工程力学作业解答(重大版)
工程力学大作业(答案)
大作业(一)一、填空题1、杆件变形的基本形式有(轴向拉伸和压缩)、(剪切)、(扭转)和(弯曲)2、材料力学所研究的问题是构件的(强度)、(刚度)和(稳定性)。
3、脆性材料的抗压能力远比抗拉能力(强)。
4、同一种材料,在弹性变形范围内,横向应变ε/和纵向应变ε之间有如下关系:(ε/= -με)5、(弹性模量E )是反映材料抵抗弹性变形能力的指标。
6、(屈服点σs )和(抗拉强度σb )是反映材料强度的两个指标7、(伸长率δ)和(断面收缩率ψ)是反映材料塑性的指标,一般把(δ>5%)的材料称为塑性材料,把(δ<5%)的材料称为脆性材料。
8、应力集中的程度可以用(应力集中因数K )来衡量 9、(脆性材料)对应力集中十分敏感,设计时必须考虑应力集中的影响 10、挤压面是外力的作用面,与外力(垂直),挤压面为半圆弧面时,可将构件的直径截面视为(挤压面)11、如图所示,铆接头的连接板厚度t=d ,则铆钉剪应力=( 22dP πτ= ) ,挤压应力bs =( td Pbs 2=σ )。
P/2tttdPP/2二、选择题1、构成构件的材料是可变形固体,材料力学中对可变形固体的基本假设不包括(C )A 、均匀连续性B 、各向同性假设C 、平面假设D 、小变形假设 2、下列力学性能指标中,(B )是强度指标A 、弹性模量EB 、屈服强度s σC 、伸长率δD 、许用应力σ 3、下列力学性能指标中,(C )是反映塑性的指标A 、比例极限p σB 、抗拉强度b σC 、断面收缩率ψD 、安全系数n 4、下列构件中,( C )不属于轴向拉伸或轴向压缩 A 、 B 、 C 、 D 、5、强度计算时,引入安全系数的原因不包括(A)A、力学性能指标测定方法都不是太科学B、对构件的结构、尺寸和受力等情况都作了一定程度的简化C、加工工艺对构件强度的影响考虑的不全面D、构件需有必要的强度储备6、一直杆受外力作用如图所示,此杆各段的轴力图为(C)A、B、C、D、7、一直杆受外力作用如图所示,此杆各段的轴力为(A)A、+6(拉力),- 4(压力),4(拉力)B、-6(压力),- 4(压力),4(拉力)C、+6(拉力),+ 4(拉力),4(拉力)D、-6(压力),+ 4(拉力),4(拉力)8、图所示为两端固定的杆。
重庆大学工程力学作业解答
工程力学课后解答5、9 题图5、9所示中段开槽得杆件,两端受轴向载荷P 得作用,试计算截面1-1与2-2上得应力。
已知:P = 140kN,b = 200mm,b 0 = 100mm,t = 4mm 。
题图5、9解:(1) 计算杆得轴力 kN 14021===P N N (2) 计算横截面得面积21m m 8004200=⨯=⨯=t b A202mm 4004)100200()(=⨯-=⨯-=t b b A (3) 计算正应力MPa 1758001000140111=⨯==A N σ MPa 3504001000140222=⨯==A N σ (注:本题得目得就是说明在一段轴力相同得杆件内,横截面面积小得截面为该段得危险截面)5、10 横截面面积A=2cm 2得杆受轴向拉伸,力P=10kN,求其法线与轴向成30°得及45°斜截面上得应力ασ及ατ,并问m ax τ发生在哪一个截面? 解:(1) 计算杆得轴力kN 10==P N(2) 计算横截面上得正应力MPa 501002100010=⨯⨯==A N σ(3) 计算斜截面上得应力MPa 5.37235030cos 2230=⎪⎪⎭⎫ ⎝⎛⨯==σσMPa 6.2123250)302sin(230=⨯=⨯=στ MPa 25225045cos 2245=⎪⎪⎭⎫⎝⎛⨯==σσMPa 251250)452sin(245=⨯=⨯=στ (4) m ax τ发生得截面 ∵0)2cos(==ασαταd d 取得极值 ∴ 0)2cos(=α 因此:22πα=, 454==πα故:m ax τ发生在其法线与轴向成45°得截面上。
(注:本题得结果告诉我们,如果拉压杆处横截面得正应力,就可以计算该处任意方向截面得正应力与剪应力。
对于拉压杆而言,最大剪应力发生在其法线与轴向成45°得截面上,最大正应力发生在横截面上,横截面上剪应力为零) 5、17 题图2、17所示阶梯直杆AC ,P =10kN,l 1=l 2=400mm,A 1=2A 2=100mm 2,E =200GPa 。
重庆大学工程力学作业解答
工程力学课后解答5.9 题图5.9所示中段开槽的杆件,两端受轴向载荷P 的作用,试计算截面1-1和2-2上的应力。
已知:P = 140kN ,b = 200mm ,b 0 = 100mm ,t = 4mm 。
题图5.9解:(1) 计算杆的轴力 kN 14021===P N N (2) 计算横截面的面积21m m 8004200=⨯=⨯=t b A202mm 4004)100200()(=⨯-=⨯-=t b b A (3) 计算正应力MPa 1758001000140111=⨯==A N σ MPa 3504001000140222=⨯==A N σ (注:本题的目的是说明在一段轴力相同的杆件内,横截面面积小的截面为该段的危险截面)5.10 横截面面积A=2cm 2的杆受轴向拉伸,力P=10kN ,求其法线与轴向成30°的及45°斜截面上的应力ασ及ατ,并问m ax τ发生在哪一个截面? 解:(1) 计算杆的轴力kN 10==P N(2) 计算横截面上的正应力MPa 501002100010=⨯⨯==A N σ (3) 计算斜截面上的应力MPa 5.37235030cos 2230=⎪⎪⎭⎫⎝⎛⨯==σσMPa 6.2123250)302sin(230=⨯=⨯=στ MPa 25225045cos 2245=⎪⎪⎭⎫⎝⎛⨯==σσMPa 251250)452sin(245=⨯=⨯=στ (4) m ax τ发生的截面 ∵0)2cos(==ασαταd d 取得极值 ∴ 0)2cos(=α 因此:22πα=, 454==πα故:m ax τ发生在其法线与轴向成45°的截面上。
(注:本题的结果告诉我们,如果拉压杆处横截面的正应力,就可以计算该处任意方向截面的正应力和剪应力。
对于拉压杆而言,最大剪应力发生在其法线与轴向成45°的截面上,最大正应力发生在横截面上,横截面上剪应力为零)5.17 题图2.17所示阶梯直杆AC ,P =10kN ,l 1=l 2=400mm ,A 1=2A 2=100mm 2,E =200GPa 。
(完整版)工程力学课后习题答案
