人教版七年级数学上册第一单元测试题及答案资料
人教版七年级上册数学 第一章 有理数 单元测试卷(含答案解析)
人教版七年级上册数学第一章有理数单元测试卷一、单选题(共10小题,每小题3分,共30分)1.自2021年1月1日起,全市启动九类重点人群新冠疫苗接种工作.昌平设置46个疫苗接种点位,共配备医务人员1200多名.截至3月28日18时,昌平区累计新冠疫苗接种共完成1015000人次,整体接种秩序井然.将1015000用科学记数法表示应为()A.10.15×106B.1.015×106C.0.1015×107D.1.015×1072.12的相反数是()A.2B.﹣2C.12D.﹣123.下列四个数中,最小的数是()A.−|−3|B.(−3)2C.3D.04.点A,B在数轴上的位置如图所示,其对应的实数分别是a,b,下列结论错误的是()A.|b|<2<|a|B.1﹣2a>1﹣2bC.﹣a<b<2D.a<﹣2<﹣b5.下列说法中错误的是()A.正分数、负分数统称分数B.零是整数,但不是分数C.正整数、负整数统称整数D.零既不是正数,也不是负数6.我们常用的数是十进制数,而计算机程序处理数据使用的只有数码0和1的二进制数,这二者可以相互换算,如将二进制数1011换算成十进制数应为:1×23+0×22+1×21+1×20=11.按此方式,则将十进制数7换算成二进制数应为()A.101B.110C.111D.11017.为求1+2+22+23+…+22008的值,可令S=1+2+22+23+…+22008,则2S=2+22+23+24+…+22009,因此2S-S=22009-1,所以1+2+22+23+…+22008=22009-1.仿照以上推理计算出1+3+32+33+…+32018的值是()A.32019-1B.32018-1C.32019−12D.32018−128.有理数a,b,c在数轴上对应的点的位置如图所示,则下列各式正确的个数有()①abc<0;①a−b+c<0;①|a|a+|b|b+|c|c=3;①|a−b|−|b+c|+|a−c|=2a.A.4个B.3个C.2个D.1个9.如图,数轴上每个刻度为1个单位长,则A,B 分别对应数a,b,且b-2a=7,那么数轴上原点的位置在()A.A 点B.B 点C.C 点D.D 点10.若abc≠0,则|a|a+|b|b+c|c|的值为()A.±3或±1B.±3或0或±1C.±3或0D.0或±1二、填空题(共5小题,每小题3分,共15分)11.据报道,某节日期间某市地铁二号线载客量达到17340000人次,再创历史新高.将数据17340000用科学记数法表示为.12.“ ★”定义新运算:对于任意有理数a、b,都有,例如: 7★4=42−7−1=8,那么(−5)★(−3)=.13.如图,小强有5张写着不同的数字的卡片:从中取出2张卡片,最大的乘积是,最小的商是.14.三个有理数a、b、c满足abc>0,则|a|a+|b|b+|c|c的值为.。
人教版七年级数学上册单元测试题全套含答案
输入 x ―→ ×(-3) ―→ -2 ―→ 输出 16.太阳的半径为 696000 千米,用科学记数法表示为________千米;把 210400 精确到万位是________. 17.已知(a-3)2 与|b-1|互为相反数,则式子 a2+b2 的值为________. 18.填在下面各正方形中的四个数之间都有一定的规律,据此规律得出 a+b+c=________.
-1 A.3 个 B.4 个 C.5 个 D.6 个 7.将一把刻度尺按如图所示放在数轴上(数轴的单位长度是 1cm),刻度尺上的“0cm”和“8cm”分别对应 数轴上的-3.6 和 x,则 x 的值为( )
A.4.2 B.4.3 C.4.4 D.4.5 8.有理数 a,b 在数轴上的位置如图所示,下列各式成立的是( )
A.b>0 B.|a|>-b C.a+b>0 D.ab<0 9.若|a|=5,b=-3,则 a-b 的值为( ) A.2 或 8 B.-2 或 8 C.2 或-8 D.-2 或-8
10.观察下列算式:21=2,22=4,23=8,24=16,25=32,26=64,27=128,28=256,…用你所发
5
3
___________________.
13.绝对值大于 4 而小于 7 的所有整数之和是________.
14.点 A,B 表示数轴上互为相反数的两个数,且点 A 向左平移 8 个单位到达点 B,则这两点所表示
的数分别是________和________.
15.如图是一个简单的数值运算程序.当输入 x 的值为-1 时,则输出的数值为________.
现的规律得出 22016 的末位数字是( )
A.2 B.4 C.6 D.8
二、填空题(每小题 3 分,共 24 分)
新人教版七年级数学上册第一单元测试卷(含答案)
新人教版七年级数学上册单元测试卷第一单元:有理数一、选择题(本题共10小题,每小题3分,共30分)1.如果水库的水位高于正常水位2m时,记作+2m,那么低于正常水位3m时,应记作()A.+3mB.-3mC.+13D.-132. 室内温度是150℃,室外温度是-30℃,则室外温度比室内温度低( )A .120℃ B.180℃ C.-120℃ D.-180℃3. 一个数和它的倒数相等,则这个数是()A.1B.-1C.±1 D.±1和04. 若|a|=5,b=-3,则a-b的值是()A.2或8B.-2或8C.2或-8D.-2或-85. 下列四组有理数的大小比较正确的是()A.−12>−13B.-|-1|>-|+1|C.12<13D.|−12|>|−13|6. 若三个有理数的和为0,则下列结论正确的是()A.这三个数都是0B.最少有两个数是负数C.最多有两个正数D.这三个数是互为相反数7. 下列各式中正确的是()A.a2=.(−a)2B. a3=.(−a)3C.−a2=.|−a2|D. a3=.|a|38. 若x的相反数是3,│y│=5,则x+y的值为()A.-8B.2C.-8或2D.8或-29. 两个数的差是负数,则这两个数一定是( )A.被减数是正数,减数是负数B.被减数是负数,减数是正数C.被减数是负数,减数也是负数D.被减数比减数小10. 点A在数轴上表示+2,从点A沿数轴向左平移3个单位到点B,点B表示的数是( )A. 3B.-1C.5D.-1或3二、填空题(本题共6小题,每小题3分,共18分)11. 甲潜水员所在高度为-45米,乙潜水员在甲的上方15米处,则乙潜水员的所在的高度是__________.12. 大肠杆菌每过20分便由1个分裂成2个,经过3小时后这种大肠杆菌由1个分裂成__________个。
13. 在数轴上,与表示数-1的点的距离是5的点表示的数是。
人教版七年级数学上册 第一章 有理数 单元测试 【含答案】
人教版七年级数学上册 第一章 有理数 单元测试一、选择题(每题3分,共30分)1. 如图,表示正确的数轴的是( )A. B.C.D.2. -1的相反数是( )A . 1B . -1C . 0D . -123. 下列四个数中,最小的数是( )A . -B . 012C . -1 D . 14. 据统计,近十年中国累积节能万吨标准煤,这个数用科学记数法表示为( )A . 0.157×107B . 1.57×106C . 1.57×107D . 1.57×1085. 下列说法不正确的是( )A . 最大的负整数为-1B . 最小的正整数为1C . 最小的整数是0D . 相反数等于它本身的数是06. 某旅游景点11月5日的最低气温为-2 ℃,最高气温为8 ℃,那么该景点这天的温差是( )A . 4 ℃ B . 6 ℃C . 8 ℃ D . 10 ℃7. 某校小卖铺一周的盈亏情况如下表所示(每天固定成本200元,其中“+”表示盈利,“-”表示亏损):星期一二三四五盈亏+220-30+215-25+225则这个周共盈利( )A .715元 B .630元C .635元 D .605元8. 如果一对有理数a ,b 使等式a -b =a ·b +1成立,那么这对有理数a ,b 叫做“共生有理数对”,记为(a ,b ).根据上述定义,下列四对有理数中不是“共生有理数对”的是( )A .3,B .2,1213C .5, D .-2,-23139. 有理数m ,n 在数轴上的对应点的位置如图所示,则正确的结论是( )A .m +n <0B .m -n >0C .mn >0 D.eq <010. 细胞分裂按照一分为二,二分为四,四分为八……如此规律进行.例如:1个细胞分裂10次可以得到细胞的个数为210=1 024个,估计1个细胞分裂40次所得细胞的个数为( )A .七位数B .十二位数C .十三位数D .十四位数二、填空题(每题4分,共28分)11.eq 的倒数是________.12. 如果+(b +2)2=0,那么(a +b )2 021的值是________.13. 放学静校,值周班的小明同学负责一条东西走向楼道巡视工作.记向东为正,小明巡视过程如下:+5,-3,-1,+7,-9,+4(单位:米),则小明这次巡视共走了________米.14. 如图是一个计算程序,若输入a 的值为-1,则输出的结果应为________.15. 某高山上的温度从山脚处开始每升高100米,就降低0.6 ℃.若山脚处温度是28 ℃,则山上500米处的温度是______℃.16. 已知=5,=3,则(a +b )(a -b )=________.17. 有一组数据:,,,,,….请你根据此规律,写出第n 个数是________.254781116193235三、解答题(一)(每题6分,共18分)18.计算:(1)-14-××[2-(-3)2];13(2)(--+)÷.345671212419. 把下列各数先在数轴上表示出来,再按照从小到大的顺序用“<”号连接起来:-(+6),0,-(-4),+(-),-.5220. 某地发生特大山洪泥石流灾害,消防总队迅速出动支援灾区.在抢险救灾中,消防官兵的冲锋舟沿东西方向的河流抢救灾民,早晨从A 地出发,晚上到达B 地,约定向东为正方向,当天的航行路程记录如下(单位:千米):+4,-9,+8,-7,+13,-6,+10,-5.(1)B 地在A 地的何处?(2)救灾过程中,最远处离出发点A 有多远?(3)若冲锋舟每千米耗0.5升,油箱里原有油20升,求途中还需补充多少升油.四、解答题(每题8分,共24分)21. 某洗衣粉厂上月生产了30 000袋洗衣粉,每袋标准重量450克,质量检测部门从中抽出了20袋进行检测,超过或不足标准重量的部分分别记为“+”和“-”,记录如下:超过或不足(克)-6-3-20+1+4+5袋数1116524(1)通过计算估计本厂上月生产的洗衣粉平均每袋多少克?(2)厂家规定超过或不足的部分大于5克时,不能出厂销售,若每袋洗衣粉的定价为2.30元,试估计本厂上月生产的洗衣粉销售的总金额为多少元?22. 小明有5张写着不同数的卡片,请你分别按要求抽出卡片,写出符合要求的算式:(1)从中取出2张卡片,使这2张卡片上的数的乘积最大;(2)从中取出2张卡片,使这2张卡片上的数相除的商最小;(3)从中取出2张卡片,使这2张卡片上的数通过有理数的运算后得到的结果最大;(4)从中取出4张卡片,使这4张卡片通过有理数的运算后得到的结果为24(写出一种即可).23. 有规律的一列数:2,4,6,8,10,12,…,它的每一项可用2n(n为正整数)来表示.现在解决另外有规律排列的一列数:1,-2,3,-4,5,-6,7,-8,….(1)它的第100个数是多少?(2)请用n(n为正整数)表示它的第n个数;(3)计算前2 022个数的和.五、解答题(每题10分,共20分)24. 随着手机的普及,微信的兴起,许多人抓住这种机会,做起了“微商”,很多农产品也改变了来的销售模式,实行了网上销售.刚大学华业的夏明把自家的冬枣产品放到网上销售,他原计划每天卖100斤冬枣,但由于种种原因,实际每天的销售量与计划量相比有出入.下表是某周的销售情况(超出的量记为正数,不足的量记为负数.单位:斤,1斤=500克)星期一二三四五六日与计划量的差值+4-3-5+14-8+21-6(1)根据记录的数据可知,前三天卖出________斤;(2)根据记录的数据可知,销售量最多的一天比销售量最少的一天多销售________斤;(3)本周实际销售总量达到了计划销售量吗?(4)若冬枣每斤按8元出售,每斤冬枣的运费平均为3元,那么夏明这一周一共收入多少元?25. 在数轴上依次有A ,B ,C 三点,其中点A ,C 表示的数分别为-2,5,且BC =6AB .(1)在数轴上表示出A ,B ,C 三点;(2)若甲、乙、丙三个动点分别从A 、B 、C 三点同时出发,沿数轴负方向运动,它们的速度分别是,14,2(单位长度/秒),当丙追上甲时,甲乙相距多少个单位长度?12(3)在数轴上是否存在点P ,使P 到A 、B 、C 的距离和等于10?若存在,结合数轴,写出点P 对应的数;若不存在,请说明理由.答案1.D2.A2.A 3.C 4.B 5.C 6.D 7.D 8.D 9.D 10.C11. 12.-1 13.29 14.-512 02215.25 16.16 17.2n3+2n18.解:(1)原式=-1-0.5××[2-9]13=-1-0.5××(-7)13=-1-×(-7)16=-1+76=16(2)原式=(--+)×243456712=-×24-×24+×243456712=-18-20+14=-2419.解:在数轴上表示各数如下:-(+6)<+<-<0<-(-4)20.解:(1)∵4-9+8-7+13-6+10-5=8,∴B 地在A 地的东边8千米(2)∵路程记录中各点离出发点的距离分别为:4千米=5千米;=3千米;=4千米;=9千米;=3千米;=13千米;=8千米.∴最远处离出发点13千米;(3)这一天走的总程为:4++8++13++10+=62(千米),应耗油62×0.5=31(升),故途中还需补充的油量为:31-20=11(升).21.解:(1)450+(-6×1-3×1-2×1+0×6+1×5+4×2+5×4)÷20=450+1.1=451.1(克)答:上月生产的洗衣粉平均每袋451.1克.(2)2.30×=2.30×28 500=65 550(元).答:本厂上月生产的洗衣粉销售的总金额为65 550元.22.解:(1)(-3)×(-5)=15;(2)-5÷3=-;53(3)(-5)4=625;(4)[(-3)-(-5)]×(3×4)=2×12=2423.解:(1)它的第100个数是:-100(2)它的第n 个数是:(-1)n +1n(3)(1-2)+(3-4)+…+(2 021-2 022)=(-1)×2 022÷2=-1 01124.解:(1)4-3-5+300=296(斤)故答案为296.(2)21+8=29(斤)故答案为29.(3)+4-3-5+14-8+21-6=17>0故本周实际销售总量达到了计划销售量.(4)(17+100×7)×(8-3)=717×5=3 585(元)答:小明本周一共收入3 585元.25.解:(1)设B 点表示的数为x ,∵点A ,C 表示的数分别为-2,5,且BC =6AB ,∴5-x =6[x -(-2)],解得:x =-1所以点B 表示的数为-1,(2)7÷=4(秒)4×-1=0答:丙追上甲时,甲乙相距0个单位长度.(3)设P 点表示的数x ,依题意得++=10,结合数轴得x =-,2,83∴P 点表示的数为-或2.83。
人教版数学七年级上册单元测试卷-第一单元 有理数(含答案)
保密★启用前人教版数学七年级上册单元测试卷第一单元 有理数一、单选题1.如果规定收入为正,那么支出为负,收入2元记作2+,支出5元记作( ). A .5元B .5-元C .3-元D .7元2.2022的相反数是( ) A .12022B .12022-C .−2022D .20223.下列计算结果为0的是( ) A .2222--B .223(3)-+-C .22(2)2-+D .2333--⨯4.数轴上,把表示2的点向左平移3个单位长度得到的点所表示的数是( ). A .-5B .-1C .1D .55.华为最新款手机芯片“麒麟990”是一种微型处理器,每秒可进行100亿次运算,它工作2022秒可进行的运算次数用科学记数法表示为( ) A .140.202210⨯B .1220.2210⨯C .132.02210⨯D .142.02210⨯6.下面算式与11152234-+的值相等的是( )A .111324234⎛⎫⎛⎫--+- ⎪ ⎪⎝⎭⎝⎭B .11133234⎛⎫--+ ⎪⎝⎭C .111227234⎛⎫+-+ ⎪⎝⎭D .11143234⎛⎫--+ ⎪⎝⎭7.观察下列三组数的运算:3(2)8-=-,328-=-;3(3)27-=-,3327-=-;3(4)64-=-,3446-=-.联系这些具体数的乘方,可以发现规律.下列用字母a 表示的式子:①当0a <时,33()a a =-;①当0a >时,33()a a -=-.其中表示的规律正确的是( ) A .①B .①C .①、①都正确D .①、①都不正确8.数轴上,点A 对应的数是6-,点B 对应的数是2-,点O 对应的数是0.动点P 、Q 从A 、B 同时出发,分别以每秒3个单位和每秒1个单位的速度向右运动.在运动过程中,下列数量关系一定成立的是( )A .2PQ OQ =B .2OP PQ =C .32QB PQ =D .PB PQ =9.如图,正方形的周长为8个单位,在该正方形的4个顶点处分别标上0,2,4,6,先让正方形上表示数字6的点与数轴上表﹣3的点重合,再将数轴按顺时针方向环绕在该正方形上,则数轴上表示2017的点与正方形上的数字对应的是( )A .0B .2C .4D .610.如图,数轴上4个点表示的数分别为a 、b 、c 、d .若|a ﹣d |=10,|a ﹣b |=6,|b ﹣d |=2|b ﹣c |,则|c ﹣d |=( )A .1B .1.5C .1.5D .2二、填空题11.用科学记数法表示的数的原数5.001×106=___.12.已知:a 、b 互为相反数,c 、d 互为倒数,2m =,则()()220212020a b m cd ++-=______.13.东京与北京的时差为1h +,伯伯在北京乘坐早晨9:00的航班飞行约3h 到达东京,那么李伯伯到达东京的时间是____.(注:正数表示同一时刻比北京时间早的时数) 14.大家知道,550=-,它在数轴上的意义是:表示5的点与原点(即表示0的点)之间的距离.又如式子63-,它在数轴上的意义是:表示6的点与表示3的点之间的距离.类似地,式子()5a --在数轴上的意义是______. 15.有理数,,a b c 在数轴上对应点位置如图所示,用“>”或“<”填空:(1)|a |______|b |; (2)a +b +c ______0:(3)a -b +c ______0; (4)a +c ______b ; (5)c -b ______a . 