八年级下册数学好题难题精选(1)
八年级下数学好题难题集锦含答案(317511805版权所有)
四边形:一:如图,△ ACD A ABE △ BCFF 匀为直线BC 同侧的等边三角形(1)当AB# AC 时,证明四边形 ADFE 为平行四边形;⑵ 当AB = AC 时,顺次连结A D F 、E 四点所构成的图形有哪几类?直二:如图,已知△ ABC 是等边三角形,D E 分别在边BG AC 上,且CD=CE 连结DE 并延长至点F ,使EF=AE 连结AF BE 和CR 请在图中找出一对全等三角形,用符号“幻”表示,并加以证明。
接写出构成图形的类型和相应的条件(2) 判断四边形ABDF 是怎样的四边形,并说明理由 (3) 若AB=6 BD=2DC 求四边形ABEF 的面积(1)ADO四:在矩形ABCD 中,点E 是AD 边上一点,连接 BE 且/ ABE= 30°, BE= DE 连接BD •点P 从点E 出发沿射线ED 运动,过点P 作PQ// BD 交直线BE 于点Q(1) 当点P 在线段ED 上时(如图1),求证:BE = PD^l l PQ3(2) 若BC = 6,设PQ 长为x ,以P 、Q D 三点为顶点所构成的三角形面积为 y ,求y 与x 的函数关系式(不要求写出自变量 x 的取值范围);(3) 在②的条件下,当点P 运动到线段ED 的中点时,连接QC 过点P 作PF 丄QC 垂足为F , PF 交对角线BD 于点G (如图2),求线段PG 的长恵<3 •••/ EPM=30 • PM= PE • PE= PQ23•/ BE=DE=PD+PE • BE=PD+ PQ3 1(2)解:由题意知 AE=—BE • DE=BE=2AE2•/ AD=BC=6 • AE=2 DE=BE=4当点P 在线段ED 上时(如图1)解:(1)证明:•••/ A=90° / ABE=30 / AEB=60•/ EB=ED •••/ EBD 玄 EDB=30 •/ PQ// BDEQP=/ EBD / EPQ 2 EDB•••/ EPQ=/ EQP=30 • EQ=EP过点E 作EM L OP 垂足为 M • PQ=2PM41 1 过点Q 做QH 丄AD 于点H QH= —PQ=_x2 2由(1)得 PD=BE-三 PQ=4-—3QC= . PQ 2 PC 2=2、7 •••/PGN=90 - / FPC / PCF=901 分 •••/ PNG2 QPC=90 PN&A QPC五:如图,这是一张等腰梯形纸片,它的上底长为2,下底长为4,腰长为2,这样的 纸片共有5张.打算用其中的几张来拼成较大的等腰梯形,那么你能拼出哪 几种不同的等腰梯形?分别画出它们的示意图,并写出它们的周长.• • •解:如图所示• y= 1 PD- QH= 2、、32x12当点P 在线段 ED 的延长线上时(如图 2)过点Q 作QHL DA 交DA 延长线于点 H' • QH =- x2过点E 作EM 丄PQ 于点M3. ;3 同理可得 EP=EQ 亠 PQ • BE= PQ-PD3• PD==^x-4 y= 1 PD- QH3 2」2 x12(3)解:连接 PC 交BD 于点 (如图3)v 点P 是线段ED 中点 • EP=PD=2 • PQ=2 .. 3 ■/ DC=AB=A E tan60 = 2.3 • PC= PD 2DC 2=4PD 1• cos / DPC= =—PC 2•••/ DPC=60•••/ QPC=180 - / EPQ-Z DPC=90•/ PQ// BDPND=/ QPC=90 • PN=1 PD=12•••/ PCN M PCFPG PN QC PQ• PG=213 2 7 遗②卿长対珂六:已知:如图,在矩形ABC[中,E、F分别是边BGAB上的点,且EF=ED,EFL ED.求证:AE平分/ BAD.证明:•••四边形ABGD是矩形•••/ B=/ G=/ BAD=90 AB=GD•••/ BEF+/ BFE=90°•/ EF L ED/. / BEF+/ GED=90•/ BEF=/ CED••/ BEF=/ GDE 又v EF=ED" EBF^A CDE• BE=CD• BE=AB\/ BAE=/ BEA=45•/ EAD=45•/ BAE=/ EAD• AE平分/ BAD七:如图,矩形纸片ABGD中,AB=8,将纸片折叠,使顶点B落在边AD的E点上,BC=10.F在AD边上时,如图(2).证明四边形BGE为菱形,并求出折痕GF的长.(1)当折痕的另一端F在AB边上时,如图(1).求厶EFG勺面积.解:(1)过点G作GH L AD则四边形ABGH^矩形,二GHAB=8,AH=B(=10,由图形的折叠可知△ BFG^A EFG二EGBG10, / FE(=Z B=90 ° ;/• EH=6,AE=4, / AEF+Z HEG90°, v/ AEF+Z AFE=90°, A / HEG/ AFE 又(2)当折痕的另一端EF AE 1 1EHG/ A=90° ,•••△EAF^A EHG:, A EF=5,二S A EF(= EF- EG—x 5x 10=25.EG GH 2 2(2)由图形的折叠可知四边形ABG產四边形HEGF:BG=EGAB=EH/ BGF Z EGF:EF// BG BG=Z EFGEGF= / EFG•- EF=EG• BG=EF, •四边形BGEF为平行四边形,又EF=EG •平行四边形BGEF为菱形;连结BE BEFG互相垂直平分,在Rt△ EFH中,EF=BG=10, EH=AB=8,由勾股定理可得FH=AF=6 , ••AE=16 , ••BE= J AE2AB2=8 丘,A B(=4 y[5,FG2OG2 B O=4yf5。
(完整版)八年级数学经典难题
经典难题(一)1、已知:如图,O是半圆的圆心,C、E是圆上的两点,CD⊥AB,EF⊥AB,EG⊥C O.求证:CD=GF.(初二)2、已知:如图,P是正方形ABCD内点,∠PAD=∠PDA=15度求证:△PBC是正三角形.(初二)3、如图,已知四边形ABCD、A1B1C1D1都是正方形,A2、B2、C2、D2分别是AA 1、BB1、CC1、DD1的中点.求证:四边形A2B2C2D2是正方形.(初二)4、已知:如图,在四边形ABCD中,AD=BC,M、N分别是AB、CD的中点,AD、BC的延长线交MN于E、F.求证:∠DEN=∠F.经典难题(二)1、已知:△ABC中,H为垂心(各边高线的交点),O为外心,且OM⊥BC于M.(1)求证:AH=2OM;(2)若∠BAC=600,求证:AH=AO.(初二)2、设MN是圆O外一直线,过O作OA⊥MN于A,自A引圆的两条直线,交圆于B、C及D、E,直线EB及CD分别交MN于P、Q.求证:AP=AQ.(初二)3、如果上题把直线MN由圆外平移至圆内,则由此可得以下命题:设MN是圆O的弦,过MN的中点A任作两弦BC、DE,设CD、EB分别交MN于P、Q.求证:AP=AQ.(初二)4、如图,分别以△ABC的AC和BC为一边,在△ABC的外侧作正方形ACDE和正方形CBFG,点P是EF的中点.求证:点P到边AB的距离等于AB的一半.(初二)经典难题(三)1、如图,四边形ABCD为正方形,DE∥AC,AE=AC,AE与CD相交于F.求证:CE=CF.(初二)2、如图,四边形ABCD为正方形,DE∥AC,且CE=CA,直线EC交DA延长线于F.求证:AE=AF.(初二)3、设P是正方形ABCD一边BC上的任一点,PF⊥AP,CF平分∠DCE.求证:PA=PF.(初二)4、如图,PC切圆O于C,AC为圆的直径,PEF为圆的割线,AE、AF与直线PO 相交于B、D.求证:AB=DC,BC=AD.(初三)经典难题(四)1、已知:△ABC是正三角形,P是三角形内一点,PA=3,PB=4,PC=5.求:∠APB的度数.(初二)2、设P是平行四边形ABCD内部的一点,且∠PBA=∠PDA.求证:∠PAB=∠PCB.(初二)3、设ABCD为圆内接凸四边形,求证:AB·CD+AD·BC=AC·BD.(初三)4、平行四边形ABCD中,设E、F分别是BC、AB上的一点,AE与CF相交于P,且AE=CF.求证:∠DPA=∠DPC.(初二)经典难题(五)1、设P是边长为1的正△ABC内任一点,L=PA+PB+PC,求证:√3≤L<2.2、已知:P是边长为1的正方形ABCD内的一点,求PA+PB+PC的最小值.3、P为正方形ABCD内的一点,并且PA=a,PB=2a,PC=3a,求正方形的边长.4、如图,△ABC中,∠ABC=∠ACB=80度,D、E分别是AB、AC上的点,∠DCA =30度,∠EBA=20度,求∠BED的度数.答案经典难题(一)4.如下图连接AC并取其中点Q,连接QN和QM,所以可得∠QMF=∠F,∠QNM=∠D EN和∠QMN=∠QNM,从而得出∠DEN=∠F。
初二数学好题难题集锦含答案
八年级下册数学难题精选分式:一:如果abc=1,求证11++a ab +11++b bc +11++c ac =1二:已知a 1+b 1=)(29b a +,则a b +ba等于多少?三:一个圆柱形容器的容积为V 立方米,开始用一根小水管向容器内注水,水面高度达到容器高度一半后,改用一根口径为小水管2倍的大水管注水。
向容器中注满水的全过程共用时间t 分。
求两根水管各自注水的速度。
四:联系实际编拟一道关于分式方程2288+=xx 的应用题。
要求表述完整,条件充分并写出解答过程。
五:已知M =222y x xy -、N =2222yx y x -+,用“+”或“-”连结M 、N,有三种不同的形式,M+N 、M-N 、N-M ,请你任取其中一种进行计算,并简求值,其中x :y=5:2。
反比例函数:一:一张边长为16cm 正方形的纸片,剪去两个面积一定且一样的小矩形得到一个“E ”图案如图1所示.小矩形的长x (cm )与宽y (cm )之间的函数关系如图2所示:(1)求y 与x 之间的函数关系式; (2)“E ”图案的面积是多少?(3)如果小矩形的长是6≤x ≤12cm ,求小矩形宽的范围.二:是一个反比例函数图象的一部分,点(110)A,,(101)B,是它的两个端点.(1)求此函数的解析式,并写出自变量x的取值范围;(2)请你举出一个能用本题的函数关系描述的生活实例.三:如图,⊙A和⊙B都与x轴和y轴相切,圆心A和圆心B都在反比例函数1yx的图象上,则图中阴影部分的面积等于 .四:如图11,已知正比例函数和反比例函数的图像都经过点M(-2,1),且P(1,-2)为双曲线上的一点,Q为坐标平面上一动点,PA垂直于x轴,QB垂直于y轴,垂足分别是A、B.(1)写出正比例函数和反比例函数的关系式;(2)当点Q在直线MO上运动时,直线MO上是否存在这样的点Q,使得△OBQ与△OAP面积相等?如果存在,请求出点的坐标,如果不存在,请说明理由;(3)如图12,当点Q在第一象限中的双曲线上运动时,作以OP、OQ为邻边的OPCQ周长的最小值.五:如图,在平面直角坐标系中,直线AB 与Y 轴和X 轴分别交于点A 、点8,与反比例函数y 一罟在第一象限的图象交于点c(1,6)、点D(3,x).过点C 作CE 上y 轴于E ,过点D 作DF 上X 轴于F . (1)求m ,n 的值;(2)求直线AB 的函数解析式;勾股定理:一:清朝康熙皇帝是我国历史上对数学很有兴趣的帝王.近日,•西安发现了他的数学专著,其中有一文《积求勾股法》,它对“三边长为3、4、5的整数倍的直角三角形,已知面积求边长”这一问题提出了解法:“若所设者为积数(面积),以积率六除之,平方开之得数,再以勾股弦各率乘之,即得勾股弦之数”.用现在的数学语言表述是:“若直角三角形的三边长分别为3、4、5的整数倍,•设其面积为S ,则第一步:6S=m ;第二步:m =k ;第三步:分别用3、4、5乘以k ,得三边长”.(1)当面积S 等于150时,请用康熙的“积求勾股法”求出这个直角三角形的三边长;(2)你能证明“积求勾股法”的正确性吗?请写出证明过程.二:一张等腰三角形纸片,底边长l5cm,底边上的高长22.5cm.现沿底边依次从下往上裁剪宽度均为3cm的矩形纸条,如图所示.已知剪得的纸条中有一张是正方形,则这张正方形纸条是( )A.第4张 B.第5张 C.第6张 D.第7张三:如图,甲、乙两楼相距20米,甲楼高20米,小明站在距甲楼10米的A处目测得点A与甲、乙楼顶B C、刚好在同一直线上,且A与B相距350米,若小明的身高忽略不计,则乙楼的高度是米.20乙CBA甲1020四:恩施州自然风光无限,特别是以“雄、奇、秀、幽、险”著称于世.著名的恩施大峡谷()A 和世界级自然保护区星斗山()B 位于笔直的沪渝高速公路X 同侧,50km AB A =,、B 到直线X 的距离分别为10km 和40km ,要在沪渝高速公路旁修建一服务区P ,向A 、B 两景区运送游客.小民设计了两种方案,图(1)是方案一的示意图(AP 与直线X 垂直,垂足为P ),P 到A 、B 的距离之和1S PA PB =+,图(2)是方案二的示意图(点A 关于直线X 的对称点是A ',连接BA '交直线X 于点P ),P 到A 、B 的距离之和2S PA PB =+. (1)求1S 、2S ,并比较它们的大小; (2)请你说明2S PA PB =+的值为最小;(3)拟建的恩施到张家界高速公路Y 与沪渝高速公路垂直,建立如图(3)所示的直角坐标系,B 到直线Y 的距离为30km ,请你在X 旁和Y 旁各修建一服务区P 、Q ,使P 、A 、B 、Q 组成的四边形的周长最小.并求出这个最小值.P图(1)图(3)图(2)五:已知:如图,在直角梯形ABCD 中,AD ∥BC ,∠ABC =90°,DE ⊥AC 于点F ,交BC 于点G ,交AB 的延长线于点E ,且AE AC =. (1)求证:BG FG =;(2)若2AD DC ==,求AB 的长. 四边形:一:如图,△ACD 、△ABE 、△BCF 均为直线BC 同侧的等边三角形. (1) 当AB ≠AC 时,证明四边形ADFE 为平行四边形;(2) 当AB = AC 时,顺次连结A 、D 、F 、E 四点所构成的图形有哪几类?直接写出构成图形的类型和相应的条件.DCEB GAFEFDABC二:如图,已知△ABC是等边三角形,D、E分别在边BC、AC上,且CD=CE,连结DE并延长至点F,使EF=AE,连结AF、BE和CF。
初二数学难题30道
初二数学难题30道1. 解析几何:在直角坐标系中,点A(2, 3),点B(1, 2),求线段AB的中点坐标。
2. 代数方程:解方程 2x + 5 = 3x 4。
3. 函数问题:给定函数 f(x) = x^2 2x + 1,求 f(3) 的值。
4. 不等式求解:解不等式 5x 2 > 3。
5. 平行四边形:已知平行四边形ABCD,AB = 6cm,BC = 8cm,求对角线AC的长度。
6. 解析几何:在直角坐标系中,点A(1, 2),点B(3, 4),求线段AB的长度。
7. 代数方程:解方程 3x^2 4x + 1 = 0。
8. 函数问题:给定函数 g(x) = 2x + 3,求 g(2) 的值。
9. 不等式求解:解不等式 2x 5 < 1。
10. 平行四边形:已知平行四边形ABCD,AB = 7cm,BC = 9cm,求对角线BD的长度。
11. 解析几何:在直角坐标系中,点A(4, 5),点B(2, 1),求线段AB的长度。
12. 代数方程:解方程 4x^2 9x + 2 = 0。
13. 函数问题:给定函数 h(x) = x^3 3x^2 + 2x,求 h(1) 的值。
14. 不等式求解:解不等式3x + 4 ≤ 7。
15. 平行四边形:已知平行四边形ABCD,AB = 8cm,BC = 10cm,求对角线AC的长度。
16. 解析几何:在直角坐标系中,点A(3, 2),点B(1, 1),求线段AB的中点坐标。
17. 代数方程:解方程 5x 3 = 2x + 7。
18. 函数问题:给定函数 f(x) = x^2 + 4x + 4,求 f(0) 的值。
19. 不等式求解:解不等式4x 8 ≥ 2。
20. 平行四边形:已知平行四边形ABCD,AB = 9cm,BC = 11cm,求对角线BD的长度。
21. 解析几何:在直角坐标系中,点A(2, 3),点B(1, 4),求线段AB的长度。
22. 代数方程:解方程 6x^2 5x 1 = 0。
八下数学试题难题及答案
八下数学试题难题及答案一、选择题(每题3分,共30分)1. 若a、b、c是三角形的三边长,则下列不等式中正确的是()。
A. a + b > cB. a + b = cC. a + b < cD. a + b ≤ c答案:A2. 计算下列算式的结果:\(\sqrt{4} + \sqrt{9} - \sqrt{16}\) 的值是()。
A. 1B. 2C. 3D. 4答案:C3. 一个数的平方是9,这个数是()。
A. 3B. -3C. 3或-3D. 0答案:C4. 一个数的立方是-8,这个数是()。
A. 2B. -2C. 1D. -1答案:B5. 计算下列算式的值:\((-2)^3\) 的结果是()。
A. -8B. 8C. -2D. 2答案:A6. 一个等腰三角形的两边长分别为3和5,那么它的周长是()。
A. 8B. 11C. 13D. 16答案:C7. 一个数的绝对值是5,这个数是()。
A. 5B. -5C. 5或-5D. 0答案:C8. 计算下列算式的值:\((-3)^2\) 的结果是()。
A. 9B. -9C. 3D. -3答案:A9. 一个数的相反数是-7,那么这个数是()。
A. 7B. -7C. 0D. 14答案:A10. 计算下列算式的值:\(\frac{1}{2} + \frac{1}{3}\) 的结果是()。
A. \(\frac{1}{5}\)B. \(\frac{5}{6}\)C. \(\frac{3}{5}\)D. \(\frac{1}{6}\)答案:B二、填空题(每题4分,共20分)1. 一个数的平方根是4,那么这个数是______。
答案:162. 一个数的立方根是-2,那么这个数是______。
答案:-83. 一个数的绝对值是7,那么这个数可以是______。
答案:7或-74. 一个等腰三角形的两边长分别为4和6,那么它的周长是______。
答案:14或165. 计算下列算式的值:\(\frac{3}{4} - \frac{1}{2}\) 的结果是______。
初中八年级的下册的数学好题难题精选.doc
八年级下册数学好题难题精选分式:111一:如果 abc=1, 求证aba1 + bc b 1 + ac c 1 =11 19b a二:已知a + b=2( a b),则a +b 等于多少三:一个圆柱形容器的容积为 V 立方米,开始用一根小水管向容器内注水, 水面高度达到容器高度一半后, 改用一根口径为小水管2倍的大水管注水。
