与现实生活的联系越来越紧密,这一领域的内容对学生来说应该是充满趣味性和吸引力的.教学时还需要结合当地的实际情况,挖掘身边的一些素材,使学生在解决实际问题的过程中,体会到概率与实际生活的密切联系,调动学生学习概率知识的积极性.。
人教版九年级数学上册导学案 第二十五章 概率初步 25.1.2 概率
人教版九年级数学上册导学案 第二十五章 概率初步 25.1.2 概率【学习目标】1.理解什么是随机事件的概率,了解概率是反映随机事件发生可能性大小的量.2.理解“事件A 发生的概率是P (A )=n m(在一次试验中有n 种等可能的结果,其中事件A 包含m 种)”的求概率的方法,并能求出简单问题的概率.【课前预习】1.从﹣2,0,1,2,3中任取一个数作为a ,既要使关于x 一元二次方程ax 2+(2a ﹣4)x+a ﹣8=0有实数解,又要使关于x 的分式方程211x a a x x++--=3有正数解,则符合条件的概率是( ) A .15 B .25 C .35 D .452.下列说法正确的是( )A .为了解三名学生的视力情况,采用抽样调查B .任意画一个三角形,其内角和是360°是必然事件C .甲、乙两名射击运动员10次射击成绩(单位:环)的平均数分别为x 甲、x 乙,方差分别为s 甲2、s 乙2,若x 甲=x 乙,s 甲2=0.4,s 乙2=2,则甲的成绩比乙的稳定D .一个抽奖活动中,中奖概率为120,表示抽奖20次就有1次中奖 3.掷一枚普通的正六面体骰子,出现的点数中,以下结果机会最大的是( )A .点数为3的倍数B .点数为奇数C .点数不小于4D .点数不大于44.下列说法中错误的是( )A .掷一枚普通的正六面体骰子,出现向上一面点数是2的概率是16B .从装有10个红球的袋子中,摸出1个白球是不可能事件C .为了解一批日光灯的使用寿命,可采用抽样调查的方式D .某种彩票的中奖率为1%,买100张彩票一定有1张中奖5.下列命题正确的是().A .任何事件发生的概率为1B .随机事件发生的概率可以是任意实数C .可能性很小的事件在一次实验中有可能发生D .不可能事件在一次实验中也可能发生6.抛掷一枚质地均匀的硬币,“反面朝上”的概率为12,那么抛掷一枚质地均匀的硬币100次,下列理解正确的是( ) A .每两次必有1次反面朝上B .可能有50次反面朝上C .必有50次反面朝上D .不可能有100次反面朝上7.在一个不透明的口袋中,装有3个相同的球,它们分别写有数字1,2,3,从中随机摸出一个球,若摸出的球上的数字为2的概率记为1P ,摸出的球上的数字小于4的记为2P ,摸出的球上的数字为5的概率记为3P ,则1P ,2P ,3P 的大小关系是( )A .123P P P <<B .321P P P <<C .213P P P <<D .312P P P <<8.在某校艺体节的乒乓球比赛中,李东同学顺利进入总决赛,且个人技艺高超,有同学预测“李东夺冠的可能性是80%”,对该同学的说法理解正确的是 ( )A .李东夺冠的可能性较小B .李东和他的对手比赛10局时,他一定会赢8局C .李东夺冠的可能性较大D .李东肯定会赢9.下列说法正确的是( ).A .投掷一枚质地均匀的硬币1000次,正面朝上的次数一定是500次B .天气预报“明天降水概率10%,是指明天有10%的时间会下雨”C .一种福利彩票中奖率是千分之一,则买这种彩票1000张,一定会中奖D .连续掷一枚均匀硬币,若5次都是正面朝上,则第六次仍然可能正面朝上10.某班共有40名同学,其中有2名同学习惯用左手写字,其余同学都习惯用右手写字,老师随机请1名同学回答问题,则习惯用左手写字的同学被选中的概率是()A.0B.120C.140D.1【学习探究】自主学习阅读课本,完成下列问题1、当A是必然事件时,P(A)= ;当A是不可能事件时,P(A)= ;任一事件A的概率P(A)的范围是;2、事件发生的可能性越大,则它的概率越接近________;反之,•事件发生的可能性越小,则它的概率越接近_________.3、一般地,在大量重复试验中,如果,那么这个常数p就叫做事件A的概率,记作。
