数字温度传感器

合集下载

单总线温度传感器DS18B20简介

单总线温度传感器DS18B20简介

单总线温度传感器DS18B20简介DS18B20是DALLAS公司生产的单总线式数字温度传感器,它具有微型化、低功耗、高性能、搞干扰能力强、易配处理器等优点,特别适用于构成多点温度测控系统,可直接将温度转化成串行数字信号(提供9位二进制数字)给单片机处理,且在同一总线上可以挂接多个传感器芯片。

它具有3引脚TO-92小体积封装形式,温度测量范围为-55℃~+125℃,可编程为9位~12位A/D转换精度,测温分辨率可达0.0625℃,被测温度用符号扩展的16位数字量方式串行输出,其工作电源既可在远端引入,也可采用寄生电源方式产生,多个DS18B20可以并联到3根或2根线上,CPU只需一根端口线就能与多个DS18B20通信,占用微处理器的端口较少,可节省大量的引线和逻辑电路。

以上特点使DS18B20非常适用于远距离多点温度检测系统。

DS18B20外形及引脚说明外形及引脚如图2所示:图2 管脚排列图在TO-92和SO-8的封装中引脚有所不同,具体差别请查阅PDF手册,在TO-92封装中引脚分配如下:1(GND):地2(DQ):单线运用的数据输入输出引脚3(VDD):可选的电源引脚DS18B20工作过程及时序DS18B20内部的低温度系数振荡器是一个振荡频率随温度变化很小的振荡器,为计数器1提供一频率稳定的计数脉冲。

高温度系数振荡器是一个振荡频率对温度很敏感的振荡器,为计数器2提供一个频率随温度变化的计数脉冲。

初始时,温度寄存器被预置成-55℃,每当计数器1从预置数开始减计数到0时,温度寄存器中寄存的温度值就增加1℃,这个过程重复进行,直到计数器2计数到0时便停止。

初始时,计数器1预置的是与-55℃相对应的一个预置值。

以后计数器1每一个循环的预置数都由斜率累加器提供。

为了补偿振荡器温度特性的非线性性,斜率累加器提供的预置数也随温度相应变化。

计数器1的预置数也就是在给定温度处使温度寄存器寄存值增加1℃计数器所需要的计数个数。

温度传感器的说明书

温度传感器的说明书

温度传感器的说明书尊敬的用户:感谢您购买我们的温度传感器产品。

为了确保您正确、安全地使用此产品,我们特别提供如下说明书,请仔细阅读并按照要求进行操作。

1. 产品概述温度传感器是一种用于测量温度的设备,可以将温度转化为电信号输出。

本产品采用高精度的数字温度传感器,并具备以下特点:- 超高精度:测量温度范围为-40℃至+125℃,精度可达±0.1℃。

- 快速响应:传感器具备快速响应时间,能够准确捕捉温度变化。

- 稳定可靠:采用优质材料和先进工艺制造,确保产品稳定可靠,长时间使用不易出现故障。

2. 使用方法本温度传感器为数字输出型产品,可通过以下步骤进行使用:步骤一:将传感器连接到计量仪器或控制系统的温度接口,确保接触良好。

步骤二:开启计量仪器或控制系统,并按照相关说明进行设置。

步骤三:进行温度测量,待测量结果稳定后,记录或进行进一步处理。

3. 注意事项为了保障您的安全和正常使用,请注意以下事项:- 请按照产品规定的工作温度范围使用,不要超出额定范围,以免影响测量准确性和传感器寿命。

- 请避免与水、油等液体直接接触,以免影响传感器性能和使用寿命。

- 请勿在高温、高湿度、强酸碱等恶劣环境中使用,以免损坏传感器。

- 避免传感器受到强磁场或电磁辐射的干扰,可能会导致测量偏差。

4. 维护保养- 定期清洁传感器外壳,可使用干净的软布轻擦,不要使用有机溶剂或大量水直接清洗。

- 如发现传感器接触异常或测量不准确,请及时联系售后服务,不要私自拆卸或修理。

5. 售后服务如有任何关于产品的使用问题或售后需求,请随时联系我们的客户服务团队,我们将竭诚为您提供技术支持和解决方案。

感谢您对我们产品的信任和支持,我们将一如既往地致力于为您提供高品质的产品和专业的服务。

祝您使用愉快!此致,敬礼。

厂商名称日期。

DS18B20数字式温度传感器

DS18B20数字式温度传感器

DS18B20数字式温度传感器,与传统的热敏电阻有所不同的是,使用集成芯片,采用单总线技术,其能够有效的减小外界的干扰,提高测量的精度。

同时,它可以直接将被测温度转化成串行数字信号供微机处理,接口简单,使数据传输和处理简单化。

部分功能电路的集成,使总体硬件设计更简洁,能有效地降低成本,搭建电路和焊接电路时更快,调试也更方便简单化,这也就缩短了开发的周期。

DS18B20单线数字温度传感器,即“一线器件”,其具有独特的优点:( 1 )采用单总线的接口方式与微处理器连接时仅需要一条口线即可实现微处理器与DS18B20的双向通讯。