向容器中注满水的全过程共用时间 t 分。
求两根水管各自注水的速度。
四:联系实际编拟一道关于分式方程8 8 2的应用题。
要求表述完整,条件 x 2x充分并写出解答过程。
五:已知 M = 2xy 2 、N = x 2 y 2 ,用“ +”或“-”连结 M 、N, 有三种不同的2 y x 2 y 2 x形式, M+N 、 M-N 、N-M ,请你任取其中一种进行计算,并简求值,其中 x : y=5:2。
反比例函数:一:一张边长为16cm 正方形的纸片,剪去两个面积一定且一样的小矩形得到一个“ E”图案如图 1 所示.小矩形的长x ()与宽y()之间的函cm cm数关系如图 2 所示:(1)求 y 与 x 之间的函数关系式;(2)“ E”图案的面积是多少(3)如果小矩形的长是 6≤ x≤ 12cm,求小矩形宽的范围 .二:是一个反比例函数图象的一部分,点A(110),, B(10,1) 是它的两个端点.(1)求此函数的解析式,并写出自变量x的取值范围;(2)请你举出一个能用本题的函数关系描述的生活实例.y10 AB1O110x三:如图,⊙ A 和⊙ B 都与x 轴和y 轴相切,圆心 A 和圆心 B 都在反比例函数y 1的图象上,则图中阴影部分的面积等于. xyAO x B五:如图,在平面直角坐标系中,直线 AB 与 Y 轴和 X 轴分别交于点 A 、点 8,与反比例函数 y 一罟在第一象限的图象交于点 c(1 ,6) 、点 D(3,x) .过点 C 作 CE上 y 轴于 E ,过点 D 作 DF 上 X 轴于 F . (1) 求 m ,n 的值;(2) 求直线 AB 的函数解析式;勾股定理:一:清朝康熙皇帝是我国历史上对数学很有兴趣的帝王. 近日, ? 西安发现了他的数学专著,其中有一文《积求勾股法》 ,它对“三边长为 3、4、5 的整数倍的直角三角形,已知面积求边长” 这一问题提出了解法:“若所设者为积数 (面积),以积率六除之,平方开之得数,再以勾股弦各率乘之,即得勾股弦之数” .用现在的数学语言表述是: “若直角三角形的三边长分别为 3、4、5 的整数倍, ? 设其面积为 S ,则第一步: S=m ;第二步: m =k ;第三步:分别用 3、4、5 乘6以 k ,得三边长”.( 1)当面积 S 等于 150 时,请用康熙的“积求勾股法”求出这个直角三角形的三边长;( 2)你能证明“积求勾股法”的正确性吗请写出证明过程.二:一张等腰三角形纸片,底边长 l5cm ,底边上的高长 22.5cm .现沿底边依次从下往上裁剪宽度均为 3cm 的矩形纸条,如图所示.已知剪得的纸条中有一张是正方形,则这张正方形纸条是 ( )A .第 4 张B .第 5 张C .第 6 张D .第 7 张三:如图,甲、乙两楼相距20 米,甲楼高20 米,小明站在距甲楼10 米的A 处目测得点 A 与甲、乙楼顶B、 C 刚好在同一直线上,且 A 与B 相距50米,若小3明的身高忽略不计,则乙楼的高度是米.乙C米B甲20A1020四:恩施州自然风光无限,特别是以“雄、奇、秀、幽、险”著称于世.著名的恩施大峡谷 ( A) 和世界级自然保护区星斗山 ( B) 位于笔直的沪渝高速公路 X 同侧,AB 50km,A 、B到直线X的距离分别为 10km 和 40km ,要在沪渝高速公路旁修建一服务区 P ,向 A 、 B 两景区运送游客.小民设计了两种方案,图( 1)是方案一的示意图( AP 与直线 X 垂直,垂足为 P ), P 到 A 、 B 的距离之和S1 PA PB ,图(2)是方案二的示意图(点A关于直线X的对称点是A,连接 BA 交直线 X 于点P ), P 到 A 、 B 的距离之和 S2 PA PB .(1)求S1、S2,并比较它们的大小;(2)请你说明S2PA PB的值为最小;(3)拟建的恩施到张家界高速公路 Y 与沪渝高速公路垂直,建立如图( 3)所示的直角坐标系, B 到直线 Y 的距离为 30km ,请你在 X 旁和 Y 旁各修建一服务区P 、Q,使 P 、 A 、 B 、Q组成的四边形的周长最小.并求出这个最小值.YB BB QA AAP X P A X O P X 图( 1)图( 2)图( 3)五:已知:如图,在直角梯形 ABCD 中, AD ∥BC ,∠ ABC = °, DE ⊥ AC 于点 90交 BC 于点 G ,交 AB 的延长线于点 E ,且 AE AC . A ( 1)求证: BG FG ;( )若2 ,求 AB 的长. F 2AD DCF ,DBCGE四边形:一:如图,△ ACD 、△ ABE 、△BCF 均为直线 BC 同侧的等边三角形 .(1) 当 AB ≠AC 时,证明四边形 ADFE 为平行四边形;(2) 当 AB= AC 时,顺次连结 A 、D 、F 、E 四点所构成的图形有哪几类直接写出构成图形的类型和相应的条件 .FEDAB C二:如图,已知△ ABC 是等边三角形, D 、E 分别在边 BC 、 AC 上,且 CD=CE ,连结 DE 并延长至点 F ,使 EF=AE ,连结 AF 、BE 和 CF 。
八年级数学经典难题(答案 解析)
初二数学经典难题一、解答题(共10小题,满分100分)1.(10分)已知:如图,P是正方形ABCD内点,∠PAD=∠PDA=15°.求证:△PBC是正三角形.(初二)2.(10分)已知:如图,在四边形ABCD中,AD=BC,M、N分别是AB、CD的中点,AD、BC的延长线交MN 于E、F.求证:∠DEN=∠F.3.(10分)如图,分别以△ABC的边AC、BC为一边,在△ABC外作正方形ACDE和CBFG,点P是EF的中点,求证:点P到AB的距离是AB的一半.4.(10分)设P是平行四边形ABCD内部的一点,且∠PBA=∠PDA.求证:∠PAB=∠PCB.5.(10分)P为正方形ABCD内的一点,并且PA=a,PB=2a,PC=3a,求正方形的边长.6.(10分)一个圆柱形容器的容积为V立方米,开始用一根小水管向容器内注水,水面高度达到容器高度一半后,改用一根口径为小水管2倍的大水管注水.向容器中注满水的全过程共用时间t分.求两根水管各自注水的速度.7.(10分)(2009•郴州)如图1,已知正比例函数和反比例函数的图象都经过点M(﹣2,﹣1),且P(﹣1,﹣2)为双曲线上的一点,Q为坐标平面上一动点,PA垂直于x轴,QB垂直于y轴,垂足分别是A、B.(1)写出正比例函数和反比例函数的关系式;(2)当点Q在直线MO上运动时,直线MO上是否存在这样的点Q,使得△OBQ与△OAP面积相等?如果存在,请求出点的坐标,如果不存在,请说明理由;(3)如图2,当点Q在第一象限中的双曲线上运动时,作以OP、OQ为邻边的平行四边形OPCQ,求平行四边形OPCQ周长的最小值.8.(10分)(2008•海南)如图,P是边长为1的正方形ABCD对角线AC上一动点(P与A、C不重合),点E在线段BC上,且PE=PB.(1)求证:①PE=PD;②PE⊥PD;(2)设AP=x,△PBE的面积为y.①求出y关于x的函数关系式,并写出x的取值范围;②当x取何值时,y取得最大值,并求出这个最大值.9.(10分)(2010•河南)如图,直线y=k1x+b与反比例函数(x>0)的图象交于A(1,6),B(a,3)两点.(1)求k1、k2的值.(2)直接写出时x的取值范围;(3)如图,等腰梯形OBCD中,BC∥OD,OB=CD,OD边在x轴上,过点C作CE⊥OD于点E,CE和反比例函数的图象交于点P,当梯形OBCD的面积为12时,请判断PC和PE的大小关系,并说明理由.10.(10分)(2007•福州)如图,已知直线y=x与双曲线交于A,B两点,且点A的横坐标为4.(1)求k的值;(2)若双曲线上一点C的纵坐标为8,求△AOC的面积;(3)过原点O的另一条直线l交双曲线于P,Q两点(P点在第一象限),若由点A,B,P,Q为顶点组成的四边形面积为24,求点P的坐标.初二数学经典难题参考答案与试题解析一、解答题(共10小题,满分100分)1.(10分)已知:如图,P是正方形ABCD内点,∠PAD=∠PDA=15°.求证:△PBC是正三角形.(初二)2.(10分)已知:如图,在四边形ABCD中,AD=BC,M、N分别是AB、CD的中点,AD、BC的延长线交MN 于E、F.求证:∠DEN=∠F.GM=BCADMG=BC3.(10分)如图,分别以△ABC的边AC、BC为一边,在△ABC外作正方形ACDE和CBFG,点P是EF的中点,求证:点P到AB的距离是AB的一半.PQ=(PQ=PQ=5.(10分)P为正方形ABCD内的一点,并且PA=a,PB=2a,PC=3a,求正方形的边长.PE=2PE==2CF=EF=CE===即正方形的边长为6.(10分)一个圆柱形容器的容积为V立方米,开始用一根小水管向容器内注水,水面高度达到容器高度一半后,改用一根口径为小水管2倍的大水管注水.向容器中注满水的全过程共用时间t分.求两根水管各自注水的速度.解之得:经检验得:∴小口径水管速度为立方米7.(10分)(2009•郴州)如图1,已知正比例函数和反比例函数的图象都经过点M(﹣2,﹣1),且P(﹣1,﹣2)为双曲线上的一点,Q为坐标平面上一动点,PA垂直于x轴,QB垂直于y轴,垂足分别是A、B.(1)写出正比例函数和反比例函数的关系式;(2)当点Q在直线MO上运动时,直线MO上是否存在这样的点Q,使得△OBQ与△OAP面积相等?如果存在,请求出点的坐标,如果不存在,请说明理由;(3)如图2,当点Q在第一象限中的双曲线上运动时,作以OP、OQ为邻边的平行四边形OPCQ,求平行四边形OPCQ周长的最小值.Y=上的一点,所以,所以正比例函数解析式为x,|OB×m|所以有,)=))﹣OP=(=28.(10分)(2008•海南)如图,P是边长为1的正方形ABCD对角线AC上一动点(P与A、C不重合),点E在线段BC上,且PE=PB.(1)求证:①PE=PD;②PE⊥PD;(2)设AP=x,△PBE的面积为y.①求出y关于x的函数关系式,并写出x的取值范围;②当x取何值时,y取得最大值,并求出这个最大值..BE PF=x﹣xx xx x=()<时,9.(10分)(2010•河南)如图,直线y=k1x+b与反比例函数(x>0)的图象交于A(1,6),B(a,3)两点.(1)求k1、k2的值.(2)直接写出时x的取值范围;(3)如图,等腰梯形OBCD中,BC∥OD,OB=CD,OD边在x轴上,过点C作CE⊥OD于点E,CE和反比例函数的图象交于点P,当梯形OBCD的面积为12时,请判断PC和PE的大小关系,并说明理由.y=的图象上,﹣=12=,即PE=CE10.(10分)(2007•福州)如图,已知直线y=x与双曲线交于A,B两点,且点A的横坐标为4.(1)求k的值;(2)若双曲线上一点C的纵坐标为8,求△AOC的面积;(3)过原点O的另一条直线l交双曲线于P,Q两点(P点在第一象限),若由点A,B,P,Q为顶点组成的四边形面积为24,求点P的坐标.xx与双曲线在双曲线××=×)))。
初二数学八年级各种经典难题例题(含答案)非常经典
1 已知一个等腰三角形两内角的度数之比为 1 : 4 ,则这个等腰三角形顶角的度数为() A. 2 0 B. 1 2 0 C. 2 0 或 1 2 0 D. 3 61.一个凸多边形的每一个内角都等于 150°,则这个凸多边形所有对角线的条数总共有 ( ) A.42 条 B.54 条 C.66 条 D.78 条3、若直线 y k1x 1 与 y k2x 4 的交点在 x 轴上,那么k1 等于() k2A . 4 B. 4 C .1 1 D . 4 41 1 4 的最小值为:( 4 x 4y)(竞赛)1 正实数 x, y 满足 xy 1 ,那么(A)1 2(B)5 8(C)1(D) 2(竞赛)在△ABC 中,若∠A>∠B,则边长 a 与 c 的大小关系是( A、a>c B、c>a C、a>1/2c) D、c>1/2a16.如图,直线 y=kx+6 与 x 轴 y 轴分别交于点 E,F.点 E 的 坐标为(-8,0),点 A 的坐标为(-6,0). (1)求 k 的值; (2)若点 P(x,y)是第二象限内的直线上的一个动点,当 点 P 运动过程中,试写出△OPA 的面积 S 与 x 的函数 关系式,并写出自变量 x 的取值范围; (3)探究:当 P 运动到什么位置时,△OPA 的面积为27 ,并说明理由. 86 、已知,如图,△ ABC 中,∠ BAC=90 °, AB=AC,D 为 AC 上一点,且∠ BDC=124°,延长 BA 到点 E,使 AE=AD,BD 的延长线交 CE 于点 F,求∠E 的 度数。
7.正方形 ABCD 的边长为 4,将此正方形置于平面直角坐标系中,使 AB 边落在 X 轴的正半 轴上,且 A 点的坐标是(1,0) 。
4 8 ①直线 y= x- 经过点 C,且与 x 轴交与点 E,求四边形 AECD 的面积; 3 3 ②若直线 l 经过点 E 且将正方形 ABCD 分成面积相等的两部分求直线 l 的解析式, ③若直线 l1 经过点 F 2 3 .0 且与直线 y=3x 平行,将②中直线 l 沿着 y 轴向上平移 个单位 3 2 交 x 轴于点 M ,交直线 l1 于点 N ,求 NMF 的面积.(竞赛奥数)如图,在△ABC 中,已知∠C=60°,AC>BC,又△ABC′、△BCA′、△CAB′ 都是△ABC 形外的等边三角形,而点 D 在 AC 上,且 BC=DC (1)证明:△C′BD≌△B′DC; (2)证明:△AC′D≌△DB′A;9.已知如图,直线 y 3x 4 3 与 x 轴相交于点 A,与直线 y 3x 相交于点 P. ①求点 P 的坐标. ②请判断 OPA 的形状并说明理由. ③动点 E 从原点 O 出发,以每秒 1 个单位的速度沿着 O→P→A 的路线向点 A 匀速运动(E 不与点 O、 A 重合) , 过点 E 分别作 EF⊥x 轴于 F, EB⊥y 轴于 B. 设运动 t 秒时, 矩形 EBOF 与△OPA 重叠部分的面积为 S.求: S 与 t 之间的函数关系式.y PB OEFAx16 多边形内角和公式等于(n - 2)×180 根据题意即(n - 2)×180=150n,求得 n=12, 多边形的对角线的条数公式等于 n(n-3)/2 带入 n=12, 则这个多边形所有对角线 的条数共有 54 条因为两直线交点在 x 轴上,则 k1 和 k2 必然不为 0,且交点处 x=-1/k1=4/k2, 所以 k1:k2=-1:41/x^4+1/4y^4=(y^4+x^4)/x^4y^4 因为 xy=1 所以 x^4y^4=1 所以 原式=y^4+x^4 因为(x^2-y^2)^2>0 且(x^2-y^2)^2=y^4+x^4-x^2y^2 大于或等于 0 所以 y^4+x^4 大于或等于 x^2y^2 即 1 所以 y^4+x^4 的最小值为 1竞赛解:在△ABC 中, ∵∠A>∠B, ∴a>b, ∵a+b>c, ∴2a>a+b>c, ∴a>12c. 故选 C.1、y=kx+6 过点 E(-8,0)则 -8K+6=0 K=3/4 2、 因点 E(-8,0) 则 OE=8 直线解析式 Y=3X/4+6 当 X=0 时,Y=6,则点 F(0,6) 因点 A(0,6),则 A、F 重合 OA=6 设点 P(X,Y) 则点 P 对于 Y 轴的高为|X| 当 P 在第二象限时,|X|=-X S=OA×|X|/2=-6X/2=-3X 3、 S=3|X| 当 S=278 时 278=± 3X X1=278/3,X2=-278/3 Y1=3X1/4+6=3/4×278/3+6=151/2 Y2=3X2/4+6=-3/4×278/3+6=-127/2 点 P1(278/3,151/2),P2(-278/3,-127/2)6 解:在△ABD 和△ACE 中, ∵AB=AC,∠DAB=∠CAE=90° AD=AE, ∴△ABD≌△ACE(SAS) , ∴∠E=∠ADB. ∵∠ADB=180° -∠BDC=180° -124° =56° , ∴∠E=56° .7(1)由题意知边长已经告诉,易求四边形的面积; (2)由第一问求出 E 点的坐标,设出 F 点,根据直线 l 经过点 E 且将正方形 ABCD 分成面积相等的两部分,其实是两个直角梯形,根据梯形面积公式,可求 出 F 点坐标,从而解出直线 l 的解析式.解:(1)由已知条件正方形 ABCD 的 边长是 4, ∴四边形 ABCD 的面积为:4×4=16; (2)由第一问知直线 y=4/3x-8/3 与 x 轴交于点 E, ∴E(2,0), 设 F(m,4), 直线 l 经过点 E 且将正方形 ABCD 分成面积相等的两部分,由图知是两个直角 梯形, ∴S 梯形 AEFD=S 梯形 EBCF= 1/2(DF+AE)•AE= 1/2(FC+EB) ∴m=4, ∵F(4,4),E(2,0), ∴直线 l 的解析式为:y=2x-4竞赛奥数 (1) 先证△ABC≌△C1BD:∵AB=C1B, ∠ABC=∠C1BD (因为都是 60° +∠ ABD), BD=BC。
八年级下册数学期中好题必刷 专题01 三角形的证明(北师大版)(解析版)