16.下列说法:①若a ,b 互为相反数,则ab=﹣1;①如果|a +b |=|a |+|b |,则ab ≥0;①若x 表示一个有理数,则|x +2|+|x +5|+|x ﹣2|的最小值为7; ①若abc <0,a +b +c >0,则a bc ab abc a bc ab abc+++的值为﹣2.其中一定正确的结论是____(只填序号). 三、解答题 17.计算:(1)2(7)18(2)-⨯--÷-; (2)212316()12()234-÷--⨯-.18.画出数轴,用数轴上的点表示下列各数,并用“>”将它们连接起来: 33,2,1.5,,0,0.54---.19.比较下列各数的大小,并用“<”号连接起来:2.5-,12,3,3--,(2)--,0.20.如图所示,在数轴上点A,B,C表示得数为﹣2,0,6,点A与点B之间的距离表示为AB,点B与点C之间的距离表示为BC,点A与点C之间的距离表示为AC.(1)求AB、AC的长;(2)点A,B,C开始在数轴上运动,若点A以每秒2个单位长度的速度向左运动,同时,点B和点C分别以每秒3个单位长度和4个单位长度的速度向右运动.请问:BC ﹣AB的值是否随着运动时间t的变化而变化?若不变,请求其值;若变化,请说明理由并判断是否有最值,若有求其最值.21.入冬以来,某品牌的羽绒服统计了在西乡市场某一周的销售情况,以每天100件为标准,超过的件数记作正数,不足的件数记作负数,记录如下:8,12,-9,6,-11,10,-2.(1)求销量最多的一天比销量最少的一天多销售______件;(2)该品牌羽绒服这一周的销售总量是多少件?若每件羽绒服的利润为130元,则这一周销售该品牌羽绒服的总利润为多少元?22.对于平面内的两点M、N,若直线MN上存在点P,使得MP=1NP成立,则称点P为点M、N的“和谐点”,但点P不是点N、M的“和谐点”.(1)如图1,点A、B在直线l上,点C、D是线段AB的三等分点,则是点A、B的“和谐点”(填“点C或“点D”);(2)如图2,已知点E、F、G在数轴上,点E表示数-2,点F表示数1,且点F是点E、G的“和谐点”,求点G表示的数;(3)如图3,数轴上的点P表示数5,点M从原点O出发,以每秒3个单位的速度向左运动,点N从点P出发,以每秒10个单位的速度向左运动,点M、N同时出发.在M、N、P三点中,若点M是另两个点的“和谐点”,则OM= .23.计算:已知|m|=1,|n|=4.(1)当mn<0时,求m+n的值;(2)求m﹣n的最大值.24.阅读下面的文字回答后面的问题:求231005555+++⋯+的值解:令231005555S=+++⋯+①将等式两边同时乘以5到:23410155555S=+++⋯+①①-①得:101455S=-①101554S-=即101231005555554-+++⋯+=问题:求231002222+++⋯+的值;参考答案:1.B【解析】【分析】结合题意,根据正负数的性质分析,即可得到答案.【详解】根据题意得:支出5元记作5-元故选:B.【点睛】本题考查了正数和负数的知识;解题的关键是熟练掌握正负数的性质,从而完成求解.2.C【解析】【分析】根据相反数的定义求解即可,只有符号不同的两个数互为相反数.【详解】解:2022的相反数是−2022.故选:C.【点睛】本题考查了相反数的定义,掌握相反数的定义是解题的关键.3.B【解析】【分析】根据有理数的乘方对各选项分别进行计算,然后利用排除法求解即可.【详解】A. 22--=−4−4=−8,故本选项错误;22B. 22-+-=−9+9=0,故本选项正确;3(3)C. 22-+=4+4=8,故本选项错误;(2)2D. 2333--⨯=−9−9=−18,故本选项错误.故选B.【点睛】此题考查有理数的乘方,解题关键在于掌握运算法则4.B【解析】【分析】根据数轴上点的坐标特点及平移的性质解答即可.【详解】解:根据题意:数轴上2所对应的点为A,将A点左移3个单位长度,得到点的坐标为2-3=-1,故选:B.【点睛】本题考查了数轴上的点与实数对应关系及图形平移的性质等有关知识.5.C【解析】【分析】科学记数法的表示形式为10na⨯的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的值与小数点移动的位数相同,题中:1亿810=.【详解】解:100亿1010=,1013102022 2.02210⨯=⨯,故选:C.【点睛】本题考查科学记数法的表示方法,关键要正确确定a的值以及n的值.6.C【解析】【分析】直接计算每个算式,对比答案即可.【详解】解:1111115 52527 23423412-+=+-++=;A 、1111111117324324324123423423412⎛⎫⎛⎫--+-=++-=+++--= ⎪ ⎪⎝⎭⎝⎭;B 、1111111111333333723423423412⎛⎫--+=++=++++= ⎪⎝⎭;C 、1111115227227723423412⎛⎫+-+=+--++= ⎪⎝⎭;D 、11111114343823423412⎛⎫--+=++++= ⎪⎝⎭,故选:C 【点睛】本题考查了有理数的加减运算,熟记有理数的加减混合运算的法则是解题的关键. 7.B 【解析】 【分析】根据三组数的运算的规律逐个判断即可得. 【详解】解:由三组数的运算得:[]333222))8((-=-==----, []3333(3)(3)27-=--=--=-,[]3334(4)(4)64-=--=--=-,归纳类推得:当0a <时,33()a a =--,式子①错误; 由三组数的运算得:3328(2)-=-=-, 33327(3)--=-=, 33464(4)--=-=,归纳类推得:当0a >时,33()a a -=-,式子①正确; 故选:B . 【点睛】本题考查了有理数乘方的应用,正确归纳类推出一般规律是解题关键. 8.A 【解析】 【分析】设运动时间为t秒,根据题意可知AP=3t,BQ=t,AB=2,然后分类讨论:①当动点P、Q在点O左侧运动时,①当动点P、Q运动到点O右侧时,利用各线段之间的和、差关系即可解答.【详解】解:设运动时间为t秒,由题意可知: AP=3t,BQ=t,AB=|-6-(-2)|=4,BO=|-2-0|=2,①当动点P、Q在点O左侧运动时,PQ=AB-AP+BQ=4-3t+t=2(2-t),①OQ= BO- BQ=2-t,①PQ= 2OQ ;①当动点P、Q运动到点O右侧时,PQ=AP-AB-BQ=3t-4-t=2(t-2),①OQ=BQ- BO=t-2,①PQ= 2OQ,综上所述,在运动过程中,线段PQ的长度始终是线段OQ的长的2倍,即PQ= 2OQ一定成立.故选: A.【点睛】本题考查了数轴上的动点问题及数轴上两点间的距离,解题时注意分类讨论的运用.9.B【解析】【分析】表示2017的点在﹣1的右侧,从点﹣1到2017共2018个单位长度,根据2018÷8=252……2,是252圈余2个单位长度,所以对应的数字就是2.【详解】解:因为正方形的周长为8个单位长度,所以正方形的边长为2个单位长度.表示2017的点与表示﹣1的点的距离等于2017﹣(﹣1)=2018个单位长度,因为2018÷8=252……2,所以252圈余2个单位长度,所以对应的数字是2.故选:B.【点睛】此题考查了数轴,解题的关键是找出正方形的周长与数轴上的数字的对应关系.10.D【解析】【分析】根据|a−d|=10,|a−b|=6得出b和d之间的距离,从而求出b和c之间的距离,然后假设a 表示的数为0,分别求出b,c,d表示的数,即可得出答案.【详解】解:①|a−d|=10,①a和d之间的距离为10,假设a表示的数为0,则d表示的数为10,①|a−b|=6,①a和b之间的距离为6,①b表示的数为6,①|b−d|=4,①|b−c|=2,①c表示的数为8,①|c−d|=|8−10|=2,故选:D.【点睛】本题主要考查数轴上两点间的距离、绝对值的意义,关键是要能恰当的设出a、b、c、d表示的数.11.5001000【解析】【分析】把5.001×106表示成原数的形式,就是把5.001的小数点向右移动6位即可得到.【详解】解:5.001×106=5001000,故答案为:5001000.【点睛】本题考查了科学记数法,把科学记数法表示的数还原成原数,当n>0时,n是几,小数点就向右移几位.12.1或-3##-3或1【解析】【分析】根据a、b互为相反数,c、d互为倒数,m的绝对值为2,可以得到a+b=0,cd=1,m=±2,然后代入所求式子计算即可.【详解】解:∵a、b互为相反数,c、d互为倒数,m的绝对值为2,∴a+b=0,cd=1,m=±2,当m=2时,()()2202120112020a bm cd++-=+-=;当m=﹣2时,()()220212013 2020a bm cd++-=-+-=-;故答案为:1或-3.【点睛】本题考查有理数的混合运算,解答本题的关键是求出a+b=0,cd=1,m=±2.13.13时【解析】【分析】根据题意,9点先加上3个小时,再加上时差的1个小时,得到达到东京的时间.【详解】由题意得93113++=,∴李伯伯到达东京是下午13时.故答案是:13时.【点睛】本题考查有理数加法的实际应用,解题的关键是掌握有理数加法运算法则.14.表示a的点与表示-5的点之间的距离【解析】【分析】利用绝对值的意义即可求解.【详解】=-,它在数轴上的意义是:表示5的点与原点(即表示0的点)之间的距解:因为550-,它在数轴上的意义是:表示6的点与表示3的点之间的距离,离,式子63a--在数轴上的意义是表示a的点与表示-5的点之间的距离.所以式子()5【点睛】本题考查了绝对值,掌握绝对值的意义是解题的关键.15.<<>>>【解析】【分析】首先根据数轴可得b<a<0<c,然后再结合绝对值的性质和有理数的加减法法法则进行计算即可.【详解】解:(1)①根据数轴可得b<a<0<c,①|a|<|b|故答案为:<;(2)①a<0<c,|a|>|c|,①a+c<0,①a+b+c<0;故答案为:<;(3)①a-b>0,①a-b+c>0;故答案为:>;(4)①a >b ,①a +c >b ;故答案为:>;(5)①c >b ,①c -b >0,①c -b >a .故答案为:>;【点睛】此题主要考查了有理数的比较大小,关键是掌握绝对值的定义和有理数的加减法法法则. 16.①①##①①【解析】【分析】根据相反数和绝对值的意义讨论即可得出答案.【详解】①若a ,b 互为相反数,则0a b +=,不能得出1a b=-,故①错误; ①当0,0a b ≥≥或0,0a b <<时,a b a b +=+成立,当0,0a b ><或0,0a b <>时,a b a b a b +=-≠+, ∴a b a b +=+成立,则0,0a b ≥≥或0,0a b <<,即0ab ≥,故①正确; ①252x x x ++++-表示x 到数2-、5-、2三个点的距离之和,所以2x =-时,252x x x ++++-取得最小值,最小值为2(5)7--=,故①正确;①当0,0,0c a b <>>且0a b c ++>时,111102abcababca bc ab abc a bc ab abc a bc ab abc--+++=+++=-+-=≠-,故①错误. 故答案为:①①.【点睛】本题考查相反数与绝对值,掌握绝对值的意义是解题的关键.17.(1)23(2)-63【解析】【分析】直接利用有理数混合运算法则计算即可.(1)解:2(7)18(2)14(9)14923-⨯--÷-=--=+=.(2) 解:21231116()12()1612()64163234412-÷--⨯-=-÷-⨯-=-+=-. 【点睛】本题考查有理数的混合运算,注意先算乘方,再算乘除,后算加减,有括号要先算括号里面的;可以结合题目特点,灵活运用结合律、分配律、交换律,从而起到简化运算的效果.18.作图见解析;33 1.500.524>>>->->-. 【解析】【分析】先在数轴上表示出各个数,再根据数轴上的点表示的数的大小规律即可得到结果.【详解】解:在数轴上表示出各个数如图所示:则可得3>1.5>0>−0.5>34->−2【点睛】本题考查了利用数轴比较有理数的大小,解题的关键是熟练掌握数轴上的点表示的数,右边的数始终大于左边的数.19.()13 2.50232-<-<<<--< 【解析】【分析】先把每个数进行化简,再根据有理数的大小排列起来即可.解:33--=-,(2)2--=, ①13 2.50232-<-<<<< , ①13 2.50(2)32--<-<<<--<.【点睛】本题考查比较数的大小,准确的把每个数进行化简是解题的关键.20.(1)2,8AB AC ==(2)变化,当0=t 时取得最大值4【解析】【分析】(1)根据点A ,B ,C 表示的数,即可求出AB , AC 的长;(2)根据题意分别求得点A 表示的数为-2-2t ,点B 表示的数为3t ,点C 表示的数为6+4t ,根据两点距离求得,BC AB ,进而根据整式的加减进行计算即可.(1)解:AB =0-(-2)=2, AC =()628--=.(2)当运动时间为t 秒时,点A 表示的数为-2-2t ,点B 表示的数为3t ,点C 表示的数为6+4t , 则6436BC t t t =+-=+,()32225AB t t t =---=+ ()62544BC AB t t t ∴-=+-+=-当0=t 时,BC AB -的值最大,最大值为4.【点睛】本题考查了列代数式、数轴以及两点间的距离,解题的关键是:(1)根据三个点表示的数,求出三条线段的长度;(2)利用含t 的代数式表示出BC ,AB 的长.21.(1)23(2)该品牌羽绒服这一周的销售总量是714件,总利润为92820元【解析】(1)直接利用有理数的减法法则,用最大的数减去最小的数即可;(2)可以先求出7天的标准件数,再加上比标准多或少件数即可,利用这周销售羽绒服的总件数×130即可.(1)12(11)23--=(件)故答案为:23;(2)7×100+8+12+(-9)+6+(-11)+10+(-2)=714(件)所以该品牌羽绒服这一周的销售总量是714件.714×130=92820(元)所以这一周销售该品牌羽绒服的总利润为92820元.【点睛】本题主要考查正数和负数,正确利用有理数的运算法则是解题的关键.22.(1)点C(2)-5或7(3)45或1517或4511【解析】【分析】(1)点C、D是线段AB的三等分点,故可直接依题意判断得到答案.(2)按“和谐点”的定义列出等式,然后可求得答案.(3)设经过t秒后满足点M是点N、P的“和谐点”或点M是P、N的“和谐点”,求出t的值,进而得到答案.(1)解:①点C、D是线段AB的三等分点①12 AC BC=故点C是点A、B的“和谐点”.(2)解:点F 是点E 、G 的“和谐点”,依题意有12EF GF =, ①3EF =①6GF =①点G 为-5或7.(3)解:设时间t 秒后:①满足点M 是点N 、P 的“和谐点”,此时点M 为-3t ,点N 为5-10t ,依题意有12NM PM = ①()157532t t -=+当570t ->时,()15757532t t t -=-=+,解得517t =①点M 为1517-,1517OM = 当570t -<时,()()157532t t --=+,解得1511t①点M 为1511-,4511OM =①满足点M 是P 、N 的“和谐点”,此时点M 为-3t ,点N 为5-10t ,依题意有12PM NM = ①153572t t +=- ,解得15t =①45OM =综上所述,45OM =或1517或4511 【点睛】本题考查数轴上的两点距离及动点问题,熟练掌握数轴的相关知识,按定义列出等式求解是解题的关键.23.(1)±3;(2)m ﹣n 的最大值是5.【解析】【分析】由已知分别求出m =±1,n =±4;(1)由已知可得m =1,n =﹣4或m =﹣1,n =4,再求m +n 即可;(2)分四种情况分别计算即可.【详解】①|m |=1,|n |=4,①m =±1,n =±4;(1)①mn <0,①m =1,n =﹣4或m =﹣1,n =4,①m +n =±3;(2)分四种情况讨论:①m =1,n =4时,m ﹣n =﹣3;①m =﹣1,n =﹣4时,m ﹣n =3;①m =1,n =﹣4时,m ﹣n =5;①m =﹣1,n =4时,m ﹣n =﹣5;综上所述:m ﹣n 的最大值是5.【点睛】本题考查了有理数的运算,绝对值的运算;掌握有理数和绝对值的运算法则,能够正确分类是解题的关键.24.10122-【解析】【分析】根据题目解题过程进行求解即可;【详解】解:令231002222S =+++⋯+①将等式两边同时乘以2到:20134122222S =+++⋯+①①-①得:10122S =-①10122S =-,即23100101222222++++=⋯-.【点睛】本题主要考查有理数混合运算的应用,正确理解题意,根据题目方法步骤进行求解是解题的关键.。
人教版初中数学七年级上册第1章《有理数》单元测试题及答案