单总线具有经济性好,抗干扰能力强,适合于恶劣环境的现场温度测量,使用方便等优点,使用户可轻松地组建传感器网络,为测量系统的构建引入全新概念。

( 2 )测量温度范围宽,测量精度高。

DS18B20 的测量范围为-55℃~+125℃;在-10~+85℃范围内,精度为±0.5℃。

( 3 )在使用中不需要任何外围元器件即可实现测温。

( 4 )多点组网功能。

多个DS18B20可以并联在惟一的三线上,实现多点测温。

( 5 )供电方式灵活。

DS18B20可以通过内部寄生电路从数据线上获取电源。

因此,当数据线上的时序满足一定的要求时,可以不接外电源,从而使系统结构更趋简单,可靠性更高。

( 6 )测量参数可配置。

DS18B20的测量分辨率可通过程序设定9~12位。

( 7 )负压特性。

电源极性接反时,温度计不会因发热而烧毁,但不能正常工作。

( 8 )掉电保护功能。

DS18B20内部含有EEPROM,在系统掉电以后,它仍可保存分辨率及报警温度的设定值。

DS18B20 具有体积更小、适用电压更宽、更经济、可选更小的封装方式,更宽的电压适用范围,适合于构建自己的经济的测温系统,因此也就被设计者们所青睐。

二、DS18B20测温原理DS18B20 的内部测温电路框图低温度系数晶振的振荡频率受温度的影响很小,用于产生固定频率的脉冲信号送给减法计数器1,为计数器提供一频率稳定的计数脉冲。

