八年级数学经典难题

合集下载

(完整版)八年级数学经典难题

(完整版)八年级数学经典难题

经典难题(一)1、已知:如图,O是半圆的圆心,C、E是圆上的两点,CD⊥AB,EF⊥AB,EG⊥C O.求证:CD=GF.(初二)2、已知:如图,P是正方形ABCD内点,∠PAD=∠PDA=15度求证:△PBC是正三角形.(初二)3、如图,已知四边形ABCD、A1B1C1D1都是正方形,A2、B2、C2、D2分别是AA 1、BB1、CC1、DD1的中点.求证:四边形A2B2C2D2是正方形.(初二)4、已知:如图,在四边形ABCD中,AD=BC,M、N分别是AB、CD的中点,AD、BC的延长线交MN于E、F.求证:∠DEN=∠F.经典难题(二)1、已知:△ABC中,H为垂心(各边高线的交点),O为外心,且OM⊥BC于M.(1)求证:AH=2OM;(2)若∠BAC=600,求证:AH=AO.(初二)2、设MN是圆O外一直线,过O作OA⊥MN于A,自A引圆的两条直线,交圆于B、C及D、E,直线EB及CD分别交MN于P、Q.求证:AP=AQ.(初二)3、如果上题把直线MN由圆外平移至圆内,则由此可得以下命题:设MN是圆O的弦,过MN的中点A任作两弦BC、DE,设CD、EB分别交MN于P、Q.求证:AP=AQ.(初二)4、如图,分别以△ABC的AC和BC为一边,在△ABC的外侧作正方形ACDE和正方形CBFG,点P是EF的中点.求证:点P到边AB的距离等于AB的一半.(初二)经典难题(三)1、如图,四边形ABCD为正方形,DE∥AC,AE=AC,AE与CD相交于F.求证:CE=CF.(初二)2、如图,四边形ABCD为正方形,DE∥AC,且CE=CA,直线EC交DA延长线于F.求证:AE=AF.(初二)3、设P是正方形ABCD一边BC上的任一点,PF⊥AP,CF平分∠DCE.求证:PA=PF.(初二)4、如图,PC切圆O于C,AC为圆的直径,PEF为圆的割线,AE、AF与直线PO 相交于B、D.求证:AB=DC,BC=AD.(初三)经典难题(四)1、已知:△ABC是正三角形,P是三角形内一点,PA=3,PB=4,PC=5.求:∠APB的度数.(初二)2、设P是平行四边形ABCD内部的一点,且∠PBA=∠PDA.求证:∠PAB=∠PCB.(初二)3、设ABCD为圆内接凸四边形,求证:AB·CD+AD·BC=AC·BD.(初三)4、平行四边形ABCD中,设E、F分别是BC、AB上的一点,AE与CF相交于P,且AE=CF.求证:∠DPA=∠DPC.(初二)经典难题(五)1、设P是边长为1的正△ABC内任一点,L=PA+PB+PC,求证:√3≤L<2.2、已知:P是边长为1的正方形ABCD内的一点,求PA+PB+PC的最小值.3、P为正方形ABCD内的一点,并且PA=a,PB=2a,PC=3a,求正方形的边长.4、如图,△ABC中,∠ABC=∠ACB=80度,D、E分别是AB、AC上的点,∠DCA =30度,∠EBA=20度,求∠BED的度数.答案经典难题(一)4.如下图连接AC并取其中点Q,连接QN和QM,所以可得∠QMF=∠F,∠QNM=∠D EN和∠QMN=∠QNM,从而得出∠DEN=∠F。

初二数学十大经典难题

初二数学十大经典难题

1 方程|2000-x-y|+更号下2x+3y-1000=0的一组解为x=a,y=b,则a+b的值是几?2 若代数式x(x+1)(x+2)(x+3)+p恰好能分解为两个二次整式的乘积(其中二次项系数均为1且一次项系数相同),则p得最大值是几。

?3 已知:a<b,且x=a/|a+b|,y=b|a+b|,则p=(a^2*x^3-b^2*y^3+b^2*y*x^2-a^2*x*y^2)/|x-y|的值等于几?4 设p(x)是一个关于x的二次多项式,且7x^3-5^2+6x-m-1=(x-1)p(x)+a,其中m,a是与x无关的常数,则p(x)得表达式是几?5 若a为自然数,b为整数,且满足(a+更号下3b)^2=7-4更号下3,则a=?b=?6 已知a,b,c为三角形的三条边长,满足条件a*c^2+b^2*c-b^3=a*b*c,若三角形的一个内角为100°,则三角形的另两个角的大小分别是几和几?7 没有图,P为线段AB上一点,以AP为边作一个正方形APMN,以BP为底在线段的另一侧作等腰△BPQ,连接MQ,若AB的长为4,则△MQN的面积的最大值是几?8 还是没有图,任意四边形ABCD中,AC,BD相交于O(AC和BD是两条对角线),△DOC的面积S1=4,△AOB的面积S2=64,则四边形ABCD的面积最小是几?9 已知a,b是互质的正整数,且a+b,3a,a+4b恰好为一直角三角形的三条边长,则a+b的值是几?10 计算题((x-y)(z-x))/((x-2y+z)(x+y-2z))+((z-y)(x-y))/((x+y-2z)(y+z-2X))+((x-z)(y-x))/((y+z -2x)(x-2y+z))设m=大更号下a+2*小更号下a-1+大更号下a-2*小更号下a-1,求m^10+m^9+m^8+…+m-47的值。

注:1≤a≤2;小更号在大更号的下面。

20002.25a^4/(a+b)^2+b^4*(a+b)^2+a^3*b+b^3*a7x^2+2x+8a=-2,b=140,404(是等腰直角三角形BPQ)100a=5,b=3;a=17,b=7m=2-am^10+m^9+m^8+…+m-47=(2-a)/(a-1)*(1-(2-a)^10)-47。