人教版初中数学七年级上册第1章《有理数》单元测试题及答案一、选择题(本大题共10小题,共30.0分)1.用表示的数一定是A. 负数B. 正数或负数C. 负整数D. 以上全不对2.若a、b都是不为零的数,则的结果为A. 3或B. 3或C. 或1D. 3或或13.实数a、b在数轴上的位置如图,则|a+b|-|a-b|等于()A. 2aB. 2bC.D.4.计算-42的结果等于()A. B. 16 C. D. 85.-23的意义是()A. 3个相乘B. 3个相加C. 乘以3D. 的相反数6.下列说法中:①若干个有理数相乘,如果负因数的个数是奇数,则乘积一定是负数;②若a、b互为相反数,则;③当a≠0时,|a|总是大于0;④如果a=b,那么,其中正确的说法个数是()A. 1B. 2C. 3D. 47.有理数在数轴上的位置如图所示,则在式子中,值最大的是()A. B. C. D.8.现定义一种新运算“*”,规定a*b=ab+a-b,如1*3=1×3+1-3,则(-2*5)*6等于()A. 120B. 125C.D.9.若m•n≠0,则+的取值不可能是()A. 0B. 1C. 2D.A. 0B.C. 10D. 20二、填空题(本大题共6小题,共18.0分)11.若-1<x<4,则|x+1|-|x-4|= ______ .12.如果a<0,则|a|=______.13.在数轴上,点P与表示有理数2的点A相距3个单位,则点P表示的数是______ .14.如图,在每个“〇”中填入一个整数,使得其中任意四个相邻“〇”中所填整数之和都相等,可得d的值为______.15.若输入整数a,按照下列程序,计算将无限进行下去且不会输出,则a所有可能取到的值为______.16.规定:[x]表示不大于x的最大整数,(x)表示不小于x的最小整数,[x)表示最接近x的整数(x≠n+0.5,n为整数),例如:[2.3]=2,(2.3)=3,[2.3)=2.当-1<x<1时,化简[x]+(x)+[x)的结果是______.三、计算题(本大题共1小题,共20.0分)17.计算下列各题(1)(-2)3-|2-5|-(-15)(2)-4(3)(4)(5).四、解答题(本大题共3小题,共32.0分)18.观察下列单项式:-x,3x2,-5x3,7x4,…,-37x19,39x20,…写出第n个单项式.为了解决这个问题,特提供下面的解题思路:(1)这组单项式的系数的符号、绝对值规律是什么?(2)这组单项式的次数的规律是什么?(4)请你根据猜想,请写出第2013个、第2014个单项式.19.如图,已知点A在数轴上,从点A出发,沿数轴向右移动3个单位长度到达点C,点B所表示的有理数是5的相反数,按要求完成下列各小题.(1)请在数轴上标出点B和点C;(2)求点B所表示的有理数与点C所表示的有理数的乘积;(3)若将该数轴进行折叠,使得点A和点B重合,则点C和数______所表示的点重合.20.观察下列等式:=1-,=,=三个等式两边分别相加得:=1-=1-=(1)猜想并写出:______ ;(2)直接写出下列各式的计算结果:+++…+= ______ ;(3)探究并计算:+++…+.答案和解析1.【答案】B【解析】【分析】此题主要考查了绝对值的定义及有理数的加法法则.由于m、n为非零的有理数,则有3种情况要考虑到,用到了分类讨论的思想.由于m、n为非零的有理数,根据有理数的分类,m、n的值可以是正数,也可以是负数.那么分三种情况分别讨论:①两个数都是正数;②两个数都是负数;③其中一个数是正数另一个是负数,针对每一种情况,根据绝对值的定义,先去掉绝对值的符号,再计算即可.【解答】解:分3种情况:①两个数都是正数;∴+=1+1=2,②两个数都是负数;∴+=-1-1=-2,③其中一个数是正数另一个是负数,所以,原式=-1+1=0.∴+的取值不可能是1.故选B.2.【答案】A【解析】【分析】此题考查了有理数的加法,绝对值的有关知识,熟练掌握运算法则是解本题的关键.找出绝对值小于5的所有整数,求和即可.【解答】解:绝对值小于5的所有整数为:0,±1,±2,±3,±4,∴0-1+1-2+2-3+3-4+4=0.故选A.3.【答案】D【解析】解:a>0时,-a<0,是负数,a=0时,-a=0,0既不是正数也不是负数,a<0时,-a>0,是正数,综上所述,-a表示的数可以是负数,正数或0.故选D.根据字母表示数解答.本题考查了有理数,熟练掌握字母表示数的意义是解题的关键.4.【答案】B【解析】【分析】本题考查了绝对值的意义及分式的化简.正数和0的绝对值是它本身,负数和0的绝对值是它的相反数.当x>0时,=1;当x<0时,=-1.互为相反数(0除外)的两个数的商为-1,相同两个数(0除外)的商为1.可从a、b同号,a、b异号,分类讨论得出结论.【解答】解:①当a>0,b>0时则++=1+1+1=3;②当a<0,b<0时=-1-1+1=-1;③当a>0,b<0时=1-1-1=-1;④当a<0,b>0时=-1+1-1=-1;故选B.5.【答案】A【解析】【分析】此题考查了整式的加减,绝对值,以及实数与数轴,熟练掌握运算法则是解本题的关键.根据数轴上点的位置判断出绝对值里边式子的正负,利用绝对值的代数意义化简,去括号合并即可得到结果.【解答】解:根据数轴上点的位置得:a<0<b,且|a|<|b|,∴a+b>0,a-b<0,则原式=a+b+a-b=2a.故选A.6.【答案】A【解析】解:-42=-16,根据有理数的乘方法则求出即可.本题考查了有理数的乘方,能区分-42和(-4)2是解此题的关键.7.【答案】D【解析】【分析】根据乘方的意义和相反数的定义判断.本题考查了有理数乘方:求n 个相同因数积的运算,叫做乘方.【解答】解:-23的意义是3个2相乘的相反数.故选D.8.【答案】A【解析】【分析】本题考查有理数的相关概念,学生需要充分理解正负数,0,相反数,绝对值等概念,特别需要注意0既不是正数也不是负数这一重要特性.【解答】①若干个有理数相乘,如果负因数的个数是奇数,还需要因数中没有0,才能得到乘积一定是负数,故错误;②0和它本身也是互为相反数,但是没有意义,故错误;③正数的绝对值是正数,负数的绝对值是正数,0的绝对值是0.当时,a的绝对值总是大于0,正确;④当c=0时,没有意义,故错误.故选A.9.【答案】D【解析】【分析】本题考查了数轴,有理数数的大小比较,根据数轴判断出a、b,c的正负情况以及绝对值的大小是解题的关键.根据数轴可得-1<a<0<b<c<1,且|a|=|c|,然后分别求得,c+a,-a,c-b的取值范围即可.【解答】解:由数轴可得,-1<a<0<b<c<1,且|a|=|c|,∴0<c-b<1,c+a=0,0<-a<1,,∴最大的数为.故选D.10.【答案】D【解析】解:∵a*b=ab+a-b,∴(-2*5)*6=(-2×5-2-5)*6=-17*6=-17×6+(-17)-6=-125.根据运算的规定首先求出(-2*5),然后再求出-17*6即可.本题主要考查了有理数的混合运算,正确理解题意,能掌握新定义是解题关键.11.【答案】2x-3【解析】解:原式=x+1-(-x+4),=x+1+x-4,=2x-3,故答案为:2x-3.根据绝对值的性质:当a是正有理数时,a的绝对值是它本身a;当a是负有理数时,a 的绝对值是它的相反数-a可得|x+1|=x+1,|x-4|=-x+4,然后再合并同类项即可.此题主要考查了绝对值,关键是掌握绝对值的性质,正确判断出x+1,x-4的正负性.12.【答案】-a【解析】解:∵a<0,则|a|=-a.故答案为-a.根据负数的绝对值是它的相反数可得所求的绝对值.考查绝对值的意义;用到的知识点为:负数的绝对值是它的相反数.13.【答案】5或-1【解析】解:∵数轴上的P点与表示有理数2的点的距离是3个单位长度,则P点表示的数是5或-1.故答案为:5或-1.由于P点与表示有理数2的点的距离是3个单位长度,所以P在表示2点左右两边都有可能,结合数轴即可求解.此题综合考查了数轴、绝对值的有关内容,解决本题的关键是明确P在表示2点左右两边都有可能.14.【答案】8【解析】【分析】本题是一道找规律的题目,考查了有理数的加法和方程组的思想,是中档题难度不大.由题意得a+8+b-5=8+b-5+c=b-5+c+d=-5+c+d+4,然后转化成方程组的形式,求得d的值即可.【解答】解:∵a+8+b-5=8+b-5+c=b-5+c+d=-5+c+d+4,∴a+8+b-5=8+b-5+c①,8+b-5+c=b-5+c+d②,b-5+c+d=-5+c+d+4③,∴a-5=c-5,8+c=c+d,b-5=-5+4,∴b=4,d=8,a=c,故答案为8.15.【答案】0或±1【解析】【分析】是整数,求解即可.【解答】解:依题意得:a2≤1且a是整数,解得a=0或a=±1.故答案为0或±1.16.【答案】-2或-1或0或1或2【解析】解:①-1<x<-0.5时,[x]+(x)+[x)=-1+0-1=-2;②-0.5<x<0时,[x]+(x)+[x)=-1+0+0=-1;③x=0时,[x]+(x)+[x)=0+0+0=0;④0<x<0.5时,[x]+(x)+[x)=0+1+0=1;⑤0.5<x<1时,[x]+(x)+[x)=0+1+1=2.故答案为:-2或-1或0或1或2.分五种情况讨论x的范围:①-1<x<-0.5,②-0.5<x<0,③x=0,④0<x<0.5,⑤0.5<x<1即可得到答案.本题考查了学生对[x]表示不大于x的最大整数,(x)表示不小于x的最小整数,[x)表示最接近x的整数(x≠n+0.5,n为整数)的理解,难度适中,解此题的关键是分类讨论思想的应用.17.【答案】解:(1)原式=-8-3+15=4;(2)原式=-10-5=-15;(3)原式=12-20+9-10=-9;(4)原式=;(5)原式==-10-39=-49.【解析】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.(1)原式第一项利用乘方的意义化简,第二项利用绝对值的代数意义化简,最后一项利用减法法则变形,计算即可得到结果;(2)原式利用减法法则变形,结合后,相加即可得到结果;(3)原式利用除法法则变形,再利用乘法分配律计算即可得到结果;(4)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可得到结果;(5)原式结合后,利用乘法分配律计算即可得到结果.18.【答案】解:(1)根据各项系数的符号以及系数的值得出:这组单项式的系数的符号规律是(-1)n,系数的绝对值规律是2n-1.(2)这组单项式的次数的规律是从1开始的连续自然数.(3)第n个单项式是:(-1)n(2n-1)x n.(4)第2013个单项式是-4025x2013,第2014个单项式是4027x2014.【解析】(1)根据已知数据得出单项式的系数的符号规律和系数的绝对值规律;(2)根据已知数据次数得出变化规律;(3)根据(1)(2)中数据规律得出即可;(4)利用(3)中所求即可得出答案.此题主要考查了数字变化规律,得出次数与系数的变化规律是解题关键.19.【答案】-8【解析】解:(1)如图所示:(2)-5×2=-10.(3)A、B中点所表示的数为-3,点C与数-8所表示的点重合.故答案为:-8.(1)将点A向右移动3个单位长度得到点C的位置,依据相反数的定义得到点B表示的数;(2)依据有理数的乘法法则计算即可;(3)找出AB的中点,然后可得到与点C重合的数.本题主要考查的是数轴、相反数、有理数的乘法,在数轴上确定出点A、B、C的位置是解题的关键.20.【答案】解:(1);(2);(3)原式.【解析】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键. (1)观察已知等式,得到拆项规律,写出即可;(2)原式===故应该填;(3)原式利用程序法变形,计算即可得到结果.第11页,共11页。
新人教版七年级数学上册第一单元测试卷(含答案)
新人教版七年级数学上册单元测试卷第一单元:有理数一、选择题(本题共10小题,每小题3分,共30分)1.如果水库的水位高于正常水位2m时,记作+2m,那么低于正常水位3m时,应记作()A.+3mB.-3mC.+13D.-132. 室内温度是150℃,室外温度是-30℃,则室外温度比室内温度低( )A .120℃ B.180℃ C.-120℃ D.-180℃3. 一个数和它的倒数相等,则这个数是()A.1B.-1C.±1 D.±1和04. 若|a|=5,b=-3,则a-b的值是()A.2或8B.-2或8C.2或-8D.-2或-85. 下列四组有理数的大小比较正确的是()A.−12>−13B.-|-1|>-|+1|C.12<13D.|−12|>|−13|6. 若三个有理数的和为0,则下列结论正确的是()A.这三个数都是0B.最少有两个数是负数C.最多有两个正数D.这三个数是互为相反数7. 下列各式中正确的是()A.a2=.(−a)2B. a3=.(−a)3C.−a2=.|−a2|D. a3=.|a|38. 若x的相反数是3,│y│=5,则x+y的值为()A.-8B.2C.-8或2D.8或-29. 两个数的差是负数,则这两个数一定是( )A.被减数是正数,减数是负数B.被减数是负数,减数是正数C.被减数是负数,减数也是负数D.被减数比减数小10. 点A在数轴上表示+2,从点A沿数轴向左平移3个单位到点B,点B表示的数是( )A. 3B.-1C.5D.-1或3二、填空题(本题共6小题,每小题3分,共18分)11. 甲潜水员所在高度为-45米,乙潜水员在甲的上方15米处,则乙潜水员的所在的高度是__________.12. 大肠杆菌每过20分便由1个分裂成2个,经过3小时后这种大肠杆菌由1个分裂成__________个。
13. 在数轴上,与表示数-1的点的距离是5的点表示的数是。
人教版数学七年级上册第一章有理数《单元测试》附答案
人教版数学七年级上学期第一章有理数测试时限:100分钟满分:120分一.选择题(本大题共12个小题,每小题3分,共36分内)1.下列说法不正确的是( )A. 0是最小数B. 0的相反数是0C. 0没有倒数D. 0是绝对值最小的数2.下列各对数中,互为相反数的是( )A. +(-3)与-3B. +(+3)与-3C. -(-3)与3D. 3 与+(+3)3.若两个有理数的和是正数,那么一定有结论( )A. 两个加数都是正数B. 两个加数有一个是正数C. 一个加数正数,另一个加数为零D. 两个加数不能同为负数4.两个非零有理数的和是0,则它们的商为:( )A. 0B. -1C. +1D. 不能确定5.下列各组数中,数值相等是()A. 32和23B. ﹣23和(﹣2)3C. ﹣32和(﹣3)2D. ﹣3×22 和(﹣3×2)26.绝对值相等的两个数在数轴上对应两点的距离为10,则这两个数为( )A. 10和-10B. 0和10C. 5和-5D. 5和07.a,b,c三个数在数轴上的位置如图所示,则下列结论中错误的是( )A. b<0B. a+c<0C. a﹣b>0D. b﹣c<08.计算16×(-6)÷(-16)×6值为( )A. 1B. 36C. -1D. +69.下列交换加数的位置的变形中,正确的是A. 1-4+5-4=1-4+4-5B.13111311 34644436 -+--=+--C. 1-2+3-4=2-1+4-3D. 4.5-1.7-2.5+1.8=4.5-2.5+1.8-1.710.学校、家、书店依次坐落在一条东西走向的大街上,学校在家的东边200米,书店在家西边1000米,某同学从家里出发,向西走了500米,接着又向西走了-700米,此时该同学的位置在( )A. 在家B. 在学校C. 在书店D. 不在上述地方11.比较大小:-22,(12-)2,(13-)3,正确的是( )A. -22>(12-)2>(13-)3 B. (13-)3>-22>(12-)2C. (12-)2>-22>(13-)3 D. (12-)2>(13-)3>-2212.若(-1)2=4,那么的值为()A. 27B. 3或-1C. 25或-1D. -1或27二、填空题(本大题共4个小题,每小题3分,共12分)13.月球距地球约为38万千米,用科学计数法表示为____________千米.14.绝对值小于6的所有数的积是_____________.15.如果数轴上的点A对应的数为-5,那么与A点相距3个单位长度的点所对应的有理数为__________.16.在﹣3,﹣2,﹣1,4,5中取出三个数,把三个数相乘,所得到的最大乘积是_.三、解答题(本大题共6个题,共72分)17.(1)将下列各数填入相应的圈内:212,5 , 0 ,1.5 ,+2 ,-3 .(2 )说出这两个圈的重叠部分表示的是什么数的集合:.18.数轴上表示下列各数,并用“<”号把它们连起来:1.5, 3, -2.5, 0 , -1 1 319.计算下列各题(1)15+(-14)-15-(-025) (2)(-81)÷94×49÷(-32)(3)292324×(-12) (4)25×34-(-25)×12+25×(-14)(5)-24-(-4)2 ×(-1)+(-3)3(6)3.25-[(-12)-(-52)+(-54)+243]20.按要求解答下列各题(1)已知a、b 互为相反数,c、d 互为倒数,x=(-2)2.试求x2 -(a + b + c×d) x +(a + b)2015 +(-c×d)2016的值.(2)已知有理数a、b、c 满足|a-1|+|b-3|+|3c-1|=0,求(a×b×c)178 ÷(a36×b7×c6)的值.21.某食品厂从生产的袋装食品中抽取20袋,检测每袋的质量是否符合标准,超过或不足的部分分别用正、负数来表示,记录如下表:(1)这批样品的质量比标准质量多还是少?多或少几克?(2)若每袋标准质量为450克,则抽样检测的总质量是多少?22.陈老师在上周五买进某公司股票1000股,每股28元,下表为本周内每日该股票的涨跌情况.(单位:元)(1)星期三收盘时,每股是多少?(2)本周内最高价是每股多少元?最低价是每股多少元?(3)已知陈老师买进股票时付了1.5%的手续费,卖出时需付成交手续费和交易税共2.5%,如果陈老师在星期五收盘时将全部股票卖出,他的收益情况如何?答案与解析一.选择题(本大题共12个小题,每小题3分,共36分内)1.下列说法不正确的是( )A. 0是最小的数B. 0的相反数是0C. 0没有倒数D. 0是绝对值最小的数【答案】A【解析】【分析】根据有理数0的意义进行分析.【详解】0不是最小的数,比0小的数是负数;0的相反数是0;0没有倒数;0是绝对值最小的数.故选A【点睛】本题考核知识点:0的意义. 解题关键点:理解有理数0的意义.2.下列各对数中,互为相反数的是( )A. +(-3)与-3B. +(+3)与-3C. -(-3)与3D. 3 与+(+3)【答案】B【解析】【分析】根据:只有符号不同的两个数互为相反数.逐个化简分析即可.【详解】A .+(-3)=-3与-3, 不是互为相反数;B.+(+3)=3与-3 , 是互为相反数;C.-(-3)=3与3, 不是互为相反数;D.3 与+(+3)=3, 不是互为相反数.故选B【点睛】本题考核知识点:相反数. 解题关键点:理解相反数的定义.3.若两个有理数的和是正数,那么一定有结论( )A. 两个加数都是正数B. 两个加数有一个是正数C. 一个加数正数,另一个加数为零D. 两个加数不能同为负数【答案】D【解析】试题分析:若两个有理数的和为正数,两个加数可能都为正数,也可能一个为正数,也可能一个加数为正数,另一个加数为0,不可能两加数为负数.故选D.考点:有理数的加法.4.两个非零有理数的和是0,则它们的商为:( )A. 0B. -1C. +1D. 不能确定【答案】B【解析】【分析】根据“互为相反数的两个数的和是0”判断出这两个数是互为相反数,互为相反数的两个数的商为-1.【详解】∵两个非零有理数的和是0∴这两个数互为相反数∴互为相反数的两个非零数的商为-1故选B【点睛】本题考查“互为相反数的两数相加得0”以及有理数除法法则,熟练掌握相关知识点是解题关键5.下列各组数中,数值相等的是()A 32和23 B. ﹣23和(﹣2)3 C. ﹣32和(﹣3)2 D. ﹣3×22 和(﹣3×2)2【答案】B【解析】【分析】原式各项利用乘方的意义计算得到结果,即可做出判断.【详解】A、32=9,23=8,数值不相等;B、﹣23=(﹣2)3=﹣8,数值相等;C、﹣32=﹣9,(﹣3)2=9,数值不相等;D、﹣3×22=﹣12,(﹣3×2)2=36,数值不相等,故选B6.绝对值相等的两个数在数轴上对应两点的距离为10,则这两个数为( )A. 10和-10B. 0和10C. 5和-5D. 5和0【答案】C【解析】【分析】绝对值相等的两个不同的数互为相反数,因为他们的距离是10,所以他们的绝对值是5.