工程力学练习册学校学院专业学号教师姓名第一章静力学基础 1第一章静力学基础1-1 画出下列各图中物体A,构件AB,BC或ABC的受力图,未标重力的物体的重量不计,所有接触处均为光滑接触。
(a)(b)(c)2 第一章静力学基础(d)(e)(f)(g)第一章静力学基础 3 1-2 试画出图示各题中AC杆(带销钉)和BC杆的受力图(a)(b)(c)(a)4 第一章静力学基础1-3 画出图中指定物体的受力图。
所有摩擦均不计,各物自重除图中已画出的外均不计。
(a)第一章静力学基础 5 (b)(c)(d)6 第一章静力学基础(e)第一章静力学基础7 (f)(g)8 第二章 平面力系第二章 平面力系2-1 电动机重P=5000N ,放在水平梁AC 的中央,如图所示。
梁的A 端以铰链固定,另一端以撑杆BC 支持,撑杆与水平梁的夹角为30 0。
如忽略撑杆与梁的重量,求绞支座A 、B 处的约束反力。
题2-1图∑∑=︒+︒==︒-︒=PF F FF F F B A yA B x 30sin 30sin ,0030cos 30cos ,0解得: N P F F B A 5000===2-2 物体重P=20kN ,用绳子挂在支架的滑轮B 上,绳子的另一端接在绞车D 上,如第二章 平面力系 9图所示。
转动绞车,物体便能升起。
设滑轮的大小及轴承的摩擦略去不计,杆重不计,A 、B 、C 三处均为铰链连接。
当物体处于平衡状态时,求拉杆AB 和支杆BC 所受的力。
题2-2图∑∑=-︒-︒-==︒-︒--=030cos 30sin ,0030sin 30cos ,0P P F FP F F F BC yBC AB x解得: PF P F AB BC 732.2732.3=-=2-3 如图所示,输电线ACB 架在两电线杆之间,形成一下垂线,下垂距离CD =f =1m ,两电线杆间距离AB =40m 。
电线ACB 段重P=400N ,可近视认为沿AB 直线均匀分布,求电线的中点和两端的拉力。
《工程力学》课后习题解答
1-1试画出以下各题中圆柱或圆盘的受力图。
与其它物体接触处的摩擦力均略去。
解:1-2 试画出以下各题中AB 杆的受力图。
(a) B(b)(c)(d)A(e) A(a)(b) A(c)A(d)A(e)(c)(a)(b)解:1-3 试画出以下各题中AB 梁的受力图。
(d)(e)BB(a)B(b)(c)F B(a)(c)F (b)(d)(e)解:1-4 试画出以下各题中指定物体的受力图。
(a) 拱ABCD ;(b) 半拱AB 部分;(c) 踏板AB ;(d) 杠杆AB ;(e) 方板ABCD ;(f) 节点B 。
解:(a)F (b)W(c)(d)D(e)F Bx(a)(b)(c)(d)D(e)W(f)(a)D(b)B(c)BF D1-5 试画出以下各题中指定物体的受力图。
(a) 结点A ,结点B ;(b) 圆柱A 和B 及整体;(c) 半拱AB ,半拱BC 及整体;(d) 杠杆AB ,切刀CEF 及整体;(e) 秤杆AB ,秤盘架BCD 及整体。
解:(a)(d)FC(e)WB(f)F FBC(c)(d)AT F BAF (b)(e)(b)(c)(d)(e)CAA C’CDDB2-2 杆AC 、BC 在C 处铰接,另一端均与墙面铰接,如图所示,F 1和F 2作用在销钉C 上,F 1=445 N ,F 2=535 N ,不计杆重,试求两杆所受的力。
解:(1) 取节点C 为研究对象,画受力图,注意AC 、BC 都为二力杆,(2) 列平衡方程:12140 sin 600530 cos6005207 164 o y AC o x BC AC AC BC F F F F F F F F F N F N=⨯+-==⨯--=∴==∑∑ AC 与BC 两杆均受拉。
2-3 水平力F 作用在刚架的B 点,如图所示。
如不计刚架重量,试求支座A 和D 处的约束力。
解:(1) 取整体ABCD 为研究对象,受力分析如图,画封闭的力三角形:(2)F 1F FDF F AF D211 1.122D A D D A F F FF F BC AB AC F F F F F =====∴===2-4 在简支梁AB 的中点C 作用一个倾斜45o 的力F ,力的大小等于20KN ,如图所示。
(完整版)工程力学课后详细答案
第一章静力学的基本概念受力图第二章 平面汇交力系2-1解:由解析法,23cos 80RX F X P P Nθ==+=∑12sin 140RY F Y P P Nθ==+=∑故:22161.2R RX RY F F F N=+=1(,)arccos2944RYR RF F P F '∠==2-2解:即求此力系的合力,沿OB 建立x 坐标,由解析法,有123cos45cos453RX F X P P P KN==++=∑13sin 45sin 450RY F Y P P ==-=∑故: 223R RX RY F F F KN=+= 方向沿OB 。
2-3 解:所有杆件均为二力杆件,受力沿直杆轴线。
(a ) 由平衡方程有:0X =∑sin 300AC AB F F -=0Y =∑cos300AC F W -=0.577AB F W=(拉力)1.155AC F W=(压力)(b ) 由平衡方程有:0X =∑ cos 700AC AB F F -=0Y =∑sin 700AB F W -=1.064AB F W=(拉力)0.364AC F W=(压力)(c ) 由平衡方程有:0X =∑cos 60cos300AC AB F F -=0Y =∑sin 30sin 600AB AC F F W +-=0.5AB F W= (拉力)0.866AC F W=(压力)(d ) 由平衡方程有:0X =∑sin 30sin 300AB AC F F -=0Y =∑cos30cos300AB AC F F W +-=0.577AB F W= (拉力)0.577AC F W= (拉力)2-4 解:(a )受力分析如图所示:由x =∑ 22cos 45042RA F P -=+15.8RA F KN∴=由Y =∑ 22sin 45042RA RB F F P +-=+7.1RB F KN∴=(b)解:受力分析如图所示:由x =∑3cos 45cos 45010RA RB F F P ⋅--=0Y =∑1sin 45sin 45010RA RB F F P ⋅+-=联立上二式,得:22.410RA RB F KN F KN==2-5解:几何法:系统受力如图所示三力汇交于点D ,其封闭的力三角形如图示所以:5RA F KN= (压力)5RB F KN=(与X 