专题01 三角形的证明一、单选题1.(广东韶关·八年级期中)若三角形内一点到三边的距离相等,则这个点是()A.三条边的垂直平分线的交点B.三条中线的交点C.三条高的交点D.三条角平分线的交点【答案】D【提示】根据角平分线的判定定理到角两边距离相等的点在角平分线上,得出到到三边的距离相等的点是三角形三个角的平分线交点即可.【解答】解:根据角平分线的判定定理:到角两边距离相等的点在角平分线上,∴到到三边的距离相等的点是三角形三个角的平分线交点.故选择D.【点睛】本题考查角平分线的判定,以及角平分线交点的性质,掌握角平分线的判定与性质是解题关键.2.(湖北省直辖县级单位·八年级期中)如图,Rt△ABC中,∠C=90°,AD平分∠BAC,交BC于点D,AB =10,S△ABD=15,则CD的长为()A.3 B.4 C.5 D.6【答案】A【提示】过点D作DE⊥AB于E,根据角平分线上的点到角的两边距离相等可得DE=CD,然后利用△ABD的面积列式计算即可得解.【解答】解:如图,过点D作DE⊥AB于E,∵∠C=90°,AD平分∠BAC, ∴DE=CD,∴S△ABD=12AB×DE=12×10×DE=15,解得DE=3,∴CD=DE=3,故选:A.【点睛】本题考查了三角形的面积和角平分线的性质,能熟记角平分线上的点到角两边的距离相等是解此题的关键.3.(黑龙江·牡丹江四中八年级期中)等腰三角形底边长为5,一腰上的中线把周长分成两部分的差为3cm,则腰长为()A.8cm或2cm B.2cm C.8cm D.8cm或25cm【答案】C【提示】根据题意,画出图形,然后分两种情况讨论,即可求解.【解答】解:如图,CD为△ABC的中线,AB=AC,底边BC=5cm,∴AD=BD,根据题意得:当(AD+AC+CD)-(BD+BC+CD)=3cm时,则AC-BC=3cm,∴AB=AC=8cm;当(BD+BC+CD)-(AD+AC+CD)=3cm时,则BC -AC =3cm,∴AB=AC=2cm,∵4AB AC BC +=<,不合题意,舍去; 综上所述,腰长为8cm . 故选:C 【点睛】本题主要考查了等腰三角形的性质,熟练掌握等腰三角形的两腰相等是解题的关键. 4.(山东济宁·八年级期中)如图,已知ABC 是等边三角形,点B ,C ,D ,E 在同一直线上,且CG CD =,DF DE =,则E ∠=( )A .30°B .20°C .15°D .10°【答案】C 【提示】由于△ABC 是等边三角形,那么∠B =∠1=60°,而CD =CG ,那么∠CGD =∠2,而∠1是△CDG 的外角,可得∠1=2∠2,同理有∠2=2∠E ,等量代换有4∠E =60°,即可求得∠E . 【解答】 解:如图所示,∵△ABC 是等边三角形, ∴∠B =∠1=60°, ∵CD =CG , ∴∠CGD =∠2,∴∠1=∠CGD +∠2=2∠2, ∵DF =DE , ∴∠DFE =∠E ,∴∠2=∠DFE +∠E =2∠E , ∴4∠E =60°, ∴∠E =15°. 故选:C . 【点睛】本题考查了等边三角形的性质、等腰三角形的性质、三角形外角的性质,解题的关键是利用外角性质得出∠1=2∠2,∠2=2∠E .5.(辽宁·沈阳市第四十三中学八年级期中)如图,在△ABC 中,∠C =90°,∠B =15°,AB 的垂直平分线交BC 于D ,交AB 于E ,若DB =10cm,则CD 的长为( )A .5B .3C .55D .10【答案】B 【提示】利用线段垂直平分线的性质求得AD =BD =10 cm,及∠ADC =30°,再利用含30度角的直角三角形的性质以及勾股定理即可求解. 【解答】解:∵AB 的垂直平分线交BC 于D ,交AB 于E , ∴AD =BD =10 cm,∠DBA =∠BAD =15°, ∴∠ADC =30°, ∴AC =12AD =5(cm ),CD 222210553AD AC --=cm ). 故选:B 【点睛】本题考查了含30°角的直角三角形,勾股定理,解题的关键是:熟记含30°角的直角三角形的性质,线段垂直平分线的性质及三角形的外角性质.6.(重庆市凤鸣山中学八年级期中)如图,在ABC 中,AB AC =,36A ∠=︒,AB 的中垂线DE 交AC 于点D ,交AB 于点E ,下述结论中正确的是( )A .点D 是线段AC 的中点B .AD BD BC == C .BDC 的周长等于AB CD + D .BD 平分EDC ∠【答案】B 【提示】由在△ABC 中,AB =AC ,∠A =36°,根据等边对等角与三角形内角和定理,即可求得∠ABC 与∠C 的度数,又由AB 的垂直平分线是DE ,根据线段垂直平分线的性质,即可求得AD =BD ,继而求得∠ABD 的度数,则可知BD 平分∠ABC ;可得△BCD 的周长等于AB +BC ,又可求得∠BDC 的度数,求得AD =BD =BC ,则可求得答案;注意排除法在解选择题中的应用. 【解答】解:∵36A ∠=︒,AB AC =, ∴72ABC C ∠=∠=︒, ∵DE 垂直平分AB , ∴AD BD =, ∴36ABD A ∠=∠=︒, ∴36DBC ∠=︒, ∵C DBC ∠>∠, ∴BD >CD , ∴AD >CD ,∴点D 不是线段AC 的中点,故A 错误; ∵∠DBC =36°,∠C =72°,∴∠BDC =180°−∠DBC −∠C =72°, ∴∠BDC =∠C , ∴BD =BC ,∴AD =BD =BC ,故B 正确;∴△BCD 的周长为:BC +CD +BD =BC +CD +AD =BC +AC =BC +AB ,故C 错误; ∵在△ABC 中,AB =AC ,∠A =36°,∴∠ABC=∠C=180362︒-︒=72°,∵AB的垂直平分线是DE,∴AD=BD,∴∠ABD=∠A=36°,∴∠DBC=∠ABC−∠ABD=72°−36°=36°,∴72BCD BDC∠=∠=︒,∵9054EDB ABD∠=︒-∠=︒,∴EDB BDC∠≠∠,故D错误;故选:B.【点睛】此题考查了等腰三角形的性质,线段垂直平分线的性质以及三角形内角和定理等知识.此题综合性较强,但难度不大,解题的关键是注意数形结合思想的应用,注意等腰三角形的性质与等量代换.7.(江苏苏州·八年级期中)如图,四边形ABCD中,AC、BD是对角线,△ABC是等边三角形,∠ADC=30°,AD=4,BD=6,则CD的长为()A.25B.5 C.2 D.213【答案】A【提示】将△BCD绕点C顺时针旋转60°得到△ACE,连接CE,DE,由旋转的性质知DC=EC、∠DCE=∠ACB=60°、BD=AE=6,即可得△DCE为等边三角形,根据∠ADC=30°得到∠ADE=90°,根据勾股定理即可得到结论.【解答】解:如图所示,将△BCD绕点C顺时针旋转60°得到△ACE,连接CE,DE,由旋转的性质知DC =EC ,∠DCE =∠ACB =60°,BD =AE =6, 则△DCE 为等边三角形, ∵∠ADC =30°, ∴∠ADE =90°, ∴AD 2+DE 2=AE 2, ∴42+DE 2=62, ∴DE =CD =25. 故选:A . 【点睛】本题考查旋转变换,熟练掌握旋转变换的性质、等边三角形的判定与性质、勾股定理,正确的作出辅助线是解题的关键.8.(福建·龙岩二中八年级期中)如图,在Rt ACB 中,90BAC ∠=︒,AD BC ⊥垂足为D .ABD △与'ADB 关于直线AD 对称,点B 的对称点是点'B ,若'14B AC ∠=︒,则B 的度数为( )A .38︒B .48︒C .52︒D .54︒【答案】D 【提示】通过折叠角相等,∠BAD +∠B ´AD +∠B ´AC =90°计算得∠BAD ,进而用余角进行计算. 【解答】解:∵∠BAD +∠B ´AD +∠B ´AC =90°,且∠BAD =∠B ´AD ,∠B ´AC =14°, ∴∠BAD =38°, ∴∠B =90°−38°=52°. 故选:D . 【点睛】本题考查折叠以及直角三角形中角的转化与计算,属于中考常考题型.9.(福建师范大学附属中学初中部八年级期中)如图,直线m 是△ABC 中BC 边的垂直平分线,点P是直线m 上的一动点,若AB =5,AC =4,BC =6,则△APC 周长的最小值是( )A .9B .10C .11D .12.5【答案】A 【提示】根据垂直平分线的性质BP PC =,所以APC △周长9AC AP PC AC AP BP AC AB =++=++≥+=. 【解答】∵直线m 是ABC 中BC 边的垂直平分线, ∴BP PC =∴APC △周长AC AP PC AC AP BP =++=++ ∵两点之间线段最短 ∴AP BP AB +≥APC ∴的周长AC AP BP AC AB =++≥+ 4AC =,5AB =∴APC △周长最小为9AC AB += 故选:A 【点睛】本题主要考查线段垂直平分线的性质定理,以及两点之间线段最短.做本题的关键是能得出AP BP AB +≥,做此类题的关键在于能根据题设中的已知条件,联系相关定理得出结论,再根据结论进行推论.10.(2022·全国·八年级期中)如图,等腰ABC 中,AB AC =,120BAC ∠=︒,AD DC ⊥于D ,点O 是线段AD 上一点,点P 是BA 延长线上一点,若OP OC =,则下列结论:①30APO DCO ∠+∠=︒;②APO DCO ∠=∠;③POC △是等边三角形;④AB OA AP =+.其中正确的是( )A.①③④B.①②③C.②③④D.①②③④【答案】A【提示】①利用等边对等角得:∠APO=∠ABO,∠DCO=∠DBO,则∠APO+∠DCO=∠ABO+∠DBO=∠ABD,据此即可求解;②因为点O是线段AD上一点,所以BO不一定是∠ABD的角平分线,可作判断;③证明∠POC=60°且OP=OC,即可证得△OPC是等边三角形;④证明△OP A≌△CPE,则AO =CE,得AC=AE+CE=AO+AP.【解答】解:①如图1,连接OB,∵AB=AC,AD⊥BC,∴BD=CD,∠BAD=12∠BAC=12×120°=60°,∴OB=OC,∠ABC=90°﹣∠BAD=30°∵OP=OC,∴OB=OC=OP,∴∠APO=∠ABO,∠DCO=∠DBO,∴∠APO+∠DCO=∠ABO+∠DBO=∠ABD=30°,故①正确;②由①知:∠APO=∠ABO,∠DCO=∠DBO,∵点O是线段AD上一点,∴∠ABO与∠DBO不一定相等,则∠APO与∠DCO不一定相等,故②不正确;③∵∠APC+∠DCP+∠PBC=180°,∴∠APC+∠DCP=150°,∵∠APO+∠DCO=30°,∴∠OPC+∠OCP=120°,∴∠POC=180°﹣(∠OPC+∠OCP)=60°, ∵OP=OC,∴△OPC是等边三角形,故③正确;④如图2,在AC上截取AE=P A,∵∠P AE=180°﹣∠BAC=60°,∴△APE是等边三角形,∴∠PEA=∠APE=60°,PE=P A,∴∠APO+∠OPE=60°,∵∠OPE+∠CPE=∠CPO=60°,∴∠APO=∠CPE,∵OP=CP,在△OP A和△CPE中,PA PEAPO CPEOP CP=⎧⎪∠=∠⎨⎪=⎩,∴△OP A≌△CPE(SAS),∴AO=CE,∴AC=AE+CE=AO+AP,∴AB=AO+AP,故④正确;正确的结论有:①③④,故选:A.【点睛】本题主要考查了全等三角形的判定与性质、等腰三角形的判定与性质、等边三角形的判定与性质等知识,正确作出辅助线是解决问题的关键.二、填空题11.(云南·弥勒市长君实验中学八年级期中)一个等腰三角形一腰上的高与另一腰的夹角为50°,则该等腰三角形的顶角度数为__________.【答案】40°或140°【提示】本题要分情况讨论.当等腰三角形的顶角是钝角或者等腰三角形的顶角是锐角两种情况.【解答】解:①当为锐角三角形时,如图1,∵∠ABD=50°,BD⊥AC,∴∠A=90°−50°=40°,∴三角形的顶角为40°;②当为钝角三角形时,如图2,∵∠ABD=50°,BD⊥AC,∴∠BAD=90°−50°=40°,∵∠BAD+∠BAC=180°,∴∠BAC=140°∴三角形的顶角为140°,故答案为40°或140°.【点睛】本题主要考查了等腰三角形的性质及三角形内角和定理,做题时,考虑问题要全面,必要的时候可以做出模型帮助解答,进行分类讨论是正确解答本题的关键,难度适中.12.(上海市西南位育中学八年级期中)如图在△ABC中,AB=AC,BF=CD,BD=CE,∠FDE=70°,那么∠A=_____.【答案】40°【提示】先证明△BDF≌△CED,得到∠BFD=∠CDE,根据三角形的内角和与平角的定义推出∠FDE与∠B相等,再利用三角内角和定理整理即可得出结论.【解答】解:∵AB=AC,∴∠B=∠C,在△BDF和△CED中,BF CDB CBD CE⎧⎪∠∠⎨⎪⎩===,∴△BDF≌△CED(SAS),∴∠BFD=∠CDE,∴∠FDE=180°-∠CDE-∠BDF=180°-∠BFD-∠BDF=∠B,∵∠FDE=70°,∴∠B=70°,∵∠B+∠C+∠A=180°,∴∠A=40°.故答案为:40°.【点睛】本题考查了三角形全等的性质与判定.解题的关键是通过三角形全等利用角的等量代换得到∠FDE =∠B .13.(山东济宁·八年级期中)如图,AD 是ABC 中BAC ∠的角平分线,DE AB ⊥于点E ,7ABC S =△,2DE =,4AB =,则AC 长是______.【答案】3 【提示】作DF ⊥AC 于点F ,由角平分线的性质可得DF =DE =2,然后根据三角形的面积公式求解. 【解答】解:作DF ⊥AC 于点F ,∵AD 是ABC 中BAC ∠的角平分线,DE AB ⊥, ∴DF =DE =2, ∵11722AB DE AC DF ⋅+⋅=, ∴11422722AC ⨯⨯+⨯=, ∴AC =3, 故答案为:3.【点睛】本题考查了角平分线的性质,熟练掌握角平分线上的点到角两边的距离相等是解答本题的关键. 14.(北京市师达中学八年级期中)如图,BD 是∠ABC 的平分线,点P 是射线BD 上一点,PE ⊥BA 于点E ,2PE =,点F 是射线BC 上一个动点,则线段PF 的最小值为_________.【答案】2【提示】过P作PH⊥BC,根据垂线段最短得出此时PH的长最小,根据角平分线的性质得出PE=PH,再求出答案即可.【解答】解:过P作PH⊥BC,此时PH的长最小,∵BD是∠ABC的平分线,PH⊥BC,PE⊥BA,∴PE=PH,∵PE=2,∴PH=2,即PF的最小值是2,故答案为:2.【点睛】本题考查了垂线段最短和角平分线的性质,能找出当PF最小时点F的位置是解此题的关键.∠+∠+∠=______°.15.(浙江杭州·八年级期中)如图是单位长度为1的正方形网格,则123【答案】135如图,证明ABC≌AEF可得1390∠+∠=︒,根据等腰直角三角形的性质可得245∠=︒,进而即可求得答案.【解答】解:如图,在ABC与AEF 中AB AEB EBC FE=⎧⎪∠=∠⎨⎪=⎩∴ABC≌AEF∴4=3∠∠1490∠+∠=︒1390∴∠+∠=︒245∴∠=︒123135∴∠+∠+∠=︒故答案为:135【点睛】本题考查了全等三角形的性质与判定,等腰直角三角形的性质,掌握全等三角形的性质与判定是解题的关键.16.(江苏·无锡市江南中学八年级期中)已知直角三角形△ABC的三条边长分别为3,4,5,在△ABC所在平面内画一条直线,将△ABC分割成两个三角形,使其中的一个是等腰三角形,则这样的直线最多可画___条.【答案】6【提示】根据等腰三角形的性质分别利用AB,AC为底以及为腰得出符合题意的图形即可.解:如图所示:当BC 2=CC 2,AC 1=AC ,BC =BC 3,BC =CC 4,BC =CC 5,C 6A =C 6B 都能得到符合题意的等腰三角形. 故答案为:6. 【点睛】此题主要考查了等腰三角形的判定以及应用设计与作图等知识,正确利用图形分类讨论得出是解题关键.17.(福建·厦门市湖里中学八年级期中)如图,ABC 中,6AB =,4AC =,AD 平分∠BAC ,DE ⊥AB 于点E ,BF ⊥AC 于点F ,2DE =,则BF 的长为______.【答案】5 【提示】过点D 作DG AC ⊥,根据角平分线的性质可得2DG DE ==,结合图形得出6ABDS=,4ACDS=,10ABCS=,利用等面积法计算即可得出结果.【解答】解:如图所示:过点D 作DG AC ⊥,∵AD 平分BAC ∠,DG AC ⊥,DE AB ⊥,∴2DG DE ==, ∵6AB =,4AC =, ∴1·62ABDS AB DE ==,1·42ACDS AC DG ==, ∴10ABCABDACDS S S=+=,∴1·102ABCSAC BF ==, 即14?102BF ⨯=, 解得:5BF =, 故答案为:5. 【点睛】题目主要考查角平分线的性质及三角形等面积法求三角形的高,理解题意,熟练掌握运用角平分线的性质是解题关键.18.(云南·云大附中八年级期中)如图,在△ABC 中,∠ABC 和∠ACB 的平分线相交于点G ,过点G 作EF //BC 交AB 于E ,交AC 于F ,过点G 作GD AC ⊥于D ,下列五个结论:①EF BE CF =+;②BE CF =;③1902BGC A ∠=︒+∠;④点G 到△ABC 各边的距离相等;⑤设GD m =,AE AF n +=,则AEF S mn =△.其中正确的结论是______(请填写序号).【答案】①③④ 【提示】①根据BG 、CG 为角平分线,且EF ∥BC ,可得△BEG 和△CFG 为等腰三角形,从而得出结论; ②G 为角平分线交点,不能得到BE 和CF 相等;③先根据角平分线的性质得出∠GBC +∠GCB =12(∠ABC +∠ACB ),再由三角形内角和定理即可得出结论;④根据角平分线定理即可得出答案;⑤连接AG,根据三角形面积公式即可得出答案. 【解答】解:①∵∠ABC 和∠ACB 的平分线相交于点G ; ∴∠EBG =∠CBG ,∠FCG =∠BCG .∵EF ∥BC ,∴∠EGB =∠CBG ,∠FGC =∠BCG ; ∴∠EBG =∠EGB ,∠FGC =∠FCG , ∴EB =EG ,FG =FC ,∴EF =EG +FG =BE +CF ,故本小题正确;②G 点是角平分线的交点,G 不一定是EF 中点,故本小题错误; ③∵∠ABC 和∠ACB 的平分线相交于点G ; ∴∠GBC +∠GCB =12ABC ACB ∠+∠()=18012A ︒-∠(),∴∠BGC =180GBC GCB ︒-∠+∠()=11180802A ︒-︒-∠()=190+2A ︒∠,故本小题正确; ④∵CG 平分∠ACB ,∴G 到AC 、BC 的距离相等; ∵BG 平分∠ABC ,∴G 到AB 、BC 的距离相等; ∴G 到三边的距离都相等,故本小题正确;⑤连接AG ,∵点G 是角平分线的交点,GD m =,AE AF n +=, ∴1122AEF S AE GD AF GD =⋅+⋅△=()12AE AF GD +⋅=12nm ,故本小题错误. 答案为:①③④【点睛】本题主要考查的是等腰三角形的性质与判定、角平分线的性质、三角形内角和定理,熟练掌握相关内容是解题的关键. 三、解答题19.(广东·深圳市福田区第二实验学校八年级期中)如图,在△ABC 中,AB =4,BC 5点D 在AB 上,且BD =1,CD =2.(1)求证:CD ⊥AB ; (2)求AC 的长. 【答案】(1)见解析 13【提示】(1)根据勾股定理逆定理证明△BCD 是直角三角形,即可得证; (2)先求得AD =AB DB -3=,在Rt △ACD 中,勾股定理求解即可. (1)证明:∵在△BCD 中,BD =1,CD =2,BC 5∴BD 2+CD 2=12+2252=BC 2, ∴△BCD 是直角三角形,且∠CDB =90°, ∴CD ⊥AB ; (2)解:∵CD ⊥AB , ∴∠ADC =90°, ∵AB =4,DB =1, ∴AD =3,在Rt △ACD 中,∵CD =2,∴AC 22AD CD +2232+13∴AC 13 【点睛】本题考查了勾股定理以及勾股定理的逆定理,掌握勾股定理是解题的关键. 20.(天津·八年级期中)如图,AC BC ⊥,BD AD ⊥,AC 与BD 交于点O ,AC BD =.(1)求证:ΔΔADB BCA ≅; (2)求证:OAB ∆是等腰三角形. 