【详解】依题意可得,这两个数的绝对值是5,所以这两个数是5和-5.故选C【点睛】本题考核知识点:绝对值. 解题关键点:理解绝对值的意义.7.a,b,c三个数在数轴上的位置如图所示,则下列结论中错误的是( )A. b<0B. a+c<0C. a﹣b>0D. b﹣c<0【答案】C【解析】试题分析:根据数轴上点的特点,可知a<b<0<c,且︱a︱>︱c︱>︱b︱,因此a+b<0,故A正确;a+c<0,故B正确;a-b<0,故C错误;b-c<0,故D正确.故选C考点:数轴8.计算16×(-6)÷(-16)×6的值为( )A. 1B. 36C. -1D. +6 【答案】B【解析】【分析】先把除法运算化为乘法运算,再根据有理数乘法法则进行计算.【详解】16×(-6)÷(-16)×6=16×(-6)×(-6)×6=36故选B【点睛】本题考核知识点:有理数乘除法. 解题关键点:把除法转化为乘法.9.下列交换加数的位置的变形中,正确的是A. 1-4+5-4=1-4+4-5B.13111311 34644436 -+--=+--C. 1-2+3-4=2-1+4-3D. 45-1.7-2.5+1.8=4.5-2.5+1.8-1.7 【答案】D【解析】【详解】A. 1−4+5−4=1−4−4+5,故错误;B.13111311=-34644436-+--+--,故错误;C. 1-2+3-4=-2+1-4+3,故错误;D. 4.5−1.7−2.5+1.8=4.5−2.5+1.8−1.7,故正确.故选D.10.学校、家、书店依次坐落在一条东西走向的大街上,学校在家的东边200米,书店在家西边1000米,某同学从家里出发,向西走了500米,接着又向西走了-700米,此时该同学的位置在( )A. 在家B. 在学校C. 在书店D. 不在上述地方【答案】B【解析】【分析】某同学从家里出发,向西走了500米,接着又向西走了-700米,相当于向东走700米,最后离家向东200米. 【详解】依题意分析可得,向西走了-700米,相当于向东走700米,所以,该同学最后离家向东200米.即在学校.故选B【点睛】本题考核知识点:负数的意义,数轴. 解题关键点:理解负数的意义.11.比较大小:-22,(12-)2,(13-)3,正确的是( )A. -22>(12-)2>(13-)3 B. (13-)3>-22>(12-)2C. (12-)2>-22>(13-)3 D. (12-)2>(13-)3>-22【答案】D 【解析】解:∵﹣22=﹣4,(﹣12)2=14,(﹣13)3=﹣127,∴(﹣12)2>(﹣13)3>﹣22;故选D.点睛:本题考查了有理数大小的比较,不是最简的化到最简,然后根据正数大于0,0大于负数,两个负数比较,绝对值大的反而小得出答案.12.若(-1)2=4,那么的值为()A. 27B. 3或-1C. 25或-1D. -1或27【答案】D【解析】由题意得:-1=2解得:x=3或x=-1那么=27或-1故选D二、填空题(本大题共4个小题,每小题3分,共12分)13.月球距地球约为38万千米,用科学计数法表示为____________千米.【答案】3.8×105【解析】【分析】把一个大于10(或者小于1)的整数记为a×10n的形式(其中1 ≤| a| <10 )的记数法.【详解】38万=3.8×105.故答案为3.8×105【点睛】本题考核知识点:科学记数法. 解题关键点:理解科学计数法的意义.14.绝对值小于6的所有数的积是_____________.【答案】0【解析】【分析】先求出绝对值小于6的所有数,再求他们的积.要注意,其中有一个是0.【详解】绝对值小于6的所有数有无数个,但其中一个是0,所以,他们的积是0.故答案为0【点睛】本题考核知识点:有理数乘法. 解题关键点:记住0与任何数相乘等于0.15.如果数轴上的点A对应的数为-5,那么与A点相距3个单位长度的点所对应的有理数为__________.【答案】-8或-2【解析】【分析】与A点相距3个单位长度的点可能在A的左侧或在A的右侧.【详解】与A点相距3个单位长度的点可能在A的左侧或在A的右侧,所以,对应的数是:-5-3=-8,或-5+3=-2. 故答案为-8或-2【点睛】本题考核知识点:数轴上两点距离、有理数加减. 解题关键点:运用有理数加减法求两点的距离.16.在﹣3,﹣2,﹣1,4,5中取出三个数,把三个数相乘,所得到最大乘积是_.【答案】30 ;【解析】根据正数大于一切负数,同号得正,异号得负,找出乘积是正数绝对值最大的三个数相乘即可.解:最大乘积是:(-3)×(-2)×5=3×2×5=30.故答案为30.“点睛”本题考查了有理数的乘法,以及有理数的大小比较,比较简单,熟记运算法则是解题的关键.三、解答题(本大题共6个题,共72分)17.(1)将下列各数填入相应的圈内:212,5 , 0 ,1.5 ,+2 ,-3 .(2 )说出这两个圈的重叠部分表示的是什么数的集合:.【答案】(1)见解析;(2)正整数的集合【解析】【分析】根据有理数的分类解答即可.【详解】(1)如图,(2)∵5,+2是正整数,∴两个圈的重叠部分表示的是正整数的集合.【点睛】本题考查了有理数的分类,熟练掌握有理数的两种分类方式是解答本题的关键. 有理数可分为整数和分数,整数分正整数,零和负整数;分数分正分数和负分数.有理数也可分为正有理数,零和负有理数,正有理数分为正整数和正分数,负有理数分为负整数和负分数.18.在数轴上表示下列各数,并用“<”号把它们连起来:1.5, 3, -2.5, 0 , -1 1 3【答案】见解析【解析】【分析】先按要求画好数轴,在数轴上表示各数,根据数轴上右边的数大于左边的数进行连接. 【详解】解:如图:-2.5<-1.3<0<1.5<3.【点睛】本题考核知识点:利用数轴表示数的大小. 解题关键点:画好数轴,表示各数.19.计算下列各题(1)15+(-14)-15-(-025) (2)(-81)÷94×49÷(-32)(3)292324×(-12) (4)25×34-(-25)×12+25×(-14)(5)-24-(-4)2 ×(-1)+(-3)3(6)3.25-[(-12)-(-52)+(-54)+243]【答案】(1)0 (2)12(3)-35912(4) 25(5)-27 (6)-136【解析】【分析】根据有理数的运算法则,逐个计算.【详解】解:(1)15+(-14)-15-(-0.25)=15-15- 14+0.25=0(2)(-81)÷94×49÷(-32)=81×49×49×132= 1 2(3)292324×(-12)= (30- 124) ×(-12)= 30×(-12) -1 24× (-12)=-35912(4)25×3 4-(-25)×12+25×(-14) =25×(34+1 2-1 4) =25×1=25 (5)-24-(-4)2 ×(-1)+(-3)3 = -16+16-27= -27(6)3.25-[(-12)-(-52)+(-5 4)+243] =31 4+1 2 -5 2+5 4-243 1515234442231242423122423136=++--=--=-=- 【点睛】本题考核知识点:有理数混合运算. 解题关键点:掌握有理数运算法则.20.按要求解答下列各题(1)已知a 、b 互为相反数,c 、d 互为倒数,x=(-2)2.试求x 2 -(a + b + c×d) x +(a + b)2015 +(-c×d)2016的值. (2)已知有理数a 、b 、c 满足|a-1|+|b-3|+|3c-1|=0,求(a×b×c)178 ÷(a 36×b 7×c 6)的值.【答案】(1)13 (2)13【解析】【分析】(1)由已知可得a+b=0,cd=1,x=4,再代入原式可得;(2)由非负数性质得a-1=0,b-3=0,3c-1=0.求出a,b,c,再代入求值.【详解】解:(1)因为a 、b 互为相反数,c 、d 互为倒数,x=(-2)2所以,a+b=0,cd=1,x=4,所以,x 2 -(a + b + c×d) x +(a + b)2015 +(-c×d)2016=42-(0+1)×4+02015+(-1)2016=16-4+0+1=13.(2)因为|a-1|+|b-3|+|3c-1|=0,所以,根据非负数性质得:a-1=0,b-3=0,3c-1=0.所以,a=1,b=3,c=13, 所以,(a×b×c)178 ÷(a 36×b 7×c 6) =(1×3×13)178 ÷[136×37×(13)6] =1÷3 =13. 【点睛】本题考核知识点:非负数、倒数、相反数的应用. 解题关键点:理解非负数、倒数、相反数的性质. 21.某食品厂从生产的袋装食品中抽取20袋,检测每袋的质量是否符合标准,超过或不足的部分分别用正、负数来表示,记录如下表:(1)这批样品的质量比标准质量多还是少?多或少几克?(2)若每袋标准质量为450克,则抽样检测的总质量是多少?【答案】(1)这批样品的质量比标准质量多,多24克;(2)9024克【解析】【分析】(1)根据表格列出算式,计算得到结果,即可做出判断;(2)根据每袋标准质量为450克列出算式,计算即可得到结果.【详解】(1)根据题意得:﹣5×1﹣2×4+0×3+1×4+3×5+6×3=﹣5﹣80+4+15+18=24(克), 则这批样品的质量比标准质量多,多24克;(2)根据题意得:20×450+24=9024(克),则抽样检测的总质量是9024克.【点睛】此题考查了正数与负数,弄清题意是解本题的关键.22.陈老师在上周五买进某公司股票1000股,每股28元,下表为本周内每日该股票的涨跌情况.(单位:元)(1)星期三收盘时,每股是多少?(2)本周内最高价是每股多少元?最低价是每股多少元?(3)已知陈老师买进股票时付了1.5%的手续费,卖出时需付成交手续费和交易税共2.5%,如果陈老师在星期五收盘时将全部股票卖出,他的收益情况如何?【答案】(1)34.5元 (2)36.5元、30元(3)盈利830元.【解析】【分析】(1)根据题意得:28+4+4.5−2=34.5(元);(2)算出每天股价,再作比较;(3)根据题意得:1000×(30−28)−1000×28×1.5%−30×1000×2.5%=830(元),可得收益.【详解】解:(1)根据题意得:28+4+4.5−2=34.5(元),则星期三收盘时,每股34.5元;(2)本周的股价分别为28+4=32(元);32+4.5=36.5(元);36.5−2=34.5(元);34.5+1.5=36(元);36−6=30(元),则本周内最高价是每股36.5元,最低价是每股30元;(3)根据题意得:1000×(30−28)−1000×28×1.5%−30×1000×2.5%=830(元),则张先生在星期五收盘时将全部股票卖出,他的收益情况为830元.【点睛】本题考核知识点:有理数运算的应用.解题关键点:理解题意,根据实际列出算式并正确运算.。
人教版七年级上册数学单元测试试卷《第一章-有理数》(含答案解析)
人教版七年级上册数学单元测试试卷第一章《有理数》第Ⅰ卷考试时间:120分钟总分:100分得分:一、选择题(共10题,每小题2分,共20分)1.(2分)用科学记数法表示2500000000是()A.2.5×109B.0.25×10C.2.5×1010D.0.25×10102.(2分)-2022的倒数是()A.-2022B.2022C.12022-D.120223.(2分)下列各组数中,互为相反数的是()A.43和34-B.13和0.333-C.a 和a -D.14和44.(2分)温度由﹣3℃上升8℃是()A.5℃B.﹣5℃C.11℃D.﹣11℃5.(2分)下列说法错误的是()A.开启计算器使之工作的按键是ONB.输入 5.8-的按键顺序是C.输入0.58的按键顺序是58⋅D.按键6987-=能计算出6987--的结果6.(2分)小时候我们常常唱的一首歌“小燕子穿花衣,年年春天来这里”,研究表明小燕子从北方飞往南方过冬,迁徙路线长达25000千米左右,将数据25000用科学记数法表示为()A.32510⨯B.42.510⨯C.52.510⨯D.50.2510⨯7.(2分)若a 、b 为有理数,0a <,0b >,且a b >,那么a ,b ,a -,b -的大小关系是()A.b a b a -<<<-B.b b a a <-<<-C.a b b a<-<<-D.a b b a<<-<-8.(2分)a、b 两数在数轴上的位置如图所示,下列结论正确的是()A.a>b B.|a|=﹣a C.a<﹣b D.|a|>|b|9.(2分)小明家的汽车在阳光下暴晒后车内温度达到了60℃,打开车门后经过8min 降低到室外同温32℃,再启动空调关车门,若每分钟降低4℃,降到设定的20℃共用时间是()A.13minB.12minC.11minD.10min10.(2分)已知4,5x y ==,且x y >,则2x y -的值为()A.13-B.13+C.3-或13+D.3+或13-二、填空题(共10题;每题2分,共20分)11.(2分)45-的倒数是.12.(2分)比较大小:15-16-(填“>”“<”或“=”)13.(2分)如果向东走35米记作+35米,那么向西走50米记作米。
人教版七年级上册数学第一单元测试题及答案【三篇】
、、、、4对于近似数01830,下列说法正确的是、有两个有效数字,精确到千位、有三个有效数字,精确到千分位、有四个有效数字,精确到万分位、有五个有效数字,精确到万分5下列说法中正确的是.一定是负数一定是负数一定不是负数一定是负数二、填空题每题5分,共25分6若0<<1,则,,的大小关系是7若那么28如图,点在数轴上对应的实数分别为,则间的距离是.用含的式子表示9如果且2=4,2=9,那么+=10、正整数按下图的规律排列.请写出第6行,第5列的数字.三、解答题每题6分,共24分11①-5×6+-125÷-5②312+-12--13+223③23-14-38+524×48④-18÷-32+5×-123--15÷5四、解答题12本小题6分把下列各数分别填入相应的集合里1正数集合{…};2负数集合{…};3整数集合{…};4分数集合{…}13本小题6分某地探空气球的气象观测资料表明,高度每增加1千米,气温大约降低6℃.若该地地面温度为21℃,高空某处温度为-39℃,求此处的高度是多少千米?14本小题6分已知在纸面上有一数轴如图,折叠纸面1若1表示的点与-1表示的点重合,则-2表示的点与数表示的点重合;2若-1表示的点与3表示的点重合,则5表示的点与数表示的点重合;15本小题8分某班抽查了10名同学的期末成绩,以80分为基准,超出的记为正数,不足的记为负数,记录的结果如下+8,-3,+12,-7,-10,-3,-8,+1,0,+10.1这10名同学中分是多少?最低分是多少?210名同学中,低于80分的所占的百分比是多少?310名同学的平均成绩是多少?参考答案1.234567≤8-9±1103211①-5②6③12④12①②③④1310千米14①2②-315①分92分;最低分70分②低于80分的学生有5人。
所占百分比50③10名同学的平均成绩是80分【篇二】人教版七年级上册数学第一单元测试题及答案一、仔细选一选30分10是.正有理数.负有理数.整数.负整数2中国第一座跨海大桥——杭州湾跨海大桥全长36千米,其中36属于.计数.测量.标号或排序.以上都不是3下列说法不正确的是.0既不是正数,也不是负数.0的绝对值是0.一个有理数不是整数就是分数.1是绝对值最小的数4在数-,0,45,|-9|,-679中,属于正数的有个.2.3.4.55一个数的相反数是3,那么这个数是.3.-3..6下列式子正确的是.2>0>-4>-1.-4>-1>2>0.-4-17一个数的相反数是的负整数,则这个数是.1.±1.0.-18把数轴上表示数2的点移动3个单位后,表示的数为.5.1.5或1.5或-19大于-22的最小整数是.-2.-3.-1.010学校、家、书店依次座落在一条东西走向的大街上,学校在家的西边20米,书店在家东边100米,张明同学从家里出发,向东走了50米,接着又向西走了70米,此时张明的位置在在家在学校在书店不在上述地方二、认真填一填本题共30分11若上升15米记作+15米,则-8米表示。
七年级数学上册第一章《有理数》测试题1(含解析)(新版)新人教版