DS18B20的工作原理

DS18B20的工作原理

DS18B20的工作原理DS18B20是一款数字温度传感器,具有高精度、低功耗、数字输出等特点。

它采用了独特的1-Wire接口技术,可以通过单一的数据线进行通信和供电,非常适合在各种环境中进行温度监测和控制。

DS18B20的工作原理如下:1. 温度测量原理:DS18B20利用半导体材料的温度特性来测量温度。

它内部集成为了一个温度传感器,该传感器基于温度对硅芯片内部电压的影响进行测量。

当温度升高时,硅芯片内部的电压也会随之变化,通过测量这个变化的电压,就可以得到温度的数值。

2. 1-Wire接口技术:DS18B20采用了独特的1-Wire接口技术,这意味着它只需要一根数据线进行通信和供电。

在通信过程中,DS18B20会将温度数据转换为数字信号,并通过数据线传输给主控设备。

同时,主控设备也可以通过数据线向DS18B20发送指令,控制其工作模式和参数设置。

3. 工作电源:DS18B20可以通过1-Wire接口从主控设备获取电源,也可以通过外部提供的电源进行供电。

当通过1-Wire接口供电时,DS18B20会从数据线上提取能量,并利用内部的电源管理电路进行稳定的工作。

这种设计使得DS18B20在低功耗模式下工作,非常适适合于电池供电的应用场景。

4. 温度精度和分辨率:DS18B20具有高精度的温度测量能力,可以达到±0.5℃的精度。

同时,它还可以根据需要进行温度分辨率的设置,可选的分辨率包括9位、10位、11位和12位。

分辨率越高,测量的温度范围越小,但精度也相应提高。

5. 多个DS18B20的连接:由于DS18B20采用了1-Wire接口技术,可以通过将多个DS18B20连接在同一条数据线上,实现多个温度传感器的同时测量。

每一个DS18B20都有一个惟一的64位ROM代码,通过这个代码可以区分不同的传感器。

主控设备可以通过发送指令来选择特定的传感器进行温度测量。

总结:DS18B20是一款采用1-Wire接口的数字温度传感器,具有高精度、低功耗、数字输出等特点。

数字温度传感器工作原理

数字温度传感器工作原理

数字温度传感器工作原理
数字温度传感器是一种用于测量温度的装置,它能够将温度转化为数字信号输出。

这类传感器通常使用特定的敏感元件,如热敏电阻(PTC或NTC)、热电偶或热电阻(如铂电阻)等。

对于热敏电阻传感器,它的阻值会随温度的变化而变化。

通常情况下,热敏电阻是一个负温度系数(NTC)电阻元件,即其阻值随温度的升高而下降。

数字温度传感器通过测量热敏电阻的阻值,并将其转化为数字信号输出,从而得到温度值。

热电偶则是利用两个不同材料的导电性质差异以及温度变化引起的电动势变化来测量温度的传感器。

当两个导电材料的接触点处于不同的温度下时,会产生一定的电势差。

通过测量这个电势差,可以计算出温度值。

而热电阻则是利用材料在不同温度下的电阻值变化来测量温度的传感器。

最常用的热电阻材料是铂电阻(Pt100或Pt1000),其电阻值与温度之间具有良好的线性关系。

将热电阻放置在待测温度环境中,通过测量电阻值的变化,可以通过查表或计算得出温度值。

通过将热敏电阻、热电偶或热电阻连接到一定的电路中,数字温度传感器可以将温度转换为数字信号输出。

这些数字信号可以通过一定的标准协议传输,如I2C、SPI或UART等,从而
将温度值传送给其他的设备或系统进行处理和分析。

温度传感器DS18B20与MCS-51单片机的接口

温度传感器DS18B20与MCS-51单片机的接口

1.1 温度传感器DS18B20与MCS-51单片机的接口数字温度传感器问世于20世纪90年代中期。

它是微电子技术、计算机技术和自动测试技术的结晶。

数字温度传感器具有价格低、精度高、封装小、温度范围宽、使用方便等优点,被广泛应用于工业控制、电子测温计、医疗仪器等各种温度控制系统中。

数字温度传感器一般内部包含温度传感器、A/D转换器、信号处理器、存储器和相应的接口电路,有的还带多路选择器、中央控制器(CPU)、随机存储器(RAM)和只读存储器(ROM)。

数字温度传感器的种类繁多,一般按总线形式可分为单总线(1-wire)接口、双总线(I2C)接口和三总线(SPI)接口。

下面主要以单总线接口数字温度传感器芯片DS18B20为例来介绍数字温度传感器的使用。

1.1.1 DS18B20简介DS18B20是DALLAS公司生产的单总线数字温度传感器芯片,具有3引脚TO-92小体积封装形式;温度测量范围为-55℃~+125℃;可编程为9~12位A/D转换精度;用户可自设定非易失性的报警上下限值;被测温度用16位补码方式串行输出;测温分辨率可达0.0625℃;其工作电源既可在远端引入,也可采用寄生电源方式产生;多个DS18B20可以并联到3根或两根线上,CPU只需一根端口线就能与诸多DS18B20通信,占用微处理器的端口较少。

可广泛用于工业、民用、军事等领域的温度测量及控制仪器、测控系统和大型设备中。

1.1.2 DS18B20的外部结构DS18B20可采用3脚TO-92小体积封装和8脚SOIC封装。

其外形和引脚图如图7.17所示。

GND DQ V DDNCNCNC VGND(a) TO-92封装(b) SOIC封装图1.1 DS18B20的外形及引脚图图中引脚定义如下。

(1) DQ:数字信号输入/输出端。

(2) GND:电源地。

(3) V DD:外接供电电源输入端(在寄生电源接线方式时接地)。

1.1.3 DS18B20的内部结构DS18B20内部主要由4部分组成:64位光刻ROM 、温度传感器、非易失性温度报警触发器TH 和TL 、配置寄存器等。

ds18b20工作原理

ds18b20工作原理

ds18b20工作原理
DS18B20温度传感器是一种数字温度传感器,采用"1-wire"
(单总线)接口通信,其工作原理如下:
1. 传感器结构:DS18B20传感器由温度传感器芯片、电源线
和数据线组成。

芯片内部包含温度传感器、模数转换器和存储器。

2. 电源供电:传感器通过电源线从计算机、微控制器或其他设备中获取供电。

传感器的VDD和GND引脚用于供电。

3. 温度测量:传感器使用其内部温度传感器测量环境温度。

当温度变化时,传感器内部的温度传感器会产生电压变化。

4. 模数转换:传感器内部的模数转换器将温度传感器测量到的电压转换为数字信号。

转换后的数字信号可以在数据线上传输。

5. 通信协议:传感器使用1-wire接口协议进行通信。

该协议
允许使用单根数据线进行数据传输。

传感器通过数据线将温度数据发送给主控设备。

6. 数据读取:主控设备发送读取指令给传感器,传感器将温度数据通过数据线返回给主控设备。

主控设备可以通过读取传感器返回的数据来获取环境温度。

总结:DS18B20温度传感器工作原理基于温度传感器芯片和
模数转换器的结构,在供电后,传感器通过测量温度传感器的
电压变化来获取环境温度,并通过1-wire接口协议将温度数据传输给主控设备。