人教版数学九年级上册第25章-概率初步(教案)
1.理解概率的基本性质,如非负性、规范性、可加性等。
2.掌握互斥事件和独立事件的概率计算方法。
25.4概率的应用
1.能运用概率知识解决实际问题。
2.了解概率在生活中的应用,提高解决问题的能力。
二、核心素养目标
1.培养学生运用数学语言描述随机现象,提高抽象概括能力。
2.培养学生运用概率知识进行问题分析,提升逻辑推理和数学思维能力。
此外,在教学过程中,我尝试采用小组讨论和实验操作的方式,让学生在实践中学习概率。从学生的反馈来看,这种教学方式取得了较好的效果,大家积极性很高,课堂氛围活跃。但同时,我也注意到,在小组讨论过程中,部分学生依赖性强,不够主动。因此,我需要在组织小组活动时,更加注重激发学生的主观能动性,引导他们积极参与讨论,提高合作能力。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《概率初步》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过不确定的情况?”(如抛硬币、抽奖等)这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索概率的奥秘。
在讲解概率的性质和应用时,我发现学生对于理论知识的应用还不够熟练。为了帮助学生更好地将所学知识运用到实际问题中,我计划在后续的教学中,增加一些与生活密切相关的综合题,让学生在解决问题的过程中,深化对概率性质的理解。
最后,我觉得在课堂教学过程中,要关注学生的个体差异。对于学习困难的学生,要给予更多的关心和指导,帮助他们克服难点,提高学习兴趣。同时,对于学有余力的学生,可以适当增加拓展性内容,激发他们的学习潜能。
2.教学难点
-理解随机事件的抽象概念:学生对随机事件的理解可能存在困难,需要通过具体实例和生活情境帮助学生理解。
2022年人教版九年级数学上册第二十五章概率初步教案 用列举法求概率(第2课时)
25.2 用列举法求概率(第2课时)一、教学目标【知识与技能】理解并掌握列表法和树状图法求随机事件的概率.并利用它们解决问题,正确认识在什么条件下使用列表法,什么条件下使用树状图法.【过程与方法】经历用列表法或树状图法求概率的学习,使学生明白在不同情境中分析事件发生的多种可能性,计算其发生的概率,解决实际问题,培养学生分析问题和解决问题的能力.【情感态度与价值观】通过求概率的数学活动,体验不同的数学问题采用不同的数学方法,但各种方法之间存在一定的内在联系,体会数学在现实生活中应用价值,培养缜密的思维习惯和良好的学习习惯.二、课型新授课三、课时第2课时,共2课时。
四、教学重难点【教学重点】1.会用列表法和树状图法求随机事件的概率.2.区分什么时候用列表法,什么时候用树状图法求概率.【教学难点】1.列表法是如何列表,树状图的画法.2.列表法和树状图的选取方法.五、课前准备课件等.六、教学过程(一)导入新课出示课件2:现有A、B、C三盘包子,已知A盘中有两个酸菜包和一个糖包,B 盘中有一个酸菜包和一个糖包和一个韭菜包,C盘中有一个酸菜包和一个糖包以及一个馒头.老师就爱吃酸菜包.如果老师从每个盘中各选一个包子(馒头除外),那么老师选的包子全部是酸菜包的概率是多少?你能用列表法列举所有可能出现的结果吗?出示课件3:通过播放视频,体会用“列表法”的不方便,从而导入新课.