轴正向夹150度)2-6解:受力如图所示:已知,1R F G = ,2AC F G =由x =∑cos 0AC r F F α-=12cos G G α∴=由0Y =∑ sin 0AC N F F W α+-=22221sin N F W G W G G α∴=-⋅=--2-7解:受力分析如图所示,取左半部分为研究对象由x =∑cos 45cos 450RA CB P F F --=0Y =∑sin 45sin 450CBRA F F '-=联立后,解得:0.707RA F P=0.707RB F P=由二力平衡定理0.707RB CB CBF F F P '===2-8解:杆AB ,AC 均为二力杆,取A 点平衡由x =∑cos 60cos300AC AB F F W ⋅--=0Y =∑sin 30sin 600AB AC F F W +-=联立上二式,解得:7.32AB F KN=-(受压)27.3AC F KN=(受压)2-9解:各处全为柔索约束,故反力全为拉力,以D ,B 点分别列平衡方程(1)取D 点,列平衡方程由x =∑sin cos 0DB T W αα-=DB T Wctg α∴==(2)取B 点列平衡方程:由0Y =∑sin cos 0BDT T αα'-=230BD T T ctg Wctg KN αα'∴===2-10解:取B 为研究对象:由0Y =∑sin 0BC F P α-=sin BC PF α∴=取C 为研究对象:由x =∑cos sin sin 0BCDC CE F F F ααα'--=由0Y =∑ sin cos cos 0BC DC CE F F F ααα--+=联立上二式,且有BCBC F F '= 解得:2cos 12sin cos CE P F ααα⎛⎫=+⎪⎝⎭取E 为研究对象:由0Y =∑ cos 0NH CEF F α'-=CECE F F '= 故有:22cos 1cos 2sin cos 2sin NH P PF ααααα⎛⎫=+= ⎪⎝⎭2-11解:取A 点平衡:x =∑sin 75sin 750AB AD F F -=0Y =∑cos 75cos 750AB AD F F P +-=联立后可得: 2cos 75AD AB PF F ==取D 点平衡,取如图坐标系:x =∑cos5cos800ADND F F '-=cos5cos80ND ADF F '=⋅由对称性及ADAD F F '=cos5cos5222166.2cos80cos802cos 75N ND AD P F F F KN'∴===⋅=2-12解:整体受力交于O 点,列O 点平衡由x =∑cos cos300RA DC F F P α+-=0Y =∑sin sin 300RA F P α-=联立上二式得:2.92RA F KN=1.33DC F KN=(压力)列C 点平衡x =∑405DC AC F F -⋅=0Y =∑ 305BC AC F F +⋅=联立上二式得: 1.67AC F KN=(拉力)1.0BC F KN=-(压力)2-13解:(1)取DEH 部分,对H 点列平衡x =∑05RD REF F '= 0Y =∑05RD F Q =联立方程后解得: 5RD F Q =2REF Q '=(2)取ABCE 部分,对C 点列平衡x =∑cos 450RE RA F F -=0Y =∑sin 450RB RA F F P --=且RE REF F '=联立上面各式得: 22RA F Q =2RB F Q P=+(3)取BCE 部分。
《工程力学》课后习题解答
z
A
F
B 45o
FAB
60o FAD
O
D
y
45o
C
FAC
x
解:(1) 取整体为研究对象,受力分析,AB、AB、AD 均为二力杆,画受力图,得到一个空 间汇交力系;
(2) 列平衡方程:
Fx 0 FAC cos 45o FAB cos 45o 0 Fy 0 F FAD cos 60o 0 Fz 0 FAD sin 60o FAC sin 45o FAB sin 45o 0
FA
FB
M l
FB
M l
(c) 受力分析,画受力图;A、B 处的约束力组成一个力偶;
FA A
M
l/2 l
B
θ
FB
9
《工程力学》习题选解
列平衡方程:
M 0 FB l cos M 0
FA
FB
l
M cos
FB
l
M cos
3-2 在题图所示结构中二曲杆自重不计,曲杆 AB 上作用有主动力偶,其力偶矩为 M,试求 A 和 C 点处的约束力。
解得:
FAD 2F 1.2 kN AB、AC 杆受拉,AD 杆受压。
FAC FAB
6 4
FAD
0.735
kN
8
《工程力学》习题选解
3-1 已知梁 AB 上作用一力偶,力偶矩为 M,梁长为 l,梁重不计。求在图 a,b,c 三种情 况下,支座 A 和 B 的约束力
M
l/2
A
B
l
(a)
M
l/3
A
30o
B
C
M2
M1
O
解:(1) 研究 BC 杆,受力分析,画受力图:
(完整版)工程力学课后习题答案
工程力学练习册学校学院专业学号教师姓名第一章静力学基础 1第一章静力学基础1-1 画出下列各图中物体A,构件AB,BC或ABC的受力图,未标重力的物体的重量不计,所有接触处均为光滑接触。
(a)(b)(c)2 第一章静力学基础(d)(e)(f)(g)第一章静力学基础 3 1-2 试画出图示各题中AC杆(带销钉)和BC杆的受力图(a)(b)(c)(a)4 第一章静力学基础1-3 画出图中指定物体的受力图。
所有摩擦均不计,各物自重除图中已画出的外均不计。
(a)第一章静力学基础 5 (b)(c)(d)6 第一章静力学基础(e)第一章静力学基础7 (f)(g)8 第二章 平面力系第二章 平面力系2-1 电动机重P=5000N ,放在水平梁AC 的中央,如图所示。
梁的A 端以铰链固定,另一端以撑杆BC 支持,撑杆与水平梁的夹角为30 0。
如忽略撑杆与梁的重量,求绞支座A 、B 处的约束反力。
题2-1图∑∑=︒+︒==︒-︒=PF F FF F F B A yA B x 30sin 30sin ,0030cos 30cos ,0解得: N P F F B A 5000===2-2 物体重P=20kN ,用绳子挂在支架的滑轮B 上,绳子的另一端接在绞车D 上,如第二章 平面力系 9图所示。
转动绞车,物体便能升起。
设滑轮的大小及轴承的摩擦略去不计,杆重不计,A 、B 、C 三处均为铰链连接。
当物体处于平衡状态时,求拉杆AB 和支杆BC 所受的力。