(完整版)八年级数学经典难题

(完整版)八年级数学经典难题

经典难题(一)1、已知:如图,O 是半圆的圆心,C、E 是圆上的两点,CD⊥AB,EF⊥AB,EG⊥CO.求证:CD=GF.(初二)2、已知:如图,P 是正方形 ABCD 内点,∠PAD=∠PDA=15 度求证:△PBC是正三角形.(初二)3、如图,已知四边形 ABCD、A1B1C1D1 都是正方形,A2、B2、C2、D2 分别是 AA 1、BB1、CC1、DD1 的中点.求证:四边形 A2B2C2D2 是正方形.(初二)4、已知:如图,在四边形 ABCD 中,AD=BC,M、N 分别是 AB、CD 的中点,AD、BC 的延长线交 MN 于E、F.求证:∠DEN=∠F.经典难题(二)1、已知:△ABC 中,H 为垂心(各边高线的交点),O 为外心,且OM⊥BC 于 M.(1)求证:AH=2OM;(2)若∠BAC=600,求证:AH=AO.(初二)2、设 MN 是圆 O 外一直线,过 O 作OA⊥MN 于 A,自 A 引圆的两条直线,交圆于B、C 及D、E,直线 EB 及CD 分别交 MN 于P、Q.求证:AP=AQ.(初二)3、如果上题把直线 MN 由圆外平移至圆内,则由此可得以下命题:设 MN 是圆 O 的弦,过 MN 的中点 A 任作两弦 BC、DE,设 CD、EB 分别交 MN 于 P 、Q.求证:AP=AQ.(初二)4、如图,分别以△ABC的AC 和BC 为一边,在△ABC的外侧作正方形 ACDE 和正方形 CBFG,点P 是EF 的中点.求证:点 P 到边 AB 的距离等于 AB 的一半.(初二)经典难题(三)1、如图,四边形 ABCD 为正方形,DE∥AC,AE=AC,AE 与 CD 相交于 F.求证:CE=CF.(初二)2、如图,四边形 ABCD 为正方形,DE∥AC,且 CE=CA,直线 EC 交 DA 延长线于F.求证:AE=AF.(初二)3、设 P 是正方形 ABCD 一边BC 上的任一点,PF⊥AP,CF 平分∠DCE.求证:PA=PF.(初二)4、如图,PC 切圆 O 于 C,AC 为圆的直径,PEF 为圆的割线,AE、AF 与直线 PO 相交于 B、D.求证:AB=DC,BC=AD.(初三)经典难题(四)1、已知:△ABC是正三角形,P 是三角形内一点,PA=3,PB=4,PC=5.求:∠APB的度数.(初二)2、设 P 是平行四边形 ABCD 内部的一点,且∠PBA=∠PDA.求证:∠PAB=∠PCB.(初二)3、设 ABCD 为圆内接凸四边形,求证:AB·CD+AD·BC=AC·BD.(初三)4、平行四边形 ABCD 中,设 E、F 分别是 BC、AB 上的一点,AE 与CF 相交于 P,且AE=CF.求证:∠DPA=∠DPC.(初二)经典难题(五)1、设 P 是边长为 1 的正△ABC 内任一点,L=PA+PB+PC,求证:√3≤L<2.2、已知:P 是边长为 1 的正方形 ABCD 内的一点,求 PA+PB+PC 的最小值.3、P 为正方形 ABCD 内的一点,并且 PA=a,PB=2a,PC=3a,求正方形的边长.4、如图,△ABC 中,∠ABC=∠ACB=80 度,D、E 分别是 AB、AC 上的点,∠DC A=30 度,∠EBA=20 度,求∠BED 的度数.答案经典难题(一)4.如下图连接 AC 并取其中点 Q,连接 QN 和QM,所以可得∠QMF=∠F,∠QNM=∠ DEN 和∠QMN=∠QNM,从而得出∠DEN=∠F。

(完整版)初二数学经典难题(带答案及解析)

(完整版)初二数学经典难题(带答案及解析)

初二数学经典难题一、解答题(共10小题,满分100分)1.(10分)已知:如图,P是正方形ABCD内点,∠PAD=∠PDA=15°.求证:△PBC是正三角形.(初二)2.(10分)已知:如图,在四边形ABCD中,AD=BC,M、N分别是AB、CD的中点,AD、BC的延长线交MN 于E、F.求证:∠DEN=∠F.3.(10分)如图,分别以△ABC的边AC、BC为一边,在△ABC外作正方形ACDE和CBFG,点P是EF的中点,求证:点P到AB的距离是AB的一半.4.(10分)设P是平行四边形ABCD内部的一点,且∠PBA=∠PDA.求证:∠PAB=∠PCB.5.(10分)P为正方形ABCD内的一点,并且PA=a,PB=2a,PC=3a,求正方形的边长.6.(10分)一个圆柱形容器的容积为V立方米,开始用一根小水管向容器内注水,水面高度达到容器高度一半后,改用一根口径为小水管2倍的大水管注水.向容器中注满水的全过程共用时间t分.求两根水管各自注水的速度.7.(10分)(2009•郴州)如图1,已知正比例函数和反比例函数的图象都经过点M(﹣2,﹣1),且P(﹣1,﹣2)为双曲线上的一点,Q为坐标平面上一动点,PA垂直于x轴,QB垂直于y轴,垂足分别是A、B.(1)写出正比例函数和反比例函数的关系式;(2)当点Q在直线MO上运动时,直线MO上是否存在这样的点Q,使得△OBQ与△OAP面积相等?如果存在,请求出点的坐标,如果不存在,请说明理由;(3)如图2,当点Q在第一象限中的双曲线上运动时,作以OP、OQ为邻边的平行四边形OPCQ,求平行四边形OPCQ周长的最小值.8.(10分)(2008•海南)如图,P是边长为1的正方形ABCD对角线AC上一动点(P与A、C不重合),点E在线段BC上,且PE=PB.(1)求证:①PE=PD;②PE⊥PD;(2)设AP=x,△PBE的面积为y.①求出y关于x的函数关系式,并写出x的取值范围;②当x取何值时,y取得最大值,并求出这个最大值.9.(10分)(2010•河南)如图,直线y=k1x+b与反比例函数(x>0)的图象交于A(1,6),B(a,3)两点.(1)求k1、k2的值.(2)直接写出时x的取值范围;(3)如图,等腰梯形OBCD中,BC∥OD,OB=CD,OD边在x轴上,过点C作CE⊥OD于点E,CE和反比例函数的图象交于点P,当梯形OBCD的面积为12时,请判断PC和PE的大小关系,并说明理由.10.(10分)(2007•福州)如图,已知直线y=x与双曲线交于A,B两点,且点A的横坐标为4.(1)求k的值;(2)若双曲线上一点C的纵坐标为8,求△AOC的面积;(3)过原点O的另一条直线l交双曲线于P,Q两点(P点在第一象限),若由点A,B,P,Q为顶点组成的四边形面积为24,求点P的坐标.初二数学经典难题参考答案与试题解析一、解答题(共10小题,满分100分)1.(10分)已知:如图,P是正方形ABCD内点,∠PAD=∠PDA=15°.求证:△PBC是正三角形.(初二)考点:正方形的性质;全等三角形的判定与性质;等边三角形的性质;等边三角形的判定。