(板书课题)(二)探索新知探究利用画树状图法求概率教师问:抛掷一枚均匀的硬币,出现正面向上的概率是多少?(出示课件5)学生答:P(正面向上)=1.2教师问:同时抛掷两枚均匀的硬币,出现正面向上的概率是多少?学生答:可能出现的结果有:(正,正)(正,反)(反,正)(反,反).P(正面向上)=14教师问:还有别的方法求上面问题的概率吗?学生思考交流后,师生共同解答.(出示课件6).P(正面向上)=14出示课件7:如一个试验中涉及2个因素,第一个因素中有2种可能情况;第二个因素中有3种可能的情况.则其树形图如下图:教师归纳:树状图法:按事件发生的次序,列出事件可能出现的结果.出示课件8:同学们:你们玩过“石头、剪刀、布”的游戏吗,小明和小华正在兴致勃勃的玩这个游戏,你想一想,这个游戏能用概率分析解答吗?尝试用树状图法列出小明和小华所玩游戏中所有可能出现的结果,并求出事件A、B、C的概率.A:“小明胜”B:“小华胜”C:“平局”学生尝试用树状图分析,师生共同解答.(出示课件9,10)一次游戏共有9个可能结果,而且它们出现的可能性相等.事件A 发生的所有可能结果:(石头,剪刀)(剪刀,布)(布,石头); 事件B 发生的所有可能结果:(剪刀,石头)(布,剪刀)(石头,布); 事件C 发生的所有可能结果:(石头,石头)(剪刀,剪刀)(布,布). 所以,P(A)=3193=;P(B)=3193=;P(C)=3193=.出示课件11,12:教师归纳:1.画树状图求概率的定义用树状图的形式反映事件发生的各种情况出现的次数和方法、以及某一事件发生的可能性次数和方式,并求出概率的方法.适用条件:当一次试验涉及两个及其以上(通常3个)因素时,采用树状图法.2.画树状图求概率的基本步骤(1)将第一步可能出现的A 种等可能结果写在第一层;(2)若第二步有B 种等可能的结果,则在第一层每个结果下面画B 个分支,将这B 种结果写在第二层,以此类推;(3)根据树状图求出所有的等可能结果数及所求事件包含的结果数,利用概率公式求解.出示课件13,14:例1 某班有1名男生、2名女生在校文艺演出中获演唱奖,另有2名男生、2名女生获演奏奖.从获演唱奖和演奏奖的学生中各任选一人去领奖,求两人都是女生的概率.学生独立思考后师生共同解答.解:设两名领奖学生都是女生的事件为A,两种奖项各任选1人的结果用“树状图”来表示.共有12种结果,且每种结果出现的可能性相等,其中2名都是女生的结果有4种,所以事件A发生的概率为P(A)=41.123出示课件15:教师强调:计算等可能情形下概念的关键是确定所有可能性相等的结果总数n和求出事件A发生的结果总数m,“树状图”能帮助我们有序的思考,不重复、不遗漏地得出n和m.巩固练习:(出示课件16,17)经过某十字路口的汽车,可能直行,也可能向左转或向右转.如果这三种可能性大小相同,求三辆汽车经过这个十字路口时,下列事件的概率(1)三辆车全部继续直行;(2)两车向右,一车向左;(3)至少两车向左.学生自主思考后,独立解决,一生板演.解:画树状图,得(1)P (全部继续直行)=127; (2)P (两车向右,一车向左)=19; (3)P (至少两车向左)=727. 出示课件18:例2 甲、乙、丙三人做传球的游戏,开始时,球在甲手中,每次传球,持球的人将球任意传给其余两人中的一人,如此传球三次.(1)写出三次传球的所有可能结果(即传球的方式);(2)指定事件A :“传球三次后,球又回到甲的手中”,写出A 发生的所有可能结果;(3)P(A).学生思考交流后师生共同解答.(出示课件19)解:画树状图,得“传球三次后,球又回到甲的手中”的结果有甲-乙-丙-甲、甲-丙-乙-甲2种. .4182)(==A P教师强调:(出示课件20)当试验包含两步时,列表法比较方便;当然,此时也可以用树状图法;当事件要经过多个(三个或三个以上)步骤完成时,应选用树状图法求事件的概率.