第一章《有理数》单元测试题一、选择题(每小题只有一个正确答案)1.﹣的相反数是()A. 4 B.﹣ C. D.﹣42.如果规定收入为正,支出为负.收入500 元记作500元,那么支出237元应记作()A.﹣500元 B.﹣237元 C. 237元 D. 503.下列说法正确的是()A.正数和负数统称有理数 B.正整数和负整数统称为整数C.小数不是分数 D.整数和分数统称为有理数4.在,+7, 0,,中,负数有()A. 4个 B. 3个 C. 2个 D. 1个5.下列说法中错误的是()A.正分数、负分数统称分数 B.零是整数,但不是分数C.正整数、负整数统称整数 D.零既不是正数,也不是负数6.下列各数:,,,,,,…中,有理数的个数有()A. 4个 B. 5个 C. 6个 D. 0个7.设a是最小的自然数,b是最大的负整数,c是绝对值最小的有理数,a,b,c三个数的和为()A.﹣1 B. 0 C. 1 D.不存在8.“厉害了我的国”一档电视节目展示了我国国内生产总值由2006年的3645亿元增长到2017年的82.712万亿元,用科学记数法表示应为()A.0.82712×1014 B.8.2712×1013 C.8.2712×1014 D.8.2712×10129.如果a、b互为相反数,且b≠0,则式子a+b,,|a|﹣|b|的值分别为()A. 0,1,2 B. 1,0,1 C. 1,﹣1,0 D. 0,﹣1,010.数轴上一点表示的有理数为,若将点向右平移个单位长度后,点表示的有理数应为()A. B. C. D.11.京九铁路的全长用四舍五入法得到近似数为,则它精确到( ) A.万位 B.十万位 C.百万位 D.千位12.若,,,的大小关系是()A. B. C. D.二、填空题13.比较大小:________;________;________14.如果定义为与中较大的一个,那么________.15.下列算式中,①,②,③,④,⑤.计算错误的是________.(填序号)16.若m、n互为相反数,x、y互为倒数,则m+n+xy+=__.17.已知|x|=5,|y|=4,且x>y,则2x+y的值为____________.三、解答题18.将下列各数填入相应的集合中:—7 , 0,, —2.55555……, 3.01, +9 , 4.020020002…, +10﹪,有理数集合:{ };无理数集合:{ };整数集合:{ };分数集合:{ }19.计算:(1)|-3|-5×(-)+(-4); (2)(-2)2-4÷(-)+(-1)2017.20.计算:(1)-18×;(2)(-1)3-÷3×[2-(-3)2].21.把下列各数表示的点画在数轴上,并用“”把这些数连接起来,然后指出哪些是负数、哪些是分数、哪些是非负整数.,,,,,22.已知a,b互为相反数,且a≠0,c,d为倒数,m的绝对值为3,求m(2a+2b)2015+(cd)2016+()2017-m2的值.23.蜗牛从某点O开始沿一东西方向直线爬行,规定向东爬行的路程记为正数,向西爬行的路程记为负数.爬过的各段路程依次为(单位:厘米):,,,,,,.通过计算说明蜗牛是否回到起点O.蜗牛离开出发点O最远时是多少厘米?在爬行过程中,如果每爬厘米奖励粒芝麻,则蜗牛一共得到多少粒芝麻?24.阅读下面的解题过程:计算:(-15)÷×6.解:原式=(-15)÷×6(第一步)=(-15)÷(-1)(第二步)=-15.(第三步)回答:(1)上面解题过程中有两处错误,第一处是第________步,错误的原因是________________;第二处是第________,错误的原因是________________.(2)把正确的解题过程写出来.参考答案1.C【解析】【分析】根据只有符号不同的两个数互为相反数,即可得出答案.【详解】解:的相反数是.故答案为:C.【点睛】此题主要考查相反数的意义,熟记相反数的意义是解题的关键.2.B【解析】【分析】根据条件“收入为正、支出为负”进行解答.【详解】依题意,规定收入为正,支出为负,那么支出237元应记作﹣237元,选项B正确. 【点睛】本题考查用正负数表示两个具有相反意义的量,属基础题.3.D【解析】【分析】根据有理数的分类及整数,分数的概念解答即可.【详解】A中正有理数,负有理数和0统称为有理数,故A错误;B中正整数,负整数和0统称为整数,故B错误;C中小数3.14是分数,故C错误;D中整数和分数统称为有理数,故D正确.故选D.【点睛】本题考查了有理数,整数,分数的含义.掌握有理数,整数,分数的含义是解题的关键.4.C【解析】【分析】根据小于0的数即为负数解答可得.【详解】在,+7, 0,,数中,负数有-1,共2个,故选C.【解答】解:在-4,0,-1.5,3,-2,15数中,负数有-4、-1.5、-2这3个,故选:B.【点评】本题主要考查正数和负数,熟练掌握负数的概念是解题的关键.5.C【解析】【分析】根据有理数、分数、整数的含义和分类,逐项判断即可.【详解】:∵正分数、负分数统称分数,∴选项A正确;∵零是整数,但不是分数,∴选项B正确;∵正整数、负整数、0统称整数,∴选项C不正确;∵零既不是正数,也不是负数,∴选项D正确.故选C.【点睛】此题主要考查了有理数、分数、整数的含义和分类,要熟练掌握,解答此题的关键是要明确:0是自然数.6.C【解析】【分析】根据有理数的定义解答即可.【详解】在﹣6,﹣3.14,﹣π,,0.307,4,0.212121…中,有理数有﹣6,﹣3.14,,0.307,4,0.212121…共6个.故选C.【点睛】本题考查了有理数的定义,掌握有理数是有限小数或无限循环小数是解题的关键.7.A【解析】【分析】先根据自然数,整数,有理数的概念分析出a,b,c的值,再进行计算.【详解】∵最小的自然数是0,最大的负整数是﹣1,绝对值最小的有理数是0,∴a+b+c=0+(﹣1)+0=﹣1,故选A.【点睛】本题考查了有理数的加法运算,解题的关键是知道最小的自然数是0,最大的负整数是-1,绝对值最小的有理数是0.8.B【解析】【分析】科学记数法,是指把一个大于10(或者小于1)的整数记为a×10n的形式(其中1 ≤| a| <10 )的记数法.【详解】82.712万亿= 8.2712×1013故选:B【点睛】本题考核知识点:科学记数法. 解题关键点:理解科学记数法意义.9.D【解析】【详解】∵a、b互为相反数,且b≠0,∴a+b=0,=﹣1,|a|﹣|b|=0,则式子a+b,,|a|﹣|b|的值分别为0,﹣1,0.故选D.10.C【解析】【分析】根据平移的性质,进行分析选出正确答案.【详解】﹣2+3=1.故A点表示的有理数应为1.故选C.【点睛】本题考查了数轴,利用点在数轴上左减右加的平移规律是解决问题的关键.11.B【解析】【分析】根据近似数精确到哪一位,应当看末位数字5实际在哪一位,写出原数即可得出答案.【详解】∵2.5×106=2500000,5在十万位,∴2.5×106精确到十万位;故选:B.【点睛】考查近似数的精确度问题,解决问题的关键是正确区分精确度与有效数字的确定方法. 12.A【解析】【分析】根据﹣1<m<0,可得:0<m2<1,<﹣1,据此判断出m,m2,的大小关系即可.【详解】∵﹣1<m<0,∴0<m2<1,<﹣1,∴<m<m2.故选A.【点睛】本题主要考查了有理数大小比较的方法,要熟练掌握,解答此题的关键是要明确:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.13.【解析】【分析】先根据乘方的定义进行计算,再根据有理数大小比较方法比较即可求解.【详解】解:∵43=64,34=81,64<81,∴43<34;∵(-5)2=25,52=25,∴(-5)2=52;∵-|-3|=-3,-(-3)=3,-3<3,∴-|-3|<-(-3).故答案为:<;=;<.【点睛】考查了有理数大小比较,本题的关键是根据乘方的定义进行计算,求出结果.14.【解析】【分析】根据规则计算出与,比较大小即可得到答案.【详解】∵-(﹣3)×2=6,-(﹣3)+2=5,∴(﹣3)*2=6.故答案为:6.【点睛】本题考查了有理数的乘法,根据规律解题是解题的关键.15.①②③④【解析】【分析】根据有理数的乘方,有理数的除法和乘法的法则,计算得到结果,即可作出判断.【详解】① ﹣(﹣2)2=﹣4,故错误;②﹣5÷×5=﹣125,故错误;③=,故错误;④(﹣3)2×(﹣)=﹣3,故错误;⑤﹣33=﹣27.故错误.故答案为:①②③④.【点睛】本题考查了有理数的混合运算,熟练掌握运算法则是解答本题的关键.16.0【解析】【分析】互为相反数的两个数的和为0,商为-1,互为倒数的两个数的积为1.【详解】∵m、n互为相反数,x、y互为倒数,∴m+n=0,,xy=1∴原式=0+1+(-1)=0.【点睛】本题主要考查的是相反数和倒数的性质,属于中等难度题型.明确互为相反数的两个数的和为零,互为倒数的两个数的积为1是解决这个问题的基础.17.6或14【解析】【分析】根据绝对值的性质可得x=±5,y=±4,再根据x>y,可得①x=5,y=4,②x=5,y=﹣4,然后可得2x+y的值.【详解】∵|x|=5,|y|=4,∴x=±5,y=±4.∵x>y,∴①x=5,y=4,2x+y=14;②x=5,y=﹣4,2x+y=6.故答案为:6或14.【点睛】本题主要考查了有理数的加法和绝对值,关键是掌握绝对值等于一个正数的数有两个.18.—7 , 0,, —2.55555……, 3.01, +9,+10﹪;4.020020002…,;—7 ,0, +9 ;, —2.55555……, 3.01, +10﹪.【解析】【分析】根据有理数,无理数,整数,分数的概念进行分类即可.【详解】有理数集合:{ —7 , 0,, —2.55555……, 3.01, +9,+10﹪ };无理数集合:{ 4.020020002…, };整数集合:{ —7 , 0, +9 };分数集合:{ , —2.55555……, 3.01, +10﹪ }【点睛】考查有理数,无理数,整数,分数的概念,整数和分数统称为有理数;无理数指的是无限不循环小数;整数包含正整数,0和负整数.19.(1)2;(2)9.【解析】【分析】(1)先化简绝对值、进行乘法运算,然后再进行加减法运算即可;(2)先进行乘方运算、再进行乘除运算、最后进行加减运算即可得.【详解】(1) )|-3|-5×(-)+(-4)=3-(-3)-4=3+3-4=2;(2) (-2)2-4÷(-)+(-1)2017=4-(-6)-1=4+6-1=9.【点睛】本题考查了有理数的混合运算,熟练掌握有理数混合运算的运算顺序与运算法则是解题的关键.20.(1)-6;(2) .【解析】分析:(1)运用乘法分配律计算可得;(2)根据有理数混合运算顺序和运算法则计算可得.详解:(1)原式=-9-12+15=-6.(2)原式=-1-××(-7)=-1+=.点睛:本题主要考查有理数的混合运算,熟练掌握有理数的混合运算的顺序和法则是解题的关键.21.见解析.【解析】【分析】首先在数轴上表示各数,再根据在数轴上表示的两个有理数,右边的数总比左边的数大比较大小;再根据负数小于0和有理数的分类找出负数、分数、非负整数.【详解】,负数:,;分数:,,;非负数:,,,.【点睛】考查了有理数的大小比较以及有理数的分类,掌握在数轴上表示的两个有理数,右边的数总比左边的数大是解题的关键.22.-9.【解析】【分析】根据相反数、互为倒数、正整数的性质,推出a+b=0,cd=1,m=1,整体代入即可解决问题. 【详解】由题意得a+b=0,cd=1,=-1,|m|=3,∴m=±3,∴m2=(±3)2=9,∴原式=m[2(a+b)]2015+12016+(-1)2017-9=m(2×0)2015+1+(-1)-9=-9.【点睛】本题考查有理数的混合运算、相反数、互为倒数、正整数的性质等知识,属于中考常考题型. 23.(1)是回到起点O;(2)8厘米;(3)108.【解析】【分析】(1)分别相加,看是否为0,为0则回到了起点O;(2)分别计算绝对值,再比较大小即可;(3)计算绝对值的和,就是总路程,列式可得结论.【详解】(1)﹣6+12﹣10+5﹣3+10﹣8=0.所以蜗牛可以回到起点O.(2)|﹣6|=6,|﹣6+12|=6,|﹣6+12﹣10|=4,|﹣6+12﹣10+5|=1,|﹣6+12﹣10+5﹣3|=2,|﹣6+12﹣10+5﹣3+10|=8,所以蜗牛离开出发点O最远时是8厘米;(3)(6+12+10+5+3+10+8)×2=54×2=108答:蜗牛一共得到108粒芝麻.【点睛】本题考查了正数和负数的意义和有理数的加减法,解题的关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量;相加减时要注意同号相加比较简便.24.第二运算顺序错误第三步符号错误【解析】分析:(1)从第一步到第二步,先计算除法,再计算乘法,所以第1处是第二步,错误原因是运算顺序错误;然后根据有理数除法的运算方法,可得第2处是第三步,错误原因是符号错误.(2)根据有理数除法、乘法的运算方法,从左向右,求出算式的值是多少即可.详解:(1)上面解题过程中有两处错误,第一处是第二步,错误的原因是运算顺序错误,第二处是第三步,错误的原因是符号错误.(2)(﹣15)÷()×6=(﹣15)×6=(﹣15)×(﹣6)×6=90×6=540.故答案为:二、运算顺序错误;三、符号错误.点睛:(1)此题主要考查了有理数除法的运算方法,要熟练掌握,解答此题的关键是要明确:除以一个不等于0的数,等于乘这个数的倒数.(2)此题还考查了有理数乘法的运算方法,要熟练掌握,解答此题的关键是要明确:两数相乘,同号得正,异号得负,并把绝对值相乘.。
七年级数学上册第一单元测试题人教版3篇
七年级数学上册第一单元测试题人教版3篇篇一:人教版初一数学上册第一章有理数单元测试题及答案有理数单元测试题满分100分时间60分一、选择题(本题共有10个小题,每小题都有A、B、C、D四个选项,请你把你认为适当的选项前的代号填入题后的括号中,每题2分,共20分)1、下列说法正确的是()A整数就是正整数和负整数B负整数的相反数就是非负整数C有理数中不是负数就是正数D零是自然数,但不是正整数2、下列各对数中,数值相等的是()A -27与(-2)7B -32与(-3)2C -3×23与-32×2D ―(―3)2与―(―2)33、在-5,-9,-3.5,-0.01,-2,-212各数中,最大的数是()A.-12B.-9C.-0.01D.-54、如果一个数的平方与这个数的差等于0,那么这个数只能是()A. 0B.-1C.1D. 0或15、绝对值大于或等于1,而小于4的所有的正整数的和是()A. 8B. 7C. 6D. 56、计算:(-2)100+(-2)101的是()A. 2100B.-1C.-2D.-21007、比-7.1大,而比1小的整数的个数是()A. 6B. 7C. 8D. 98、2003年5月19日,国家邮政局特别发行万众一心,抗击“非典”邮票,收入全部捐赠给卫生部门用以支持抗击“非典”斗争,其邮票发行为12050000枚,用科学记数法表示正确的是( )A.1.205×107 B.1.20×108 C.1.21×107 D.1.205×1049、下列代数式中,值一定是正数的是( )A.x2 B.|-x+1| C.(-x)2+2 D.-x2+110、已知8.622=74.30,若x2=0.7430,则x的值等于()A. 86. 2B. 862C. ±0.862D. ±86211、一幢大楼地面上有12层,还有地下室2层,如果把地面上的第一层作为基准,记为0,规定向上为正,那么习惯上将2楼记为;地下第一层记作;数-2的实际意义为,数+9的实际意义为。
人教版七年级数学上册第一章有理数单元检测试卷附答案
人教版七年级数学上册第一章有理数单元检测试卷附答案一、单选题(共10题;共30分)1.计算-1+2×(-3)的结果是( )A. 7B. -7C. 5D. -5 2.在数0.25 ,-12,7,0,-3,100中,正数的个数是( )A. 1个B. 2个C. 3个D. 4个 3.−2 的倒数是( )A. −12 B. 12 C. −2 D. 2 4.-2,0,2,-3这四个数中最大的是( )A. 2B. 0C. -2D. -3 5.下列运算结果为负数的是( ).A. |−2|B. (−2)2C. −(−2)D. −22 6.下列各组数中,最后运算结果相等的是( ).A. 102和54B. -42和(-4)2C. -55和(-5)5D. 233和 (23)37.有理数a 、b 在数轴上的位置如图所示,则下列结论正确的是( )A. a+b >0B. a ﹣b <0C. |b|>|a|D. ab <08.一个点从数轴上的原点开始,先向右移动2个单位长度,再向左移动3个单位长度,经过两次移动后到达的终点表示的是什么数?( )A. +5B. +1C. -1D. -5 9.-5的相反数是( )A. -5B. 5C. ±5D. −1510.衢州市“十二五”规划纲要指出,力争到2015年,全市农民人均年纯收入超13000元,数13000用科学记数法可以表示为( )A. 13×103B. 1.3×104C. 0.13×104D. 130×102二、填空题(共10题;共30分)11.-2的绝对值与-2的相反数的差是________.12.2017年盐城市经济总量首次突破5000亿元,预计地区生产总值达5050亿元,比上年增长6.8%,数据5050亿用科学记数法可表示为________.13.若有理数a 、b 满足|a+2|+(b ﹣3)2=0,则a b 的值为________. 14.绝对值小于2004的所有整数的和为________,积为________.15.已知 21=2,22=4,23=8,24=16 ……,那么 1+2+22+23+ …+ 232 的个位数字是________.16.(-1 23)2=________,(-2×3)3=________.17.﹣3的倒数是________,﹣2 15的相反数为________.18.一个数的绝对值越小,则该数在数轴上所对应的点,离原点越________。
新人教版七年级上数学第一单元试卷及答案-完整版
七年级数学第一单元测试卷 班级 姓名「、选择题:(10*3=30 ) 1. 下列各组量中,互为相反意义的量是(A 、收入200元与赢利200元 BC 、“黑色”与“白色”D 、“你比我高3cm ”与“我比你重3kg ” 2. 为迎接即将开幕的广州亚运会,亚组委共投入了 各项体育设施,用科学记数法表示该数据是( 0.2198 1010 元 B 2198 106 元 C 2.198 109 元 D 3. 下列计算中,错误的是( )。
A 、 62 36B 、( !)2 丄C 、( 4)3 64D 、( 1)100 ( 1 )1000 04 16 4. 对于近似数0.1830,下列说法正确的是()A 、有两个有效数字,精确到千位、有三个有效数字,精确到千分位C 、有四个有效数字,精确到万分位有五个有效数字,精确到万分5. 下列说法中正确的是 ( )A. a 一定是负数 B C a 一定不是负数 D 二、填空题:(6*3=18)6. 若0v a v 1,则a , a 2, 1的大小关系是_a7. 若a a 那么2a ___________________ 08. 如图,点A ,B 在数轴上对应的实数分别为 m, n ,9. ____________________________________________ 如果 xy 0且 x 2= 4,y 2 = 9,那么 x + y = ____________________________________________三、解答题:每题6分,共24分- ^111211. ①(一5) x 6+ (-125) r- 5) ② 32 + (-)-(-亍 +23®(3 -4 -3 + 24)X 48 ④—18宁(-3)2+ 5X ( - 2 ) 3- ( - 15) r分数 ______) 、上升10米与下降7米2 198 000 000元人民币建造 )2.198 1010 元a 一定是负数a $ —定是负则A, B 间的距离是 式子表示).(用含m, n 的四、解答题:12. (本小题6分)把下列各数分别填入相应的集合里4, 4, 0, 丝, 3.14, 2006, 5 , 1.883 7(1) 正数集合:{ …};(2) 负数集合:{ …};(3) 整数集合:{ …};(4) 分数集合:{ …}13. (本小题6分)某地探空气球的气象观测资料表明,高度每增加1千米,气温大约降低6C.若该地地面温度为21C,高空某处温度为—39C,求此处的高度是多少千米?14. ____________________________________________ (本小题6分)已知在纸面上有一数轴(如________________________________________ | | | | 图),折叠纸面. 0 1(1) ________________________________________________________ 若1表示的点与一1表示的点重合,则一2表示的点与数________________________ 表示的点重合;(2)若一1表示的点与3表示的点重合,则5表示的点与数___________ 表示的点重合;15. (本小题8分)某班抽查了10名同学的期末成绩,以80分为基准,超出的记为正数,不足的记为负数,记录的结果如下:+ 8,- 3,+ 12,- 7,- 10,—3,—8,+ 1,0,+ 10.(1) 这10名同学中最高分是多少?最低分是多少?(2) 10名同学中,低于80分的所占的百分比是多少?(3) 10名同学的平均成绩是多少?七年级数学第一单元测试卷 参考答案 1. B 2.C 3.D 4.C 5.C 1 7. < a 8.n-m 9. ± 1 10.32 11 ①一5 ③12 22 12 ① ,2006, 1.88 74, 4 3, 3.14, (5)③ 4,0,2006, ( 5) 22W 3.14,71.88 13.10千米14. ①2 ②-315. ①最高分:92分; ② 低于80分的学生有5人。