【答案】(1)见解析 (2)见解析 【提示】根据AC BC ⊥,BD AD ⊥可证角相等并等于90度,进而可证Rt ABD Rt BAC ≌; 由(1)可知Rt ABD Rt BAC ≌,进而可证OA OB =,从而可证OAB 是等腰三角形. (1) 证明:AC BC ⊥,BD AD ⊥90D C ∴∠=∠=︒,在Rt ABD △和Rt BAC 中,AC BDAB BA =⎧⎨=⎩, ∴()Rt ABD Rt BAC HL ≌. (2)∵Rt ABD Rt BAC ≌DBA CAB ∴∠=∠,OA OB ∴=,即OAB 是等腰三角形. 【点睛】本题考查直角三角形的判定,全等三角形的性质,等腰三角形的证明,能够找到判定全等所需的条件进行全等判定是解决本题的关键.21.(重庆·八年级期中)点C 、D 都在线段AB 上,且AD BC =,AE BF =,A B ∠=∠,CE 与DF 相交于点G .(1)求证:ΔΔACE BDF ≅; (2)若10CE =,4DG =,求EG 的长. 【答案】(1)见解析 (2)6 【提示】( 1)由“SAS ”可证ΔΔACE BDF ≅;( 2)由全等三角形的性质可得ACE BDF ∠=∠,可得4CG DG ==,即可求解. (1) 证明:AD BC =,AD DC BC DC ∴+=+,AC BD ∴=,在ACE ∆与BDF ∆中, AC BD A B AE BF =⎧⎪∠=∠⎨⎪=⎩, ()ΔΔACE BDF SAS ∴≅;(2)由(1)得:ΔΔACE BDF ≅,ACE BDF ∴∠=∠, 4CG DG ∴==,1046EG CE CG ∴=-=-=.【点睛】本题考查了全等三角形的判定和性质,等腰三角形的判定与性质,证明三角形全等是解题的关键. 22.(广东·珠海市文园中学八年级期中)如图,已知:E 是∠AOB 的平分线上一点,EC ⊥OB ,ED ⊥OA ,C 、D 是垂足,连接CD ,且交OE 于点F .(1)求证:OE是CD的垂直平分线;(2)若∠AOB=60°,请直接写出OE与EF之间的数量关系.【答案】(1)见解析(2)OE=4EF【提示】(1)先根据E是∠AOB的平分线上一点,EC⊥OB,ED⊥OA得出△ODE≌△OCE,可得出OD=OC,DE=CE,OE=OE,可得出△DOC是等腰三角形,由等腰三角形的性质即可得出OE是CD的垂直平分线;(2)先根据E是∠AOB的平分线,∠AOB=60°可得出∠AOE=∠BOE=30°,由直角三角形的性质可得出OE=2DE,同理可得出DE=2EF即可得出结论.(1)证明:∵E是∠AOB的平分线上一点,EC⊥OB,ED⊥OA,∴DE=CE,∵OE=OE,∴Rt△ODE≌Rt△OCE,∴OD=OC,∴△DOC是等腰三角形,∵OE是∠AOB的平分线,∴OE是CD的垂直平分线;(2)解:∵OE是∠AOB的平分线,∠AOB=60°,∴∠AOE=∠BOE=30°,∵EC⊥OB,ED⊥OA,∴OE=2DE,∠ODF=∠OED=60°,∴∠EDF=30°,∴OE=4EF.【点睛】本题考查的是角平分线的性质及直角三角形的性质、等腰三角形的判定与性质,熟知以上知识是解答此题的关键.23.(山东·昌乐县教学研究室八年级期中)△ABC中,AB=AC,BD平分∠ABC交AC于点D,从点A作AE∥BC交BD的延长线于点E.(1)若∠BAC=40°,求∠E的度数;(2)点F是BE上一点,且FE=BD.取DF的中点H,请问AH⊥BE吗?试说明理由.【答案】(1)∠E=35°;(2)AH⊥BE.理由见解析.【提示】(1)根据等腰三角形两底角相等,已知顶角,可以求出底角,再根据角平分线的定义求出∠CBD的度数,最后根据两直线平行,内错角相等求出;(2)由“SAS”可证△ABD≌△AEF,可得AD=AF,由等腰三角形的性质可求解.【解答】解:(1)∵AB=AC,∴∠ABC=∠ACB,∵∠BAC=40°,∴∠ABC=12(180°-∠BAC)=70°,∵BD平分∠ABC,∴∠CBD=12∠ABC=35°,∵AE∥BC,∴∠E=∠CBD=35°;(2)∵BD平分∠ABC,∠E=∠CBD, ∴∠CBD=∠ABD=∠E,在△ABD和△AEF中,AB AEE ABDBD EF=⎧⎪∠=∠⎨⎪=⎩,∴△ABD≌△AEF(SAS),∴AD=AF,∵点H是DF的中点,∴AH⊥BE.【点睛】本题考查了全等三角形的判定和性质,等腰三角形的性质,证明三角形全等是解题的关键.24.(广西柳州·八年级期中)如图,在△ABC中,AB=AC,AB的垂直平分线交AB于N,交AC于M.(1)若∠B=70°,则∠NMA的度数是_________.(2)连接MB,若AB=8cm,BC=6cm.①求△MBC的周长;②在直线MN上是否存在点P,使由P,B,C构成的△PBC的周长值最小?若存在,直接写出△PBC的周长最小值;若不存在,说明理由.【答案】(1)50°;(2)①14cm;②存在,14cm.【提示】(1)根据等腰三角的性质,三角形的内角和定理,可得∠A的度数,根据直角三角形两锐角的关系,可得答案;(2)①根据垂直平分线的性质,可得AM与MB的关系,再根据三角形的周长,可得答案;②根据两点之间线段最短,可得P点与M点的关系,可得PB+PC与AC的关系.【解答】解:(1)∵∠B=70°,AB=AC,∴∠B=∠C=70°,∴∠A=180°-∠B-∠C=50°,∵MN⊥AB,∴∠ANM=90°,∴∠NMA=90°-∠A=50°,故答案为:50°;(2)如图:①∵MN垂直平分AB.∴MB=MA,又∵BC=6cm,AC=BC=8cm,∴△MBC的周长是MB+MC+BC= MA+MC+BC=AC+BC=14(cm);②当点P与M重合时,△PBC周长的值最小,理由:∵PB+PC=P A+PC,P A+PC≥AC,∴P与M重合时,P A+PC=AC,此时PB+PC最小,∴△PBC周长的最小值=AC+BC=8+6=14(cm).【点睛】本题主要考查了轴对称的性质,等腰三角形的性质,线段垂直平分线上的点到线段两端点的距离相等的性质,熟记性质是解题的关键.25.(江苏盐城·八年级期中)如图,AD是△ABC的角平分线,DE、DF分别是△ABD和△ACD的高.(1)求证:AD垂直平分EF;(2)若AB+AC=10,S△ABC=15,求DE的长.【答案】(1)见解析;(2)3DE(1)由角平分线的性质得DE =DF ,再根据HL 证明Rt △AED ≌Rt △AFD ,得AE =AF ,从而证明结论; (2)根据DE =DF ,得111++()15222ABDACDS SAB ED AC DF DE AB AC ==+=,代入计算即可. 【解答】(1)证明:∵AD 是△ABC 的角平分线,DE 、DF 分别是△ABD 和△ACD 的高, ∴DE =DF ,在Rt △AED 与Rt △AFD 中,AD ADDE DF =⎧⎨=⎩, ∴Rt △AED ≌Rt △AFD (HL ), ∴AE =AF , ∵DE =DF ,∴AD 垂直平分EF ; (2)解:∵DE =DF , ∴111++()15222ABDACDSSAB ED AC DF DE AB AC ==+=, ∵AB +AC =10, ∴DE =3. 【点睛】本题考查了全等三角形的判定与性质,角平分线的性质,解题的关键是掌握这些知识点.26.(湖北武汉·八年级期中)如图,在△ABC 中,∠ACB =90°,∠A =30°,D 为AB 上一点,以CD 为边在CD 右侧作等边△CDE .(1)如图1,当点E 在边AC 上时,求证:DE =AE ;(2)如图2,当点E 在△ABC 内部时,猜想ED 和EA 数量关系;(3)当点E 在△ABC 外部时,过点E 作EH ⊥AB 点H ,EF ∥AB ,CF =2,AH =3.直接写出AB 的长为 .【答案】(1)见解析;(2)ED =EA ,理由见解析;(3)16(1)根据等边三角形的性质、三角形的外角的性质得到∠EDA=∠A,根据等腰三角形的判定定理证明;(2)取AB的中点O,连接CO、EO,分别证明△BCD≌△OCE和△COE≌△AOE,根据全等三角形的性质证明;(3)取AB的中点O,连接CO、EO、EA,根据(2)的结论得到△CEF≌△DCO,根据全等三角形的性质解答.【解答】(1)证明:∵△CDE是等边三角形,∴∠CED=∠DCE=60°,∴∠EDA=60°﹣∠A=30°,∵∠A=30°,∴∠EDA=30°,∴∠EDA=∠B,∴DE=EA;(2)结论:ED=EA,理由:如图2中,取AB的中点O、EO,∵∠ACB=90°,∠BAC=30°,∴∠B=60°,OC=OB,∴△BCO为等边三角形,∴CB=CO=BO=AO,∵△CDE是等边三角形,∴∠BCD=∠OCE,在△BCD和△OCE中,CB COBCD OCECD CE=⎧⎪∠=∠⎨⎪=⎩,∴∠COE=∠B=60°,∴∠AOE=60°,在△COE和△AOE中,OC OACOE AOEOE OE=⎧⎪∠=∠⎨⎪=⎩,∴△COE≌△AOE(SAS),∴EC=EA,∴ED=EA;(3)解:如图3中,取AB的中点O、连接EO,AE,由(2)得△BCD≌△OCE,∴∠COE=∠B=60°,∴∠AOE=60°,同法可得△COE≌△AOE,∴EC=EA,∴ED=EA,∵EH⊥AB,∴DH=AH=5,∵EF∥AB,∴∠F=180°﹣∠B=120°,∵∠FCD=∠FCE+60°=∠CDB+60°,∴∠FCE=∠CDB,在△CEF和△DCO中,F CODECF ODCCE CD∠=∠⎧⎪∠=∠⎨⎪=⎩,∴CF=OD=2,∴OA=OD+AD=2+6=8,∴AB=2OA=16.【点睛】本题主要考查了等边三角形判定和性质,全等三角形的判定和性质,熟练掌握等边三角形判定和性质定理,全等三角形的判定和性质定理是解题的关键.27.(四川·成都外国语学校八年级期中)如图1,在△ABC中,AD⊥BC于D,CE⊥AB于E,AD与CE交于点F,∠ACE=45°.(1)求证:△AEF≌△CEB.(2)若G在BC的延长线上,连接GA,若GA=GB,求证:AC平分∠DAG.(3)如图2,在(2)的条件下,H为AG的中点,连接DH交AC于M,连接EM、ED,若S△EMC=4,∠BAD =15°,求AM的长.【答案】(1)见解析(2)见解析(3)6【提示】(1)先判断出AE=CE,再利用等角的余角相等判断出∠EAF=∠ECB,进而判断出AEF CEB△≌△,即可得出结论;(2)先利用三角形外角的性质得出∠AEF=45︒+∠CAD,进而得出∠B=45︒+∠CAD,而∠B=∠BAG,得出∠BAG=45︒+∠CAD,而∠BAG=45︒+∠CAG,即可得出结论;(3)先判断出ADH是等边三角形,进而利用含30度角的直角三角形的性质判断出AM=3CM,进而求出ACM的面积,即可求出AE,进而求出AC,即可得出结论.(1)证明:∵CE⊥AB,∴∠AEC =∠BEC =90°, ∵∠ACE =45°, ∴∠CAE =45°=∠ACE , ∴AE =CE , ∵AD ⊥BC , ∴∠ADC =90°, ∴∠ECB +∠CFD =90°, ∵∠CFD =∠AFE , ∴∠ECB +∠AFE =90°, ∵∠EAF +∠AFE =90°, ∴∠EAF =∠ECB , 在AEF 和CEB 中,90EAF ECB AE CE AEF CEB ∠=∠⎧⎪=⎨⎪∠=∠=︒⎩, ∴AEF CEB △≌△(ASA ); (2)∵AEF CEB △≌△, ∴∠AFE =∠B ,∵∠AFE =∠ACE +∠CAD =45°+∠CAD , ∴∠B =45°+∠CAD , ∵AG =BG , ∴∠B =∠BAG , ∴∠BAG =45°+∠CAD ,∵∠BAG =∠CAE +∠CAG =45°+∠CAG , ∴∠CAD =∠CAG , ∴AC 平分∠DAG ; (3)∵∠BAD =15°,∠CAE =45°, ∴∠CAD =∠CAE ﹣∠BAD =30°, ∵∠CAD =∠CAG ,∴∠DAG=2∠CAD=60°,在Rt△ADG中,点H是AG的中点,∴DH=AH,∴△ADH是等边三角形,∴∠ADH=60°,AD=AH,∵∠CAD=∠CAG,∴AC⊥DH,即:∠AMD=∠DMC=90°∵∠ADC=90°,∴∠CDM=30°,在Rt△DMC中,DM,在Rt△AMD中,AM=3CM, ∴S△AEM=3S△CEM=3×4=12,∴S△ACE=S△CEM+S△AEM=16,∵∠AEC=90°,AE=CE,∴S△ACE=12AE2=16,∴AE=∴AC=8,∴AM+CM=8,∵AM=3CM,∴3CM+CM=8,∴CM=2,∴AM=3CM=6.【点睛】此题是三角形综合题,主要考查了全等三角形的判定和性质,等角的余角相等,等边三角形的判定和性质,三角形外角的性质,含30度角的直角三角形的性质,求出AE是解本题的关键.。
2020-2021学年人教版八年级数学下册第18章平行四边形解答题典型必练(一)
人教版八年级数学下册第18章《平行四边形》解答题典型必练(一)1.如图,点E在▱ABCD内部,AF∥BE,DF∥CE.(1)求证:△BCE≌△ADF;(2)设▱ABCD的面积为6,求四边形AEDF面积.2.如图,点E、F、G、H分别在矩形ABCD的边AB、BC、CD、DA(不包括端点)上运动,且满足AE=CG,AH=CF.(1)求证:四边形EFGH是平行四边形;(2)请探究四边形EFGH的周长一半与矩形ABCD一条对角线长的大小关系,并说明理由.3.如图,在正方形ABCD中,AC,BD相交于点O,E,F分别在OA,OD上,∠ABE =∠DCF.(1)求证:△ABE≌△DCF.(2)若BC=4,AE=3,求BE的长.4.如图,在正方形ABCD中,E是边AB上的一动点(不与点A,B重合),连接DE,点A关于直线DE的对称点为F,连接EF并延长交BC于点G,连接DG,过点E作EH⊥DE交DG的延长线于点H,连接BH.(1)直接写出GF与GC的数量关系:;(2)用等式表示线段BH与AE的数量关系,并证明.5.四边形ABCD是矩形,点P在边CD上,∠PAD=30°,点G与点D关于直线AP对称,连接BG.(1)如图,若四边形ABCD是正方形,求∠GBC的度数;(2)连接CG,设AB=a,AD=b,探究当∠CGB=120°时,a与b的数量关系.6.如图,在正方形ABCD中,点E为AB上的点(不与A,B重合),△ADE与△FDE 关于DE对称,作射线CF,与DE的延长线相交于点G,连接AG,(1)当∠ADE=15°时,求∠DGC的度数;(2)若点E在AB上移动,请你判断∠DGC的度数是否发生变化,若不变化,请证明你的结论;若会发生变化,请说明理由;(3)如图2,当点F落在对角线BD上时,点M为DE的中点,连接AM,FM,请你判断四边形AGFM的形状,并证明你的结论.7.如图,在正方形ABCD中,点E为线段BC上一动点(点E不与点B、C重合),点B关于直线AE的对称点为F,作射线EF交CD于H,连接AF.(1)求证:AF⊥EH;(2)连接AH,小王通过观察、实验,提出猜想:点E在运动过程中,∠EAH的度数始终保持不变.你帮助小王求出∠EAH的度数.8.如图,正方形ABCD中,点E是BC延长线上一点,连接DE,过点B作BF⊥DE于点F,连接FC.(1)求证:∠FBC=∠CDF;(2)作点C关于直线DE的对称点G,连接CG,FG,猜想线段DF,BF,CG之间的数量关系,并证明你的结论.9.已知AP为正方形ABCD外的一条射线,B′为点B关于直线AP的对称点,连接B′D.如图1所示.(1)如果∠BAP=20°,求∠ADB′的度数的大小.(2)如图2所示,M为射线B′B上一点,且∠BMC=135°.①求证:BB′=CM.②求证:CM∥B′D.10.在正方形ABCD外侧作直线AP,点B关于直线AP的对称点为E,连接BE,DE,其中DE交直线AP于点F.(1)依题意补全图1;图2;(2)若∠PAB=25°,求∠ADF的度数;(3)如图2,若45°<∠PAB<90°,用等式表示线段AB,FE,FD之间数量关系,并证明.11.如图,已知正方形ABCD边长为1,点P是射线AD的上的一个动点,点A关于直线BP的对称点是点Q,设AP=x.(1)求当D,Q,B三点在同一直线上时对应的x的值.(2)当△CDQ为等腰三角形时,求x的值.12.在正方形ABCD中,点P是射线CB上一个动点.连接PA,PD,点M,N分别为BC,AP的中点,连接MN交PD于点Q.(1)如图1,当点P在线段CB的延长线上时,请判断△QPM的形状,并说明理由.(2)如图2,正方形的边长为4,点P'与点P关于直线AB对称,且点P'在线段BC上.连接AP',若点Q恰好在直线AP'上,求P'M的长.13.如图,在边长为6的正方形ABCD中,G是边BC的中点,点C关于直线DG的对称点为F,连接GF并延长交AB于点E,过点E作EH⊥DE交DG的延长线于点H,连接BH.(1)求证:△ADE≌△FDE;(2)求AE的长;(3)求BH的长;14.如图,经过正方形ABCD的顶点A在其外侧作直线AP,点B关于直线AP的对称点为E,连接BE、DE,其中DE交直线AP于点F.(1)依题意补全图1.(2)若∠PAB=30°,求∠ADF的度数.(3)如图,若45°<∠PAB<90°,用等式表示线段AB,FE,FD之间的数量关系,并证明.15.在小学,我们已经初步了解到,正方形的每个角都是90°,每个边都是相等.如图,在正方形ABCD外侧作直线AQ,点D关于直线AQ的对称点为E,连接DE、BE,BE交AD于点F,若∠QAD=15°.(1)求∠ABE的度数;(2)若AB=6,求AF的长.参考答案1.(1)证明:∵四边形ABCD是平行四边形,∴AD=BC,AD∥BC,∴∠ABC+∠BAD=180°,∵AF∥BE,∴∠EBA+∠BAF=180°,∴∠CBE=∠DAF,同理得∠BCE=∠ADF,在△BCE和△ADF中,,∴△BCE≌△ADF(ASA);(2)解:∵点E在▱ABCD内部,,∴S△BEC+S△AED=S▱ABCD由(1)知:△BCE≌△ADF,∴S△BCE=S△ADF,∴S四边形AEDF=S△ADF+S△AED=S△BEC+S△AED=S,▱ABCD ∵▱ABCD的面积为6,∴四边形AEDF的面积为3.2.(1)证明:∵四边形ABCD是矩形,∴∠A=∠C.∴在△AEH与△CGF中,,∴△AEH≌△CGF(SAS),∴EH=GF,同理证得△EBF≌△GDH,则EF=GH,∴四边形EFGH是平行四边形;(2)解:四边形EFGH的周长一半大于或等于矩形ABCD一条对角线长度.理由如下:作G关于BC的对称点G′,连接EG′,可得EG′的长度就是EF+FG的最小值.连接AC,∵CG′=CG=AE,AB∥CG′,∴四边形AEG′C为平行四边形,∴EG′=AC.在△EFG′中,∵EF+FG′>EG′=AC,∴四边形EFGH的周长一半大于或等于矩形ABCD一条对角线长度.3.