巩固练习:(出示课件21,22)现在学校决定由甲同学代表学校参加全县的诗歌朗诵比赛,甲同学有3件上衣,分别为红色(R)、黄色(Y)、蓝色(B),有2条裤子,分别为蓝色(B)和棕色(b).甲同学想要穿蓝色上衣和蓝色裤子参加比赛,你知道甲同学任意拿出1件上衣和1条裤子,恰好是蓝色上衣和蓝色裤子的概率是多少吗?学生自主思考后独立解决.解:用“树状图”列出所有可能出现的结果:每种结果的出现是等可能的.“取出1件蓝色上衣和1条蓝色裤子”记为事.件A,那么事件A发生的概率是P(A)=16.所以,甲同学恰好穿上蓝色上衣和蓝色裤子的概率是16(三)课堂练习(出示课件23-32)1.甲袋中装有2个相同的小球,分别写有数字1和2:乙袋中装有2个相同的小球,分别写有数字1和2.从两个口袋中各随机取出1个小球,取出的两个小球上都写有数字2的概率是()A.12B.13C.14D.162.在一个不透明的袋子里装有两个黄球和一个白球,它们除颜色外都相同,随机从中摸出一个球,记下颜色后放回袋子中,充分摇匀后,再随机摸出一个球.两次都摸到黄球的概率是()A.49B.13C.29D.193.a、b、c、d四本不同的书放入一个书包,至少放一本,最多放2本,共有种不同的放法.4.三女一男四人同行,从中任意选出两人,其性别不同的概率为()A.14B.13C.12D.345.在一个不透明的布袋中装有2个白球和n个黄球,它们除颜色外,其余均相同,若从中随机摸出一个球,摸到黄球的概率为45,则n= .6.在一个不透明的盒子里,装有三个分别写有数字6,-2,7的小球,它们的形状、大小、质地等完全相同.先从盒子里随机取出一个小球,记下数字后放回盒子里,摇匀后再随机取出一个小球,记下数字.请你用列表或画树状图的方法求下列事件的概率.(1)两次取出的小球上的数字相同;(2)两次取出的小球上的数字之和大于10.7.甲、乙、丙三个盒中分别装有大小、形状、质地相同的小球若干,甲盒中装有2个小球,分别写有字母A和B;乙盒中装有3个小球,分别写有字母C、D和E;丙盒中装有2个小球,分别写有字母H和I;现要从3个盒中各随机取出1个小球.(1)取出的3个小球中恰好有1个,2个,3个写有元音字母的概率各是多少?(2)取出的3个小球上全是辅音字母的概率是多少?参考答案:1.C解析:如图所示,一共有4种可能,取出的两个小球上都写有数字2的有1种情况,故取出的两.个小球上都写有数字2的概率是:142.A解析:画树状图如图:由树状图可知,共有9种等可能结果,其中两次都摸.到黄球的有4种结果,所以两次都摸到黄球的概率为493.104.C5.86.解:根据题意,画出树状图如下:(1)两次取出的小球上的数字相同的可能性只有3种,所以P(数字相同)= 31.93(2)两次取出的小球上的数字之和大于10的可能性只有4种,所以P(数字之和.大于10)=497.解:由树状图得,所有可能出现的结果有12个,它们出现的可能性相等..⑴满足只有一个元音字母的结果有5个,则P(一个元音)=512满足只有两个元音字母的结果有4个,则P(两个元音)=41=.123.满足三个全部为元音字母的结果有1个,则P(三个元音)=112⑵满足全是辅音字母的结果有2个,则P(三个辅音)=21=.126(四)课堂小结1.为了正确地求出所求的概率,我们要求出各种可能的结果,通常有哪些方法求出各种可能的结果?2.列表法和画树状图法分别适用于什么样的问题?如何灵活选择方法求事件的概率?(五)课前预习预习下节课(25.3)的相关内容.七、课后作业配套练习册内容八、板书设计:九、教学反思:由于前面已学过一般的列举法,学生在小学或其他学科中接触过“列表法”,因此本节课除了继续探究更为复杂的列举法外,还引入了树状图这种新的列举方法,以学生的生活实际为背景提出问题,在自主探究解决问题的过程中,自然地学习使用这种新的列举方法.在列举过程中培养学生思维的条理性,并把思考过程有条理、直观、简捷地呈现出来,使得列举结果不重不漏.。