初二数学难题30道

初二数学难题30道

初二数学难题30道1. 解析几何:在直角坐标系中,点A(2, 3),点B(1, 2),求线段AB的中点坐标。

2. 代数方程:解方程 2x + 5 = 3x 4。

3. 函数问题:给定函数 f(x) = x^2 2x + 1,求 f(3) 的值。

4. 不等式求解:解不等式 5x 2 > 3。

5. 平行四边形:已知平行四边形ABCD,AB = 6cm,BC = 8cm,求对角线AC的长度。

6. 解析几何:在直角坐标系中,点A(1, 2),点B(3, 4),求线段AB的长度。

7. 代数方程:解方程 3x^2 4x + 1 = 0。

8. 函数问题:给定函数 g(x) = 2x + 3,求 g(2) 的值。

9. 不等式求解:解不等式 2x 5 < 1。

10. 平行四边形:已知平行四边形ABCD,AB = 7cm,BC = 9cm,求对角线BD的长度。

11. 解析几何:在直角坐标系中,点A(4, 5),点B(2, 1),求线段AB的长度。

12. 代数方程:解方程 4x^2 9x + 2 = 0。

13. 函数问题:给定函数 h(x) = x^3 3x^2 + 2x,求 h(1) 的值。

14. 不等式求解:解不等式3x + 4 ≤ 7。

15. 平行四边形:已知平行四边形ABCD,AB = 8cm,BC = 10cm,求对角线AC的长度。

16. 解析几何:在直角坐标系中,点A(3, 2),点B(1, 1),求线段AB的中点坐标。

17. 代数方程:解方程 5x 3 = 2x + 7。

18. 函数问题:给定函数 f(x) = x^2 + 4x + 4,求 f(0) 的值。

19. 不等式求解:解不等式4x 8 ≥ 2。

20. 平行四边形:已知平行四边形ABCD,AB = 9cm,BC = 11cm,求对角线BD的长度。

21. 解析几何:在直角坐标系中,点A(2, 3),点B(1, 4),求线段AB的长度。

22. 代数方程:解方程 6x^2 5x 1 = 0。

初二数学经典难题(带答案及解析)

初二数学经典难题(带答案及解析)

初二数学经典难题(带答案及解析)初二数学经典难题一、解答题(共10小题,满分100分)1.(10分)已知:如图,P是正方形ABCD内点,∠PAD=∠PDA=15°.求证:△PBC是正三角形.(初二)2.(10分)已知:如图,在四边形ABCD中,AD=BC,M、N分别是AB、CD的中点,AD、BC的延长线交MN于E、F.求证:∠DEN=∠F.3.(10分)如图,分别以△ABC的边AC、BC为一边,在△ABC外作正方形ACDE和CBFG,点P是EF的中点,求证:点P到AB的距离是AB的一半.4.(10分)设P是平行四边形ABCD内部的一点,且∠PBA=∠PDA.求证:∠PAB=∠PCB.5.(10分)P为正方形ABCD内的一点,并且PA=a,PB=2a,PC=3a,求正方形的边长.6.(10分)一个圆柱形容器的容积为V立方米,开始用一根小水管向容器内注水,水面高度达到容器高度一半后,改用一根口径为小水管2倍的大水管注水.向容器中注满水的全过程共用时间t分.求两根水管各自注水的速度.7.(10分)(2009•郴州)如图1,已知正比例函数和反比例函数的图象都经过点M(﹣2,﹣1),且P(﹣1,﹣2)为双曲线上的一点,Q为坐标平面上一动点,PA垂直于x轴,QB垂直于y轴,垂足分别是A、B.(1)写出正比例函数和反比例函数的关系式;(2)当点Q在直线MO上运动时,直线MO上是否存在这样的点Q,使得△OBQ与△OAP面积相等?如果存在,请求出点的坐标,如果不存在,请说明理由;(3)如图2,当点Q在第一象限中的双曲线上运动时,作以OP、OQ为邻边的平行四边形OPCQ,求平行四边形OPCQ 周长的最小值.8.(10分)(2008•海南)如图,P是边长为1的正方形ABCD 对角线AC上一动点(P与A、C不重合),点E在线段BC 上,且PE=PB.(1)求证:①PE=PD;②PE⊥PD;(2)设AP=x,△PBE的面积为y.①求出y关于x的函数关系式,并写出x的取值范围;②当x取何值时,y取得最大值,并求出这个最大值.9.(10分)(2010•河南)如图,直线y=k1x+b与反比例函数(x>0)的图象交于A(1,6),B(a,3)两点.(1)求k1、k2的值.(2)直接写出时x的取值范围;(3)如图,等腰梯形OBCD中,BC∥OD,OB=CD,OD 边在x轴上,过点C作CE⊥OD于点E,CE和反比例函数的图象交于点P,当梯形OBCD的面积为12时,请判断PC 和PE的大小关系,并说明理由.10.(10分)(2007•福州)如图,已知直线y=x与双曲线交于A,B两点,且点A的横坐标为4.(1)求k的值;(2)若双曲线上一点C的纵坐标为8,求△AOC的面积;(3)过原点O的另一条直线l交双曲线于P,Q两点(P点在第一象限),若由点A,B,P,Q为顶点组成的四边形面积为24,求点P的坐标.初二数学经典难题参考答案与试题解析一、解答题(共10小题,满分100分)1.(10分)已知:如图,P是正方形ABCD内点,∠PAD=∠PDA=15°.求证:△PBC是正三角形.(初二)考点:正方形的性质;全等三角形的判定与性质;等边三角形的性质;等边三角形的判定。

初二数学经典难题(带答案与解析)

初二数学经典难题(带答案与解析)