数字温度传感器芯片

数字温度传感器芯片

数字温度传感器芯片数字温度传感器芯片是一种用于测量温度的电子器件,将环境温度转化为数字电信号输出。

它使用了先进的集成电路技术和传感器技术,在温度测量方面具有很高的精度和稳定性。

数字温度传感器芯片可以广泛应用于各种领域,例如工业自动化、医疗设备、家用电器等。

它具有体积小、功耗低、响应速度快等特点,适用于需要准确温度测量且空间有限的场景。

数字温度传感器芯片的工作原理是利用物质的温度敏感性,通过相应的传感器转换为电信号。

常见的数字温度传感器芯片有两种类型:基于热电效应的传感器和基于半导体材料的传感器。

基于热电效应的数字温度传感器芯片利用热电对的温度依赖性,将热电对连接到电路上,测量出温度对应的电压或电流信号。

通过一系列的电路处理和转换,最终输出数字温度值。

这种传感器芯片具有较高的精度和稳定性,但价格较高。

基于半导体材料的数字温度传感器芯片则利用半导体材料在温度变化下的电阻性质,通过测量电阻值来计算温度。

这种传感器芯片具有体积小、功耗低的特点,适用于对空间要求较高的场合。

然而,由于半导体材料的性质受到一些外界因素的影响,因此在一些极端环境下,其精度和稳定性可能会稍微降低。

数字温度传感器芯片在使用时需要根据具体的应用场景进行选择。

一般需要考虑测量范围、精度要求、响应时间、电源电压等因素。

此外,还需要注意芯片与其他电路的兼容性和抗干扰能力,以确保测量结果的准确性和可靠性。

总之,数字温度传感器芯片是一种非常重要的电子器件,可以广泛应用于各个领域。

它通过转换温度信号为数字信号,具有高精度、高稳定性和快速响应的特点。

随着科技的发展和应用需求的增加,数字温度传感器芯片的性能和功能也在不断提升,将为各个领域的温度测量提供更加准确、可靠的解决方案。

LM35温度传感器的设计和制造

LM35温度传感器的设计和制造

LM35温度传感器的设计和制造由于现在科技的发展非常迅速,温度传感器也已经成为了很多领域必不可少的一部分。

在各种设备中,要通过传感器来监测温度,确保设备能够正常工作。

在这篇文章里,将要介绍的是常用的LM35数字温度传感器的设计和制造。

1. LM35数字温度传感器的基本原理LM35温度传感器是一种电压输出型的传感器,它的工作原理是将热电偶所产生的微小电压信号放大成一定的电压值,再通过运算放大电路将电压信号转换为对应温度。

所以说,这种传感器实质上就是一种测量温度的模拟电路。

2. LM35数字温度传感器的设计设计LM35数字温度传感器需要准备以下的器材:(1)LM35芯片(2)电源电池(3)15V稳压器(4)电容器(5)电阻器(6)LED灯(7)电线设计步骤:(1)按照LM35芯片的引脚连接需要将15V稳压器和对应的电容器连接到芯片的正极处。

(2)将芯片的负极连接到电源的接地端,同时也要连接电阻器和LED灯。

(3)将LM35传感器的Pin脚接收温度的信号输入到运算放大器中,将输出连接到LED灯上,以实现对温度变化的监测。

(4)由于LM35的输出是模拟信号,与数字电路的需求不符,所以我们需要一个A/D转换器,将模拟信号转化为数字信号。

3. LM35数字温度传感器的制造流程(1)通过软件进行LM35温度传感器的建模和仿真;(2)根据电路设计图和原理图,制作电路板,将所有元器件进行焊接;(3)进行电路板的测试和调试,确保没有电路故障;(4)将LM35芯片与电路板连接,进行温度测试和记录,发现温度异常还需要调试电路。

4. LM35数字温度传感器的使用LM35温度传感器的使用极为简单,只需要将它与需要监测的设备或物体接触表面,并通过已接入的电路将其输出信号反馈到计算机或显示屏上即可。

在使用过程中,还需要注意保持传感器的外观整洁、不受到震动和强光干扰,并进行定期检查和维护。

5. LM35数字温度传感器的应用LM35数字温度传感器在工业生产、物流仓储、环境监测、医学等领域应用广泛。

ds18b20温度传感器工作原理

ds18b20温度传感器工作原理

ds18b20温度传感器工作原理
DS18B20是一种数字温度传感器,它通过一根单一的数据总线进行工作。

传感器内部有一个精确的温度传感器和数字转换器。

以下是DS18B20温度传感器的工作原理:
1. 单线总线通信:DS18B20传感器使用单一的数据总线进行通信。

该总线不仅用于传输数据,还用于为传感器提供电源。

通过这种方式,可以减少传感器的引脚数量,使其适用于各种微控制器和嵌入式系统。

2. 温度测量:传感器内部有一个温度传感器,该传感器可以测量实时环境温度。

它使用精确的电阻和温度-电压转换技术,以确保温度测量的准确性和稳定性。

3. 数据转换:DS18B20传感器将温度测量结果转换为数字信号。

传感器内部的模数转换器将模拟信号转换为数字码,以便于传感器与主控制器之间的通信和处理。

4. ROM存储器:每个DS18B20传感器都有一个唯一的64位ROM存储器。

这个ROM存储器包含传感器的唯一序列号、制造商信息和其他相关信息。

这些信息可以用来识别传感器并设置其工作参数。

5. 通信协议:DS18B20传感器使用一种称为1-Wire协议的通信协议与主控制器进行通信。

该协议在传感器和主控制器之间建立一种基于时间的序列通信方式,主控制器上的软件可以通过这种协议与传感器进行数据传输、配置和控制。

总而言之,DS18B20温度传感器通过单一的数据总线进行通信,并使用内部的温度传感器和数字转换器测量环境温度。

它通过ROM存储器保存唯一的序列号和其他信息,使用1-Wire 协议与主控制器进行通信。

温度传感器18B20数字安全操作及保养规程

温度传感器18B20数字安全操作及保养规程

温度传感器18B20数字安全操作及保养规程温度传感器在工业自动化控制中有着广泛的应用,18B20是一种常用的数字温度传感器。

为确保安全操作,并延长传感器的寿命,本文将介绍温度传感器18B20的数字安全操作和保养规程。

1. 温度传感器18B20基本介绍18B20数字温度传感器采用1-Wire总线方式,具有高精度、可编程分辨率和广泛的工作温度范围等优点,在实际应用中广泛被采用。

18B20数字温度传感器有以下三种封装方式:•TO-92•标准SOIC 8引脚封装•TSSOP封装在使用18B20数字温度传感器时,需要注意以下两个方面:1.功耗传感器的功耗有着重要的影响,需根据应用场合选择合适的供电方式及传感器工作模式。