题2-2图∑∑=-︒-︒-==︒-︒--=030cos 30sin ,0030sin 30cos ,0P P F FP F F F BC yBC AB x解得: PF P F AB BC 732.2732.3=-=2-3 如图所示,输电线ACB 架在两电线杆之间,形成一下垂线,下垂距离CD =f =1m ,两电线杆间距离AB =40m 。
电线ACB 段重P=400N ,可近视认为沿AB 直线均匀分布,求电线的中点和两端的拉力。
(完整版)工程力学习题解答(详解版)
工程力学答案详解1-1试画出以下各题中圆柱或圆盘的受力图。
与其它物体接触处的摩擦力均略去。
解:1-2 试画出以下各题中AB 杆的受力图。
(a) B(b)(c)(d)A(e) A(a)(b) A(c)A(d)A(e)(c)(a)(b)解:1-3 试画出以下各题中AB 梁的受力图。
(d)(e)BB(a)B(b)(c)F B(a)(c)F (b)(d)(e)解:1-4 试画出以下各题中指定物体的受力图。
(a) 拱ABCD ;(b) 半拱AB 部分;(c) 踏板AB ;(d) 杠杆AB ;(e) 方板ABCD ;(f) 节点B 。
解:(a)F (b)W(c)(d) D(e)F Bx(a)(b)(c)(d)D(e)W(f)(a)D(b)B(c)BF D BF1-5 试画出以下各题中指定物体的受力图。
(a) 结点A,结点B;(b) 圆柱A和B及整体;(c) 半拱AB,半拱BC及整体;(d) 杠杆AB,切刀CEF及整体;(e) 秤杆AB,秤盘架BCD及整体。
解:(a)(b)(c)(d)ATF BAF(b)(e)(c)(d)(e)CAA C’CDDB2-2 杆AC 、BC 在C 处铰接,另一端均与墙面铰接,如图所示,F 1和F 2作用在销钉C 上,F 1=445 N ,F 2=535 N ,不计杆重,试求两杆所受的力。
解:(1) 取节点C 为研究对象,画受力图,注意AC 、BC 都为二力杆,(2) 列平衡方程:12140 sin 600530 cos6005207 164 o y AC o x BC AC AC BC F F F F F F F F F N F N=⨯+-==⨯--=∴==∑∑ AC 与BC 两杆均受拉。
2-3 水平力F 作用在刚架的B 点,如图所示。
如不计刚架重量,试求支座A 和D 处的约束力。
解:(1) 取整体ABCD 为研究对象,受力分析如图,画封闭的力三角形:(2)F 1F FDF F AF D211 1.122D A D D A F F FF F BC AB AC F F F F F =====∴===2-4 在简支梁AB 的中点C 作用一个倾斜45o 的力F ,力的大小等于20KN ,如图所示。
《工程力学》详细版习题参考答案
∑ Fx
=FAx
+
FBx
+
FCx
=− 1 2
F
+
F
−
1 2
F
=0
∑ Fy
= FAy
+
FBy
+
FCy
= − 3 2
F
+
3 F = 0 2
∑ M B= FBy ⋅ l=
3 Fl 2
因此,该力系的简化结果为一个力偶矩 M = 3Fl / 2 ,逆时针方向。
题 2-2 如图 2-19(a)所示,在钢架的 B 点作用有水平力 F,钢架重力忽 略不计。试求支座 A,D 的约束反力。
(a)
(b)
图 2-18
解:(1)如图 2-18(b)所示,建立直角坐标系 xBy。 (2)分别求出 A,B,C 各点处受力在 x,y 轴上的分力
思考题与练习题答案
FAx
= − 12 F ,FAy
= − 3 F 2
= FBx F= ,FBy 0
FCx
= − 12 F ,FCy
= 3 F 2
(3)求出各分力在 B 点处的合力和合力偶
(3)根据力偶系平衡条件列出方程,并求解未知量
∑ M =0 − aF + 2aFD =0
《工程力学》
可解得 F=Ay F=D F /2 。求得结果为正,说明 FAy 和 FD 的方向与假设方向相同。 题 2-3 如 图 2-20 ( a ) 所 示 , 水 平 梁 上 作 用 有 两 个 力 偶 , 分 别 为
3-4 什么是超静定问题?如何判断问题是静定还是超静定?请说明图 3-12 中哪些是静定问题,哪些是超静定问题?
(a)
《工程力学》作业参考答案
《工程力学》作业1参考答案说明:本次作业对应于文字教材第0—3章,应按相应教学进度完成。
一、单项选择题(每小题2分,共30分)在每小题的四个备选答案中选出一个正确答案,并将其代号填在题干后面的括号内。
不选、错选或多选者,该题无分。
1.三刚片组成几何不变体系的规则是( B )A三链杆相连,不平行也不相交于一点B三铰两两相连,三铰不在一直线上C三铰三链杆相连,杆不通过铰D一铰一链杆相连,杆不通过铰2.在无多余约束的几何不变体系上增加二元体后构成(C )A可变体系B瞬变体系B瞬变C不变且无多余联系三、填空题(每空2分,共20分)1.定向支座的反力分量是一个力和一个反力偶。
2.连接两个刚片的单铰相当于两个约束。
= 5kN ( 拉力 )。
10.位移计算公式ds GAF F ds EA F F ds EI M M QP Q NP N PiP ⎰⎰⎰++=∆μ是由变形体虚功原理推出来的。
解:(1).求支座反力:F A= F P/2 , F B= 3F P/2 . (2).作刚架的弯矩图FL3FL/4M图解:(1)求支座反力:F A= F B= lm/;(2)作刚架的弯矩图.L/2L/24解:(1)求支座反力:F Ax=20kN ,F A y=F B=10kN 。
方向如图kN⋅(内侧受拉) (2)作刚架的弯矩图:M EA=M EB= M BE= M BC=40m(3)作刚架的剪力图:AE段:Q=20kNEB段:Q=0BC段:Q=-10kNCD段:Q=040 10 kN_4040+M图20 kN Q图kN⋅)(mB《工程力学》作业2参考答案说明:本次作业对应于文字教材第4章,应按相应教学进度完成。
一、单项选择题(每小题2分,共30分)在每小题的四个备选答案中选出一个正确答案,并将其代号填在题干后面的括号内。
不选、错选或多选者,该题无分。
1.力法计算的基本未知量为( D )A杆端弯矩B结点角位移C结点线位移D多余未知力2.超静定结构在荷载作用下产生的内力与刚度(B )A无关B相对值有关C绝对值有关345.在力法方程的系数和自由项中( B )C绝对值有关D相对值绝对值都有关8.力法典型方程中的自由项iP∆是基本体系在荷载作用下产生的(C )C结点数D杆件数11.力法的基本体系是(D )A一组单跨度超静定梁B瞬变体系C可变体系D几何不变体系12.撤去一单铰相当于去掉了多少个约束(C )A1个B3个C2个D4个)1.超静定次数一般不等于多余约束的个数。