证明:(1)∵四边形ABCD是正方形,∴AB=CD,∠BAE=∠CDF=45°,∵∠ABE=∠DCF,在△ABE与△DCF中,,∴△ABE≌△DCF(ASA);(2)∵四边形ABCD是正方形,∴AB=BC,OA=OB=OC=OD,∠ABC=∠AOB=90°,∵BC=4,∴AB=4,∴AC=,∴OA=OB=4,∵AE=3,∴OE=OA﹣AE=4﹣3=1,在Rt△BOE中,BE=.4.证明:(1)如图1,连接DF,∵四边形ABCD是正方形,∴DA=DC,∠A=∠C=90°,∵点A关于直线DE的对称点为F,∴△ADE≌△FDE,∴DA=DF=DC,∠DFE=∠A=90°,∴∠DFG=90°,在Rt△DFG和Rt△DCG中,,∴Rt△DFG≌Rt△DCG(HL),∴GF=GC;(2)BH=AE,理由是:证法一:如图,在线段AD上截取AM,使AM=AE,∵AD=AB,∴DM=BE,由(1)知:∠ADE=∠EDF,∠FDG=∠GDC,∵∠ADC=90°,∴∠ADE+∠EDF+∠FDG+∠GDC=90°,∴2∠EDF+2∠FDG=90°,∴∠EDF+∠FDG=45°,即∠EDG=45°,∵EH⊥DE,∴∠DEH=90°,∴△DEH是等腰直角三角形,∴∠AED+∠BEH=∠AED+∠ADE=90°,DE=EH,∴∠ADE=∠BEH,在△DME和△EBH中,,∴△DME≌△EBH(SAS),∴EM=BH,Rt△AEM中,∠A=90°,AM=AE,∴EM=AE,∴BH=AE;证法二:如图,过点H作HN⊥AB于N,∴∠ENH=90°,由方法一可知:DE=EH,∠1=∠NEH,在△DAE和△ENH中,,∴△DAE≌△ENH(AAS),∴AE=HN,AD=EN,∵AD=AB,∴AB=EN=AE+BE=BE+BN,∴AE=BN=HN,∴△BNH是等腰直角三角形,∴BH=HN=AE.5.解:(1)连接DG,交AP于点E,连接AG,如图1,∵点G与点D关于直线AP对称,∴AP垂直平分DG,∴AD=AG.∵在△ADG中,AD=AG,AE⊥DG,∴∠PAG=∠PAD=30°,又∵在正方形ABCD中,AD=AB,∠DAB=∠ABC=90°,∴AG=AB,∠GAB=∠DAB﹣∠PAD﹣∠PAG=30°,∴在△GAB中,∠ABG=∠AGB==75°,∴∠GBC=∠ABC﹣∠ABG=15°;(2)连接DG,AG.由(1)可知,在△ADG中,AD=AG,∠DAG=∠PAD+∠PAG=60°,∴△ADG是等边三角形,∴DG=AG=AD,∠DAG=∠ADG=∠DGA=60°,又∵在矩形ABCD中,AB=DC,∠DAB=∠ADC=∠ABC=90°,∴∠DAB﹣∠DAG=∠ADC﹣∠ADG,即∠GAB=∠GDC=30°,∴△GAB≌△GDC(SAS),∴GB=GC.当∠CGB=120°时,点G可能在矩形ABCD的内部或外部.若点G在矩形ABCD的内部,∵在△BGC中,GB=GC,∠CGB=120°,∴∠GBC==30°,∴∠GBA=∠ABC﹣∠GBC=90°﹣30°=60°,在△ABG中,∠AGB=180°﹣∠GAB﹣∠GBA=90°,∴a=b,若点G在矩形ABCD的外部,在△BGC中,∠GBC=30°,∴∠ABG=120°,又∵∠GAB=30°,∴∠AGB=180°﹣30°﹣120°=30°.∴BA=BG,过点B作BH⊥AG,垂足为H,∴AH=AG=b.在Rt△ABH中,∠AHB=90°,∠HAB=30°,∴cos∠HAB==,∴a=b,在Rt△ADP中,∠ADP=90°,∠PAD=30°,∴tan∠PAD==,∴DP=b.所以无论点G在矩形ABCD内部还是点G在矩形ABCD外部,都有DP≤DC,均符合题意.综上,当∠CGB=120°时a与b的数量关系为a=b或a=b.6.解:(1)∵∠ADE=15°,∴∠FDE=15°,∠CDF=60°.∵DC=AD=DF,∴∠CFD=60°.又∠CFD=∠DGC+∠FDE=15°+∠DGC,∴∠DGC=45°;(2)不变,理由如下:∵△ADE与△FDE关于DE对称,∴∠AGD=∠DGF.设∠ADE=x,可得∠FDE=x,∠CDF=90°﹣2x,∵DC=AD=DF,∴∠CFD=45°+x.又∠CFD=∠DGC+∠FDE=x+∠DGC,∴∠DGC=45°;(3)四边形AGFM是正方形;理由:∵∠DAE=∠DFE=90°,点M为DE的中点,∴AM=FM=DM=DE,∴∠ADM=∠DAM,∠MDF=∠DFM,∴∠AME=∠EMF=2∠ADM=2∠MDF=45°,∴∠AMF=90°,∵∠MGF=45°,∴FM=FG,在△ADG与△FDG中,,∴△ADG≌△FDG(SAS),∴AG=FG,∴AM=MF=FG=AG,∵∠AMF=90°,∴四边形AGFM是正方形.7.解:(1)证明:∵点B关于直线AE的对称点为F,∴AB=AF,BE=EF,又∵AE=AE,∴△ABE≌△AFE(SSS),∴∠AFE=∠B=90°,∴AF⊥EH;(2)连接AH,如图:由(1)得AB=AF,AF⊥EH,∴AF=AD,∠D=∠AFH=90°,AH=AH,∴△AFH≌△ADH(HL),∴∠FAH=∠DAH,又∵∠BAE=∠FAE,在正方形ABCD中,∠BAD=90°,∴∠EAH=45°.8.解:(1)∵ABCD为正方形,∴∠DCE=90°.∴∠CDF+∠E=90°,又∵BF⊥DE,∴∠FBC+∠E=90°,∴∠FBC=∠CDF(2)如图所示:在线段FB上截取FM,使得FM=FD.∵∠BDC=∠MDF=45°,∴∠BDM=∠CDF,∴∠CFE=∠FCD+∠CDF=∠DBM+∠BDM=∠DMF=45°,∴∠EFG=∠EFC=45°,∴∠CFG=90°,∵CF=FG,∴CG=CF,∴BM=CG,∴BF=BM+FM=CG+DF.补充方法:连接GM,证明四边形BMGC是平行四边形即可.9.(1)解:连接AB',如图1,∵B′为点B关于直线AP的对称点,∴AB=AB',∴∠BAP=∠B'AP=20°,∵四边形ABCD是正方形,∴AB=AD,∴AB'=AD,∴∠AB'D=∠ADB',∵∠B'AD=∠B'AB+∠BAD=90°+40°=130°,∴∠ADB'=25°.(2)证明:①设B'D与AP的交点为N,连接AB',BN.由(1)得:∠1=∠2,∠3=∠4,∵∠1+∠2+∠3+∠4=90°,∴∠1+∠3=45°,∴∠B'NP=45°,∵∠B'NP=∠BNP,∴∠BNP=45°,则△BNB'为等腰直角三角形.∴BB'=BN,∠ANB=135°,∴∠BMC=∠ANB=135°,∵∠5+∠6=45°,∠4+∠5=45°,∴∠4=∠6.在△ANB和△BMC中,,∴△ANB≌△BNC(AAS),∴BN=CM,∴BB'=CM;②∵△BB'N为等腰直角三角形,∴∠NB'B=45°,∴∠NB'B=∠7=45°,∴B'D∥MC.10.解:(1)如图1、图2所示:(2)连接AE,如图3所示:则∠PAB=∠PAE=25°,AE=AB=AD,∴∠AED=∠ADF,∵四边形ABCD是正方形,∴∠BAD=90°,∴∠EAD=90°+25°+25°=140°,∴∠ADF=(180°﹣∠EAD)=20°;(3)连接AE、BF、BD,如图4所示:则EF=BF,AE=AB=AD,∴∠ABF=∠AEF=∠ADF,∴∠BFD=∠BAD=90°,∴BF2+FD2=BD2,∴EF2+FD2=AB2+AD2=2AB2,即EF2+FD2=2AB2.11.解:(1)连接DB,若Q点落在BD上,由AP=x,则PD=1﹣x,PQ=x.∵∠PDQ=45°,∴PD=PQ,即1﹣x=x.∴x=﹣1.(2)①如图2,连接BQ1、CQ1,作PQ1⊥BQ1交AD于P,过点Q1,作EF⊥AD于E,交BC于F.∵△BCQ1为等边三角形,正方形ABCD边长为1,∴Q1F=Q1E=.在四边形ABPQ1中,∵∠ABQ1=30°,∴∠APQ1=150°,∴△PEQ1为含30°的直角三角形,∴PE=Q1E=,∵AE=,∴x=AP=AE﹣PE=2﹣.②如图3,连接BQ2,AQ2,过点Q2作PG⊥BQ2,交AD于P,连接BP,过点Q2作EF⊥CD于E,交AB于F.∵EF垂直平分CD,∴EF垂直平分AB,∴AQ2=BQ2.∵AB=BQ2,∴△ABQ2为等边三角形.在四边形ABQP中,∵∠BAD=∠BQP=90°,∠ABQ2=60°,∴∠ABP=30°,∴x=AP=.③如图4,连接BQ1,CQ1,BQ3,CQ3,过点Q3作BQ3⊥PQ3,交AD的延长线于P,连接BP,过点Q1,作EF⊥AD于E,此时Q3在EF上,不妨记Q3与F重合.∵△BCQ1为等边三角形,△BCQ3为等边三角形,BC=1,∴Q1Q2=,Q1E=,∴EF=.在四边形ABQ3P中,∵∠ABF=∠ABC+∠CBQ3=150°,∴∠EPF=30°,∴EP=EF=.∵AE=,∴x=AP=AE+PE=+2.综上所述,△CDQ为等腰三角形时x的值为2﹣,,2+.12.解:(1)△QPM是等腰三角形,理由如下:延长BC至E,使CE=BP,连接AE,∵PB=CE,∴PB+BC=CE+BC,∴CP=BE,∵四边形ABCD是正方形,∴AB=CD,∠ABC=∠DCB=90°,在△DCP和△ABE中,∴△DCP≌△ABE(SAS)∴∠DPC=∠AEB,∵M是BC的中点,∴MB=MC,∴MB+BP=MC+CE,∴MP=ME,∴M是PE的中点,又∵N是AP的中点,∴MN∥AE,∴∠PMN=∠AEB,∴∠PMN=∠DPC,∴QP=QM,∴△QPM是等腰三角形;(2)延长BC至E,使CE=BP,连接AE,∵M是BC的中点,BC=4,∴BM=CM=2,又∵BP=CE,∴BM+BP=CM+CE,即PM=ME,∴M是PE的中点,且点N是AP中点,13.证明:(1)如图1,连接DF,∵四边形ABCD是正方形,∴DA=DC,∠A=∠C=90°,∵点C关于直线DG的对称点为F,∴△DCG≌△DFG,∴DC=DF=DA,∠DFG=∠C=90°,∴∠DFE=90°,在Rt△ADE和Rt△FDE中,∵,∴Rt△ADE≌Rt△FDE(HL);(2)∵G是边BC的中点,BC=6,∴CG=BG=FG=3,∵△ADE≌△FDE,∴AE=EF,设AE=x,则BE=6﹣x,EG=EF+FG=x+3,∵在Rt△EBG中,BE2+BG2=EG2,∴(6﹣x)2+32=(x+3)2,解得x=2,∴AE=2;(3)如图2,过点H作HN⊥AB于点N,∴∠ENH=90°,由(1)知∠ADE=∠EDF,∠FDG=∠CDG,∵∠ADC=90°,∴2∠EDF+2∠FDG=90°,∴∠EDF+∠FDG=45°,即∠EDG=45°,∵EH⊥DE,∴∠DEH=90°,△DEH是等腰直角三角形,∴DE=EH,∠ADE=∠NEH,在△DAE和△ENH中,∵,∴△DAE≌△ENH(AAS),∴AE=HN,AD=EN,∵AD=AB,∴AB=EN=AE+BE=BE+BN,∴AE=BN=HN,∴△BNH是等腰直角三角形,∴BH=.14.解:(1)如图1、图2所示:(2)连接AE,如图3所示:则∠PAB=∠PAE=30°,AE=AB=AD,∴∠AED=∠ADF,∵四边形ABCD是正方形,∴∠BAD=90°,∴∠EAD=90°+30°+30°=150°,∴∠ADF=(180°﹣∠EAD)=15°;(3)连接AE、BF、BD,如图4所示:则EF=BF,AE=AB=AD,∴∠ABF=∠AEF=∠ADF,∴∠BFD=∠BAD=90°,∴BF2+FD2=BD2,∴EF2+FD2=AB2+AD2=2AB2,即EF2+FD2=2AB2.15.解:(1)连接AE,如图1所示:∵点D关于直线AQ的对称点为E,∴AE=AD,AQ垂直平分DE,∴∠EAQ=∠QAD=15°,∵四边形ABCD是正方形,∴∠BAD=90°,AB=AD,∴∠BAE=15°+15°+90°=120°,AE=AB,∴∠ABE=(180°﹣120°)=30°;(2)作A⊥BE于M,如图2所示:则∠AMB=∠AMF=90°,∴AM=AB=3,∵∠1=90°﹣30°=60°,∴∠2=90°﹣60°=30°,∴∠FAM=15°+30°=45°,∴△AMF是等腰直角三角形,∴AF=AM=3.。
2023~2024学年名校期末好题汇编(人教版八年级数学下册)~~专题一~二次根式[答案]
2023—2024学年名校期末好题汇编(人教版八年级数学下册)专题一—二次根式知识点一:二次根式有意义的条件和性质1x 的取值范围是( )A .1x £B .1x ³C .1x <D .1x >2.已知0xy <,化简二次根式A B .C D .3n 的最小值为 .4.已知12y =,则x y = .5.已知x ,y ,z 为ABC V 的三边长,且有23=.试判断ABC V 的形状并加以证明.6.阅读材料:康康在学习二次根式后、发现一些含根号的式子可以写成另一个式子的平方,如:(231+=+,善于思考的康康进行了以下探索:设(2a m +=+(其中a 、b 、m 、n 均为正整数),则有2222a m n +=++(有理数和无理数分别对应相等),∴222a m n =+,2b mn =,这样康康就找到了一种把式子a +请你仿照康康的方法探索并解决下列问题:(1)当a 、b 、m 、n 均为正整数时,若(2a c +=+,用含c 、d 的式子分别表示a 、b ,得:=a ________,b =________;(2)若(27e f -=-,且e 、f 均为正整数,试化简:7-(3).知识点二:二次根式的运算7.若(m æ=´-ççè,则( )A .45m <<B .56m <<C .54m -<<-D .65m -<<-8.若x为实数,在“1)+□x”的“□中添上一种运算符号(在“+,-,×,÷”中选择)后,其运算的结果为有理数,则x不可能是()A1B1C.1D.a.9与最简二次根式是同类二次根式,则=10=.11.计算:+12.阅读下列材料,然后回答问题.①一样的式子,其实我们还可====1以上这种化简的步骤叫做分母有理化.②学习数学,最重要的是学习数学思想,其中一种数学思想叫做换元的思想,它可以简化我们的计算,比如我们熟悉的下面这个题:已知a+b=2,ab=-3 ,求22+.我们可以把a ba+b和ab看成是一个整体,令x=a+b,y=ab,则2222+=+-=-=+=.这样,我们不用求出a,b,就可以得到最后的a b a b ab x y224610()结果.(1);(2)m是正整数,2182322019++=.求m.ab b(3)1=三、二次根式的求值问题13.若3x=268--的值是().x xA.2006B.2005C.2004D.2003143=,且01m <<的值是( )A .B .CD .15.已知2022a =,则22022a -=.16.已知a b -=2a c -=,则代数式()()24b c b c -+-+= .17.已知a =2121a a a -+-18.【阅读理解】爱思考的小名在解决问题:已知a =,求2281a a -+的值.他是这样分析与解答的:∵2a ===2a \-=∴2(2)3a -=,即2443a a -+=.∴241a a -=-.∴()222812412(1)11a a a a -+=-+=´-+=-.请你根据小名的分析过程,解决如下问题:(1)=______;(2)+=L ______;(3)若a =23121a a --的值.四、二次根式的应用19.如图,长方形内有两个相邻的正方形:正方形ABCD 和正方形EFGH ,面积分别为1和2,那么图中阴影部分的面积为( )A 2B 1C .1D 320.古希腊几何学家海伦和我国南宋数学家秦九韶曾提出利用三角形的三边求面积的公式,称为海伦﹣秦九韶公式:如果一个三角形的三边长分别是a ,b ,c ,记2a b cp ++=,那么三角形的面积为S =ABC V 中,A Ð,B Ð,C Ð 所对的边分别为a ,b ,c ,若3a =,5b =,6c =,则ABC V 的面积为( )A B .C .D .21.观察下列等式:第1个等式:1a ==1-,第2个等式:2a ==,第3个等式:3a =2=-第4个等式:4a ==2-,…按上述规律,计算123n a a a a +++=L.22.如果无理数m 的值介于两个连续正整数之间,即满足a m b <<(其中a 、b 为连续正整数),我们则称无理数m 的“神奇区间”为()a b ,.例: 23“神奇区间”为()23,.若某一无理数的“神奇区间”为()a b ,,且满足616b £,其中x b =, y =是关于x 、y 的二元一次方程组bx ay p +=的一组正整数解,则p = .23.李老师家装修,矩形电视背景墙BC ,宽AB ,中间要镶一个长为的矩形大理石图案(图中阴影部分)(1)背景墙的周长是多少?(结果化为最简二次根式)(2)除去大理石图案部分,其它部分贴壁纸,若壁纸造价为22元2/m ,大理石造价为200元2/m ,则整个电视背景墙需要花费多少元?(结果化为最简二次根式)24.阅读理解:由 ()20a b -³得,222a b ab +³;如果两个正数 a ,b ,即0a >,0b >,则有下面的不等式:a b +³ a b =时,取到等号.例如:已知0x >,求式子 4x x+的最小值.解:令 a x =,4b x =,则由 a b +³ 44x x +³=,当且仅当 4x x=时,即正数 2x =时,式子有最小值,最小值为4.请根据上面材料回答下列问题:(1)当0x >,式子 9x x+的最小值为 ;(2)如图1,用篱笆围一个面积为50平方米的长方形花园,使这个长方形花园的一边靠墙(墙长20米,篱笆周长指不靠墙的三边),这个长方形的长、宽各为多少米时,所用的篱笆最短,最短的篱笆是多少米?(3)如图2,四边形 ABCD 的对角线 AC BD 、相交于点 O ,AOB COD 、△△的面积分别是6和12,求四边形 ABCD 面积的最小值.1.B【分析】本题考查二次根式有意义的条件、解一元一次不等式,熟知二次根式的被开方数是非负数是解答的关键.根据二次根式的被开方数是非负数求解即可.【详解】Q\10x -³,解得:1x ³.故选:B .2.C【分析】本题考查了利用二次根式的性质进行化简.由0xy <,可知x 和y 异号,由20yx ->,可得0y <,0x >,然后根据二次根式的性质进行化简即可.【详解】解:0xy Q <,x \和y 异号,∵20yx->,∴0y <x∴==故选:C .3.3【分析】本题主要考查二次根式,根据题意可知0n ³,可从0n =开始逐个尝试,直至得到是正整数为止.【详解】根据题意可知120n ³,则0n ³.当0n =0=,不符合题意;当1n ==当2n ==,不符合题意;当3n =6=,符合题意;是正整数,则整数n 的最小值为3.故答案为:34.14【分析】本题考查了二次根式有意义的条件,积的乘方,幂的乘方逆用法则,熟记二次根式被开方数为非负数并熟练掌握积的乘方,幂的乘方逆用法则是解题的关键.根据二次根式有意义的条件求出x ,进而得出y ,根据积的乘方,幂的乘方逆用法则将20222023x y 变形为()2022xy y ×,代入x ,y 求解即可.