2.读写速率传感器的读写速率受到传感器供电方式和应用场合等多方面因素的影响。

在实际应用中,需要根据应用场合选择合适的传感器供电方式和读写速率,以确保传感器正常工作。

2. 温度传感器18B20的数字安全操作规程在使用温度传感器18B20时,需要注意以下数字安全操作规程:2.1 使用合适的供电方式传感器供电方式是影响传感器正常工作的关键因素之一。

在使用18B20数字温度传感器时,需根据具体有场合选择合适的供电方式。

常见的供电方式有以下两种:1.通过串行总线供电(Power-over-1-wire,POE)2.通过外部供电器供电在选择合适的供电方式时,需考虑传感器的工作电流、应用场合等因素。

2.2 正确选择传感器工作模式传感器可采用以下三种工作模式:1.精度模式2.快速模式3.最高速度模式在成本控制,功耗控制等各种因素下,应选择合适的传感器工作模式。

其中,精度模式最能保证温度测量的精度,最高速度模式最能保证测量速度,快速模式则在两者之间,应选择合适的传感器工作模式以满足应用需求。

2.3 合适的配置和使用18B20数字温度传感器可采用多种配置方式,包括选择分辨率、选择工作模式等。

在使用时,需根据实际需求选择合适的配置方式。

ds18b20温度传感器工作原理

ds18b20温度传感器工作原理

ds18b20温度传感器工作原理
DS18B20温度传感器是一种数字温度传感器,它基于热电效
应来测量温度。

该传感器由一个精密的温度传感器和一个数字转换器组成。

以下是DS18B20温度传感器的工作原理:
1. 热电效应:DS18B20温度传感器利用热电效应来测量温度。

当两个不同材料的接触点形成温度梯度时,就会产生电动势。

传感器中的温度传感器部分采用的材料对温度变化非常敏感,因此产生的电动势可以反映出温度的变化。

2. 温度传感器:DS18B20温度传感器中的温度传感器部分是
由一个特殊的材料制成的。

该材料具有温度敏感性,当温度变化时,该材料会产生电动势。

这个电动势可以通过传感器的引脚进行读取和转换。

3. 数字转换器:DS18B20温度传感器具有内置的数字转换器。

这个数字转换器可以将从温度传感器获得的电压信号转换为数字信号。

数字信号可以直接读取和处理,而无需进行模拟信号转换。

4. 串行总线通信:DS18B20温度传感器通过一种称为One-
Wire总线的串行通信协议与主控制器进行通信。

传感器和主
控制器之间只需使用单一的数据线进行通信,使得传感器的连接变得简单方便。

总结起来,DS18B20温度传感器工作原理是利用热电效应测
量温度,并通过温度传感器和数字转换器来转换和读取温度信号。

该传感器通过One-Wire总线与主控制器进行通信。

Pt100温度传感器和DS18B20传感器

Pt100温度传感器和DS18B20传感器

Pt100温度传感器和DS18B20传感器pt100是铂热电阻,它的阻值会随着温度的变化而改变。

PT后的100即表示它在0℃时阻值为100欧姆,在100℃时它的阻值约为138.5欧姆。

它的工作原理:当PT100在0摄氏度的时候他的阻值为100欧姆,它的阻值会随着温度上升而成近似匀速的增长。

但他们之间的关系并不是简单的正比的关系,而更应该趋近于一条抛物线。

铂电阻的阻值随温度的变化而变化的计算公式:-200<t<0℃Rt=R0[1+At+Bt*t+C(t-100)t*t*t] (1)0≤t<850℃Rt=R0(1+At+Bt2)(2)Rt为t℃时的电阻值,R0为0℃时的阻值。

公式中的A,B,系数为实验测定。

这里给出标准的DIN IEC751系数:A=3.9083E-3、B=-5.775E-7、C=-4.183E-12根据韦达公式求得阻值大于等于100欧姆的Rt -〉t的换算公式:0≤t<850℃t=(sqrt((A*R0)^2-4*B*R0*(R0-Rt))-A*R0)/2/B/R0PT100温度感测器是一种以白金(Pt)作成的电阻式温度检测器,属于正电阻系数,其电阻和温度变化的关系式如下:R=Ro(1+αT)其中α=0.00392,Ro为100Ω(在0℃的电阻值),T为摄氏温度<br>因此白金作成的电阻式温度检测器,又称为PT100。