(完整版)工程力学课后详细答案
(完整版)⼯程⼒学课后详细答案第⼀章静⼒学的基本概念受⼒图第⼆章平⾯汇交⼒系2-1解:由解析法,23cos 80RX F X P P N θ==+=∑12sin 140RY F Y P P N θ==+=∑故:22161.2R RX RY F F F N=+=1(,)arccos 2944RYR RF F P F '∠==o v v2-2解:即求此⼒系的合⼒,沿OB 建⽴x 坐标,由解析法,有123cos45cos453RX F X P P P KN ==++=∑o o13sin 45sin 450RY F Y P P ==-=∑o o故:223R RX RY F F F KN=+= ⽅向沿OB 。
2-3 解:所有杆件均为⼆⼒杆件,受⼒沿直杆轴线。
(a )由平衡⽅程有:0X =∑sin 300AC AB F F -=o0Y =∑cos300AC F W -=o0.577AB F W=(拉⼒)1.155AC F W=(压⼒)(b )由平衡⽅程有:0X =∑ cos 700AC AB F F -=o0Y =∑sin 700AB F W -=o1.064AB F W=(拉⼒)0.364AC F W=(压⼒)(c )由平衡⽅程有:0X =∑cos 60cos300AC AB F F -=o o0Y =∑sin 30sin 600AB AC F F W +-=o o 0.5AB F W= (拉⼒)0.866AC F W=(压⼒)(d )由平衡⽅程有:0X =∑sin 30sin 300AB AC F F -=o o0Y =∑cos30cos300AB AC F F W +-=o o0.577AB F W= (拉⼒)0.577AC F W= (拉⼒)2-4 解:(a )受⼒分析如图所⽰:由x =∑ 22cos 45042RA F P -=+o15.8RA F KN∴=由0Y =∑22sin 45042RA RB F F P +-=+o7.1RB F KN∴=(b)解:受⼒分析如图所⽰:由x =∑cos 45cos 45010RA RB F F P ? --=o o0Y =∑sin 45sin 45010RA RB F F P ?+-=o o联⽴上⼆式,得:22.410RA RB F KN F KN==2-5解:⼏何法:系统受⼒如图所⽰三⼒汇交于点D ,其封闭的⼒三⾓形如图⽰所以:5RA F KN= (压⼒)5RB F KN=(与X 轴正向夹150度)2-6解:受⼒如图所⽰:已知,1R F G = ,2AC F G =由x =∑cos 0AC r F F α-=12cos G G α∴=由0Y =∑ sin 0AC N F F W α+-=22221sin N F W G W G G α∴=-?=--2-7解:受⼒分析如图所⽰,取左半部分为研究对象由x =∑cos 45cos 450RA CB P F F --=o o0Y =∑sin 45sin 450CBRA F F '-=o o联⽴后,解得:0.707RA F P=0.707RB F P=由⼆⼒平衡定理0.707RB CB CBF F F P '===2-8解:杆AB ,AC 均为⼆⼒杆,取A 点平衡由x =∑cos 60cos300AC AB F F W ?--=o o0Y =∑sin 30sin 600AB AC F F W +-=o o联⽴上⼆式,解得:7.32AB F KN=-(受压)27.3AC F KN=(受压)2-9解:各处全为柔索约束,故反⼒全为拉⼒,以D ,B 点分别列平衡⽅程(1)取D 点,列平衡⽅程由x =∑sin cos 0DB T W αα-=DB T Wctg α∴==(2)取B 点列平衡⽅程:由0Y =∑sin cos 0BDT T αα'-=230BD T T ctg Wctg KN αα'∴===2-10解:取B 为研究对象:由0Y =∑sin 0BC F P α-=sin BC PF α∴=取C 为研究对象:由x =∑cos sin sin 0BCDC CE F F F ααα'--=由0Y =∑ sin cos cos 0BC DC CE F F F ααα--+=联⽴上⼆式,且有BCBC F F '= 解得:2cos 12sin cos CE P F ααα=+取E 为研究对象:由0Y =∑ cos 0NH CEF F α'-=CECE F F '=Q 故有:22cos 1cos 2sin cos 2sin NH P P F ααααα??=+= ?2-11解:取A 点平衡:x =∑sin 75sin 750AB AD F F -=o o0Y =∑cos 75cos 750AB AD F F P +-=o o联⽴后可得: 2cos 75AD AB PF F ==o取D 点平衡,取如图坐标系:x =∑cos5cos800ADND F F '-=o ocos5cos80NDAD F F '=?oo由对称性及ADAD F F '=cos5cos5222166.2cos80cos802cos 75N ND ADP F F F KN '∴===?=o o o o o2-12解:整体受⼒交于O 点,列O 点平衡由x =∑cos cos300RA DC F F P α+-=o0Y =∑sin sin 300RA F P α-=o联⽴上⼆式得:2.92RA F KN=1.33DC F KN=(压⼒)列C 点平衡x =∑405DC AC F F -?=0Y =∑ 305BC AC F F +?=联⽴上⼆式得: 1.67AC F KN=(拉⼒)1.0BC F KN=-(压⼒)2-13解:(1)取DEH 部分,对H 点列平衡x =∑05RD REF F '= 0Y =∑05RD F Q =联⽴⽅程后解得: 5RD F Q =2REF Q '=(2)取ABCE 部分,对C 点列平衡x =∑cos 450RE RA F F -=o0Y =∑sin 450RB RA F F P --=o且RE REF F '=联⽴上⾯各式得: 22RA FQ =2RB F Q P=+(3)取BCE 部分。
工程力学作业解答(重大版)(完整资料).doc
【最新整理,下载后即可编辑】工程力学课后解答2.9 题图2.9所示中段开槽的杆件,两端受轴向载荷P 的作用,试计算截面1-1和2-2上的应力。
已知:P = 140kN ,b = 200mm ,b 0 = 100mm ,t = 4mm 。