-WORD格式--试题-范文范例--指导案例初二数学经典难题一、解答题(共10小题,满分100分)1.(10分)已知:如图,P是正方形ABCD内点,∠PAD=∠PDA=15°.求证:△PBC是正三角形.(初二)2.(10分)已知:如图,在四边形ABCD中,AD=BC,M、N分别是AB、CD的中点,AD、BC的延长线交MN于E、F.求证:∠DEN=∠F.3.(10分)如图,分别以△ABC的边AC、BC为一边,在△ABC外作正方形ACDE和CBFG,点P是EF的中点,求证:点P到AB的距离是AB的一半.4.(10分)设P是平行四边形ABCD内部的一点,且∠PBA=∠PDA.求证:∠PAB=∠PCB.5.(10分)P为正方形ABCD内的一点,并且PA=a,PB=2a,PC=3a,求正方形的边长.6.(10分)一个圆柱形容器的容积为V立方米,开始用一根小水管向容器内注水,水面高度达到容器高度一半后,改用一根口径为小水管2倍的大水管注水.向容器中注满水的全过程共用时间t分.求两根水管各自注水的速度.7.(10分)(2009•郴州)如图1,已知正比例函数和反比例函数的图象都经过点M(﹣2,﹣1),且P(﹣1,﹣2)为双曲线上的一点,Q为坐标平面上一动点,PA垂直于x轴,QB垂直于y轴,垂足分别是A、B.(1)写出正比例函数和反比例函数的关系式;(2)当点Q在直线MO上运动时,直线MO上是否存在这样的点Q,使得△OBQ 与△OAP面积相等?如果存在,请求出点的坐标,如果不存在,请说明理由;(3)如图2,当点Q在第一象限中的双曲线上运动时,作以OP、OQ为邻边的平行四边形OPCQ,求平行四边形OPCQ周长的最小值.8.(10分)(2008•海南)如图,P是边长为1的正方形ABCD对角线AC上一动点(P与A、C不重合),点E在线段BC上,且PE=PB.(1)求证:①PE=PD;②PE⊥PD;(2)设AP=x,△PBE的面积为y.①求出y关于x的函数关系式,并写出x的取值范围;②当x取何值时,y取得最大值,并求出这个最大值.9.(10分)(2010•河南)如图,直线y=k1x+b与反比例函数(x>0)的图象交于A(1,6),B(a,3)两点.(1)求k1、k2的值.(2)直接写出时x的取值范围;(3)如图,等腰梯形OBCD中,BC∥OD,OB=CD,OD边在x轴上,过点C作CE⊥OD于点E,CE和反比例函数的图象交于点P,当梯形OBCD的面积为12时,请判断PC和PE的大小关系,并说明理由.10.(10分)(2007•福州)如图,已知直线y=x与双曲线交于A,B两点,且点A的横坐标为4.(1)求k的值;(2)若双曲线上一点C的纵坐标为8,求△AOC的面积;(3)过原点O的另一条直线l交双曲线于P,Q两点(P点在第一象限),若由点A,B,P,Q为顶点组成的四边形面积为24,求点P的坐标.初二数学经典难题参考答案与试题解析一、解答题(共10小题,满分100分)1.(10分)已知:如图,P是正方形ABCD内点,∠PAD=∠PDA=15°.求证:△PBC是正三角形.(初二)考点:正方形的性质;全等三角形的判定与性质;等边三角形的性质;等边三角形的判定。

初二数学经典难题(带答案及解析)

初二数学经典难题(带答案及解析)

初二数学经典难题一、解答题(共10小题,满分100分)1.(10分)已知:如图,P是正方形ABCD内点,∠PAD=∠PDA=15°.求证:△PBC是正三角形.(初二)2.(10分)已知:如图,在四边形ABCD中,AD=BC,M、N分别是AB、CD的中点,AD、BC的延长线交MN 于E、F.求证:∠DEN=∠F.3.(10分)如图,分别以△ABC的边AC、BC为一边,在△ABC外作正方形ACDE和CBFG,点P是EF的中点,求证:点P到AB的距离是AB的一半.4.(10分)设P是平行四边形ABCD内部的一点,且∠PBA=∠PDA.求证:∠PAB=∠PCB.5.(10分)P为正方形ABCD内的一点,并且PA=a,PB=2a,PC=3a,求正方形的边长.6.(10分)一个圆柱形容器的容积为V立方米,开始用一根小水管向容器内注水,水面高度达到容器高度一半后,改用一根口径为小水管2倍的大水管注水.向容器中注满水的全过程共用时间t分.求两根水管各自注水的速度.7.(10分)(2009•郴州)如图1,已知正比例函数和反比例函数的图象都经过点M(﹣2,﹣1),且P(﹣1,﹣2)为双曲线上的一点,Q为坐标平面上一动点,PA垂直于x轴,QB垂直于y轴,垂足分别是A、B.(1)写出正比例函数和反比例函数的关系式;(2)当点Q在直线MO上运动时,直线MO上是否存在这样的点Q,使得△OBQ与△OAP面积相等?如果存在,请求出点的坐标,如果不存在,请说明理由;(3)如图2,当点Q在第一象限中的双曲线上运动时,作以OP、OQ为邻边的平行四边形OPCQ,求平行四边形OPCQ周长的最小值.8.(10分)(2008•海南)如图,P是边长为1的正方形ABCD对角线AC上一动点(P与A、C不重合),点E在线段BC上,且PE=PB.(1)求证:①PE=PD;②PE⊥PD;(2)设AP=x,△PBE的面积为y.①求出y关于x的函数关系式,并写出x的取值范围;②当x取何值时,y取得最大值,并求出这个最大值.9.(10分)(2010•河南)如图,直线y=k1x+b与反比例函数(x>0)的图象交于A(1,6),B(a,3)两点.(1)求k1、k2的值.(2)直接写出时x的取值范围;(3)如图,等腰梯形OBCD中,BC∥OD,OB=CD,OD边在x轴上,过点C作CE⊥OD于点E,CE和反比例函数的图象交于点P,当梯形OBCD的面积为12时,请判断PC和PE的大小关系,并说明理由.10.(10分)(2007•福州)如图,已知直线y=x与双曲线交于A,B两点,且点A的横坐标为4.(1)求k的值;(2)若双曲线上一点C的纵坐标为8,求△AOC的面积;(3)过原点O的另一条直线l交双曲线于P,Q两点(P点在第一象限),若由点A,B,P,Q为顶点组成的四边形面积为24,求点P的坐标.初二数学经典难题参考答案与试题解析一、解答题(共10小题,满分100分)1.(10分)已知:如图,P是正方形ABCD内点,∠PAD=∠PDA=15°.求证:△PBC是正三角形.(初二)考点:正方形的性质;全等三角形的判定与性质;等边三角形的性质;等边三角形的判定。

初二数学经典难题(带答案及解析)

初二数学经典难题(带答案及解析)