人教版数学九年级上册 25.3 概率初步导学案
第二十五章概率初步年级:九年级内容:概率的意义(1课时)课型:新授执笔: 审核:定稿: 使用时间:学习目标:1、记忆并理解概率的定义,并从频率稳定性的角度了解概率的意义。
2、让学生经历试验、统计、分析、归纳、总结,进而了解并感受概率的意义。
3、学会怎样用概率描述随机事件发生的可能性的大小。
学习重点:对概率意义的正确理解学习难点:对随机事件的统计规律的深刻认识。
学习过程一、学前准备1、把全班学生分成10个小组做抛掷硬币试验,每组同学抛掷100次,并整理获得的实验数据记录在下面的统计表中。
根据数据利用描点的方法绘制出函数图像并总结其中的规律。
2、下表记录了一名球员在罚球线上投篮的结果计算表中投中的频率(精确到0.01)并总结其规律。
二、自学、合作、探究1、根据抛掷硬币的频率分布图规律总结出抛掷硬币的概率,并用自己的语言描述出概率的定义。
根据频率的取值范围总结出概率的取值范围。
2、同学之间相互讨论总结出概率的定义和取值范围。
3、同学们之间相互讨论,分析总结频率与概率有什么样的区别于联系?最后由教师点评补充,学生做出最后总结。
(1)一般的,频率是随着试验次数的变化而。
(2)概率是一个客观的。
(3)频率是概率的近似值,概率是频率的稳定制,他是频率的科学抽象,当试验次数越来越多时,频率围绕概率摆动的平均幅度会越来越,即频率靠近概率。
4、在一个不透明的口袋中装着大小、外形一模一样的5个红球、3个蓝球、2个白球,从中任意摸出一球则:(1)P(摸到红球)= (2)P(摸到蓝球)=(3)P(摸到白球)=5、在1、2、3、4四个数字中,取任意两个数,则他们都是偶数的概率为。
6、从一批种子中抽取若干粒,在同一条件下进行发芽试验,有关数据如下:计算表中发芽种子的频率(精确到0.01),估计发芽种子的概率。
三、 学习体会1、 体会一下试验、统计、分析、归纳、总结,进而了解并感受概率的定义的过程。
2、 知道频率与概率的定义和取值范围。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二十五章 概率初步
年级:九年级 内容:25.2用列举法求概率(第1课时) 课型:新授
执笔: 审核:孙万生 定稿: 使用时间:
学习目标:
1. 理解 P (A )=
n
m (在一次试验中有 n 种可能的结果,其中 A 包含 m 种)的意义。
2.应用 P (A )=n
m 解决一些实际问题。
学习重点:理解 P (A )=n
m 并运用它解决实际问题。
学习难点:通过试验理解 P (A )=n
m 并运用它解决一些具体问题。
学习过程:
一、 课前准备: (1) 概率是什么?
(2) P(A) 的取值范围是什么?
(3) A 是必然事件,B 是不可能事件,C 是随机事件,请你画出数轴把三个量表示出来。
二、试验探究:
试验1
从分别标有1、2、3、4、5号的5根纸签中随机抽取一根,抽出的签上的号码有( )种可能,即( )由于纸签的形状、大小相同,又是随机抽取的,所以我们认为:每个号码抽到的可能性( )都是( )。
试验2
掷一个骰子,向上一面的点数有( )种可能,即( )由于骰子的构造、质地均匀,又是随机掷出的所以我们断言:每种结果的可能性( )都是( )。
观察与思考:
以上两个试验有两个共同特点:
1.( )
2.( )
如何分析出此类试验中事件的概率?