题图2.9解:(1) 计算杆的轴力 kN 14021===P N N (2) 计算横截面的面积21m m 8004200=⨯=⨯=t b A202mm 4004)100200()(=⨯-=⨯-=t b b A(3) 计算正应力MPa 1758001000140111=⨯==A N σ MPa 3504001000140222=⨯==A N σ(注:本题的目的是说明在一段轴力相同的杆件内,横截面面积小的截面为该段的危险截面)2.10 横截面面积A=2cm 2的杆受轴向拉伸,力P=10kN ,求其法线与轴向成30°的及45°斜截面上的应力ασ及ατ,并问m ax τ发生在哪一个截面?解:(1) 计算杆的轴力kN 10==P N(2) 计算横截面上的正应力MPa 501002100010=⨯⨯==A N σ(3) 计算斜截面上的应力MPa 5.37235030cos 2230=⎪⎪⎭⎫ ⎝⎛⨯==σσMPa 6.2123250)302sin(230=⨯=⨯=στ MPa 25225045cos 2245=⎪⎪⎭⎫⎝⎛⨯== σσMPa 251250)452sin(245=⨯=⨯= στ(4) m ax τ发生的截面∵ 0)2cos(==ασαταd d 取得极值∴0)2cos(=α因此:22πα=, 454==πα故:m ax τ发生在其法线与轴向成45°的截面上。
(注:本题的结果告诉我们,如果拉压杆处横截面的正应力,就可以计算该处任意方向截面的正应力和剪应力。
对于拉压杆而言,最大剪应力发生在其法线与轴向成45°的截面上,最大正应力发生在横截面上,横截面上剪应力为零)2.17 题图2.17所示阶梯直杆AC ,P =10kN ,l 1=l 2=400mm ,A 1=2A 2=100mm 2,E =200GPa 。
工程力学习题 及最终答案
第一章第二章第三章绪论思考题1) 现代力学有哪些重要的特征?2) 力是物体间的相互作用。
按其是否直接接触如何分类?试举例说明。
3) 工程静力学的基本研究内容和主线是什么?4) 试述工程力学研究问题的一般方法。
第二章刚体静力学基本概念与理论习题2-1 求图中作用在托架上的合力F R。
12030200N习题2-1图页脚内容页脚内容2-2 已知F 1=7kN ,F 2=5kN, 求图中作用在耳环上的合力F R 。
2-3 求图中汇交力系的合力F R 。
2-4 求图中力F 2的大小和其方向角。
使 a )合力F R =1.5kN, 方向沿x 轴。
b)合力为零。
2-5 二力作用如图,F 1=500N 。
为提起木桩,欲使垂直向上的合力为F R =750N ,且F 2力尽量小,试求力F 2的大小和角。
245601习题2-2图(b)xy4530F 1=30NF 2=20NF3=40N A xy4560F 1=600NF 2=700NF 3=500NA 习题2-3图(a )x70F 2F 1=1.25kN A习题2-4图30F 1=500NAF 2页脚内容2-6 画出图中各物体的受力图。
(b)B (a )A (c)(d)DACDB页脚内容2-7 画出图中各物体的受力图。
2-8 试计算图中各种情况下F 力对o 点之矩。
习题2-6图(d)习题2-7图(a )C DB DABCBABC页脚内容2-9 求图中力系的合力F R 及其作用位置。
习题2-8图P (d)PF( a )F 3M =6kN m F 3F 2页脚内容2-10 求图中作用在梁上的分布载荷的合力F R 及其作用位置。
( a )q 1=600N/mq=4kN/m( b )q A =3kN/m习题2-9图( c ) F 4F 3页脚内容2-11 图示悬臂梁AB 上作用着分布载荷,q 1=400N/m ,q 2=900N/m, 若欲使作用在梁上的合力为零,求尺寸a 、b 的大小。
《工程力学》课后习题解答
M A(F ) 0 : 2 0.8 0.5 1.6 0.4 0.7 FB 2 0
FB 0.26 kN
Fy 0 :
约束力的方向如图所示。
FAy 2 0.5 FB 0 FAy 1.24 kN
14
《工程力学》习题选解
(c):(1) 研究 AB 杆,受力分析,画出受力图(平面任意力系);
(d)
A F
D
FC
A
D
F
C B FB
E
F C F’C E
FC B
FE
FF
FE
FF
FB
(e)
A
OB
FOx W
FB FOy
FB B
FC C
G D
A
OB
D
FOx
G
FOy
C’ C
W FC’
4
《工程力学》习题选解
2-2 杆 AC、BC 在 C 处铰接,另一端均与墙面铰接,如图所示,F1 和 F2 作用在销钉 C 上, F1=445 N,F2=535 N,不计杆重,试求两杆所受的力。
1-1 试画出以下各题中圆柱或圆盘的受力图。与其它物体接触处的摩擦力均略去。
B
OWA
F OWA
A O
B
(a)
(b)
W (c)
B
解:
OW A
(d)
BO FB
W (a)
FB
B OWA (e)
F
O W
A
FA
B
FA
FB
(b)
FB
FA
A OW
FA (d)
B OWA (e)
FO A
O
FA
W (c)
1-2 试画出以下各题中 AB 杆的受力图。
工程力学课后答案
工程力学课后答案篇一:工程力学习题解答(详解版)工程力学答案详解1-1试画出来以下各题中圆柱或圆盘的受到力图。
与其它物体碰触处的摩擦力均省略。
b(a)(b)a(d)(e)解:aa(a)(b)a(d)(e)1-2试画出来以下各题中ab杆的受到力图。
(a)(b)(c)a(c)(c)(d)解:b(a)(b)(c)bb(e)1-3试画出来以下各题中ab梁的受到力图。
f(a)(b)(c)(d)(e)求解:d(d)(a)(b)fw(c)fbx(e)1-4试画出来以下各题中选定物体的受到力图。
(a)拱abcd;(b)半拱ab部分;(c)踏板ab;(d)杠杆ab;(e)方板abcd;(f)节点b。
解:(a)(b)(c)bfdb(d)(e)(f)(a)dw(b)(c)1-5试画出来以下各题中选定物体的受到力图。
(a)结点a,结点b;(b)圆柱a和b及整体;(c)半拱ab,半拱bc及整体;(d)杠杆ab,切刀cef及整体;(e)秤杆ab,秤盘架bcd及整体。
(b)(c)(e)解:(a)atfc(d)(e)fbc(f)w(d)ffba(b)(c)ac(d)’c(e)dbacdc’篇二:工程力学课后习题答案工程力学学学专学教姓习册校院业号师名练第一章静力学基础1-1画出下列各图中物体a,构件ab,bc或abc的受力图,未标重力的物体的重量不计,所有接触处均为光滑接触。
(a)(b)(c)(d)(e)(f)(g)1-2试画出图示各题中ac杆(带销钉)和bc杆的受力图(a)(b)(c)(a)1-3图画Theil中选定物体的受到力图。