人教版数学七年级上册第一章测试题及答案
人教版数学七年级上册第一章测试题一、选择题(本大题共14个小题,每题2分,共28分,在每个小题的四个选项中只有一项是符合题目要求的)1.(2022·全国·七年级课时练习)当我们把其中一种意义的量规定为正,用正数表示,则与它具有相反意义的量直接可以用负数表示.例:中国人很早开始使用负数,中国古代数学著作《九章算术》的“方程”一章,在世界数学史上首次正式引入负数.如果收入100元记作+100元.那么﹣80元表示( ) A .支出20元B .收入20元C .支出80元D .收入80元2.(2022·河北廊坊·七年级期末)在-25%,0.0001,0,()5--,25--中,负数有( ) A .1个B .2个C .3个D .4个3.(2022·全国·七年级专题练习)若a 与1互为相反数,那么1a +=( ) A .1-B .0C .1D .2-4.(2022·湖南·茶陵县教育教学研究室模拟预测)2021年2月25日习近平总书记在全国脱贫攻坚总结表彰大会上庄严宣告:“我国脱贫攻坚战取得了全面胜利,现行标准下9899万农村贫困人口全部脱贫.”用科学记数法表示9899万,其结果是( ) A .80.989109⨯B .79.89910⨯C .698.9910⨯D .69.89910⨯5.(2022·河北·涿州市双语学校七年级期末)某检修小组乘一辆汽车沿东西方向的公路检修线路,约定向东为正,某天从A 地出发到收工时行走记录(长度单位:千米)为:+15,﹣2,+5,﹣1,+10,﹣3.则收工时,检修小组在A 地在( ) A .东边24千米处 B .西边24千米处 C .东边14千米处D .以上都不对6.(2022·全国·七年级课时练习)式子21x -+的最小值是( ) A .0B .1C .2D .37.(2022·江苏·泰州中学附属初中七年级阶段练习)计算222333m n ++⋅⋅⋅++⨯⨯⋅⋅⋅⨯=个个( )A .32m n +B .23+m nC .23m n +D .23n m +8.(2022·浙江·七年级专题练习)若|m |=5,|n |=2,且mn 异号,则|m ﹣n |的值为( ) A .7B .3或﹣3C .3D .7或39.(2022·河北秦皇岛·七年级期末)计算()()1155⎛⎫-÷-⨯- ⎪⎝⎭的结果是( )A .125-B .125C .-1D .110.(2022·湖南永州·七年级期中)规定两正数a ,b 之间的一种运算,记作:(),a b ,如果c a b =,那么(),a b c =.例如328=,则()2,83=.那么11,381⎛⎫= ⎪⎝⎭( ) A .3 B .4 C .5 D .611.(2022·浙江·七年级专题练习)若22a ,33b,24c,则()a b c ---⎡⎤⎣⎦的值为( )A .﹣39B .7C .15D .4712.(2022·全国·七年级课时练习)对于有理数a 、b ,有以下几种说法,其中正确的说法个数是( ) ①若a +b =0,则a 与b 互为相反数;②若a +b <0,则a 与b 异号;③a +b >0,则a 与b 同号时,则a >0,b >0;④|a |>|b |且a 、b 异号,则a +b >0;⑤|a |<b ,则a +b >0. A .3个B .2个C .1个D .0个13.(2022·山东滨州·七年级期末)已知a 、b 互为相反数,e 的绝对值为3,m 与n 互为倒数,则293a b e mn ++-的值为( ) A .1B .3C .0D .无法确定14.(2022·河南·延津县清华园学校七年级阶段练习)正方形纸板ABCD 在数轴上的位置如图所示,点A ,D 对应的数分别为1和0,若正方形纸板ABCD 绕着顶点顺时针方向在数轴上连续无滑动翻转,则在数轴上与2022对应的点是( )A .DB .C C .BD .A二、填空题(本题共4个小题;每个小题3分,共12分,把正确答案填在横线上)15.(2022·江苏·泰州市姜堰区南苑学校七年级)如图所示数轴,则数a ,b ,a -,b -中最小的是_______.16.(2022·河南郑州·七年级期末)请你在心里任意想一个两位数,然后把这个数的十位数字与个位数字相加,再用原来的两位数减去它们的和,会得到一个新数,然后重复上面的过程,把新的两位数的十位数字与个位数字再相加,用新的两位数减去这个和,一直这样重复下去,直到所得的数不再是两位数为止,则最终你得到的数字是______.17.(2022·全国·七年级课时练习)已知某快递公司的收费标准为:寄一件物品不超过5千克,收费13元;超过5千克的部分每千克加收2元.圆圆在该快递公司寄一件8千克的物品,需要付费_______元. 18.(2022·全国·七年级课时练习)一质点P 从距原点1个单位的A 点处向原点方向跳动,第一次跳动到OA 的中点1A 处,第二次从1A 点跳动到O 1A 的中点2A 处,第三次从2A 点跳动到O 2A 的中点3A 处,如此不断跳动下去,则第5次跳动后,该质点到原点O 的距离为_____________.三、解答题(本题共8道题,19-21每题6分,22-25每题8分,26题10分,满分60分) 19.(2022·全国·七年级单元测试)把下列各数:()4-+,3-,0,213-,1.5(1)分别在数轴上表示出来:(2)将上述的有理数填入图中相应的圈内.20.(2021·内蒙古·通辽市科尔沁区木里图学校七年级期中)计算题: (1)23(2)(47)12-+-÷--(2)117313()(48)126424-+-⨯-21.(2022·全国·七年级专题练习)在下面给出的数轴中,点A 表示1,点B 表示﹣2,回答下面的问题:(1)A 、B 之间的距离是(2)观察数轴,与点A 的距离为5的点表示的数是: ;(3)若将数轴折叠,使点A 与﹣3表示的点重合,则点B 与数 表示的点重合;(4)若数轴上M 、N 两点之间的距离为2012(M 在N 的左侧),且M 、N 两点经过(3)中折叠后互相重合,则M 、N 两点表示的数分别是:M : N : .22.(2022·全国·七年级专题练习)某摩托车厂本周计划每日生产250辆摩托车,由于工人实行轮休,每日上班人数不一定相等,实际每日生产量与计划量相比情况如下表(增加的辆数记为正数,减少的记为负数,单位:辆)根据记录回答:(1)本周六生产了多少辆摩托车?(2)本周总生产量与计划生产量相比,是增加了还是减少了?增加或减少了多少辆? (3)产量最多的一天比产量最少的一天多生产多少辆?23.(2022·山东青岛·七年级阶段练习)在解决数学问题的过程中,我们常用到“分类讨论”的数学思想,下面是运用分类讨论的数学思想解决问题的过程,请仔细阅读,并解答问题 【提出问题】三个有理数a ,b ,c 满足0abc >,求a b c a b c++的值.【解决问题】解:由题意,得a ,b ,c 三个有理数都为正数或其中一个为正数,另两个为负数, ①a ,b ,c 都是正数,即0a >,0b >,0c >时, 则1113a b c a b ca b c a b c++=++=++=; ②当a ,b ,c 中有一个为正数,另两个为负数时, 不妨设0a >,0b <,0c <, 则()()1111a b c a b c a b c a b c--++=++=+-+-=- 综上所述,a b c a b c++值为3或-1【探究】请根据上面的解题思路解答下面的问题: (1)三个有理数a ,b ,c 满足0abc <,求a b c a b c++的值;(2)若a ,b ,c 为三个不为0的有理数,且1a b c a b c++=-,求abcabc 的值. 24.(2022·全国·七年级课时练习)某超市购进10箱樱桃,若以每箱净重5千克为标准,超过的千克数记为正数,不足的千克数记为负数,称重的记录如下(单位:千克):0.3-、0.2-、0.1-、0.4-、0.3-、0.1+、0.3-、0、0.3-、0.2-,(1)求这10箱樱桃的总净重量是多少千克?(2)若每箱樱桃的进价为480元,超市原计划把这些樱桃全部以零售的形式出售,为保证超市仍然能获利50%,那么樱桃的售价应定为每千克多少元?(3)若第一天超市以(2)中的售价售出了50%的樱桃后,经超市进行商讨研究后,将剩余的樱桃每3千克一盒经过包装后再投入到超市销售,每盒售价为500元,包装成本费为每盒10元,人工费不计,最终全部售出.请计算该超市实际销售樱桃的总利润比原计划销售樱桃的总利润多多少元?25.(2022·全国·七年级单元测试)如图所示,某数学活动小组编制了一道有理数混合运算题,即输入一个有理数,按照自左向右的顺序运算,可得计算结果,其中“●”表示一个有理数.(1)若●表示2,输入数为3-,求计算结果;(2)若计算结果为8,且输入的数字是4,则●表示的数是几?(3)若输入数为a ,●表示的数为b ,当计算结果为0时,请求出a 与b 之间的数量关系.26.(2022·浙江·七年级开学考试)同学们都知道,()74--表示7与﹣4之差的绝对值,实际上也可理解为7与﹣4两数在数轴上所对的两点之间的距离.74-也可理解为7与4两数在数轴上所对的两点之间的距离.试探索:(1)求()74--= .(2)找出所有符合条件的整数x ,使得()628x x --+-=这样的整数是 .(3)由以上探索猜想对于任何有理数x ,15x x -+-是否有最小值?如果有写出最小值请尝试说明理由.如果没有也要请尝试说明理由.人教版数学七年级上册第一章测答案一、选择题(本大题共14个小题,每题2分,共28分,在每个小题的四个选项中只有一项是符合题目要求的)1.(2022·全国·七年级课时练习)当我们把其中一种意义的量规定为正,用正数表示,则与它具有相反意义的量直接可以用负数表示.例:中国人很早开始使用负数,中国古代数学著作《九章算术》的“方程”一章,在世界数学史上首次正式引入负数.如果收入100元记作+100元.那么﹣80元表示( ) A .支出20元 B .收入20元 C .支出80元 D .收入80元【答案】C【分析】首先审清题意,明确“正”和“负”所表示的意义;再根据题意作答. 【详解】解:根据题意,收入100元记作+100元,则﹣80表示支出80元. 故选:C【点睛】此题主要考查了正负数的意义,解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示. 2.(2022·河北廊坊·七年级期末)在-25%,0.0001,0,,中,负数有( ) A .1个 B .2个 C .3个 D .4个【答案】B【分析】根据相反数和绝对值的定义化简后,再根据负数的定义判断即可. 【详解】解:﹣(﹣5)=5,﹣||,∴在﹣25%,0.0001,0,﹣(﹣5),﹣||中,负数有﹣25%,﹣||,共2个.故选:B .【点睛】本题考查了正数和负数,绝对值以及相反数,熟记相关定义是解答本题的关键. 3.(2022·全国·七年级专题练习)若与1互为相反数,那么( ) A . B .0C .1D .【答案】B【分析】根据互为相反数的两数和为0,可得a+1=0即可. 【详解】解:∵互为相反数的两数和为0, ∴a +1=0, 故选B .()5--25--25-25=-25-25-a 1a +=1-2-【点睛】本题考查相反数,掌握相反数的性质是解题关键.4.(2022·湖南·茶陵县教育教学研究室模拟预测)2021年2月25日习近平总书记在全国脱贫攻坚总结表彰大会上庄严宣告:“我国脱贫攻坚战取得了全面胜利,现行标准下9899万农村贫困人口全部脱贫.”用科学记数法表示9899万,其结果是( ) A . B . C . D .【答案】B【分析】科学记数法的表现形式为的形式,其中,n 为整数,确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同,当原数绝对值大于等于10时,n 是正数,当原数绝对值小于1时n 是负数;由此进行求解即可得到答案. 【详解】解:9899万=98990000= 故选B .【点睛】本题主要考查了科学记数法,解题的关键在于能够熟练掌握科学记数法的定义.5.(2022·河北·涿州市双语学校七年级期末)某检修小组乘一辆汽车沿东西方向的公路检修线路,约定向东为正,某天从A 地出发到收工时行走记录(长度单位:千米)为:+15,﹣2,+5,﹣1,+10,﹣3.则收工时,检修小组在A 地在( ) A .东边24千米处 B .西边24千米处 C .东边14千米处 D .以上都不对【答案】A【分析】把行走记录相加,然后根据有理数的加法运算法则进行计算,如果结果是正数则在A 地东边,是负数则在A 地西边.【详解】解:(+15)+(-2)+(+5)+(-1)+(+10)+(-3) =15-2+5-1+10-3 =30-6 =24收工时在A 地东边24千米处,故答案为:A .【点睛】本题考查了正负数的意义,以及有理数的加法运算,根据有理数的加法运算法则进行计算是解题的关键.80.989109⨯79.89910⨯698.9910⨯69.89910⨯10n a ⨯110a ≤<79.89910⨯∴6.(2022·全国·七年级课时练习)式子的最小值是( ) A .0 B .1 C .2 D .3【答案】B【分析】当绝对值有最小值时,式子有最小值,进而得出答案. 【详解】解:当绝对值最小时,式子有最小值, 即|x -2|=0时,式子最小值为0+1=1. 故选:B .【点睛】本题考查了绝对值的性质,任意数的绝对值为非负数,即绝对值最小为0,进而求得式子的最小值. 7.(2022·江苏·泰州中学附属初中七年级阶段练习)计算( )A .B .C .D .【答案】D【分析】根据乘法的含义,可得:2m ,根据乘方的含义,可得:,据此求解即可. 【详解】解:2m +.故选:D .【点睛】此题主要考查了有理数的乘法、有理数的乘方,解答此题的关键是要明确乘法、乘方的含义. 8.(2022·浙江·七年级专题练习)若|m |=5,|n |=2,且mn 异号,则|m ﹣n |的值为( ) A .7 B .3或﹣3C .3D .7或3【答案】A【分析】先根据绝对值的性质得出m =±5,n =±2,再结合m 、n 异号知m =5、n =﹣2或m =﹣5、n =2,继而分别代入计算可得答案. 【详解】解:∵|m |=5,|n |=2, ∴m =±5,n =±2, 又∵m 、n 异号,∴m =5、n =﹣2或m =﹣5、n =2,当m =5、n =﹣2时,|m ﹣n |=|5﹣(﹣2)|=7; 当m =﹣5、n =2时,|m ﹣n |=|﹣5﹣2|=7; 综上|m ﹣n |的值为7,21x -+222333m n ++⋅⋅⋅++⨯⨯⋅⋅⋅⨯=个个32m n +23+m n 23m n +23n m +222m ++⋅⋅⋅+=个333n ⨯⨯⋅⋅⋅⨯=个3n222333m n ++⋅⋅⋅++⨯⨯⋅⋅⋅⨯=个个3n故选:A .【点睛】本题考查了有理数的减法和绝对值,解题的关键是确定m 、n 的值. 9.(2022·河北秦皇岛·七年级期末)计算的结果是( )A .B .C .-1D .1【答案】A【分析】先确定运算结果的符号,再把除法运算化为乘法运算,再计算即可. 【详解】解:故选A【点睛】本题考查的是有理数的乘除混合运算,掌握“有理数的乘除混合运算的运算顺序”是解本题的关键. 10.(2022·湖南永州·七年级期中)规定两正数,之间的一种运算,记作:,如果,那么.例如,则.那么( )A .3B .4C .5D .6【答案】B【分析】根据新定义运算的法则,求出的多少次方等于即可.【详解】解:因为, 所以4,故选:B .【点睛】本题考查了乘方的运算和新定义运算,解题关键是准确理解新定义运算,熟练运用乘方的意义求解.11.(2022·浙江·七年级专题练习)若,,,则的值为( )A .﹣39B .7C .15D .47【答案】D【分析】利用乘方的意义化简各式,确定出a ,b ,c 的值,原式去括号后代入计算即可求出值. 【详解】解:由题意得 :,,,∴()()1155⎛⎫-÷-⨯- ⎪⎝⎭125-125()()1155⎛⎫-÷-⨯- ⎪⎝⎭a b (),a b c a b =(),a b c =328=()2,83=11,381⎛⎫= ⎪⎝⎭13181411()813=11381⎛⎫= ⎪⎝⎭,22a 33b24c()a b c ---⎡⎤⎣⎦()224a =--=-327273b 2416c ()a b c ---⎡⎤⎣⎦=4+27+16 =47 故选:D【点睛】本题主要考查有理数的混合运算,熟练掌握有理数的乘方法则和去括号法则是解题的关键. 12.(2022·全国·七年级课时练习)对于有理数a 、b ,有以下几种说法,其中正确的说法个数是( ) ①若a +b =0,则a 与b 互为相反数;②若a +b <0,则a 与b 异号;③a +b >0,则a 与b 同号时,则a >0,b >0;④|a |>|b |且a 、b 异号,则a +b >0;⑤|a |<b ,则a +b >0. A .3个 B .2个 C .1个 D .0个【答案】A【分析】根据相反数的意义:只有符号不同的两个数互为相反数,若a +b =0,移项可得a =-b ,满足相反数的定义,故a 与b 互为相反数,可判定①;举一个反例满足a +b <0,可以取a 与b 同时为负数满足条件,但a 与b 不异号,可判定②;根据条件可得a +b 大于0,且a 与b 同号,可得a 与b 只能同时为正,进而得到a 、b 大于0,可判定③;举一个反例,例如a =﹣3,b =2,满足条件,但是a +b =﹣1<0,可判定④;由|a |<b ,所以b >0,所以a +b >0,可判定⑤.【详解】解:①若a +b =0,则a =﹣b ,即a 与b 互为相反数,故①正确; ②若a +b <0,若a =﹣1,b =﹣2,a +b =﹣3<0,但是a 与b 同号,故②错误; ③a +b >0,若a 与b 同号,只有同时为正,故a >0,b >0,故③正确;④若|a |>|b |,且a ,b 异号,例如a =﹣3,b =2,满足条件,但是a +b =﹣1<0,故④错误. ⑤由|a |<b ,所以b >0,所以a +b >0,故⑤正确; 则正确的结论有①③⑤,共3个. 