1:Vo=2.55mA ×100(1+0.00392T)=0.255+T/1000 。

2:量测Vo时,不可分出任何电流,否则测量值会不准。

电路分析由于一般电源供应较多零件之后,电源是带杂讯的,因此我们使用齐纳二极体作为稳压零件,由于7.2V齐纳二极体的作用,使得1K电阻和5K可变电阻之电压和为6.5V,靠5K可变电阻的调整可决定电晶体的射(集极)极电流,而我们须将集极电流调为2.55mA,使得量测电压V如箭头所示为0.255+T/1000。

数字温度传感器的技术参数

数字温度传感器的技术参数

数字温度传感器的技术参数数字温度传感器是一种常见的温度测量装置,它可以将温度转换为数字信号输出,广泛应用于各个领域,如空调、冰箱、电热水器、温度计等。

在选择数字温度传感器时,关注其技术参数是非常重要的。

本文将从温度范围、精度、分辨率和响应时间四个方面介绍数字温度传感器的技术参数。

一、温度范围数字温度传感器的温度范围指的是可测量的温度范围。

常见的数字温度传感器温度范围为-55℃至150℃或-40℃至125℃。

其中,-40℃至125℃的温度范围适用于大多数应用场景,比如家电、电子设备、汽车等。

二、精度数字温度传感器的精度也称为测量误差,是指传感器的实际温度测量值与实际温度之间的差值。

精度可以通过以下公式计算:精度 = (|测量值-实际值| ÷ 实际值)× 100%通常,数字温度传感器的精度在模拟温度传感器上无法匹配。

传感器的精度取决于其设计和制造质量的强度。

具体精度要求根据不同应用场景而不同。

三、分辨率数字温度传感器的分辨率指的是传感器能够检测并输出的最小温度差异。

分辨率通常以位数(比特)表示。

常见的数字温度传感器分辨率为12位或16位。

12位分辨率的数字温度传感器可以在0.0625℃的间隔内输出温度值,16位分辨率的数字温度传感器可以在0.0039℃的间隔内输出温度值。

四、响应时间数字温度传感器的响应时间是指传感器检测到温度变化后输出数字信号所用的时间。

响应时间通常以毫秒(ms)表示。

数字温度传感器的响应时间与其工作温度相关,通常在1毫秒到10毫秒之间。

总结:选择数字温度传感器时,除了以上的四个技术参数,还需关注传感器的价格、工作电压、电流等其他技术参数。

在具体应用场景中,还需根据具体需求考虑其可靠性、耐久性、应用环境等因素。

数字温度传感器工作原理

数字温度传感器工作原理

数字温度传感器工作原理
数字温度传感器是一种通过电子电路测量温度的传感器。

其工作原理可以简单地分为两个步骤:
1. 温度感知:数字温度传感器内部包含一个温度感知器件,例如热敏电阻(PTC或NTC),热电偶或热敏电阻。

当温度发生变化时,感知器件的电特性会发生相应的变化。

2. 电信号转换:温度感知器件的电特性变化会被传感器内部的电路转换为相应的电信号,例如电压或电流。

这个电信号会与一个参考电压或电流进行比较,产生一个相应的数字输出。

数字温度传感器通常还包含一个ADC(模数转换器),用于将连续变化的模拟电信号转换为离散的数字信号。

ADC将模拟电信号进行采样和量化,并将其转换为数字数据,以便计算机或微控制器能够处理和显示温度值。

总的来说,数字温度传感器通过感知温度的物理特性变化,并将其转换为数字信号,实现对温度的准确测量和监测。

温度传感器ds18b20

温度传感器ds18b20

温度传感器ds18b20温度传感器DS18B201. 简介温度传感器DS18B20是一种数字温度传感器,可用于测量环境温度。

该传感器由Maxim Integrated公司生产,并在许多应用中得到了广泛的应用,如家庭自动化、气象站、工业控制等。

DS18B20采用了数字化接口,并具有高精度、可编程分辨率和低功耗等特点。

2. 技术规格DS18B20的技术规格如下:- 工作电源:3.0V至5.5V- 测量范围:-55°C至+125°C- 分辨率:可编程为9、10、11或12位- 精度:±0.5°C(在-10°C至+85°C范围内)- 通信接口:一线式数字接口3. 工作原理DS18B20采用了一线式数字接口,这意味着它只需要一根数据线进行通信。