【详解】解:∵00³³,即2020x x -³ìí-³î,解得:22x x ³ìí£î,∴2x =,∴110022y =+-=-,将2x =,12y =-代入,∴21124xy æö=-=ç÷èø,故答案为:14.5.ABC V 是等边三角形【分析】该题主要考查了完全平方公式的应用,平方根的性质等知识点,解题的关键是对所给条件进行化简;根据23=推出,x y z ==即可求解;【详解】解:∵23=,0,x y z \++++-=0,x y z \++=2220,x y z \++--=2220,\++=0,===,x y z \==ABC \V 是等边三角形.6.(1)2232c d cd +,(2)(22(3)1【分析】(1)根据完全平方公式进行计算进行求解;(2)将7-变为22222-´即可求解;(3进行求解即可.【详解】(1)解:∵(2222233c c d c d +=++=++,∴2232a c d b cd =+=,,故答案为:2232c d cd +,;(2)∵(222742232222-=-´=-´=,∴(272-=;(3======1=【点睛】此题考查了二次根式的化简能力,关键是能准确理解并运用相关知识进行求解.7.B【分析】本题考查了二次根式的运算,二次根式的性质,估算无理数的大小,将m 是解题的关键.先利用二次根式的乘法法则与二次根式的性质求出==m ,再利用夹值法即可求出m 的范围.【详解】解:(m æ=´-=ççè.252836<<Q56\<<即56m <<.故选:B .8.D【分析】本题主要考查了二次根式的运算,分母有理化,依据题意对每个选项进行逐一判断是解题的关键.依据题意对每个选项进行逐一判断即可得出结论.【详解】解:当1x =时,“□”中添上“−”,则))110-+=,其运算的结果为有理数,∴A 选项不符合题意;当1x =时,“□”中添上“−”,则))112--=,其运算的结果为有理数,∴B 选项不符合题意;当1x =“□”中添上“+”,则)(112+=,其运算的结果为有理数,∴C 选项不符合题意,当x =“□”中添上“+”,则)11+=,其运算的结果为无理数,当x =“□”中添上“−”,则)11-=+,其运算的结果为无理数,当x =“□”中添上“×”,则)14´=+当x =“□”中添上“÷”,则)1=¸∴D 选项符合题意;故选:D .9.4【分析】此题考查了同类二次根式的概念,解答本题的关键是掌握同类二次根式的被开方数相同这个知识点.根据同类二次根式的被开方数相同可得出关于a 的方程,解出即可得出答案.【详解】解:=又∵是最简二次根式,∴根据同类二次根式的性质有:31a =-,解得:4a =,故答案为:4.10.【分析】本题考查二次根式的加减运算,掌握二次根式的加减运算法则,即可解题.==故答案为:11.(1)(2)4【分析】本题主要考查二次根式的运算:(1)根据二次根式加减的运算法则计算即可;(2【详解】(1)原式=(2)原式=+4=4=.12.(2)m =29=【分析】(1)由题目所给出的规律进行计算即可;(2)先求出2(21),1a b m ab +=+=再由222182322019a ab b ++=进行变形再求值即可;(320=,然后可得2281=+=,最后由0³³,求出结果==∴2(21),1a b m ab +==+=,∵222182322019a ab b ++=,∴222()18232019a b ++=,∴2298a b +=,∴24(21)100m +=,∴251m =±-,∵m 是正整数,(31=得出21=,20=,∵2281=+=,³³,9=.【点睛】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.13.A【分析】本题主要考查了二次根式化简求值和完全平方公式的运用,对原式能进行正确的变形是解答本题的关键.对原式配方再根据已知条件代入求解即可.【详解】解:∵3x=∴3x-=∴268x x--2(3)17x=--2(17=-202317=-2006=.故选:A.14.A【分析】将已知等式两边平方,利用完全平方公式展开得到17mm+=,同理可得=m的值.【详解】解:3=,∴2129mm=++=,∴17m m+=,∴2125m m =+-=,=∵01m <<,∴01<<,1>,0<,=故选A .【点睛】本题考查了二次根式的求值,完全平方公式,解题的关键是灵活运用完全平方公式建立两个式子之间的关系.15.2023【分析】先根据二次根式有意义的条件得到2023a ³,则2022a a -+=,由此求出220232022a -=,据此即可得到答案.【详解】解:∵2022a =有意义,∴20230a -³,即2023a ³,∴2022a a -=,2022=,∴220232022a -=,∴220222023a -=,故答案为:2023.【点睛】本题主要考查了二次根式有意义的条件,代数式求值,正确得到2023a ³是解题的关键.16.12-12-+【分析】本题考查二次根式的混合运算,掌握完全平方公式,等式的性质及二次根式混合运算的运算顺序和计算法则是解题关键.利用等式的性质将已知等式相减,然后代入求值,再根据二次根式混合运算的运算顺序和计算法则进行计算.【详解】解:∵a b -=2a c -=∴两式左右分别相减,得()()2a b a c a b a c b c ---=--+=-+=∴2b c -=∴原式=((2224++=4224-+=12-,故答案为:12-.17.3【分析】本题主要考查了分式化简求值,二次根式混合运算,解题的关键是熟练掌握分式混【详解】解:∵2a ==,∴2121a a a -+-()211a a -=-()111a a a a -=---()()111a a a a -=---11a a =-+21a a a a a=-+======.318.1(2)9(3)2【分析】本题考查了二次根式的混合运算,求代数式的值;(1)仿照题的方法化简即可;(2)把每项按照题中方法化简,再相加减即可;(3)仿照题中方法求代数式值的方法求解即可.=-,【详解】(111;L(2++L=+=+L1=-1=,9故答案为:9;a===+,(3)解:∵2∴2a-=∴2(2)5a -=,即241a a -=,∴2231213(4)13112a a a a --=--=´-=.19.B【分析】本题考查求阴影部分的面积,二次根式的混合运算.正确的识图,确定长方形的长和宽,是解题的关键.分别求出两个正方形的边长,进而得到长方形的长和宽,利用长方形的面积减去两个正方形的面积即可得解.【详解】解:∵两个正方形的面积分别为1和2,∴它们的边长分别为:1由图可知,长方形的长为两个正方形的边长之和,即为(1,宽为大正方形的边长,即∴阴影部分的面积为(1122121-=--=-;故选:B .20.B【分析】根据题意,直接代入确定7p =,然后代入面积计算公式即可.【详解】解:∵3a =,5b =,6c =,∴356722a b c p ++++===∴S =故选:B .【点睛】题目主要考查求代数式的值,理解题意是解题关键.211##1-【分析】首先根据题意,可得:n a =式的值是多少即可.【详解】解:第1个等式:1a ==1-,第2个等式:2a =,第3个等式:3a =2=-第4个等式:4a =2-,…第n 个等式:n a ==123na a a a ++++L=1-+L=1-1-.【点睛】此题主要考查了分母有理化的方法,要熟练掌握,解答此题的关键是要明确:分母有理化常常是乘二次根式本身(分母只有一项)或与原分母组成平方差公式.22.33或127##127或33【分析】根据“神奇区间”的定义,还有二元一次方程正整数解这两个条件,寻找符合的情况.【详解】解:Q “神奇区间”为()a b ,,a \、b 为连续正整数,616b £∵,x b =, y =x 、y 的二元一次方程组bx ay p +=的一组正整数解,\符合条件的a ,b 有4a =①,5b =2=;9a =②,10b =3=.4a =①,5b =2=时,5x =,2y =,5542p ´+´=,33p \=,9a =②,10b =3=时,10x =,3y =,101093p ´+´=,127p \=,故p 的值为33或127,故答案为:33或127.【点睛】本题考查新定义,估算无理数大小,二元一次方程整数解相关知识,综合考查学生分析、计算能力.23.(1)背景墙的周长为(m(2)整个电视背景墙需要花费元【分析】本题主要考查二次根式的应用:(1)背景墙长方形ABCD 的周长()2BC AB =+,根据最简二次根式的定义化简即可;(2)分别求出大理石的面积和壁纸的面积即可,求解面积需要根据二次根式的乘法和加减运算法则计算.【详解】(1)背景墙长方形ABCD 的周长()(22m BC AB =+==.答:背景墙的周长为(m .(2)长方形ABCD )2m == .大理石的面积:)2m =.壁纸的面积:)2m =.整个电视墙的总费用:22200´´=+=(元).答:整个电视背景墙需要花费元.24.(1)6(2)20米(3)18+【分析】本题主要考查完全平方公式的应用,二次根式的应用,阅读材料,材料阅读题是中学阶段所学习的重要内容,体会材料中的数学思想与方法,学会用新方法去解决数学中的问题,对学生的要求较高,是一道拔高型的综合题目.(1)根据材料提供的信息解答即可.(2)设这个长方形垂直于墙的一边的长为x 米,则平行于墙的一边为()020y y <£米,则50=xy ,50y x =,所以所用篱笆的长为502x x æö+ç÷èø米,再根据材料提供的信息求出502x x +的最小值即可.(3)设点B 到AC 的距离为()110h h >,点D 到OC 的距离为()220h h >,又AOB V 、COD △的面积分别是6和12,则112OA h =,224OC h =,121224AC OA OC h h =+=+,从而求得ABCD S 四边形,然后根据材料提供的信息求出最小值即可.【详解】(1)解:令 a x =,9b x =,则由a b +³96x x +³=,当且仅当 9x x=时,即正数 3x =时,式子有最小值,最小值为6.(2)解:设这个长方形垂直于墙的一边的长为x 米,则平行于墙的一边为()020y y <£米,则50=xy ,∴50y x=,∴所用篱笆的长为502xx æö+ç÷ø米,50220x x +³=∵当且仅当502x x=时,502x x +的值最小,最小值为20,∴5x =或5x =-(舍去).∴这个长方形的长、宽分别为10米,5米时,所用的篱笆最短,最短的篱笆是20米.(3)解:设点B 到AC 的距离为()110h h >,点D 到OC 的距离为()220h h >,又∵AOB V 、COD △的面积分别是6和12,∴112OA h =,224OC h =,∴121224AC OA OC h h =+=+,∴()()21121212121261211111224182222ABC ADC ABCD h h S S S AC h AC h AC h h h h h h h h æö=+=×+×=+=++=++ç÷èøV V四边形∵2112612h h h h +³=∴当且仅当2112612h h h h =时,取等号,即2112612h h h h +的最小值为,∴四边形ABCD 面积的最小值为18+.答案第15页,共15页。
(完整版)初二数学经典难题(带答案及解析)
初二数学经典难题一、解答题(共10小题,满分100分)1.(10分)已知:如图,P是正方形ABCD内点,∠PAD=∠PDA=15°.求证:△PBC是正三角形.(初二)2.(10分)已知:如图,在四边形ABCD中,AD=BC,M、N分别是AB、CD的中点,AD、BC的延长线交MN 于E、F.求证:∠DEN=∠F.3.(10分)如图,分别以△ABC的边AC、BC为一边,在△ABC外作正方形ACDE和CBFG,点P是EF的中点,求证:点P到AB的距离是AB的一半.4.(10分)设P是平行四边形ABCD内部的一点,且∠PBA=∠PDA.求证:∠PAB=∠PCB.5.(10分)P为正方形ABCD内的一点,并且PA=a,PB=2a,PC=3a,求正方形的边长.6.(10分)一个圆柱形容器的容积为V立方米,开始用一根小水管向容器内注水,水面高度达到容器高度一半后,改用一根口径为小水管2倍的大水管注水.向容器中注满水的全过程共用时间t分.求两根水管各自注水的速度.7.(10分)(2009•郴州)如图1,已知正比例函数和反比例函数的图象都经过点M(﹣2,﹣1),且P(﹣1,﹣2)为双曲线上的一点,Q为坐标平面上一动点,PA垂直于x轴,QB垂直于y轴,垂足分别是A、B.(1)写出正比例函数和反比例函数的关系式;(2)当点Q在直线MO上运动时,直线MO上是否存在这样的点Q,使得△OBQ与△OAP面积相等?如果存在,请求出点的坐标,如果不存在,请说明理由;(3)如图2,当点Q在第一象限中的双曲线上运动时,作以OP、OQ为邻边的平行四边形OPCQ,求平行四边形OPCQ周长的最小值.8.(10分)(2008•海南)如图,P是边长为1的正方形ABCD对角线AC上一动点(P与A、C不重合),点E在线段BC上,且PE=PB.(1)求证:①PE=PD;②PE⊥PD;(2)设AP=x,△PBE的面积为y.①求出y关于x的函数关系式,并写出x的取值范围;②当x取何值时,y取得最大值,并求出这个最大值.9.(10分)(2010•河南)如图,直线y=k1x+b与反比例函数(x>0)的图象交于A(1,6),B(a,3)两点.(1)求k1、k2的值.(2)直接写出时x的取值范围;(3)如图,等腰梯形OBCD中,BC∥OD,OB=CD,OD边在x轴上,过点C作CE⊥OD于点E,CE和反比例函数的图象交于点P,当梯形OBCD的面积为12时,请判断PC和PE的大小关系,并说明理由.10.(10分)(2007•福州)如图,已知直线y=x与双曲线交于A,B两点,且点A的横坐标为4.(1)求k的值;(2)若双曲线上一点C的纵坐标为8,求△AOC的面积;(3)过原点O的另一条直线l交双曲线于P,Q两点(P点在第一象限),若由点A,B,P,Q为顶点组成的四边形面积为24,求点P的坐标.初二数学经典难题参考答案与试题解析一、解答题(共10小题,满分100分)1.(10分)已知:如图,P是正方形ABCD内点,∠PAD=∠PDA=15°.求证:△PBC是正三角形.(初二)考点:正方形的性质;全等三角形的判定与性质;等边三角形的性质;等边三角形的判定。
八年级数学经典难题(答案 解析)
初二数学经典难题一、解答题(共10小题,满分100分)1.(10分)已知:如图,P是正方形ABCD内点,∠PAD=∠PDA=15°.求证:△PBC是正三角形.(初二)2.(10分)已知:如图,在四边形ABCD中,AD=BC,M、N分别是AB、CD的中点,AD、BC的延长线交MN 于E、F.求证:∠DEN=∠F.3.(10分)如图,分别以△ABC的边AC、BC为一边,在△ABC外作正方形ACDE和CBFG,点P是EF的中点,求证:点P到AB的距离是AB的一半.4.(10分)设P是平行四边形ABCD内部的一点,且∠PBA=∠PDA.求证:∠PAB=∠PCB.5.(10分)P为正方形ABCD内的一点,并且PA=a,PB=2a,PC=3a,求正方形的边长.6.(10分)一个圆柱形容器的容积为V立方米,开始用一根小水管向容器内注水,水面高度达到容器高度一半后,改用一根口径为小水管2倍的大水管注水.向容器中注满水的全过程共用时间t分.求两根水管各自注水的速度.7.(10分)(2009•郴州)如图1,已知正比例函数和反比例函数的图象都经过点M(﹣2,﹣1),且P(﹣1,﹣2)为双曲线上的一点,Q为坐标平面上一动点,PA垂直于x轴,QB垂直于y轴,垂足分别是A、B.(1)写出正比例函数和反比例函数的关系式;(2)当点Q在直线MO上运动时,直线MO上是否存在这样的点Q,使得△OBQ与△OAP面积相等?如果存在,请求出点的坐标,如果不存在,请说明理由;(3)如图2,当点Q在第一象限中的双曲线上运动时,作以OP、OQ为邻边的平行四边形OPCQ,求平行四边形OPCQ周长的最小值.8.(10分)(2008•海南)如图,P是边长为1的正方形ABCD对角线AC上一动点(P与A、C不重合),点E在线段BC上,且PE=PB.(1)求证:①PE=PD;②PE⊥PD;(2)设AP=x,△PBE的面积为y.①求出y关于x的函数关系式,并写出x的取值范围;②当x取何值时,y取得最大值,并求出这个最大值.9.(10分)(2010•河南)如图,直线y=k1x+b与反比例函数(x>0)的图象交于A(1,6),B(a,3)两点.(1)求k1、k2的值.(2)直接写出时x的取值范围;(3)如图,等腰梯形OBCD中,BC∥OD,OB=CD,OD边在x轴上,过点C作CE⊥OD于点E,CE和反比例函数的图象交于点P,当梯形OBCD的面积为12时,请判断PC和PE的大小关系,并说明理由.10.(10分)(2007•福州)如图,已知直线y=x与双曲线交于A,B两点,且点A的横坐标为4.(1)求k的值;(2)若双曲线上一点C的纵坐标为8,求△AOC的面积;(3)过原点O的另一条直线l交双曲线于P,Q两点(P点在第一象限),若由点A,B,P,Q为顶点组成的四边形面积为24,求点P的坐标.初二数学经典难题参考答案与试题解析一、解答题(共10小题,满分100分)1.(10分)已知:如图,P是正方形ABCD内点,∠PAD=∠PDA=15°.求证:△PBC是正三角形.(初二)2.(10分)已知:如图,在四边形ABCD中,AD=BC,M、N分别是AB、CD的中点,AD、BC的延长线交MN 于E、F.求证:∠DEN=∠F.GM=BCADMG=BC3.(10分)如图,分别以△ABC的边AC、BC为一边,在△ABC外作正方形ACDE和CBFG,点P是EF的中点,求证:点P到AB的距离是AB的一半.PQ=(PQ=PQ=5.(10分)P为正方形ABCD内的一点,并且PA=a,PB=2a,PC=3a,求正方形的边长.PE=2PE==2CF=EF=CE===即正方形的边长为6.(10分)一个圆柱形容器的容积为V立方米,开始用一根小水管向容器内注水,水面高度达到容器高度一半后,改用一根口径为小水管2倍的大水管注水.向容器中注满水的全过程共用时间t分.求两根水管各自注水的速度.解之得:经检验得:∴小口径水管速度为立方米7.(10分)(2009•郴州)如图1,已知正比例函数和反比例函数的图象都经过点M(﹣2,﹣1),且P(﹣1,﹣2)为双曲线上的一点,Q为坐标平面上一动点,PA垂直于x轴,QB垂直于y轴,垂足分别是A、B.(1)写出正比例函数和反比例函数的关系式;(2)当点Q在直线MO上运动时,直线MO上是否存在这样的点Q,使得△OBQ与△OAP面积相等?如果存在,请求出点的坐标,如果不存在,请说明理由;(3)如图2,当点Q在第一象限中的双曲线上运动时,作以OP、OQ为邻边的平行四边形OPCQ,求平行四边形OPCQ周长的最小值.Y=上的一点,所以,所以正比例函数解析式为x,|OB×m|所以有,)=))﹣OP=(=28.(10分)(2008•海南)如图,P是边长为1的正方形ABCD对角线AC上一动点(P与A、C不重合),点E在线段BC上,且PE=PB.(1)求证:①PE=PD;②PE⊥PD;(2)设AP=x,△PBE的面积为y.①求出y关于x的函数关系式,并写出x的取值范围;②当x取何值时,y取得最大值,并求出这个最大值..BE PF=x﹣xx xx x=()<时,9.(10分)(2010•河南)如图,直线y=k1x+b与反比例函数(x>0)的图象交于A(1,6),B(a,3)两点.(1)求k1、k2的值.(2)直接写出时x的取值范围;(3)如图,等腰梯形OBCD中,BC∥OD,OB=CD,OD边在x轴上,过点C作CE⊥OD于点E,CE和反比例函数的图象交于点P,当梯形OBCD的面积为12时,请判断PC和PE的大小关系,并说明理由.y=的图象上,﹣=12=,即PE=CE10.(10分)(2007•福州)如图,已知直线y=x与双曲线交于A,B两点,且点A的横坐标为4.(1)求k的值;(2)若双曲线上一点C的纵坐标为8,求△AOC的面积;(3)过原点O的另一条直线l交双曲线于P,Q两点(P点在第一象限),若由点A,B,P,Q为顶点组成的四边形面积为24,求点P的坐标.xx与双曲线在双曲线××=×)))。