故选:A .【点睛】此题考查了有理数的加法运算,熟练掌握有理数的加法运算法则是解本题的关键. 13.(2022·山东滨州·七年级期末)已知a 、b 互为相反数,e 的绝对值为,m 与n 互为倒数,则的值为( )a b c a b c =-+-427163293a b e mn ++-A .1B .3C .0D .无法确定【答案】C 【分析】由a 、b 互为相反数,可得.由e 的绝对值为,可得,所以.由m 与n 互为倒数,可得.所以.故选C . 【详解】解:由已知得:a 、b 互为相反数,,e 的绝对值为,,,m 与n 互为倒数,,, 故选C .【点睛】本题主要考查知识点为:相反数的定义、倒数的定义、绝对值的性质,平方的性质.熟练掌握相反数的定义、倒数的定义、绝对值的性质,平方的性质,是解决此题的关键.14.(2022·河南·延津县清华园学校七年级阶段练习)正方形纸板ABCD 在数轴上的位置如图所示,点A ,D 对应的数分别为1和0,若正方形纸板ABCD 绕着顶点顺时针方向在数轴上连续无滑动翻转,则在数轴上与2022对应的点是( )A .DB .C C .BD .A【答案】C 【分析】分析出前几次点对应的数值,找到规律,即可求解.【详解】由图可知,旋转一次:再旋转一次:0a b +=33e =29e =1mn =209=99=033a b e mn ++-+-∴0a b +=3∴3e =∴29e=∴1mn =∴209=99=033a b e mn ++-+-10A D --、2B -3C -再旋转一次:再旋转一次:依次循环发现:四个点依次循环,对应的点为故选:C .【点睛】此题主要考查数轴上点的规律探索,解题的关键是理解题意并找到点的运动轨迹.二、填空题(本题共4个小题;每个小题3分,共12分,把正确答案填在横线上)15.(2022·江苏·泰州市姜堰区南苑学校七年级)如图所示数轴,则数a ,b ,,中最小的是_______.【答案】–b【分析】根据a ,b 在数轴上的位置确定a ,b 的符号及它们的绝对值即可得出答案.【详解】解:由图可知a <0<b ,且|b |>|a |,∴-b <a <-a <b ,∴最小的是-b ,故答案为:-b .【点睛】本题主要考查实数的大小比较,关键是要能根据a ,b 在数轴上的位置确定出-a ,-b 在数轴上的位置.16.(2022·河南郑州·七年级期末)请你在心里任意想一个两位数,然后把这个数的十位数字与个位数字相加,再用原来的两位数减去它们的和,会得到一个新数,然后重复上面的过程,把新的两位数的十位数字与个位数字再相加,用新的两位数减去这个和,一直这样重复下去,直到所得的数不再是两位数为止,则最终你得到的数字是______.【答案】9【分析】可任意选几个两位数,根据题意进行操作,从而可得出结果.【详解】解:当心里想的一个两位数是12时,则:12-(1+2)=9,当心里想的一个两位数是21时,则:21-(2+1)=18,18-(1+8)=9,当心里想的一个两位数是35时,则:35-(3+5)=27,27-(2+7)=18,18-(1+8)=9,……故最终得到的数是:9,4D -5A -A B C D 、、、2022=45052⨯+2022∴B a -b-故答案为:9.【点睛】本题考查了数字的变化规律,解题的关键是理解清楚题意,多列几个数进行求证.17.(2022·全国·七年级课时练习)已知某快递公司的收费标准为:寄一件物品不超过5千克,收费13元;超过5千克的部分每千克加收2元.圆圆在该快递公司寄一件8千克的物品,需要付费_______元.【答案】19【分析】根据题意列出算式,计算求值即可.【详解】解:圆圆在该快递公司寄一件8千克的物品,超过了5千克,需付费(元),故答案为:.【点睛】本题考查有理数的混合运算,读懂题意,准确判断付费标准是解决问题的关键.18.(2022·全国·七年级课时练习)一质点P 从距原点1个单位的A 点处向原点方向跳动,第一次跳动到OA 的中点处,第二次从点跳动到O 的中点处,第三次从点跳动到O 的中点处,如此不断跳动下去,则第5次跳动后,该质点到原点O 的距离为_____________.【答案】 【分析】根据题意分析可得:每次跳动后,到原点O 的距离为跳动前的一半.【详解】解:依题意可知,第n 次跳动后,该质点到原点O 的距离为, ∴第5次跳动后,该质点到原点O 的距离为. 故答案为. 【点睛】本题是一道找规律的题目,这类题型在中考中经常出现.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.三、解答题(本题共8道题,19-21每题6分,22-25每题8分,26题10分,满分60分)19.(2022·全国·七年级单元测试)把下列各数:,,,, (1)分别在数轴上表示出来:∴()13+852=13+6=19-⨯191A 1A 1A 2A 2A 2A 3A 13212n132132()4-+3-0213-1.5(2)将上述的有理数填入图中相应的圈内.【答案】(1)见解析(2)见解析【分析】(1)根据有理数在数轴上对应的点解决此题.(2)根据正数整数、负数的定义解决此题.(1),∴,,,,在数轴上表示为:(2)如图所示:【点睛】本题主要考查负数、整数和正数的意义,熟练掌握负数、整数、正数的意义是解决本题的关键. 20.(2021·内蒙古·通辽市科尔沁区木里图学校七年级期中)计算题:(1) (2) 【答案】 (1) (2)【分析】(1)先算乘方和括号里面,再算除法,然后相加即可;()4=4-+-3=3-()4-+3-0213-1.523(2)(47)12-+-÷--117313()(48)126424-+-⨯-12(2)利用乘法的分配率求解即可;(1)解:;(2)解:;21.(2022·全国·七年级专题练习)在下面给出的数轴中,点A 表示1,点B 表示﹣2,回答下面的问题:(1)A 、B 之间的距离是(2)观察数轴,与点A 的距离为5的点表示的数是: ;(3)若将数轴折叠,使点A 与﹣3表示的点重合,则点B 与数 表示的点重合;(4)若数轴上M 、N 两点之间的距离为2012(M 在N 的左侧),且M 、N 两点经过(3)中折叠后互相重合,则M 、N 两点表示的数分别是:M : N : .【答案】(1)3(2)﹣4或6(3)0(4)﹣1007,1005【分析】(1) 根据两点间的距离公式即可得到结论;(2)分所求点在点A 的左边和右边两种情况解答;(3)根据中心对称列式计算即可得解;(4)根据中点的定义求出MN 的一半,然后分别列式计算即可得解.(1)A 、B 之间的距离是.23(2)(47)12-+-÷--34312=-÷-421=--1=117313()(48)126424-+-⨯-=44+5636+26--=80+82-=21(2)3--=故答案为:3;(2)(2)与点A 的距离为5的点表示的数是:或.故答案为:﹣4或6;(3)则A 点与﹣3重合,则对称点是,则数B 关于﹣1的对称点是:0. 故答案为:0;(4)由对称点为,且M 、N 两点之间的距离为2012(M 在N 的左侧)可知,M 点表示数,N 点表示数. 故答案为:﹣1007,1005.【点睛】本题考查了数轴的相关知识,解答此题的关键是利用了数轴上两点间的距离,中点计算公式,注意分类讨论思想与数形结合思想的应用.22.(2022·全国·七年级专题练习)某摩托车厂本周计划每日生产250辆摩托车,由于工人实行轮休,每日上班人数不一定相等,实际每日生产量与计划量相比情况如下表(增加的辆数记为正数,减少的记为负数,单位:辆)根据记录回答: (1)本周六生产了多少辆摩托车?(2)本周总生产量与计划生产量相比,是增加了还是减少了?增加或减少了多少辆?(3)产量最多的一天比产量最少的一天多生产多少辆?【答案】(1)241辆(2)21辆(3)35辆【分析】(1)平均数加上增减的数即可得到周六生产的数量.(2)将所有的增减量相加,若为正则增加,若为负则减少.(3)即求增加数量最多的一天减去减少数量最多的一天.(1)解:本周六生产数量=250﹣9=241(辆);(2)解:﹣5+7﹣3+4+10﹣9﹣25=﹣21,所以减少了21辆.154-=-156+=1(13)12-=-1-11201210072--⨯=-11201210052-+⨯=(3)解:增量最多的是星期五,减量最多的是星期日,∴产量最多的一天比产量最少的一天多生产10﹣(﹣25)=35(辆).【点睛】本题考查有理数的混合运算,难度不大,解题的关键是读懂题意.23.(2022·山东青岛·七年级阶段练习)在解决数学问题的过程中,我们常用到“分类讨论”的数学思想,下面是运用分类讨论的数学思想解决问题的过程,请仔细阅读,并解答问题【提出问题】三个有理数a ,b ,c 满足,求的值. 【解决问题】解:由题意,得a ,b ,c 三个有理数都为正数或其中一个为正数,另两个为负数, ①a ,b ,c 都是正数,即,,时, 则; ②当a ,b ,c 中有一个为正数,另两个为负数时,不妨设,,, 则 综上所述,值为3或-1 【探究】请根据上面的解题思路解答下面的问题:(1)三个有理数a ,b ,c 满足,求的值; (2)若a ,b ,c 为三个不为0的有理数,且,求的值. 【答案】(1)-3或1(2)1 【分析】(1)仿照题目给出的思路和方法,解决(1)即可; (2)根据已知等式,利用绝对值的代数意义判断出a ,b ,c 中负数有2个,正数有1个,判断出abc 的正负,原式利用绝对值的代数意义化简计算即可.(1)解:∵,∴a ,b ,c 都是负数或其中一个为负数,另两个为正数,①当a ,b ,c 都是负数,即,,时,则:; ②a ,b ,c 有一个为负数,另两个为正数时,不妨设,,,则; 0abc >abca b c ++0a >0b >0c >1113a b c a b c a b c a b c++=++=++=0a >0b <0c <()()1111a b c a b c a b c a b c--++=++=+-+-=-abca b c ++0abc <abca b c ++1a b c a b c++=-abc abc 0abc <0a <0b <0c <1113a b c a b c a b c a b c---++=++=---=-0a <0b >0c >1111abca b c a b c a b c-++=++=-++=综上所述,值为-3或1.(2)解:∵a ,b ,c 为三个不为0的有理数,且, ∴a ,b ,c 中负数有2个,正数有1个,∴, ∴. 【点睛】本题主要考查了绝对值的意义、分类讨论的思想方法.能不重不漏的分类,会确定字母的范围和字母的值是关键.24.(2022·全国·七年级课时练习)某超市购进10箱樱桃,若以每箱净重5千克为标准,超过的千克数记为正数,不足的千克数记为负数,称重的记录如下(单位:千克):、、、、、、、0、、,(1)求这10箱樱桃的总净重量是多少千克?(2)若每箱樱桃的进价为480元,超市原计划把这些樱桃全部以零售的形式出售,为保证超市仍然能获利50%,那么樱桃的售价应定为每千克多少元?(3)若第一天超市以(2)中的售价售出了50%的樱桃后,经超市进行商讨研究后,将剩余的樱桃每3千克一盒经过包装后再投入到超市销售,每盒售价为500元,包装成本费为每盒10元,人工费不计,最终全部售出.请计算该超市实际销售樱桃的总利润比原计划销售樱桃的总利润多多少元?【答案】(1)48千克(2)150元(3)多320元【分析】(1)求出称重记录的数据之和,再与标准重量相加,即为总净重量;(2)按照获利50%的标准求出销售额,除以数量,即为单价;(3)求出超市实际销售樱桃的总销售额和原计划销售樱桃的总销售额,再进行计算即可.(1)解:(千克)(千克),答:这10箱樱桃的总净重量是48千克.(2)解:根据题意,销售额应为:(元),每千克售价:(元).答:樱桃的售价应定为每千克150元.(3)解:包装前销售额:(元),abca b c ++1a b c a b c++=-0abc >1abc abc abc abc==0.3-0.2-0.1-0.4-0.3-0.1+0.3-0.3-0.2-0.30.20.10.40.30.10.30.30.22-----+---=-510248⨯-=48010(150%)7200⨯⨯+=720048150÷=1504850%3600⨯⨯=包装后销售额:(元),买入成本:(元)包装成本:(元),实际总利润与原计划总利润之差:(元).答:该超市实际销售樱桃的总利润比原计划销售樱桃的总利润多320元.【点睛】本题考查正负数的实际应用以及有理数四则混合运算的实际应用,读懂题意,理解利润、单价、成本之间的关系是解题的关键.25.(2022·全国·七年级单元测试)如图所示,某数学活动小组编制了一道有理数混合运算题,即输入一个有理数,按照自左向右的顺序运算,可得计算结果,其中“●”表示一个有理数.(1)若●表示2,输入数为,求计算结果;(2)若计算结果为8,且输入的数字是4,则●表示的数是几?(3)若输入数为a ,●表示的数为b ,当计算结果为0时,请求出a 与b 之间的数量关系.【答案】(1)3(2)-17(3)【分析】(1)根据题意代入相应的值运算即可;(2)设●表示的数为x ,根据题意得出相应的方程求解即可;(3)根据输入数为a ,●表示的数为b ,当计算结果为0时,求出a ,b 之间的关系.(1)解:∵●表示2,输入数为∴;(2)解:设●表示的数为x ,根据题意得:,∴;(3)解:∵输入数为a ,●表示的数为b ,当计算结果为0时,∴, 整理得.【点睛】本题主要考查有理数的混合运算,解答的关键理解清楚题意,并掌握相应的运算法则.(243)5004000÷⨯=480104800=⨯81080⨯=(36004000480080)(72004800)+----320=3-21b a =--3-(3)(4)2(1)2122123-⨯-÷+--=÷--=4(4)2(1)8x ⨯-÷+--=17x =-4(1)02a b -+--=21b a =--。
人教版初中七年级上册数学第一章《有理数》单元测试含答案解析
《第1章有理数》一、选择题1.﹣的相反数是()A. B.±C.D.﹣2.下列各组数中,互为相反数的是()A.3和﹣3 B.﹣3和C.﹣3和D.和33.一个数的相反数仍是它本身,这个数是()A.1 B.﹣1 C.0 D.正数4.下面关于表示互为相反数的m与﹣m的点到原点的距离,表述正确的是()A.表示数m的点距离原点较远 B.表示数﹣m的点距离原点较远C.一样远D.无法比较5.下列说法中,正确的是()A.因为相反数是成对出现的,所以0没有相反数B.数轴上原点两旁的两点表示的数是互为相反数C.符号不同的两个数是互为相反数D.正数的相反数是负数,负数的相反数是正数6.下列各对数中,是互为相反数的是()A.﹣(+7)与+(﹣7)B.﹣与+(﹣0.5)C.与D.+(﹣0.01)与7.下列说法正确的是()A.﹣5是的相反数B.与互为相反数C.﹣4是4的相反数D.是2的相反数8.下列各组数中,相等的一组是()A.+2.5和﹣2.5 B.﹣(+2.5)和﹣(﹣2.5)C.﹣(﹣2.5)和+(﹣2.5)D.﹣(+2.5)和+(﹣2.5)9.﹣(﹣2)的值是()A.﹣2 B.2 C.±2 D.410.﹣的相反数是()A.5 B.C.﹣ D.﹣511.一个实数a的相反数是5,则a等于()A.B.5 C.﹣ D.﹣512.如图,数轴上表示数﹣2的相反数的点是()A.点P B.点Q C.点M D.点N13.下列四个数中,其相反数是正整数的是()A.3 B.C.﹣2 D.﹣二、填空题.14.数轴上表示互为相反数的两个点之间的距离为4,则这两个数是.15.若a=13,则﹣a= ;若﹣x=3,则x= .16.数轴上点A、B的位置如图所示,若点B关于点A的对称点为C,则点C表示的数为.三、解答题.17.已知数a,b表示的点在数轴上的位置如图所示.(1)在数轴上表示出a,b的相反数的位置;(2)若数b与其相反数相距20个单位长度,则b表示的数是多少?(3)在(2)的条件下,若数a表示的点与数b的相反数表示的点相距5个单位长度,求a表示的数是多少?18.填表.原数﹣59.2 0 4相反数 3 ﹣719.求下列各数(式)的相反数.(1);(2)5;(3)0;(4)a;(5)x+1.20.化简下列各数的符号.(1)﹣(+4);(2)﹣(﹣7.1);(3)﹣[+(﹣5)];(4)﹣[﹣(﹣8)].21.在数轴上点A表示7,点B、C表示互为相反数的两个数,且点C与点A间的距离为2,求点B、C对应的数是什么?22.小李在做题时,画了一个数轴,在数轴上原有一点A,其表示的数是﹣3,由于粗心,把数轴的原点标错了位置,使点A正好落在﹣3的相反数的位置,想一想,要把数轴画正确,原点要向哪个方向移动几个单位长度?23.如图是具有互为相反数的三角形数阵.当最下面一行的两个数为多少时,这两个数以及它们上面的数的个数为2013.《第1章有理数》参考答案与试题解析一、选择题1.﹣的相反数是()A. B.±C.D.﹣【考点】相反数.【分析】求一个数的相反数的方法就是在这个数的前边添加“﹣”,据此解答即可.【解答】解:﹣的相反数是﹣(﹣)=.故选:A.【点评】此题主要考查了相反数的含义以及求法,要熟练掌握.2.下列各组数中,互为相反数的是()A.3和﹣3 B.﹣3和C.﹣3和D.和3【考点】相反数.【分析】根据相反数的定义分别判定得出答案即可.【解答】解:A、∵3+(﹣3)=0,∴3与﹣3为互为相反数,故选项正确;B、∵﹣3+≠0,∴不是互为相反数,故选项错误;C、∵﹣3﹣≠0,∴不是互为相反数,故选项错误;D、∵3+≠0,∴不是互为相反数,故选项错误;故选:A.【点评】此题主要考查了相反数的定义,利用定义分别判断是解题关键.3.一个数的相反数仍是它本身,这个数是()A.1 B.﹣1 C.0 D.正数【考点】相反数.【分析】根据相反数的定义,0的相反数仍是0.【解答】解:0的相反数是其本身.故选C.【点评】主要考查相反数的定义:只有符号相反的两个数互为相反数.0的相反数是其本身.4.下面关于表示互为相反数的m与﹣m的点到原点的距离,表述正确的是()A.表示数m的点距离原点较远 B.表示数﹣m的点距离原点较远C.一样远D.无法比较【考点】相反数;数轴.【分析】根据数轴表示数的方法与相反数的定义得到m与﹣m的点到原点的距离相等.【解答】解:互为相反数的m与﹣m的点到原点的距离相等.故选C.【点评】本题考查了相反数:a的相反数为﹣a.也考查了数轴.5.下列说法中,正确的是()A.因为相反数是成对出现的,所以0没有相反数B.数轴上原点两旁的两点表示的数是互为相反数C.符号不同的两个数是互为相反数D.正数的相反数是负数,负数的相反数是正数【考点】相反数.【分析】根据0的相反数为0对A进行判断;根据数轴表示数的方法对B进行判断;根据相反数的定义对C、D进行判断.