所有摩擦均数等,各物蔡国用除图中已图画出来的外均数等。
(a)篇三:工程力学习题及答案1.力在平面上的投影(矢量)与力在坐标轴上的投影(代数量)均为代数量。
正确2.力对物体的促进作用就是不能在产生外效应的同时产生内效应。
错误3.在静力学中,将受力物体视为刚体(d)a.没特别必要的理由b.是因为物体本身就是刚体c.是因为自然界中的物体都是刚体d.是为了简化以便研究分析。
工程力学答案汇总(完整资料).doc
【最新整理,下载后即可编辑】1. 一物体在两个力的作用下,平衡的充分必要条件是这两个力是等值、反向、共线。
( √ )2. 若作用在刚体上的三个力的作用线汇交于同一个点,则该刚体必处于平衡状态。
( × )3. 理论力学中主要研究力对物体的外效应。
( √ )4. 凡是受到二个力作用的刚体都是二力构件。
( × )5. 力是滑移矢量,力沿其作用线滑移不会改变对物体的作用效果。
( √ )6. 在任何情况下,体内任意两点距离保持不变的物体称为刚体。
( √ )7. 加减平衡力系公理不但适用于刚体,而且也适用于变形体。
( × )8. 力的可传性只适用于刚体,不适用于变形体。
( √ )9. 只要作用于刚体上的三个力汇交于一点,该刚体一定平衡。
( × )10. 力的平行四边形法则只适用于刚体。
( √ )1.作用在刚体上两个不在一直线上的汇交力F 1和F 2 ,可求得其合力R = F 1 + F 2 ,则其合力的大小 ( B;D )(A) 必有R = F 1 + F 2 ; (B) 不可能有R = F 1 + F 2 ;(C) 必有R > F 1、R > F 2 ; (D) 可能有R < F 1、R < F 2。
2. 以下四个图所示的力三角形,哪一个图表示力矢R 是F 1和F 2两力矢的合力矢量 ( B )F 1 F 2 R (A) F 1 F 2 R (B) F 1 F 2 R (C) F 1 R F 2 (D)3. 以下四个图所示的是一由F 1 、F 2 、F 3 三个力所组成的平面汇交力系的力三角形,哪一个图表示此汇交力系是平衡的 ( A )4.以下四种说法,哪一种是正确的 ( A )(A )力在平面内的投影是个矢量; (B )力对轴之矩等于力对任一点之矩的矢量在该轴上的投影;(C )力在平面内的投影是个代数量; (D )力偶对任一点O 之矩与该点在空间的位置有关。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.9 题图2.9所示中段开槽的杆件,两端受轴向载荷P 的作用,试计算截面1-1和2-2上的应力。
已知:P = 140kN ,b = 200mm ,b 0 = 100mm ,t = 4mm 。
题图2.9解:(1) 计算杆的轴力 kN 14021===P N N (2) 计算横截面的面积21m m 8004200=⨯=⨯=t b A202mm 4004)100200()(=⨯-=⨯-=t b b A (3) 计算正应力MPa 1758001000140111=⨯==A N σ MPa 3504001000140222=⨯==A N σ (注:本题的目的是说明在一段轴力相同的杆件内,横截面面积小的截面为该段的危险截面)2.10 横截面面积A=2cm 2的杆受轴向拉伸,力P=10kN ,求其法线与轴向成30°的及45°斜截面上的应力ασ及ατ,并问m ax τ发生在哪一个截面? 解:(1) 计算杆的轴力kN 10==P N(2) 计算横截面上的正应力MPa 501002100010=⨯⨯==A N σ(3) 计算斜截面上的应力MPa 5.37235030cos 2230=⎪⎪⎭⎫ ⎝⎛⨯==οοσσMPa 6.2123250)302sin(230=⨯=⨯=οοστ MPa 25225045cos 2245=⎪⎪⎭⎫⎝⎛⨯==οοσσMPa 251250)452sin(245=⨯=⨯=οοστ (4) m ax τ发生的截面 ∵0)2cos(==ασαταd d 取得极值 ∴ 0)2cos(=α 因此:22πα=, ο454==πα故:m ax τ发生在其法线与轴向成45°的截面上。
(注:本题的结果告诉我们,如果拉压杆处横截面的正应力,就可以计算该处任意方向截面的正应力和剪应力。
对于拉压杆而言,最大剪应力发生在其法线与轴向成45°的截面上,最大正应力发生在横截面上,横截面上剪应力为零)2.17 题图2.17所示阶梯直杆AC ,P =10kN ,l 1=l 2=400mm ,A 1=2A 2=100mm 2,E =200GPa 。
试计算杆AC 的轴向变形Δl 。
题图2.17解:(1) 计算直杆各段的轴力及画轴力图kN 101==P N (拉) kN 102-=-=P N (压)(2) 计算直杆各段的轴向变形mm 2.010010002004001000101111=⨯⨯⨯⨯==∆EA l N l (伸长) mm 4.05010002004001000102222-=⨯⨯⨯⨯-==∆EA l N l (缩短) (3) 直杆AC 的轴向变形m m 2.021-=∆+∆=∆l l l (缩短)(注:本题的结果告诉我们,直杆总的轴向变形等于各段轴向变形的代数和)2.20 题图2.20所示结构,各杆抗拉(压)刚度EA 相同,试求节点A 的水平和垂直位移。
( a) (b)题图2.20(a) 解:(1) 计算各杆的轴力以A 点为研究对象,如右图所示,由平衡方程可得0=∑X ,P N =2( 拉 ) 0=∑Y ,01=N(2) 计算各杆的变形01=∆lEAPl EA Pl EA l N l 245cos /222===∆ο(3) 计算A 点位移以切线代弧线,A 点的位移为:EA Pll x A 245cos 2=∆=∆ο0=∆A y(b) 解:(1) 计算各杆的轴力以A 点为研究对象,如右图所示,由平衡方程可得0=∑X ,P N 21= ( 拉 )0=∑Y ,P N-=2( 压 )(2) 计算各杆的变形EAPaEA a P EAl N l 222111=⨯==∆ ( 伸长 )EAPa EA a P EA l N l =⨯==∆222 ( 缩短 ) (3) 计算A 点位移以切线代弧线,A 点的位移为:EA PaEA Pa EA Pa l l A C AB x A )122(2245cos 21+=+=∆+∆='+=∆οEAPal y A -=∆-=∆2 [注:①本题计算是基于小变形假设(材料力学的理论和方法都是基于这个假设),在此假设下,所有杆件的力和变形都是沿未变形的方向。
②计算位移的关键是以切线代弧线。