初二数学经典难题一、解答题(共10小题,满分100分)1.(10分)已知:如图,P是正方形ABCD内点,∠PAD=∠PDA=15°.求证:△PBC是正三角形.(初二)2.(10分)已知:如图,在四边形ABCD中,AD=BC,M、N分别是AB、CD的中点,AD、BC的延长线交MN 于E、F.求证:∠DEN=∠F.3.(10分)如图,分别以△ABC的边AC、BC为一边,在△ABC外作正方形ACDE和CBFG,点P是EF的中点,求证:点P到AB的距离是AB的一半.4.(10分)设P是平行四边形ABCD内部的一点,且∠PBA=∠PDA.求证:∠PAB=∠PCB.5.(10分)P为正方形ABCD内的一点,并且PA=a,PB=2a,PC=3a,求正方形的边长.6.(10分)一个圆柱形容器的容积为V立方米,开始用一根小水管向容器内注水,水面高度达到容器高度一半后,改用一根口径为小水管2倍的大水管注水.向容器中注满水的全过程共用时间t分.求两根水管各自注水的速度.7.(10分)(2009•郴州)如图1,已知正比例函数和反比例函数的图象都经过点M(﹣2,﹣1),且P(﹣1,﹣2)为双曲线上的一点,Q为坐标平面上一动点,PA垂直于x轴,QB垂直于y轴,垂足分别是A、B.(1)写出正比例函数和反比例函数的关系式;(2)当点Q在直线MO上运动时,直线MO上是否存在这样的点Q,使得△OBQ与△OAP面积相等?如果存在,请求出点的坐标,如果不存在,请说明理由;(3)如图2,当点Q在第一象限中的双曲线上运动时,作以OP、OQ为邻边的平行四边形OPCQ,求平行四边形OPCQ周长的最小值.8.(10分)(2008•海南)如图,P是边长为1的正方形ABCD对角线AC上一动点(P与A、C不重合),点E在线段BC上,且PE=PB.(1)求证:①PE=PD;②PE⊥PD;(2)设AP=x,△PBE的面积为y.①求出y关于x的函数关系式,并写出x的取值范围;②当x取何值时,y取得最大值,并求出这个最大值.9.(10分)(2010•河南)如图,直线y=k1x+b与反比例函数(x>0)的图象交于A(1,6),B(a,3)两点.(1)求k1、k2的值.(2)直接写出时x的取值范围;(3)如图,等腰梯形OBCD中,BC∥OD,OB=CD,OD边在x轴上,过点C作CE⊥OD于点E,CE和反比例函数的图象交于点P,当梯形OBCD的面积为12时,请判断PC和PE的大小关系,并说明理由.10.(10分)(2007•福州)如图,已知直线y=x与双曲线交于A,B两点,且点A的横坐标为4.(1)求k的值;(2)若双曲线上一点C的纵坐标为8,求△AOC的面积;(3)过原点O的另一条直线l交双曲线于P,Q两点(P点在第一象限),若由点A,B,P,Q为顶点组成的四边形面积为24,求点P的坐标.初二数学经典难题参考答案与试题解析一、解答题(共10小题,满分100分)1.(10分)已知:如图,P是正方形ABCD内点,∠PAD=∠PDA=15°.求证:△PBC是正三角形.(初二)考点:正方形的性质;全等三角形的判定与性质;等边三角形的性质;等边三角形的判定。

(完整版)初二数学经典难题(带答案及解析)

(完整版)初二数学经典难题(带答案及解析)

初二数学经典难题一、解答题(共10小题,满分100分)1.(10分)已知:如图,P是正方形ABCD内点,∠PAD=∠PDA=15°.求证:△PBC是正三角形.(初二)2.(10分)已知:如图,在四边形ABCD中,AD=BC,M、N分别是AB、CD的中点,AD、BC的延长线交MN 于E、F.求证:∠DEN=∠F.3.(10分)如图,分别以△ABC的边AC、BC为一边,在△ABC外作正方形ACDE和CBFG,点P是EF的中点,求证:点P到AB的距离是AB的一半.4.(10分)设P是平行四边形ABCD内部的一点,且∠PBA=∠PDA.求证:∠PAB=∠PCB.5.(10分)P为正方形ABCD内的一点,并且PA=a,PB=2a,PC=3a,求正方形的边长.6.(10分)一个圆柱形容器的容积为V立方米,开始用一根小水管向容器内注水,水面高度达到容器高度一半后,改用一根口径为小水管2倍的大水管注水.向容器中注满水的全过程共用时间t分.求两根水管各自注水的速度.7.(10分)(2009•郴州)如图1,已知正比例函数和反比例函数的图象都经过点M(﹣2,﹣1),且P(﹣1,﹣2)为双曲线上的一点,Q为坐标平面上一动点,PA垂直于x轴,QB垂直于y轴,垂足分别是A、B.(1)写出正比例函数和反比例函数的关系式;(2)当点Q在直线MO上运动时,直线MO上是否存在这样的点Q,使得△OBQ与△OAP面积相等?如果存在,请求出点的坐标,如果不存在,请说明理由;(3)如图2,当点Q在第一象限中的双曲线上运动时,作以OP、OQ为邻边的平行四边形OPCQ,求平行四边形OPCQ周长的最小值.8.(10分)(2008•海南)如图,P是边长为1的正方形ABCD对角线AC上一动点(P与A、C不重合),点E在线段BC上,且PE=PB.(1)求证:①PE=PD;②PE⊥PD;(2)设AP=x,△PBE的面积为y.①求出y关于x的函数关系式,并写出x的取值范围;②当x取何值时,y取得最大值,并求出这个最大值.9.(10分)(2010•河南)如图,直线y=k1x+b与反比例函数(x>0)的图象交于A(1,6),B(a,3)两点.(1)求k1、k2的值.(2)直接写出时x的取值范围;(3)如图,等腰梯形OBCD中,BC∥OD,OB=CD,OD边在x轴上,过点C作CE⊥OD于点E,CE和反比例函数的图象交于点P,当梯形OBCD的面积为12时,请判断PC和PE的大小关系,并说明理由.10.(10分)(2007•福州)如图,已知直线y=x与双曲线交于A,B两点,且点A的横坐标为4.(1)求k的值;(2)若双曲线上一点C的纵坐标为8,求△AOC的面积;(3)过原点O的另一条直线l交双曲线于P,Q两点(P点在第一象限),若由点A,B,P,Q为顶点组成的四边形面积为24,求点P的坐标.初二数学经典难题参考答案与试题解析一、解答题(共10小题,满分100分)1.(10分)已知:如图,P是正方形ABCD内点,∠PAD=∠PDA=15°.求证:△PBC是正三角形.(初二)考点:正方形的性质;全等三角形的判定与性质;等边三角形的性质;等边三角形的判定。

初二数学经典难题(带答案与解析)

初二数学经典难题(带答案与解析)