2023-2024学年冀教版八年级数学下册期末复习试题(一)(含答案)
2023-2024学年度下期冀教版数学八年级下册期末复习习题精选(一)(满分120分,限时100分钟)一、选择题(每小题3分,共42分)1.(2023河北保定期末)为了解某市七年级8 000名学生的身高情况,从中抽取了60名学生进行身高检查.下列判断:①这种调查方式是抽样调查;②8 000名学生是总体;③每名学生的身高是个体;④60名学生是总体的一个样本;⑤60名学生是样本容量.其中正确的判断有( )A.5个B.4个C.3个D.2个2.(2023广东深圳南山二模)剪纸艺术是中国民间艺术之一,很多剪纸作品体现了数学中的对称美.如图,蝴蝶剪纸是轴对称图形,将其放在平面直角坐标系中,如果图中点E的坐标为(m,3),其关于y轴对称的点F的坐标为(4,n),则m+n的值为( )A.-1B.0C.1D.-93.(2023陕西西安雁塔模拟)一次函数y=(-2m+1)x的图像经过(-1,y1),(2,y2)两点,且y1>y2,则m的值可以是( )A. B.0 C.1 D.-4.(2023浙江温州三模)某校九(1)班50名学生的视力频数分布直方图如图所示(每一组含前一个边界值,不含后一个边界值),若视力达到 4.8以上(含 4.8)为达标,则该班学生视力的达标率为( )A.8%B.18%C.29%D.36%5.(2023山东临沂兰陵期中)下面的三个问题中都有两个变量:①正方形的周长y与边长x;②汽车以30千米/时的速度行驶,它的行驶路程y(千米)与时间x(小时);③水箱以0.8 L/min的流量往外放水,水箱中的剩余水量y(L)与放水时间x(min).其中,变量y与变量x之间的函数关系可以利用如图所示的图像表示的是( )A.①②B.①③C.②③D.①②③6.(2023天津南开期末)已知张强家、体育场、文具店在同一直线上.给出的图像反映的过程是:张强从家跑步去体育场,在体育场锻练了若干分钟后又走到文具店去买笔,然后散步走回家.图中x(min)表示张强离开家的时间,y(km)表示张强离家的距离,则下列说法错误的是( )A.体育场离文具店1 kmB.张强在文具店停留了20 minC.张强从文具店回家的平均速度是 km/minD.当30≤x≤45时,y=7.(2023重庆忠县期末)如图,四边形ABCD是矩形,有一动点P从点B出发,沿B→C→D→A绕矩形的边匀速运动,当点P到达点A时停止运动.在点P的运动过程中,△ABP的面积S随时间t变化的函数图像大致是( )8.【新独家原创】在菱形ABCD中,AC=6,BD=8,点E为BC上一动点,则的最小值为( )A. B. C. D.9.(2023河南新乡长垣期末)随着暑假临近,某游泳馆推出了甲、乙两种消费卡,设消费次数为x,所需费用为y元,且y与x的函数关系的图像如图所示.根据图中信息判断,下列说法错误的是( )A.甲种消费卡为20元/次=10x+100B.y乙C.点B的坐标为(10,200)D.洋洋爸爸准备了240元钱用于洋洋在该游泳馆消费,选择甲种消费卡划算10.(2023上海虹口期末)在平面直角坐标系中,点A(0,6),点B(-6,0),坐标轴上有一点C,使得△ABC为等腰三角形,则这样的点C一共有( )A.5个B.6个C.7个D.8个11.(2023河南濮阳二模)如图,以矩形ABCD的顶点A为圆心,AD长为半径画弧交CB的延长线于点E,过点D作DF∥AE交BC于点F,连接AF.若AB=4,AD=5,则AF的长是( )A.2B.3C.3D.312.(2023福建福州台江模拟)“开开心心”商场2021年1~4月的销售总额如图1,其中A商品的销售额占当月销售总额的百分比如图2.根据图中信息,有以下四个结论,其中推断不合理的是( )A.1~4月该商场的销售总额为290万元B.2月份A商品的销售额为12万元C.1~4月A商品的销售额占当月销售总额的百分比最低的月份是4月D.2~4月A商品的销售额占当月销售总额的百分比与1月份相比都下降了13.【新考法】(2023河南郑州金水期末)现有一四边形ABCD,借助此四边形作平行四边形EFGH,两位同学提供了如图所示的方案,对于方案Ⅰ、Ⅱ,下列说法正确的是( )方案Ⅰ方案Ⅱ作边AB,BC,CD,AD的垂直平分线l1,l2,l3,l4,分别交AB,BC,CD,AD于点E,F,G,H,顺次连接这四点得到的四边形EFGH即为所求连接AC,BD,过四边形ABCD各顶点分别作AC,BD 的平行线EF,GH,EH,FG,这四条平行线围成的四边形EFGH即为所求A.Ⅰ可行、Ⅱ不可行B.Ⅰ不可行、Ⅱ可行C.Ⅰ、Ⅱ都可行D.Ⅰ、Ⅱ都不可行14.【一题多解】(2022贵州黔东南州中考)如图,在边长为2的等边三角形ABC的外侧作正方形ABED,过点D作DF⊥BC交CB的延长线于点F,则DF的长为( )A.2+2B.5-C.3-D.+1二、填空题(每小题4分,共12分)15.(2023北京房山期末)如图,菱形ABCD的对角线AC,BD相交于点O,点E为BC的中点,连接OE,若OE=,OA=4,则AB= ,菱形ABCD的面积是.16.【河北常考·双填空题】(2023河北石家庄桥西期末)在同一直线上,甲骑自行车,乙步行,分别由A,B两地同时向右匀速出发,当甲追上乙时,两人同时停止.下图是两人之间的距离y(km)与所经过的时间t(h)之间的函数关系图像,观察图像,出发后h甲追上乙.若乙的速度为8 km/h,则经过1.5 h甲行驶的路程为.17.(2023河北沧州献县期末)五子棋是一种两人对弈的棋类游戏,规则是:在正方形棋盘中,由黑方先行,白方后行,轮流弈子,下在棋盘横线与竖线的交叉点上,直到某一方首先在任一方向(横向、竖向或者是斜着的方向)上连成五子获胜.如图,这一部分棋盘是两个五子棋爱好者的对弈图.观察棋盘,以点O为原点,在棋盘上建立平面直角坐标系,将每个棋子看成一个点.若黑子A的坐标为(7,5),为了不让白方获胜,此时黑方应该下在坐标为的位置.三、解答题(共66分)18.[含评分细则](2023湖北武汉期中)(12分)已知点P(2a-2,a+5),解答下列各题:(1)若点P在x轴上,求出点P的坐标.(2)若点Q的坐标为(4,5),直线PQ∥y轴,求出点P的坐标.(3)若点P在第二象限,且它到x轴的距离与到y轴的距离相等,求a2 023+2 023的值.19.[含评分细则](2023广东深圳期中)(12分)自行车骑行爱好者小轩为备战中国国际自行车公开赛,积极训练.下图是他最近一次在深圳湾体育公园骑车训练时,离家的距离s(km)与所用时间t(h)之间的函数图像.请根据图像回答下列问题:(1)途中小轩共休息了h.(2)小轩第一次休息后,骑行速度恢复到第1小时的速度,请求出目的地离家的距离a是多少.(3)小轩第二次休息后返回家时,速度和到达目的地前的最快车速相同,则全程最快车速是km/h.(4)已知小轩是早上7点离开家的,请通过计算,求出小轩回到家的时间.20.[含评分细则]【新素材】(2023四川绵阳涪城模拟)(14分)青少年“心理健康”问题引起社会的广泛关注,某区为了解学生的心理健康状况,对中学初二学生进行了一次“心理健康”知识测试,随机抽取了部分学生的成绩作为样本,绘制了不完整的频率分布表和频率分布直方图(频率分布表每组含前一个边界值,不含后一个边界值).学生心理健康测试成绩频率分布表分组频数频率50~60 4 0.0860~70 14 0.2870~80 m 0.3280~90 6 0.1290~100 10 0.20合计 1.00请解答下列问题:(1)学生心理健康测试成绩频率分布表中,m= .(2)请补全学生心理健康测试成绩频数分布直方图.(3)若成绩在60分以下(不含60分)心理健康状况为不良,60分~70分(含60分)为一般,70分~90分(含70分)为良好,90分(含90分)以上为优秀,请补全学生心理健康测试成绩扇形统计图.21.[含评分细则](2023江苏无锡梁溪期末)(14分)某学校新建的初中部即将投入使用,为了改善教室空气环境,该校八年级1班班委会计划到朝阳花卉基地购买绿植,已知该基地一盆绿萝与一盆吊兰的费用之和是16元.班委会决定用80元购买绿萝,用120元购买吊兰,所购绿萝数量正好是吊兰数量的两倍.(1)分别求出每盆绿萝和每盆吊兰的价格.(2)该校八年级所有班级准备一起到该基地购买绿萝和吊兰共计120盆,其中绿萝数量不超过吊兰数量的一半,则八年级购买这两种绿植各多少盆时总费用最少?最少费用是多少元?22.[含评分细则](2023四川达州渠县期末)(14分)如图,在△ABC中,∠BAC=90°,∠B=45°,BC=10,过点A作AD∥BC,且点D在点A的右侧.点P从点A出发沿射线AD以每秒1个单位长度的速度运动,同时点Q从点C出发沿射线CB以每秒2个单位长度的速度运动,在线段QC 上取点E,使得QE=2,连接PE,设点P的运动时间为t秒.(1)若PE⊥BC,求BQ的长.(2)是否存在t值,使以A,B,E,P为顶点的四边形为平行四边形?若存在,求出t的值;若不存在,请说明理由.答案解析1.D 为了解某市七年级8 000名学生的身高情况,从中抽取了60名学生进行身高检查.①这种调查方式是抽样调查,说法正确;②8 000名学生的身高情况是总体,故原说法错误;③每名学生的身高是个体,说法正确;④60名学生身高情况是总体的一个样本,故原说法错误;⑤60是样本容量,故原说法错误.所以正确的判断有2个.故选D.2.A ∵图中点E的坐标为(m,3),其关于y轴对称的点F的坐标为(4,n),∴m=-4,n=3,∴m+n=-4+3=-1,故选A.3.C ∵-1<2,且y1>y2,∴y随x的增大而减小,∴-2m+1<0,解得m>.故选C.4.D 若视力达到4.8以上(含4.8)为达标,则该班学生视力的达标率为×100%=36%.故选D.5.A 正方形的周长y与边长x的关系式为y=4x,故①符合题意;汽车以30千米/时的速度行驶,它的行驶路程y(千米)与时间x(小时)的关系式为y=30x,故②符合题意;水箱以0.8 L/min的流量往外放水,水箱中的剩余水量y(L)与放水时间x(min)的关系式为y=水箱原来的水量-0.8x,故③不符合题意.所以变量y与变量x之间的函数关系可以用题中的图像表示的是①②.故选A.6.D A.体育场到文具店的距离为2.5-1.5=1(km),故A选项正确,不符合题意;B.张强在文具店停留了65-45=20(min),故B选项正确,不符合题意;C.张强从文具店回家的平均速度为 1.5÷(100-65)= km/min,故C选项正确,不符合题意;D.当30≤x≤45时,设y=kx+b(k≠0),则∴当30≤x≤45时,y=-,故D选项错误,符合题意.故选D.7.B 由题意可知,当点P从点B向点C运动时,S=AB·BP,△ABP的面积S与t成正比例函数关系且随时间t的增大而增大;当点P从点C向点D运动时,S=AB·BC,△ABP的面积S不随时间t的变化而变化;当点P从点D向点A运动时,S=AB·AP,△ABP的面积S是t的一次函数且随时间t的增大而减小.所以在点P的运动过程中,△ABP的面积S随时间t变化的函数图像大致是选项B的图像.故选B.8.B ∵四边形ABCD是菱形,AC=6,BD=8,∴OB=AC=3,AC⊥BD.OB是定值,要想的值最小,则OE取最小值.当OE⊥BC时,OE取最小值,由勾股定理可求得BC==5,∵BC·OE=OB·OC,∴OE=,∴.故选B.9.D 设甲对应的函数解析式为y甲=kx(k≠0),∵点(5,100)在该函数图像上,∴5k=100,解得k=20,即甲对应的函数解析式为y甲=20x,即甲种消费卡为20元/次,故选项A不符合题意;设乙对应的函数解析式为y乙=ax+b(a≠0),∵点(0,100),(20,300)在该函数图像上,∴即乙对应的函数解析式为y乙=10x+100,故选项B不符合题意;令20x=10x+100,解得x=10,20×10=200,故点B的坐标为(10,200),故选项C不符合题意;当y=240时,甲种消费卡可消费240÷20=12(次),乙种消费卡可消费的次数为(240-100)÷10=14,因为12<14,所以洋洋爸爸准备240元钱用于洋洋在该游泳馆消费,选择乙种消费卡划算,故选项D符合题意.故选D.10.C 如图,当BC=AB时,以点B为圆心、AB长为半径画圆,与坐标轴分别交于点C1、C2、C3、A.当AC=AB时,以点A为圆心、AB长为半径画圆,与坐标轴分别交于点C4、C5、C6、B.当AC=BC时,点C应该在AB的垂直平分线上,∵OA=OB,∴点O在AB的垂直平分线上.综上,这样的C点共有7个,分别是点C1、C2、C3、C4、C5、C6、O.故选C.11.A ∵四边形ABCD是矩形,∴AD∥BC,∠ABC=90°,∴∠ABE=90°,∵DF∥AE,AD∥EF,∴四边形ADFE是平行四边形,由作图得AE=AD=5,∴四边形ADFE是菱形,∴FE=AE=5,∵BE==3,∴BF=FE-BE=5-3=2,∴AF=.12.C A.1~4月该商场的销售总额为85+80+60+65=290万元,故A不符合题意;B.2月份A商品的销售额为80×15%=12万元,故B不符合题意;C.1~4月A商品的销售额占当月销售总额的百分比最低的月份是2月,故C符合题意;D.2~4月A商品的销售额占当月销售总额的百分比与1月份相比都下降了,故D不符合题意. 故选C.12.C 本题列举两种方案,从中选取可行方案,考查形式比较新颖.方案Ⅰ,如图,连接AC,∵l1,l2,l3,l4分别垂直平分AB,BC,CD,AD,∴E,F,G,H分别是AB,BC,CD,AD的中点,∴EF是△ABC的中位线,GH是△ADC的中位线,∴EF∥AC,EF=AC,GH∥AC,GH=AC,∴EF∥GH,且EF=GH,∴四边形EFGH是平行四边形,∴方案Ⅰ可行.方案Ⅱ,∵EF∥AC,GH∥AC,∴EF∥GH,∵EH∥BD,FG∥BD,∴EH∥FG,∴四边形EFGH是平行四边形,方案Ⅱ可行.故选C.14.D 解法一:如图1,延长DA,BC交于点G,∵四边形ABED是正方形,∴∠BAD=90°,AD=AB,∴∠BAG=180°-90°=90°.∵△ABC是边长为2的等边三角形,∴AB=AC=2,∠ABC=∠BAC=60°,∴∠CAG=∠BAG-∠BAC=30°,∠G=90°-∠ABC=30°,∴∠CAG=∠G,∴AC=CG=2,∴BG=BC+CG=4,∴AG=,∴DG=AD+AG=2+2.在△DFG中,DF⊥BC,∠G=30°,∴DF=×(2+2.故选D.解法二:如图2,过点E作EG⊥DF于点G,作EH⊥BC交CB的延长线于点H,则∠BHE=∠DGE=90°.∵△ABC是边长为2的等边三角形,∴AB=2,∠ABC=60°.∵四边形ABED是正方形,∴BE=DE=AB=2,∠ABE=∠BED=90°,∴∠EBH=180°-∠ABC-∠ABE=180°-60°-90°=30°,∴EH=×2=1,∴BH=.∵EG⊥DF,EH⊥BC,DF⊥BC,∴∠EGF=∠EHB=∠DFH=90°,∴四边形EGFH是矩形,∴FG=EH=1,∠BEH+∠BEG=∠GEH=90°.∵∠DEG+∠BEG=90°,∴∠BEH=∠DEG.在△BEH和△DEG中,∴△BEH≌△DEG(AAS),∴DG=BH=,∴DF=DG+FG=+1.故选D.15.2;16解析∵菱形ABCD的对角线AC与BD相交于点O,∴DO⊥CO,AC=2OA=2OC=8,∵E是BC的中点,∴OE是△CAB的中位线,∴AB=2OE=2,∴OB==2,∴BD=2OB=4,∴菱形ABCD的面积=×8×4=16.16.2;30km解析由图像可知,出发后2 h甲追上乙,A,B两地相距24 km,设甲的速度为x km/h,根据题意得2x=8×2+24,解得x=20,20×1.5=30(km).经过1.5 h甲行驶的路程为30 km.17.(3,7)或(7,3)18.解析(1)∵点P在x轴上,∴a+5=0,∴a=-5,∴2a-2=-12,∴点P的坐标为(-12,0).4分(2)∵点Q的坐标为(4,5),直线PQ∥y轴,∴2a-2=4,∴a=3,∴a+5=8,∴P(4,8).8分(3)∵点P在第二象限,且它到x轴的距离与到y轴的距离相等,∴2a-2=-(a+5),∴a=-1,此时P(-4,4)在第二象限,符合题意,∴a2 023+2 023=(-1)2 023+2 023=2 022,∴a2 023+2 023的值为2 022.12分19.解析(1)途中小轩共休息了2-1.5+4-3=1.5(h).故答案为1.5.3分(2)25+15×(3-2)=40(km).∴a=40.6分(3)全程最快车速是(25-15)÷(1.5-1)=20(km/h).故答案为20.9分(4)4+40÷20=6(h),7+6=13,∴小轩回到家的时间是13点.12分20.解析(1)由表格可得,抽取的学生数为4÷0.08=50,∴m=50×0.32=16.故答案为16.4分(2)补全的学生心理健康测试成绩频数分布直方图如图1所示.8分(3)良好率:(0.32+0.12)×100%=44%,9分优秀率:0.2×100%=20%,10分补全的学生心理健康测试成绩扇形统计图如图2所示.14分21.解析(1)设每盆绿萝x元,则每盆吊兰(16-x)元.根据题意得=2×,解得x=4.4分经检验,x=4是方程的解且符合题意.∴16-x=12.答:每盆绿萝4元,每盆吊兰12元.6分(2)设购买吊兰a盆,总费用为y元.依题意得,购买绿萝(120-a)盆,则y=12a+4(120-a)=8a+480.9分∵绿萝数量不超过吊兰数量的一半,∴120-a≤a,解得a≥80.10分对于y=8a+480,y随a的增大而增大,∴当a=80时,y取得最小值,最小值为8×80+480=1 120,12分此时120-a=40.答:购买吊兰80盆,绿萝40盆时,总费用最少,为1 120元.14分22.解析(1)如图,过A点作AM⊥BC于点M,设AC交PE于点N.∵∠BAC=90°,∠B=45°,∴∠C=45°=∠B,∴AB=AC,∴BM=CM,∴AM=BC=5,2分∵AD∥BC,∴∠PAN=∠C=45°,∵PE⊥BC,∴PE=AM=5,PE⊥AD,∴△APN和△CEN是等腰直角三角形,4分∴PN=AP=t,∴CE=NE=PE-PN=5-t,∵CE=CQ-QE=2t-2,∴5-t=2t-2,6分解得t=,∴BQ=BC-CQ=10-2×.7分(2)存在.8分若以A,B,E,P为顶点的四边形为平行四边形,则AP=BE,分两种情况:①当点E在点B的右侧时,有解得t=4.②当点E在点B的左侧时,有解得t=12.∴存在t值,使以A,B,E,P为顶点的四边形为平行四边形,此时t的值为4或12.14分。