传感器从控制器接收命令,并通过数据线将温度数据发送回控制器。

传感器的数据线同时起到了供电的作用。

DS18B20通过内部的精密温度传感器测量环境温度。

传感器将温度转换为数字信号,并通过数据线将其发送给控制器。

传感器的分辨率可以根据需要进行编程,从而在精度和响应速度之间进行平衡。

4. 使用方法使用DS18B20温度传感器非常简单。

首先,将传感器的电源引脚连接到可用的电源引脚,并将数据线连接到控制器的GPIO引脚。

然后,通过控制器向传感器发送命令,请求温度数据。

传感器将在一段时间后将温度数据发送回控制器,控制器可以读取这些数据并进行相应的处理。

DS18B20还具有一些特殊的命令,如启动温度转换、复位传感器和读取ROM代码等。

这些命令可以通过与控制器的通信来实现。

5. 应用领域温度传感器DS18B20在许多应用中得到了广泛的应用。

以下是一些常见的应用领域:- 家庭自动化:DS18B20可以用于监测室内温度,从而实现智能化的温控系统。

- 气象站:DS18B20可以用于监测室外温度,并将数据发送到气象站系统进行分析和显示。

ic温度传感器工作原理

ic温度传感器工作原理

ic温度传感器工作原理IC温度传感器工作原理一、概述温度传感器是一种用于测量物体温度的设备。

IC温度传感器,也称为数字温度传感器,是一种集成电路芯片,它能够将测量到的温度转换为数字信号输出。

通常情况下,IC温度传感器比其他类型的温度传感器更加精准和稳定。

二、IC温度传感器的分类目前市场上主要有两种类型的IC温度传感器:基于热电偶原理的型号和基于PN结原理的型号。

1. 基于热电偶原理的型号这种类型的IC温度传感器利用热电偶效应来测量物体的温度。

当两个不同金属连接在一起时,在它们之间产生一个电动势。

这个电动势与它们之间的温差成正比。

因此,当一个金属接触到物体时,另一个金属接触到参考点(如空气),就会产生一个电动势。

通过测量这个电动势,可以得出物体的温度。

2. 基于PN结原理的型号这种类型的IC温度传感器利用PN结反向偏置时产生的温度依赖电压来测量温度。

当PN结反向偏置时,由于热扰动,会在PN结上产生一个电压。

这个电压与温度成正比。

因此,可以通过测量反向偏置时的电压来得出物体的温度。

三、IC温度传感器的工作原理IC温度传感器的工作原理基于热电偶或PN结原理。

在使用前需要将IC温度传感器连接到微处理器或其他数字设备上。

1. 基于热电偶原理的型号当一个金属接触到物体时,另一个金属接触到参考点(如空气),就会产生一个电动势。

这个电动势与它们之间的温差成正比。

因此,当IC温度传感器接触到物体时,就会产生一个电动势。

这个电动势被转换为数字信号,并通过微处理器或其他数字设备输出。

2. 基于PN结原理的型号当PN结反向偏置时,由于热扰动,会在PN结上产生一个电压。

这个电压与温度成正比。

因此,在使用IC温度传感器时,需要将其连接到微处理器或其他数字设备上,并对其进行反向偏置。

然后,通过测量反向偏置时的电压来得出物体的温度。

这个电压被转换为数字信号,并通过微处理器或其他数字设备输出。

四、IC温度传感器的优缺点1. 优点(1)精准度高:IC温度传感器比其他类型的温度传感器更加精准和稳定。

温度传感器DS18B及LCD1602的使用

温度传感器DS18B及LCD1602的使用

温度传感器DS18B及LCD1602的使用温度传感器DS18B20是一种数字温度传感器,可以通过单线数字接口与单片机进行通信。

它采用了Dallas的1-Wire总线协议,具有高精度、低功耗、长传输距离等特点。

而LCD1602是一种常用的字符型液晶显示屏,可以显示16×2个字符。

使用DS18B20温度传感器需要先进行硬件连接。

它需要三个引脚,即VCC、GND和DQ。

VCC连接到3.3V或5V电源,GND连接到地线,DQ连接到单片机的一个GPIO口。

在连接时要注意使用上拉电阻将DQ引脚连接到VCC,以确保通信的可靠性。

在软件方面,需要使用1-Wire总线的协议进行通信。

可以使用基于C语言或者Arduino的库来实现。

在Arduino中,可以使用OneWire库来方便地读取DS18B20的数据。

首先需要创建一个OneWire对象,并指定DQ引脚,然后在setup(函数中初始化该对象。

接下来在loop(函数中可以使用`reset_search(`函数来连接的设备,并通过`search(`函数来获取设备的地址。

而后使用`reset(`函数重置总线,`select(`函数选择设备进行通信,`write(`函数发送指令,`read(`函数读取数据。

其中,读取温度数据需要先发送读取温度的指令,使用`read_bytes(`函数读取9个字节的数据,低字节在前,高字节在后,然后将读取到的数据处理转换为摄氏温度。

接下来是LCD1602的使用。

LCD1602需要连接到单片机的多个引脚,包括VCC、GND、SCL、SDA等。

在Arduino中,可以使用LiquidCrystal库来方便地控制LCD1602、首先需要创建一个LiquidCrystal对象,并指定连接的引脚,然后在setup(函数中初始化该对象。