归纳:
一般地,如果在一次试验中,有n 种可能的结果,并且它们发生的可能性都相等,事件A 包含其中的m 种结果,那么事件A 发生的概率为P(A)=( )。
且( )≤ P(A) ≤ ( )。
三、实践应用:
1.掷一个骰子,观察向上的一面的点数,求下列事件的概率:
(1)点数为2;
(2)点数为奇数;
(3)点数大于2小于5;
2、如图(2)是计算机中“扫雷”游戏的画面,在一个有9 ×9个小方格的正方形雷区中,随机埋藏着10颗地雷每个小方格内最多只能埋藏1颗地雷。
小王在游戏开始时随机地踩中一个方格,踩中后出现了如图所示的情况,我们把与标号3的方格相邻的方格记为A区域(划线部分),A区域外的部分记为B区域,数字3表示在A区域中有三颗地雷,那么,第二步应该踩在A区域还是B 区域?
3
思考:
如果小王在游戏开始时踩中的第一个方格上出现了标号1,则下一
步踩在哪个区域比较安全?
3、(1)掷一枚质地均匀的硬币的试验有几种可能的结果?它们的可能性相等吗?由此怎样确定“正面向上”的概率?
(2)掷两枚硬币,求下列事件的概率:
A.两枚硬币全部正面朝上;
B.两枚硬币全部反面朝上;
C.一枚硬币正面朝上;一枚硬币反面朝上;
思考:
“同时掷两枚硬币”与“先后两次掷一枚硬币”,这两种试验的所有可能结果一样吗?
四、巩固练习:
袋子中装有红、绿各一小球,随机摸出一个小球后放回,再随机摸出一个,求下列事件的概率:(1)第一次摸到红球,第二次摸到绿球;
(2)两次都摸到相同颜色的小球;
(3)两次摸到的球中有一个绿球和一个红球;
五、学习小结:
这节课有哪些收获?说说自己哪些不懂,与同学交流一下。
六、自我检测
1.柜子里有20双鞋,取出左脚穿的一只鞋的概率为( )
A 201
B 101
C 2
1 D 不确定
2.投掷一枚质地均匀的骰子,点数小于5的概率为( ) A 31 B 21 C 32 D 6
5 3.盒子里有8个除颜色外,其它完全相同的球,若摸到红色的球的概率为3/4 ,则其中红球的个数是( )
A 8 B6 C4 D 无法确定
4.数学考试中的选择题一般都是单项选择,即在A 、B 、C 、D 四个备选答案中只有一个是正确的,这种选择题任意选一个答案,正确的概率是( )
5.某中学八年级(1)班有55名学生参加期末数学考试,其中45人及格,从所有考卷中任意抽取一张,抽中不及格的概率为( )
6.一个袋中装有2个白球,4个红球,6个黄球,这些球除颜色不同外,其它完全相同,从袋中任意摸出一个球,求下列事件的概率
(1). 摸出红球 (2). 摸出白球 (3).摸出不是黄球
※ 广告牌上“丽晶大酒店”几个字是霓虹灯,几个字一个接一个地亮起来,直至全部亮起来再循环,则路人一眼望去能够看全的概率为多少?
七、巩固提高:
1、袋中装有若干个红球和若干个黄球,它们除了颜色外都相同,任意从中摸出一个球,摸到红球的概率是4
3. (1)若袋中共有8个球,需要几个红球?
(2)若袋中有9个红球,则还需要几个黄球?
(3)自己设计一个摸球游戏,使摸到红球的概率是
4
3.
2.判断下面的结论对否,并说明为什么?
两人各掷一枚硬币,“同时出现正面”的概率等于41, 则“不出现正面”的概率等于 1-41=4
3。