苏教版八年级数学下册《二次根式》专项测试题及参考答案(1)
苏教版八年级数学下册《二次根式》专项测试题及参考答案(1)八年级下册二次根式专项测试卷姓名。
得分:一、选择题(每题2分,共20分)1.下列根式中,与32是同类二次根式的是______。
A。
12.B。
8.C。
6.D。
32改写:与32同类的二次根式是哪一个?答案:D2.下列根式:2xy、8、ab3xy1、x+y,中,最简二次根式的个数是______。
A。
2个。
B。
3个。
C。
4个。
D。
5个改写:这些根式中,最简二次根式有几个?答案:B3.实数a在数轴上的位置如图,则______。
图略)改写:根据图,a的值是多少?答案:-24.(a-4)²+(a-11)²化简后为______。
A。
7.B。
-17.C。
2a-15.D。
无法确定改写:简化(a-4)²+(a-11)²,得到什么结果?答案:B5.若16-a²=4-a⁴+a,则a的取值范围是______。
A。
-4≤a≤4.B。
a>-4.C。
a≤4.D。
-4<a<4改写:满足16-a²=4-a⁴+a的a的范围是什么?答案:D6.设2=a,3=b,用含a,b的式子表示0.54,则下列表示正确的是______。
A。
0.3ab。
B。
3ab。
C。
0.1ab。
D。
0.1ab改写:用a和b表示0.54的式子是什么?答案:C7.化简(a-1)²/(2a-2)的结果是______。
A。
a-1.B。
1-a。
C。
-1-a。
D。
-a-1改写:简化(a-1)²/(2a-2),得到什么结果?答案:A8.若代数式(2-a)+(a-4)的值为2,则a的取值范围是______。
A。
a≥4.B。
a≤2.C。
2≤a≤4.D。
a=2或a=4改写:满足(2-a)+(a-4)=2的a的范围是什么?答案:C9.已知4x-8+x-y-m=0,当y>0时,则m的取值范围是______。
A。
0<m<1.B。
八年级下册数学好题难题精选(1)
八年级下册数学好题难题精选分式:一:如果abc=1,求证11++a ab +11++b bc +11++c ac =1解:原式=11++a ab +a ab abca +++ab abc bc a ab ++2=11++a ab +a ab a ++1+ab a ab++1=11++++a ab a ab=1二:已知a 1+b 1=)(29b a +,则a b +b a等于多少?解:a 1+b 1=)(29b a + ab b a +=)(29b a + 2(b a +)2=9ab 22a +4ab +22b =9ab2(22ba +)=5ab ab b a 22+=25a b +b a =25 三:一个圆柱形容器的容积为V 立方米,开始用一根小水管向容器内注水,水面高度达到容器高度一半后,改用一根口径为小水管2倍的大水管注水。
向容器中注满水的全过程共用时间t 分。
求两根水管各自注水的速度。
解:设小水管进水速度为x ,则大水管进水速度为4x 。
由题意得:t x v x v =+82 解之得:t vx 85=经检验得:tvx 85=是原方程解。
∴小口径水管速度为t v 85,大口径水管速度为tv25。
三:如图,⊙A 和⊙B 都与x 轴和y 轴相切,圆心A 和圆心B 都在反比例函数1yx=的图象上,则图中阴影部分的面积等于 .答案:r=1S=πr ²=πA BO xy四:如图11,已知正比例函数和反比例函数的图像都经过点M (-2,-1),且P (-1,-2)为双曲线上的一点,Q 为坐标平面上一动点,PA 垂直于x 轴,QB 垂直于y 轴,垂足分别是A 、B .(1)写出正比例函数和反比例函数的关系式;(2)当点Q 在直线MO 上运动时,直线MO 上是否存在这样的点Q ,使得△OBQ 与△OAP 面积相等?如果存在,请求出点的坐标,如果不存在,请说明理由;(3)如图12,当点Q 在第一象限中的双曲线上运动时,作以OP 、OQ 为邻边的平行四边形OPCQ ,求平行四边形OPCQ 周长的最小值.解:(1)设正比例函数解析式为y kx =,将点M (2-,)坐标代入得12k =,所以正比例函数解析式为12y x = 图11xyB()A OMQP图12xy()BCAOMPQ式为12y x =同样可得,反比例函数解析式为2y x= (2)当点Q 在直线DO 上运动时, 设点Q 的坐标为1()2Q m m ,,于是211112224O B QS O B B Q m m m △=?创=, 而1(1)(2)12O A PS △=-?=, 所以有,2114m =,解得2m =±所以点Q 的坐标为1(21)Q ,和2(21)Q ,-- (3)因为四边形OPCQ 是平行四边形,所以OP =CQ ,OQ =PC ,而点P (,2-)是定点,所以O P 的长也是定长,所以要求平行四边形O P C Q 周长的最小值就只需求O Q 的最小值. 需求OQ 的最小值.因为点Q 在第一象限中双曲线上,所以可设点Q 的坐标为2()Q n n,,由勾股定理可得222242()4O Qn n n n=+=-+, 所以当22()0n n -=即20n n-=时,2O Q 有最小值4, 又因为OQ 为正值,所以OQ 与2O Q 同时取得最小值, 所以OQ 有最小值2.由勾股定理得OP =5,所以平行四边形OPCQ 周长的最小值是 2()2(52)254O P O Q +=+=+.五:如图,在平面直角坐标系中,直线AB 与Y 轴和X 轴分别交于点A 、点8,与反比例函数y 一罟在第一象限的图象交于点c(1,6)、点D(3,x).过点C 作CE 上y 轴于E ,过点D 作DF 上X 轴于F . (1)求m ,n 的值;(2)求直线AB 的函数解析式;勾股定理:一:清朝康熙皇帝是我国历史上对数学很有兴趣的帝王.近日,•西安发现了他的数学专著,其中有一文《积求勾股法》,它对“三边长为3、4、5的整数倍的直角三角形,已知面积求边长”这一问题提出了解法:“若所设者为积数(面积),以积率六除之,平方开之得数,再以勾股弦各率乘之,即得勾股弦之数”.用现在的数学语言表述是:“若直角三角形的三边长分别为3、4、5的整数倍,•设其面积为S ,则第一步:6S=m ;第二步:m =k ;第三步:分别用3、4、5乘以k ,得三边长”.(1)当面积S 等于150时,请用康熙的“积求勾股法”求出这个直角三角形的三边长;(2)你能证明“积求勾股法”的正确性吗?请写出证明过程.解:(1)当S=150时,k=m =1502566S ===5, 所以三边长分别为:3×5=15,4×5=20,5×5=25; (2)证明:三边为3、4、5的整数倍, 设为k 倍,则三边为3k ,4k ,5k ,• 而三角形为直角三角形且3k 、4k 为直角边. 其面积S=(3k )·(4k )/2=6k 2,所以k 2=6S,k=6S (取正值),即将面积除以6,然后开方,即可得到倍数.二:一张等腰三角形纸片,底边长l5cm ,底边上的高长22.5cm .现沿底边依次从下往上裁剪宽度均为3cm 的矩形纸条,如图所示.已知剪得的纸条中有一张是正方形,则这张正方形纸条是( )A .第4张B .第5张C .第6张D .第7张答案:C设是第n 个,则它的上边所在三角形的底边高是22.5-3n ,底边是3,由三角形的相似性可知(22.5-3n ):22.5=3:15 解得n=6 是第6个四边形:一:如图,△ACD 、△ABE 、△BCF 均为直线BC 同侧的等边三角形. (1) 当AB ≠AC 时,证明四边形ADFE 为平行四边形;(2) 当AB = AC 时,顺次连结A 、D 、F 、E 四点所构成的图形有哪几类?直接写出构成图形的类型和相应的条件.EFDA B C解:(1) ∵△ABE 、△BCF 为等边三角形,∴AB = BE = AE ,BC = CF = FB ,∠ABE = ∠CBF = 60°. ∴∠FBE = ∠CBA . ∴△FBE ≌△CBA . ∴EF = AC .又∵△ADC 为等边三角形, ∴CD = AD = AC . ∴EF = AD. 同理可得AE = DF .∴四边形AEFD 是平行四边形.(2) 构成的图形有两类,一类是菱形,一类是线段.当图形为菱形时,∠ BAC ≠60°(或A 与F 不重合、△ABC 不为正三角形) 当图形为线段时,∠BAC = 60°(或A 与F 重合、△ABC 为正三角形).二:如图,已知△ABC 是等边三角形,D 、E 分别在边BC 、AC 上,且CD=CE ,连结DE 并延长至点F ,使EF=AE ,连结AF 、BE 和CF 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
八年级下册数学好题难题精选
分式:
一:如果abc=1,求证
11++a ab +11++b bc +11
++c ac =1
二:已知a 1+b 1=
)(29b a +,则a b +b a
等于多少?
三:一个圆柱形容器的容积为V 立方米,开始用一根小水管向容器内注水,水面高度达到容器高度一半后,改用一根口径为小水管2倍的大水管注水。
向容器中注满水的全过程共用时间t 分。
求两根水管各自注水的速度。
四:联系实际编拟一道关于分式方程228
8+=x
x 的应用题。
要求表述完整,条件
充分并写出解答过程。
五:已知M =2
22y
x xy
-、N =22
22y x y x -+,用“+”或“-”连结M 、N,有三种不同的
形式,M+N 、M-N 、N-M ,请你任取其中一种进行计算,并简求值,其中x :y=5:
2。
反比例函数:
一:一张边长为16cm正方形的纸片,剪去两个面积一定且一样的小矩形得到一个“E”图案如图1所示.小矩形的长x(cm)与宽y(cm)之间的函数关系如图2所示:
(1)求y与x之间的函数关系式;
(2)“E”图案的面积是多少?
(3)如果小矩形的长是6≤x≤12cm,求小矩形宽的范围.
二:是一个反比例函数图象的一部分,点(110)
A,,(101)
B,是它的两个端点.(1)求此函数的解析式,并写出自变量x的取值范围;
(2)请你举出一个能用本题的函数关系描述的生活实例.
三:如图,⊙A和⊙B都与x轴和y轴相切,圆心A和圆心B都在反比
例函数
1
y
x
的图象上,则图中阴影部分的面积等于 .
A
B
O x
y
1
1 10
10 A
B
O x
y
五:如图,在平面直角坐标系中,直线AB 与Y 轴和X 轴分别交于点A 、点8,与反比例函数y 一罟在第一象限的图象交于点c(1,6)、点D(3,x).过点C 作CE 上y 轴于E ,过点D 作DF 上X 轴于F . (1)求m ,n 的值;
(2)求直线AB 的函数解析式;
勾股定理:
一:清朝康熙皇帝是我国历史上对数学很有兴趣的帝王.近日,•西安发现了他的数学专著,其中有一文《积求勾股法》,它对“三边长为3、4、5的整数倍的直角三角形,已知面积求边长”这一问题提出了解法:“若所设者为积数(面积),以积率六除之,平方开之得数,再以勾股弦各率乘之,即得勾股弦之数”.用现在的数学语言表述是:“若直角三角形的三边长分别为3、4、5的整数倍,•设其
面积为S ,则第一步:6
S
=m ;第二步:m =k ;第三步:分别用3、4、5乘以k ,
得三边长”.
(1)当面积S 等于150时,请用康熙的“积求勾股法”求出这个直角三角形
的三边长;
(2)你能证明“积求勾股法”的正确性吗?请写出证明过程.
二:一张等腰三角形纸片,底边长l5cm ,底边上的高长22.5cm .现沿底边依次从下往上裁剪宽度均为3cm 的矩形纸条,如图所示.已知剪得的纸条中有一张是正方形,则这张正方形纸条是( )
A .第4张
B .第5张
C .第6张
D .第7张
三:如图,甲、乙两楼相距20米,甲楼高20米,小明站在距甲楼10米的A 处目测得点A 与甲、乙楼顶B C 、刚好在同一直线上,且A 与B 相距3
50
米,若小明的身高忽略不计,则乙楼的高度是 米.
四:恩施州自然风光无限,特别是以“雄、奇、秀、幽、险”著称于世.著名的恩施大峡谷()A 和世界级自然保护区星斗山()B 位于笔直的沪渝高速公路X 同侧,50km AB A =,、B 到直线X 的距离分别为10km 和40km ,要在沪渝高速公路旁修建一服务区P ,向A 、B 两景区运送游客.小民设计了两种方案,图(1)是方案一的示意图(AP 与直线X 垂直,垂足为P ),P 到A 、B 的距离之和1S PA PB =+,图(2)是方案二的示意图(点A 关于直线X 的对称点是A ',连接BA '交直线X 于点P ),P 到A 、B 的距离之和2S PA PB =+. (1)求1S 、2S ,并比较它们的大小; (2)请你说明2S PA PB =+的值为最小;
(3)拟建的恩施到张家界高速公路Y 与沪渝高速公路垂直,建立如图(3)所示的直角坐标系,B 到直线Y 的距离为30km ,请你在X 旁和Y 旁各修建一服务区P 、Q ,使P 、A 、B 、Q 组成的四边形的周长最小.并求出这个最小值.
P
图(1)
图(3)
图(2)
五:已知:如图,在直角梯形ABCD 中,AD ∥BC ,∠ABC =90°,DE ⊥AC 于点F ,交BC 于点G ,交AB 的延长线于点E ,且AE AC =.
(1)求证:BG FG =;
(2)若2AD DC ==,求AB 的长.
四边形:
一:如图,△ACD 、△ABE 、△BCF 均为直线BC 同侧的等边三角形. (1) 当AB ≠AC 时,证明四边形ADFE 为平行四边形; (2) 当AB = AC 时,顺次连结A 、D 、F 、E 四点所构成的图形有哪几类?直接写出构成图形的类型和相应的条件.
二:如图,已知△ABC 是等边三角形,D 、E 分别在边BC 、AC 上,且CD=CE ,连结DE 并延长至点F ,使EF=AE ,连结AF 、BE 和CF 。
(1)请在图中找出一对全等三角形,用符号“≌”表示,并加以证明。
(2)判断四边形ABDF 是怎样的四边形,并说明理由。
(3)若AB=6,BD=2DC ,求四边形ABEF 的面积。
三:如图,在△ABC 中,∠A 、∠B 的平分线交于点D ,DE ∥AC 交BC 于点E ,DF
∥BC 交AC 于点F .
(1)点D 是△ABC 的________心; (2)求证:四边形DECF 为菱形.
D
C
E
B G
A F
E
F D
A
B C
四:在矩形ABCD 中,点E 是AD 边上一点,连接BE ,且∠ABE =30°,BE =DE ,连接BD .点P 从点E 出发沿射线ED 运动,过点P 作PQ ∥BD 交直线BE 于点Q .
(1) 当点P 在线段ED 上时(如图1),求证:BE =PD +
3
3
PQ ; (2)若 BC =6,设PQ 长为x ,以P 、Q 、D 三点为顶点所构成的三角形面积为y ,求y 与 x 的函数关系式(不要求写出自变量x 的取值范围);
(3)在②的条件下,当点P 运动到线段ED 的中点时,连接QC ,过点P 作PF ⊥QC ,垂足为F ,PF 交对角线BD 于点G (如图2),求线段PG 的长。
五:如图,这是一张等腰梯形纸片,它的上底长为2,下底长为4,腰长为2,这样的
纸片共有5张.打算用其中的几张来拼成较大的等腰梯形,那么你能拼出哪几种不同的等腰梯形?分别画出它们的示意图...
,并写出它们的周长.
2
2
2
六:已知:如图,在矩形ABCD 中,E 、F 分别是边BC 、AB 上的点,且EF=ED,EF ⊥ED.
求证:AE 平分∠BAD.
(第23题)
E D
B
A
F
七:如图,矩形纸片ABCD 中,AB =8,将纸片折叠,使顶点B 落在边AD 的E 点上,BG =10.
(1)当折痕的另一端F 在AB 边上时,如图(1).求△EFG 的面积.
(2)当折痕的另一端F 在AD 边上时,如图(2).证明四边形BGEF 为菱形,并求出折痕GF 的长.
H
A
B
C
D
E F G
八:(1)请用两种不同的方法,用尺规在所给的两个矩形中各作一个
不为正方形的菱形,且菱形的四个顶点都在矩形的边上.(保留作图痕迹) (2)写出你的作法.
九:如图,P 是边长为1的正方形ABCD 对角线AC 上一动点(P 与A 、C 不重合),
点E 在射线BC 上,且PE=PB .
(1)求证:① PE=PD ; ② PE ⊥PD ;
(2)设AP =x , △PBE 的面积为y .
① 求出y 关于x 的函数关系式,并写出x 的取值范围; ② 当x 取何值时,y 取得最大值,并求出这个最大值.
图(2)
A
B
C
D
E F
G H (A)
(B)A B
C
D E F G
图(1)
A
B C
P D
E
一:如图1,四边形ABCD是正方形,G是CD边上的一个动点(点G与C、D不重合),以CG为一边在正方形ABCD外作正方形CEFG,连结BG,DE.我们探究下列图中线段BG、线段DE的长度关系及所在直线的位置关系:
(1)①猜想如图1中线段BG、线段DE的长度关系及所在直线的位置关系;
②将图1中的正方形CEFG绕着点C按顺时针(或逆时针)方向旋转任意角度α,得到如图2、如图3情形.请你通过观察、测量等方法判断①中得到的结论是否仍然成立,并选取图2证明你的判断.
(2)将原题中正方形改为矩形(如图4—6),且AB=a,BC=b,CE=ka, CG=kb (a≠b,k>0),第(1)题①中得到的结论哪些成立,哪些不成立?若成立,以图5为例简要说明理由.
(3)在第(2)题图5中,连结DG、BE,且a=3,b=2,k=1
2
,求22
BE DG
+的值.。