)2.15 如题图2.15所示桁架,α =30°,在A 点受载荷P = 350kN ,杆AB 由两根槽钢构成,杆AC 由一根工字钢构成,设钢的许用拉应力MPa 160][=t σ,许用压应力MPa 100][=c σ。
试为两根杆选择型钢号码。
题图2.15解:(1) 计算杆的轴力以A 点为研究对象,如上图所示,由平衡方程可得0=∑X ,0cos cos 12=-ααN N0=∑Y ,0sin sin 21=-+P N Nαα∴ kN 3501==P N (拉) kN 35012==N N (压) (2) 计算横截面的面积 根据强度条件:][max σσ≤=AN,有 211mm 5.21871601000350][2=⨯=≥t N A σ,21m m 75.1093≥A222mm 35001001000350][=⨯=≥c N A σ(3) 选择型钢通过查表,杆AB 为No.10槽钢,杆BC 为No.20a 工字钢。
(注:本题说明,对于某些材料,也许它的拉、压许用应力是不同的,需要根据杆的拉、压状态,使用相应得许用应力)2.25 题图2.25所示结构,AB 为刚体,载荷P 可在其上任意移动。
试求使CD 杆重量最轻时,夹角α应取何值?题图2.25解:(1) 计算杆的轴力载荷P 在B 点时为最危险工况,如下图所示。
以刚性杆AB 为研究对象0=∑AM, 02sin =⋅-⋅l P l N CD ααsin 2PN CD =(2) 计算杆CD 横截面的面积设杆CD 的许用应力为][σ,由强度条件,有ασσσsin ][2][][PN N A CD ===(3) 计算夹角α设杆CD 的密度为ρ,则它的重量为ασραασραρρρ2cos ][cos sin ][2cos PlPl l A CD A V W ==⋅=⋅== 从上式可知,当ο45=α时,杆CD 的重量W 最小。
(注:本题需要注意的是:①载荷P 在AB 上可以任意移动,取最危险的工作状况(工况);② 杆的重量最轻,即体积最小。
)2.34 题图2.34所示结构,AB 为刚性梁,1杆横截面面积A 1=1cm 2,2杆A 2=2cm 2,a=1m ,两杆的长度相同,E =200GPa ,许用应力[σt ]=160MPa ,[σb ]=100MPa ,试确定许可载荷[P ]。
题图2.34解:(1) 计算杆的轴力以刚性杆AB 为研究对象,如下图所示。
0=∑AM, 03221=⋅-⋅+⋅a P a N a N即:P N N 3221=+ (1) 该问题为一次静不定,需要补充一个方程。
(2) 变形协调条件如上图所示,变形协调关系为2Δl 1 =Δl 2 (2)(3) 计算杆的变形 由胡克定理,有 111EA a N l =∆; 222EA aN l =∆ 代入式(2)得:22112EA a N EA a N = 即:22112A N A N = (3) (4) 计算载荷与内力之间关系由式(1)和(3),解得: 112134N A A A P += (4) 或 222164N A A A P +=(5) (5) 计算许可载荷如果由许用压应力[σb ]决定许可载荷,有:])[4(31][34][34][2111211121b b b A A A A A A N A A A P σσ+=⋅+=+=)(30)(30000100)2004100(31kN N ==⨯⨯+= 如果由许用拉应力[σt ]决定许可载荷,有:])[4(61][64][64][2122212221t t t A A A A A A N A A A P σσ+=⋅+=+=)(24)(24000160)2004100(61kN N ==⨯⨯+=比较两个许可载荷,取较小的值,即{})(24][,][m in ][kN P P P t b == (注:本题需要比较由杆1和杆2决定的许可载荷,取较小的一个值,即整个结构中,最薄弱的部位决定整个结构的许可载荷。
)2.42 题图2.42所示正方形结构,四周边用铝杆(E a =70GPa ,αa =21.6×10-6 ℃-1);对角线是钢丝(E s =70GPa ,αs =21.6×10-6 ℃-1),铝杆和钢丝的横截面面积之比为2:1。
若温度升高ΔT=45℃时,试求钢丝内的应力。
题图2.42解:(1) 利用对称条件对结构进行简化由于结构具有横向和纵向对称性,取原结构的1/4作为研究的结构如下图所示,(2) 计算各杆的轴力以A 点为研究对象,如右图所示,由平衡方程可得0=∑X ,045cos =-a sN Nο即: a s N N 2= ①(3) 变形协调关系如上图所示,铝杆与钢丝的变形协调关系为: a s l l ∆=∆2 ② 钢丝的伸长量为:(设钢丝的截面积为A ) )(22AE l N l T A E l N l T l s s s s s s s s s s +∆=+∆=∆αα ③ 铝杆的伸长量为: )2(41AE l N l T A E l N l T l a a a a a a a a a a -∆=-∆=∆αα ④ 由①②③④式,可解得: A T E E E E N s a sa s a s ⋅∆-+=)(2222αα(4) 计算钢丝的应力 T E E E E A N s a sa sa s ∆-+==)(2222αασ )(3.4445)107.11106.21(1020010702210200107022663333MPa =⨯⨯-⨯⨯+⨯⨯⨯⨯⨯⨯=--3.8题图3.8所示夹剪,销钉B 的直径d=5mm,销钉与被剪钢丝的材料相同,剪切极限应力u τ=200Mpa ,销钉的安全系数n=4,试求在C 处能剪断多大直径的钢丝。
解:设B,C 两点受力分别为1F , 2F 。
剪切许用应力为:[]unττ==50Mpa 对B 点,有力矩和为零可知:B M ∑=0,即:1F =4P 由力平衡知:1F +P=2F∴2F =541F 其中:2F =[]τ⋅A=12.52d π 故: 1F =102d π 又由强度要求可知:uτ≤11F A 即: d ≤114uF πτ5=2.24mm3.11车床的转动光杆装有安全联轴器,当超过一定载荷时,安全销即被剪断。
已知安全销的平均直径为5mm ,其剪切强度极限b τ=370Mpa ,求安全联轴器所能传递的力偶矩m.解:设安全销承受的最大力为,则:F =b τ ⨯214d π 那么安全联轴器所能传递的力偶矩为:m = F ⋅D 其中b τ=370Mpa ,b=5mm ,D=20mm , 代入数据得:力偶矩 m=145.2N m ⋅4.7求题图4.7中各个图形对形心轴z 的惯性矩z I 。