初二数学经典难题(带答案与解析)1. 一位农夫要过一条河,他只有一艘小船,船只能支持他和一件物品的重量。

他需要把他自己,一只狼,一只绵羊和一束青菜都安全地运送到对岸。

但是,他不能让狼和绵羊在船上单独相处,因为狼会吃掉绵羊,而他也不能把青菜留在对岸,因为狼会吃掉青菜。

请问,农夫应该如何安全地将这些物品都运送到对岸?答案:农夫的运输过程,可以分为3个阶段:第一次船过去,农夫把绵羊放在岸边,然后把狼和青菜带到对岸。

第二次船会回来,这一次农夫只带绵羊回对岸,留下狼和青菜。

第三次船过去,农夫把青菜放在岸边,把狼带到对岸,然后返回把绵羊也带到对岸。

解析:这是一个相当著名的数学难题,考验玩家的逻辑思维和解决问题的能力。

农夫需要分别带着“绵羊、狼、青菜”三个物品过河,但是船只能支撑一人和一样物品的质量。

如果让“狼”单独和“绵羊”在一起,绵羊就会被吃掉,如果让“青菜”单独和“狼”在一起,青菜就会被吃掉。

怎么办呢?我们需要一步一步来想象这个过程。

首先,农夫需要把狼在非常安全的状态下到对岸。

所以,他需要先把绵羊放在岸边,然后带上狼和青菜一起过河。

这样,在对岸靠岸后,他可以先把青菜放在岸边,回来把狼送过去,并且把青菜留在对岸。

最后再回到原来的岸边,带上绵羊将其送往对岸即可。

这样,农夫就能够安全地将三个物品都运送到了对岸,而他没有违反任何规则。

这个问题是一个“二进制数学问题”,要求玩家发挥他们的逻辑思维和判断能力,找出最好的解决方案。

2. 一支队伍从A地出发向北行走360英里后到达B地,并停留了5天。

然后他们又向北行走280英里,到达C地,他们在C地停留了10天。

然后他们又向北行走400英里,到达D地。

他们在D地停留了15天,然后再向北前进60英里就到达他们的终点E地。

请问他们总共行走的距离以及他们在路途上平均每天行走的距离是多少?答案:他们总共行走的距离是: 1100 英里。

他们在路途上平均每天行走的距离是: 22 英里。

初二数学经典难题(带答案及解析)

初二数学经典难题(带答案及解析)

初二数学经典难题一、解答题(共10小题,满分100分)1. (10分)已知:如图,P 是正方形内点,// 15°.求证:△是正三角形.(初2. (10分)已知:如图,在四边形中,,M N分别是、的中点,、的延长线交于E 、 F .3. (10分)如图,分别以△的边、为一边,在△外作正方形和,点P 是的中点,求证:点P 到的距离是的一半.求证:F .B J B4.(10分)设P是平行四边形内部的一点,且求证:A5.(10分)P为正方形内的一点,并且,2a, 3a,求正方形的边长.6.(10分)一个圆柱形容器的容积为V立方米,开始用一根小水管向容器内注水,水面高度达到容器高度一半后,改用一根口径为小水管2倍的大水管注水.向容器中注满水的全过程共用时间t分.求两根水管各自注水的速度.7.(10分)(2009?郴州)如图1,已知正比例函数和反比例函数的图象都经过点M (- 2,- 1),且P (- 1, - 2)为双曲线上的一点,Q为坐标平面上一动点, 垂直于x 轴,垂直于y轴,垂足分别是A B.(1)写出正比例函数和反比例函数的关系式;(2)当点Q在直线上运动时,直线上是否存在这样的点Q使得△与△面积相等? 如果存在,请求出点的坐标,如果不存在,请说明理由;(3) 如图2,当点Q 在第一象限中的双曲线上运动时,作以、为邻边的平行四边 形,求平行四边形周长的最小9. (10分)(2010?可南)如图,直线i 与反比例函数•土 (x >0)的图象交于A(1, 6), B (a , 3)两点.(1) 求k 、k 2的值.(2) 直接写出:时x 的取值范围;值.8. (10分)(2008?海南)如图,C 不重合),点E 在线段上,且.(1) 求证:①;②丄;(2) 设,△的面积为y .P 是边长为1的正方形对角线上一动点(P 与A 、 ①求出y 关于x 的函数关系式,并写出x 的取值范围;y 取得最大值,并求出这个最大值.(3)如图,等腰梯形中,//,,边在x轴上,过点C作丄于点E,和反比例函数的图象交于点P,当梯形的面积为12时,请判断和的大小关系,并说明理由.10.(10分)(2007?福州)如图,已知直线「与双曲线」二交于A, B两点,2 x且点A的横坐标为4.(1)求k的值;(2)若双曲线厂上一点C的纵坐标为8,求△的面积;X(3)过原点O的另一条直线I交双曲线-:-A.'.于P, Q两点(P点在第一象X限),若由点A, B, P, Q为顶点组成的四边形面积为24,求点P的坐标.初二数学经典难题参考答案与试题解析一、解答题(共10小题,满分100分)1.(10分)已知:如图,P是正方形内点,// 15°.求证:△是正三角形.(初二)解答:证明:•••正方形,•••,// 90°,•••// 15°,•••,// 75°在正方形内做△与△全等,•••,//// 15°,•••/ 90°- 15°- 15°=60°,•△为等边三角形(有一个角等于60度的等腰三角形是等边三角形)• ■ ?•••/ 180°- 15°- 15°=150 °•••/ 360°- 150°-60°150°Z,在△和△中r DG=PG' ZDGC=ZPGC ,GC=GCL/.△^△,•••,和// 15°同理,/ 90°- 15°- 15 °=60 °• △是正三角形.点评:本题考查了正方形的性质,等边三角形的性质和判定,全等三角形的性质和判定等知识点的应用,关键是正确作出辅助线,又是难点,题型较好,但有一定的难度,对学生提出了较高的要求.2.(10分)已知:如图,在四边形中,,M N分别是、的中点,、的延长线交于E、F.求证:F.三角形中位线定理。

(完整版)初二数学八年级各种经典难题例题(含答案)非常经典

(完整版)初二数学八年级各种经典难题例题(含答案)非常经典

1 已知一个等腰三角形两内角的度数之比为1: 4 ,则这个等腰三角形顶角的度数为( )A . 20B .120C . 20 或120D . 361.一个凸多边形的每一个内角都等于 150°,则这个凸多边形所有对角线的条数总共有( )A .42 条B .54 条C .66 条D .78 条3、若直线 y = k x +1 与 y = k x - 4 的交点在 x 轴上,那么 k 1 等于() 1 2 2A .4 B. - 4 C. 1 41 1 D. - 1 4 (竞赛)1 正实数 x , y 满足 xy = 1,那么 x 4 + 4 y 4的最小值为:( ) 15(A) (B) (C)1 (D) 2 8(竞赛)在△ABC 中,若∠A >∠B ,则边长 a 与 c 的大小关系是()A 、a >cB 、c >aC 、a >1/2cD 、c >1/2a16. 如图,直线 y=kx+6 与 x 轴 y 轴分别交于点 E ,F.点 E的坐标为(-8,0),点 A 的坐标为(-6,0).(1)求 k 的值;(2) 若点 P(x ,y)是第二象限内的直线上的一个动点,当点 P 运动过程中,试写出△OPA 的面积 S 与 x 的函数关系式,并写出自变量 x 的取值范围;27(3) 探究:当 P 运动到什么位置时,△OPA 的面积为 ,并说明理由.8 2k⎝ ⎭ 6、已知,如图,△ABC 中,∠BAC=90°,AB=AC,D 为 AC 上一点,且∠BDC=124°,延长 BA 到点 E ,使 AE=AD,BD 的延长线交 CE 于点 F ,求∠E 的度数。