接下来可以使用一系列函数来向LCD1602写入数据,如`begin(`函数用于初始化LCD1602,`print(`函数用于显示字符,`setCursor(`函数用于设置光标位置等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
单片机从发送完 复位脉冲到再次 控制总线至少要 等待480us
初始化时序
写时序
写时序分为写“0”间隙和写“1”间隙。
控制器写的过程是在大于 1us之后完成的 (为0继续低电平,为1释放总线),为了 保证数据的可靠性,DS18B20应该在15us 以后来读数据,这样可以保证数据线的电 平状态比较稳定。
DS18B20内部结构
DS18B20主要由4部分组成:64位ROM和单总线接口、温度 传感器、高速缓存存储器和非易失存储器
DS18B20内部结构
为了满足测温的灵活性,需要在不同的场合选择 不同的精度,通过对配置寄存器(CONFIG)的 编程即可实现。
CONFIG的格式如右示 其中R1、R0决定温度 转换的精度位数,默认
无论是内部寄生电源还是外部供电,I/O口 线都要接5K左右的上拉电阻。
DS18B20的控制方式
寄生电源供电方式
(外部供电)
外部电源供电方式
DS18B20工作过程
根 据 DS18B20 的 通 信 协 议 , 单 片 机 控 制 DS18B20完成温度转换必须经过如下几个 步骤:每一次读写之前进行初始化;初始 化成功后执行一条对ROM的操作指令;然 后 进 行 存 储 器 (RAM) 操 作 指 令 , 使 DS18B20完成温度测量并将结果存入高速 缓存器,在此基础上,主机才能独处转换 结果。
写时序
读时序
读DS18B20必须严格按照读间隙的时5us内完成的,为了 保证数据的可靠性,主控制器应该在接近 15us的末尾来读数据,这样可以保证数据 线的电平状态比较稳定。
读时序
读时序
主程序流程图
小结
DS18B20的简单应用
DS18B20具体性能
一总线接口 每个芯片都有一个唯一的64位的序列号 简单的多点分布应用 ,CPU只需一个I/O口就能与多个
DS18B20通信 无需外部器件 供电范围3.0V-5.5V,温度测量范围为-55℃ -125℃ 在-10℃~85 ℃范围内测量精度可达±0.5 ℃ 可编程为9-12位A/D转换精度,测温分辨率可达0.0625 多个DS18B20可以并联到3根或2根线上 可由用户设置的非易失温度越界报警
温度传感器的实际应用
如果按传感器与被测对象的接触方式可分为两大 类:一是接触式温度传感器,一是非接触式温度 传感器。
接触式温度传感器的测温元件与被测对象要有良 好的热接触,通过热传导及对流原理达到热平衡, 这时温度计的是被测对象的温度,这种测温方法 精度比较高。
但对于运动的、热容量比较小的、或对感温元件 有腐蚀作用的对象,这种方法将会产生很大误差。
DS18B20
2020/4/21
电子信息系 袁可可
教学目标
了解DS18B20原理 掌握DS18B20的简单应用
温度传感器的实际应用
温度是工农业生产中最常用的参数之一。 近年来,随着家用电器、日用装置的自动 化、无公害、节能运动的日益发展,特别 是微控制器的应用,对各类传感器的需求 更是大量增加,在30多种常用物理量的测 量传感器中,对温度传感器的需要量占首 位,大约占50%左右。
数字温度传感器DS18B20
温度测量本来是一个比较复杂的过程,通 常的办法是用温度传感器将温度转换成电 压信号,然后再进行A/D转换,得到对应的 电压值,而且还需要对温度传感器进行线 性拟合、误差修正等过程。
而DS18B20在内部完成整个过程,直接可 以通过一总线得到温度数据,大大简化了 温度测量的过程,所以在许多温度测量控 制中都有应用。
非接触测温的测温元件与被测对象互不接触。最 常用的是根据辐射热交换原理制成的传感器。
数字温度传感器DS18B20
外观
DS18B20 数 字 温 度 计 是 DALLAS 公 司 生 产 的 1Wire,即单总线器件,具 有线路简单,体积小的特 点,因此用它来组成一个 测温系统,具有线路简单, 在一根通信线,可以挂很 多这样的数字温度计,十 分方便。
DS18B20共有5条ROM操作命令,6条RAM 操作命令
DS18B20工作过程
DS18B20时序及编程
DS18B20与单片机的通信是通过严格的时 序来实现的,每次传送数据或命令都是一 系列的时序信号组成,共有三种基本时序: 初始化时序;写0、1时序;读0、1时序。
初始化时序
单片机先发一个复位脉冲,保持低电平时 间480us-960us;然后释放数据线由上拉电 阻将数据线置为高电平,等待应答脉冲, 等待时间15us-60us;然后由DS18B20应答, 应答脉冲能保持60us-240us。
12位
DS18B20温度存储器
DS18B20测得的温度可以达到12位,所以 使用两个8位的存储器存储。
以16位符号扩展的二进制补码读数形式存 储在高速缓存器的第0、1字节单元。
DS18B20温度存储器
单片机通过单总线接口读该数据(低位在 前)。
被测温度大于0,S=0,实际温度=测得数值 *0.0625
被测温度小于0,S=1,实际温度=测得数值 取反加1*0.0625
不同温度与数字输出对应关系
DS18B20的控制方式
DS18B20与单片机的连接有两种方法:
一种是VDD接外部电源,GND接地,DQ与 单片机的I/O线相连;
另 一 种 是 用 寄 生 电 源 供 电 , 此 时 VDD 、 GND接地,DQ接单片机I/O口。
相关文档
最新文档