7.正方形 ABCD 的边长为 4,将此正方形置于平面直角坐标系中,使 AB 边落在 X 轴的正半轴上,且 A 点的坐标是(1,0)。

4 8 ①直线 y=3x-3经过点 C ,且与 x 轴交与点 E ,求四边形 AECD 的面积;②若直线l 经过点 E 且将正方形 ABCD 分成面积相等的两部分求直线l 的解析式, ③若直线l 经过点 F ⎛- 3 .0⎫ 且与直线 y=3x 平行,将②中直线l 沿着 y 轴向上平移 2 个单位1 2 ⎪ 3交 x 轴于点 M ,交直线l 1 于点 N ,求∆NMF 的面积.(竞赛奥数)如图,在△ABC 中,已知∠C=60°,AC>BC,又△ABC′、△BCA′、△CAB′都是△ABC 形外的等边三角形,而点D 在AC 上,且BC=DC(1)证明:△C′BD≌△B′DC;(2)证明:△AC′D≌△DB′A;3x + 4 与x 轴相交于点A,与直线y = 3x 相交于点P.9.已知如图,直线y =-3①求点P 的坐标.②请判断∆OPA 的形状并说明理由.③动点E 从原点O 出发,以每秒1 个单位的速度沿着O→P→A 的路线向点A 匀速运动(E 不与点O、A 重合),过点E 分别作EF⊥x 轴于F,EB⊥y 轴于B.设运动t 秒时,矩形EBOF 与△OPA 重叠部分的面积为S.求:S 与t 之间的函数关系式.yPEBO F A x16多边形内角和公式等于(n -2)×180根据题意即(n -2)×180=150n,求得n=12,多边形的对角线的条数公式等于 n(n-3)/2 带入 n=12,则这个多边形所有对角线的条数共有 54 条因为两直线交点在x 轴上,则k1 和k2 必然不为0,且交点处x=-1/k1=4/k2,所以k1:k2=-1:41/x^4+1/4y^4=(y^4+x^4)/x^4y^4因为xy=1所以x^4y^4=1所以原式=y^4+x^4因为(x^2-y^2)^2>0且(x^2-y^2)^2=y^4+x^4-x^2y^2 大于或等于0所以y^4+x^4 大于或等于x^2y^2 即1所以 y^4+x^4 的最小值为 1竞赛解:在△ABC 中,∵∠A>∠B,∴a>b,∵a+b>c,∴2a>a+b>c,∴a>12c.故选C.1、y=kx+6 过点E(-8,0)则-8K+6=0K=3/42、因点E(-8,0)则OE=8直线解析式Y=3X/4+6当X=0 时,Y=6,则点F(0,6)因点A(0,6),则A、F 重合OA=6设点P(X,Y)则点P 对于Y 轴的高为|X|当P 在第二象限时,|X|=-XS=OA×|X|/2=-6X/2=-3X3、S=3|X|当S=278 时278=±3XX1=278/3,X2=-278/3 Y1=3X1/4+6=3/4×278/3+6=151/2 Y2=3X2/4+6=-3/4×278/3+6=-127/2点 P1(278/3,151/2),P2(-278/3,-127/2)6解:在△ABD 和△ACE 中,∵AB=AC,∠DAB=∠CAE=90°AD=AE,∴△ABD≌△ACE(SAS),∴∠E=∠ADB.∵∠ADB=180°-∠BDC=180°-124°=56°,∴∠E=56°.7(1)由题意知边长已经告诉,易求四边形的面积;(2)由第一问求出E 点的坐标,设出F 点,根据直线l 经过点E 且将正方形ABCD 分成面积相等的两部分,其实是两个直角梯形,根据梯形面积公式,可求出F 点坐标,从而解出直线l 的解析式.解:(1)由已知条件正方形ABCD 的边长是4,∴四边形ABCD 的面积为:4×4=16;(2)由第一问知直线y=4/3x-8/3 与x 轴交于点E,∴E(2,0),设F(m,4),直线l 经过点E 且将正方形ABCD 分成面积相等的两部分,由图知是两个直角梯形,∴S 梯形AEFD=S 梯形EBCF= 1/2(DF+AE)•AE= 1/2(FC+EB)∴m=4,∵F(4,4),E(2,0),∴直线 l 的解析式为:y=2x-4竞赛奥数(1) 先证△ABC≌△C1BD:∵AB=C1B, ∠ABC=∠C1BD (因为都是60°+∠ABD), BD=BC。

初二数学经典难题(带答案及解析)

初二数学经典难题(带答案及解析)

. .初二数学经典难题一、解答题(共10小题,满分100分)1.(10分)已知:如图,P是正方形ABCD点,∠PAD=∠PDA=15°.求证:△PBC是正三角形.(初二)2.(10分)已知:如图,在四边形ABCD中,AD=BC,M、N分别是AB、CD的中点,AD、BC的延长线交MN于E、F.求证:∠DEN=∠F.3.(10分)如图,分别以△ABC的边AC、BC为一边,在△ABC外作正方形ACDE和CBFG,点P是EF的中点,求证:点P到AB的距离是AB的一半.4.(10分)设P是平行四边形ABCD部的一点,且∠PBA=∠PDA.求证:∠PAB=∠PCB.5.(10分)P为正方形ABCD的一点,并且PA=a,PB=2a,PC=3a,求正方形的边长.6.(10分)一个圆柱形容器的容积为V立方米,开始用一根小水管向容器注水,水面高度达到容器高度一半后,改用一根口径为小水管2倍的大水管注水.向容器中注满水的全过程共用时间t分.求两根水管各自注水的速度.7.(10分)(2009•)如图1,已知正比例函数和反比例函数的图象都经过点M(﹣2,﹣1),且P(﹣1,﹣2)为双曲线上的一点,Q为坐标平面上一动点,PA垂直于x轴,QB垂直于y轴,垂足分别是A、B.(1)写出正比例函数和反比例函数的关系式;(2)当点Q在直线MO上运动时,直线MO上是否存在这样的点Q,使得△OBQ与△OAP面积相等?如果存在,请求出点的坐标,如果不存在,请说明理由;(3)如图2,当点Q在第一象限中的双曲线上运动时,作以OP、OQ为邻边的平行四边形OPCQ,求平行四边形OPCQ周长的最小值.8.(10分)(2008•)如图,P是边长为1的正方形ABCD对角线AC上一动点(P与A、C不重合),点E在线段BC 上,且PE=PB.(1)求证:①PE=PD;②PE⊥PD;(2)设AP=x,△PBE的面积为y.①求出y关于x的函数关系式,并写出x的取值围;②当x取何值时,y取得最大值,并求出这个最大值.9.(10分)(2010•)如图,直线y=k1x+b与反比例函数(x>0)的图象交于A(1,6),B(a,3)两点.(1)求k1、k2的值.(2)直接写出时x的取值围;(3)如图,等腰梯形OBCD中,BC∥OD,OB=CD,OD边在x轴上,过点C作CE⊥OD于点E,CE和反比例函数的图象交于点P,当梯形OBCD的面积为12时,请判断PC和PE的大小关系,并说明理由.10.(10分)(2007•)如图,已知直线y=x与双曲线交于A,B两点,且点A的横坐标为4.(1)求k的值;(2)若双曲线上一点C的纵坐标为8,求△AOC的面积;(3)过原点O的另一条直线l交双曲线于P,Q两点(P点在第一象限),若由点A,B,P,Q为顶点组成的四边形面积为24,求点P的坐标.初二数学经典难题参考答案与试题解析一、解答题(共10小题,满分100分)1.(10分)已知:如图,P是正方形ABCD点,∠PAD=∠PDA=15°.求证:△PBC是正三角形.(初二)考点:正方形的性质;全等三角形的判定与性质;等边三角形的性质;等边三角形的判定。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

经典难题(一)
1、已知:如图,O是半圆的圆心,C、E是圆上的两点,CD⊥AB,EF⊥AB,EG⊥CO.
求证:CD=GF.(初二)
2、已知:如图,P是正方形ABCD内点,∠PAD=∠PDA=15度
求证:△PBC是正三角形.(初二)
3、如图,已知四边形ABCD、A1B1C1D1都是正方形,A2、B2、C2、D2分别是AA1、BB1、CC1、DD1的中点.
求证:四边形A2B2C2D2是正方形.(初二)
4、已知:如图,在四边形ABCD中,AD=BC,M、N分别是AB、CD的中点,AD、BC的延长线交MN于E、F.
求证:∠DEN=∠F.
经典难题(二)
1、已知:△ABC中,H为垂心(各边高线的交点),O为外心,且OM⊥BC 于M.
(1)求证:AH=2OM;
(2)若∠BAC=600,求证:AH=AO.(初二)
2、设MN是圆O外一直线,过O作OA⊥MN于A,自A引圆的两条直线,交圆于B、C及D、E,直线EB及CD分别交MN于P、Q.
求证:AP=AQ.(初二)
3、如果上题把直线MN由圆外平移至圆内,则由此可得以下命题:
设MN是圆O的弦,过MN的中点A任作两弦BC、DE,设CD、EB分别交M N于P、Q.
求证:AP=AQ.(初二)
4、如图,分别以△ABC的AC和BC为一边,在△ABC的外侧作正方形ACDE 和正方形CBFG,点P是EF的中点.
求证:点P到边AB的距离等于AB的一半.(初二)
经典难题(三)
1、如图,四边形ABCD为正方形,DE∥AC,AE=AC,AE与CD相交于F.
求证:CE=CF.(初二)
2、如图,四边形ABCD为正方形,DE∥AC,且CE=CA,直线EC交DA延长线于F.
求证:AE=AF.(初二)
3、设P是正方形ABCD一边BC上的任一点,PF⊥AP,CF平分∠DCE.
求证:PA=PF.(初二)
4、如图,PC切圆O于C,AC为圆的直径,PEF为圆的割线,AE、AF与直线PO相交于B、D.求证:AB=DC,BC=AD.(初三)
经典难题(四)
1、已知:△ABC是正三角形,P是三角形内一点,PA=3,PB=4,PC=5.求:∠APB的度数.(初二)
2、设P是平行四边形ABCD内部的一点,且∠PBA=∠PDA.
求证:∠PAB=∠PCB.(初二)
3、设ABCD为圆内接凸四边形,求证:AB·CD+AD·BC=AC·BD.
(初三)
4、平行四边形ABCD中,设E、F分别是BC、AB上的一点,AE与CF相交于P,且
AE=CF.求证:∠DPA=∠DPC.(初二)
经典难题(五)
1、设P是边长为1的正△ABC内任一点,L=PA+PB+PC,求证:
√3≤L<2.
2、已知:P是边长为1的正方形ABCD内的一点,求PA+PB+PC的最小值.
3、P为正方形ABCD内的一点,并且PA=a,PB=2a,PC=3a,求正方形的边长.
4、如图,△ABC中,∠ABC=∠ACB=80度,D、E分别是AB、AC上的点,∠DCA=30度,∠EBA=20度,求∠BED的度数.
答案
经典难题(一)
4.如下图连接AC并取其中点Q,连接QN和QM,所以可得∠QMF=∠F,∠Q NM=∠DEN和∠QMN=∠QNM,从而得出∠DEN=∠F。

经典难题(二)
1.(1)延长AD到F连BF,做OG⊥AF,
又∠F=∠ACB=∠BHD,
可得BH=BF,从而可得HD=DF,
又AH=GF+HG=GH+HD+DF+HG=2(GH+HD)=2OM
(2)连接OB,OC,既得∠BOC=1200,
从而可得∠BOM=600,
所以可得OB=2OM=AH=AO, 得证。

经典难题(三)
4.
证明:作CQ⊥PD于Q,连接EO,EQ,EC,OF,QF,CF,所以PC2=PQ*PO(射影定理),
又PC2=PE*PF,
所以EFOQ四点共圆,
∠EQF=∠EOF=2∠BAD,
又∠PQE=∠OFE=∠OEF=∠OQF,
而CQ⊥PD,所以∠EQC=∠FQC,因为∠AEC=∠PQC=90°,故B、E、C、Q四点共圆,
所以∠EBC=∠EQC=1/2∠EQF=1/2∠EQF=∠BAD.
∴CB∥AD,
所以BO=DO,即四边形ABCD是平行四边形,
∴AB=DC,BC=AD.
经典难题(四)
2.作过P点平行于AD的直线,并选一点E,使AE∥DC,BE∥PC. 可以得出∠ABP=∠ADP=∠AEP,可得:
AEBP共圆(一边所对两角相等)。

可得∠BAP=∠BEP=∠BCP,得证。

经典难题(五)
2.顺时针旋转△BPC 60度,可得△PBE为等边三角形。

既得PA+PB+PC=AP+PE+EF要使最小只要AP,PE,EF在一条直线上,即如下图:可得最小PA+PB+PC=AF。

3.顺时针旋转△ABP 90度,可得如下图:。

相关文档
最新文档