【解答】解:A、0的相反数为0,所以A选项错误;B、数轴上原点两旁且到原点的距离的点所表示的数是互为相反数,所以B选项错误;C、符号不同且绝对值相等的两个数是互为相反数,所以C选项错误;D、正数的相反数是负数,负数的相反数是正数,所以D选项正确.故选D.【点评】本题考查了相反数:a的相反数为﹣a.也考查了数轴.6.下列各对数中,是互为相反数的是()A.﹣(+7)与+(﹣7)B.﹣与+(﹣0.5)C.与D.+(﹣0.01)与【考点】相反数.【分析】相反数的概念:只有符号不同的两个数叫做互为相反数.【解答】解:﹣(+7)=﹣7,+(﹣7)=﹣7,故这对数不互为相反数,故本选项错误;B、﹣与﹣(0.5)不互为相反数,故本选项错误;C、﹣1=﹣,与互为相反数,故本选项正确;D、+(﹣0.01)=﹣0.01,﹣ =﹣0.01,故这对数不互为相反数,故本选项错误;故选C.【点评】本题考查了相反数的知识,属于基础题,解答本题的关键是掌握相反数的定义.7.下列说法正确的是()A.﹣5是的相反数B.与互为相反数C.﹣4是4的相反数D.是2的相反数【考点】相反数.【专题】存在型.【分析】根据相反数的定义对各选项进行逐一分析即可.【解答】接:A、∵﹣5与5是只有符号不同的两个数,∴﹣5的相反数是5,故本选项错误;B、∵﹣与,∴﹣的相反数是,故本选项错误;C、∵﹣4与4是只有符号不同的两个数,∴﹣4的相反数是4,故本选项正确;D、∵﹣与是只有符号不同的两个数,∴﹣的相反数是,故本选项错误.故选C.【点评】本题考查的是相反数的定义,即只有符号不同的两个数叫做互为相反数.8.下列各组数中,相等的一组是()A.+2.5和﹣2.5 B.﹣(+2.5)和﹣(﹣2.5)C.﹣(﹣2.5)和+(﹣2.5)D.﹣(+2.5)和+(﹣2.5)【考点】有理数大小比较.【分析】根据同号得正,异号得负可知,A,B,C中都互为相反数,相等的一组是D.【解答】解:根据同号得正,异号得负可排除A,B,C.故选D.【点评】简化符号可根据同号得正,异号得负求得.9.﹣(﹣2)的值是()A.﹣2 B.2 C.±2 D.4【考点】相反数.【分析】根据相反数的定义直接求得结果.【解答】解:﹣(﹣2)=2,故选B【点评】本题主要考查了相反数的性质,只有符号不同的两个数互为相反数,0的相反数是0.10.(•宜宾)﹣的相反数是()A.5 B.C.﹣ D.﹣5【考点】相反数.【分析】根据只有符号不同的两个数互为相反数,可得一个数的相反数.【解答】解:﹣的相反数是,故选B.【点评】本题考查了相反数,在一个数的前面加上负号就是这个数的相反数.11.(2012•大庆)一个实数a的相反数是5,则a等于()A.B.5 C.﹣ D.﹣5【考点】实数的性质.【分析】根据只有符号不同的两个数互为相反数,列出方程求解即可.【解答】解:根据题意得,﹣a=5,解得a=﹣5.故选D.【点评】本题考查了实数的性质,主要利用了互为相反数的定义,是基础题,熟记概念是解题的关键.12.如图,数轴上表示数﹣2的相反数的点是()A.点P B.点Q C.点M D.点N【考点】数轴;相反数.【分析】根据数轴得出N、M、Q、P表示的数,求出﹣2的相反数,根据以上结论即可得出答案.【解答】解:从数轴可以看出N表示的数是﹣2,M表示的数是﹣0.5,Q表示的数是0.5,P表示的数是2,∵﹣2的相反数是2,∴数轴上表示数﹣2的相反数是点P,故选A.【点评】本题考查了数轴和相反数的应用,主要培养学生的观察图形的能力和理解能力,题型较好,难度不大.13.下列四个数中,其相反数是正整数的是()A.3 B.C.﹣2 D.﹣【考点】相反数.【分析】根据相反数的概念,及正整数的概念,采用逐一检验法求解即可.【解答】解:其相反数是正整数的数本身首先必须是负数则可舍去A、B,而且相反数还得是整数又舍去D.故选C.【点评】主要考查相反数及整数的概念.二、填空题.14.数轴上表示互为相反数的两个点之间的距离为4,则这两个数是2,﹣2 .【考点】相反数;数轴.【分析】先根据互为相反数的定义,可设两个数是x和﹣x(x>0),再根据数轴上两点间的距离等于较大的数减去较小的数列方程计算.【解答】解:设两个数是x和﹣x(x>0),则有x﹣(﹣x)=4,解得:x=2.则这两个数分别是2和﹣2.故答案为:2,﹣2.【点评】本题考查了互为相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号.掌握数轴上两点间的距离的计算方法.15.若a=13,则﹣a= ﹣13 ;若﹣x=3,则x= ﹣3 .【考点】相反数.【分析】根据相反数的定义,即可得出答案.【解答】解:若a=13,则﹣a=﹣13;若﹣x=3,则x=﹣3;故答案为:﹣13,﹣3.【点评】本题考查了相反数的知识,解答本题的关键是掌握相反数的定义.16.数轴上点A、B的位置如图所示,若点B关于点A的对称点为C,则点C表示的数为﹣5 .【考点】数轴.【专题】数形结合.【分析】点A表示的数是﹣1,点B表示的数是3,所以,|AB|=4;点B关于点A的对称点为C,所以,点C到点A的距离|AC|=4,即,设点C表示的数为x,则,﹣1﹣x=4,解出即可解答;【解答】解:如图,点A表示的数是﹣1,点B表示的数是3,所以,|AB|=4;又点B关于点A的对称点为C,所以,点C到点A的距离|AC|=4,设点C表示的数为x,则,﹣1﹣x=4,x=﹣5;故答案为:﹣5.【点评】此题综合考查了数轴、绝对值的有关内容,用几何方法借助数轴来求解,非常直观,且不容易遗漏,体现了数形结合的优点.三、解答题.17.已知数a,b表示的点在数轴上的位置如图所示.(1)在数轴上表示出a,b的相反数的位置;(2)若数b与其相反数相距20个单位长度,则b表示的数是多少?(3)在(2)的条件下,若数a表示的点与数b的相反数表示的点相距5个单位长度,求a表示的数是多少?【考点】相反数;数轴.【专题】数形结合.【分析】(1)根据互为相反数的点到原点的距离相等在数轴上表示出﹣a,﹣b;(2)先得到b表示的点到原点的距离为10,然后根据数轴表示数的方法得到b表示的数;(3)先得到﹣b表示的点到原点的距离为10,再利用数a表示的点与数b的相反数表示的点相距5个单位长度,则a表示的点到原点的距离为5,然后根据数轴表示数的方法得到a表示的数.【解答】解:(1)如图,;(2)数b与其相反数相距20个单位长度,则b表示的点到原点的距离为10,所以b表示的数是﹣10;(3)因为﹣b表示的点到原点的距离为10,而数a表示的点与数b的相反数表示的点相距5个单位长度,所以a表示的点到原点的距离为5,所以a表示的数是5.【点评】本题考查了相反数:a的相反数为﹣a.也考查了数轴.18.填表.原数﹣5﹣3 9.2 0 47相反数﹣5 3 ﹣9.2 0 ﹣4﹣7【考点】相反数.【分析】根据只有符号不同的两个数互为相反数,可得答案.【解答】解:原数﹣5﹣3 9.2 0 47相反数5 3 ﹣9.2 0 ﹣4﹣7故答案为:4,﹣3,﹣9.2,0,﹣4,7.【点评】本题考查了相反数,在一个数的前面加上负号就是这个数的相反数.19.求下列各数(式)的相反数.(1);(2)5;(3)0;(4)a;(5)x+1.【考点】相反数.【分析】根据相反数的定义,a的相反数是﹣a,分别得出即可.【解答】解:(1)的相反数为:;(2)5的相反数为:﹣5;(3)0的相反数为:0;(4)a的相反数为:﹣a;(5)x+1的相反数为:﹣x﹣1.【点评】此题主要考查了相反数的定义,熟练掌握相关定义是解题关键.20.化简下列各数的符号.(1)﹣(+4);(2)﹣(﹣7.1);(3)﹣[+(﹣5)];(4)﹣[﹣(﹣8)].【考点】相反数.【分析】去括号时,若括号前面是“+”则可直接去掉,若括号前面是“﹣”则括号里面各项需变号.【解答】解:(1)﹣(+4)=﹣4;(2)﹣(﹣7.1)=7.1;(3)﹣[+(﹣5)]=﹣5;(4)﹣[﹣(﹣8)]=﹣8.【点评】本题考查去括号的知识,属于基础题,注意掌握去括号时,若括号前面是“+”则可直接去掉,若括号前面是“﹣”则括号里面各项需变号.21.在数轴上点A表示7,点B、C表示互为相反数的两个数,且点C与点A间的距离为2,求点B、C对应的数是什么?【考点】相反数;数轴.【分析】根据数轴上两点间的距离等于较大的数减去较小的数列式计算,再根据相反数的定义写出最后答案.【解答】解:∵数轴上A点表示7,且点C到点A的距离为2,∴C点有两种可能5或9.又∵B,C两点所表示的数互为相反数,∴B点也有两种可能﹣5或﹣9.故B:﹣5,C:5或B:﹣9,C:9.【点评】本题综合考查了数轴和相反数:本题考查了互为相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号.掌握数轴上两点间的距离的计算方法.22.小李在做题时,画了一个数轴,在数轴上原有一点A,其表示的数是﹣3,由于粗心,把数轴的原点标错了位置,使点A正好落在﹣3的相反数的位置,想一想,要把数轴画正确,原点要向哪个方向移动几个单位长度?【考点】数轴.【专题】综合题.【分析】先根据题意画出数轴,便可直观解答,点A的相反数是3,可得出原点需要向右移动.【解答】解:如图所示,可得应向右移动6个单位,故答案为原点应向右移动6个单位.【点评】此题综合考查了对数轴概念的理解,用几何方法借助数轴来求解,非常直观,且不容易遗漏,体现了数形结合的优点.23.如图是具有互为相反数的三角形数阵.当最下面一行的两个数为多少时,这两个数以及它们上面的数的个数为2013.【考点】规律型:数字的变化类.【专题】计算题;规律型;实数.【分析】根据题意归纳总结得到一般性规律,确定出所求即可.【解答】解:第一行,数值为1个数为1个,总个数为1;第二行,数值为+2,﹣2个数为2,总数为3;第三行,数值为+3,﹣3个数为2,总数为5,依此类推,第n行,数值为+n,﹣n个数为2,总数为2n﹣1,故令2n﹣1=2013,解得:n=1007,则这两个数为+1007和﹣1007.【点评】此题考查了规律型:数字的变化类,弄清题中的规律是解本题的关键.课后小知识--------------------------------------------------------------------------------------------------小学生每日名人名言1、读书要三到:心到、眼到、口到2、一日不读口生,一日不写手生。
人教版七年级数学上册第一章 有理数 单元测试题 (含答案)
人教版七年级数学上册第一单元测试题一、选择题(每小题3分,共30分)1.如果将“收入100元”记作“+100元”,那么“支出50元”应记作()A.+50元B.-50元C.+150元D.-150元2.在有理数-4,0,-1,3中,最小的数是()A.-4 B.0 C.-1 D.33.如图,数轴上有A,B,C,D四个点,其中表示2的相反数的点是()A.点A B.点B C.点C D.点D4.2016年第一季度,某市“蓝天白云、繁星闪烁”天数持续增加,获得省环境空气质量生态补偿资金408万元.408万用科学记数法表示正确的是()A.408×104B.4.08×104C.4.08×105D.4.08×1065.下列算式正确的是()A.(-14)-5=-9 B.0-(-3)=3C.(-3)-(-3)=-6 D.|5-3|=-(5-3)6.有理数(-1)2,(-1)3,-12,|-1|,-(-1),-1-1中,化简结果等于1的个数是() A.3个B.4个C.5个D.6个7.将一把刻度尺按如图所示放在数轴上(数轴的单位长度是1cm),刻度尺上的“0cm”和“8cm”分别对应数轴上的-3.6和x,则x的值为()A.4.2 B.4.3 C.4.4 D.4.58.有理数a,b在数轴上的位置如图所示,下列各式成立的是()A.b>0 B.|a|>-b C.a+b>0 D.ab<09.若|a|=5,b=-3,则a-b的值为()A.2或8 B.-2或8 C.2或-8 D.-2或-810.观察下列算式:21=2,22=4,23=8,24=16,25=32,26=64,27=128,28=256,…用你所发现的规律得出22016的末位数字是()A.2 B.4 C.6 D.8二、填空题(每小题3分,共24分)11.-3的相反数是________,-2018的倒数是________.12.在数+8.3,-4,-0.8,-15,0,90,-343,-|-24|中,负数有___ _______,分数有___________________.13.绝对值大于4而小于7的所有整数之和是________.14.点A ,B 表示数轴上互为相反数的两个数,且点A 向左平移8个单位到达点B ,则这两点所表示的数分别是________和________.15.如图是一个简单的数值运算程序.当输入x 的值为-1时,则输出的数值为________.输入x ―→×(-3)―→-2―→输出16.太阳的半径为696000千米,用科学记数法表示为________千米;把210400精确到万位是________. 17.已知(a -3)2与|b -1|互为相反数,则式子a 2+b 2的值为________.18.填在下面各正方形中的四个数之间都有一定的规律,据此规律得出a +b +c =________.三、解答题(共66分)19.(8分)将下列各数在如图所示的数轴上表示出来,并用“>”把这些数连接起来. -112,0,2,-|-3|,-(-3.5).20.(16分)计算:(1)5×(-2)+(-8)÷(-2); (2)⎣⎢⎡⎦⎥⎤2-5×⎝⎛⎭⎫-122÷⎝⎛⎭⎫-14;(3)(-24)×⎝⎛⎭⎫12-123-38; (4)-14-(1-0×4)÷13×[(-2)2-6].21.(10分)小明早晨跑步,他从自己家出发,向东跑了2km到达小彬家,继续向东跑了1.5km到达小红家,然后又向西跑了4.5km到达学校,最后又向东,跑回到自己家.(1)以小明家为原点,向东为正方向,用1个单位长度表示1km,在图中的数轴上,分别用点A表示出小彬家,用点B表示出小红家,用点C表示出学校的位置;(2)求小彬家与学校之间的距离;(3)如果小明跑步的速度是250m/min,那么小明跑步一共用了多长时间?22.(8分)某人用400元购买了8套儿童服装,准备以一定的价格出售,如果每套儿童服装以55元的价格为标准,超出的记作正数,不足的记作负数,记录如下(单位:元):+2,-3,+2,+1,-2,-1,0,-2.当他卖完这8套儿童服装后是盈利还是亏损?盈利(或亏损)多少?23.(12分)某校七(1)班学生的平均身高是160厘米,下表给出了该班6名学生的身高情况(单位:厘米).(1)列式计算表中的数据a和b;(2)这6名学生中谁最高?谁最矮?最高与最矮学生的身高相差多少?(3)这6名学生的平均身高与全班学生的平均身高相比,在数值上有什么关系?(通过计算回答)24.(12分)下面是按规律排列的一列数: 第1个数:1-⎝⎛⎭⎫1+-12;第2个数:2-⎝⎛⎭⎫1+-12⎣⎡⎦⎤1+(-1)23⎣⎡⎦⎤1+(-1)34;第3个数:3-⎝⎛⎭⎫1+-12⎣⎡⎦⎤1+(-1)23⎣⎡⎦⎤1+(-1)34⎣⎡⎦⎤1+(-1)45⎣⎡⎦⎤1+(-1)56. (1)分别计算这三个数的结果(直接写答案);(2)写出第2017个数的形式(中间部分用省略号,两端部分必须写详细),然后推测出结果.参考答案与解析1.B 2.A 3.A 4.D 5.B 6.B 7.C 8.D 9.B 10.C 11.3 -1201812.-4,-0.8,-15,-343,-|-24|+8.3,-0.8,-15,-34313.0 14.4 -4 15.1 16.6.96×105 21万 17.1018.110 解析:找规律可得c =6+3=9,a =6+4=10,b =ac +1=91,∴a +b +c =110. 19.解:数轴表示如图所示,(5分)由数轴可知-(-3.5)>2>0>-112>-|-3|.(8分)20.解:(1)原式=-10+4=-6.(4分)(2)原式=⎝⎛⎭⎫2-54×(-4)=-8+5=-3.(8分) (3)原式=-12+40+9=37.(12分)(4)原式=-1-1×3×(-2)=-1+6=5.(16分) 21.解:(1)如图所示:(3分)(2)2-(-1)=3(km).答:小彬家与学校之间的距离是3km.(6分)(3)(2+1.5+1)×2=9(km)=9000m ,9000÷250=36(min). 答:小明跑步一共用了36min.(10分)22.解:由题意,得55×8+2+(-3)+2+1+(-2)+(-1)+0+(-2)-400=37(元),(5分)所以他卖完这8套儿童服装后是盈利,盈利37元.(8分)23.解:(1)a =154-160=-6,b =165-160=+5.(4分)(2)学生F 最高,学生D 最矮,最高与最矮学生的身高相差11厘米.(8分)(3)-3+2+(-1)+(-6)+3+5=0,所以这6名学生的平均身高与全班学生的平均身高相同,都是160厘米.(12分)24.解:(1)第1个数:12;第2个数:32;第3个数:52.(6分)(2)第2017个数:2017-⎝⎛⎭⎫1+-12⎣⎡⎦⎤1+(-1)23⎣⎡⎦⎤1+(-1)34…⎣⎡⎦⎤1+(-1)40324033⎣⎡⎦⎤1+(-1)40334034=2017-12×43×34×…×40344033×40334034=2017-12=201612.(12分)。
第1章 有理数 人教版七年级数学上册单元测试卷(含答案)
人教版七年级数学上册第一章有理数一、选择题1.在―π3,3.1415,0,―0.333…,―22,2.010010001…中,非负数的个数( )7A.2个B.3个C.4个D.5个2.长江干流上的葛洲坝、三峡向家坝、溪洛渡、白鹤滩、乌东德6座巨型梯级水电站,共同构成目前世界上最大的清洁能走廊,总装机容量71695000千瓦,将71695000用科学记数法表示为( )A.7.1695×107B.716.95×105C.7.1695×106D.71.695×1063.生产厂家检测4个篮球的质量,结果如图所示,超过标准质量的克数记为正数,不足标准质量的克数记为负数,其中最接近标准质量的篮球是( )A.B.C.D.4.下列说法正确的是( )A.1是最小的自然数B.平方等于它本身的数只有1C.任何有理数都有倒数D.绝对值最小的数是05.计算3―(―3)的结果是( )A.6B.3C.0D.-66.下列说法:①有理数与数轴上的点一一对应;②1的平方根是它本身;③立方根是它本身的数是0,1;④对于任意一个实数a,都可以用1⑤任何无理数都是无限不循环小数.正确的有a表示它的倒数.( )个.A.0B.1C.2D.37.把数轴上表示数2的点移动3个单位后,表示的数为( )A.5B.1C.5或-1D.5或18.如果|a|=―a,那么a一定是( )A.正数B.负数C.非正数D.非负数9.法国的“小九九”从“一一得一”到“五五二十五”和我国的“小九九”是一样的,后面的就改用手势了.下面两个图框是用法国“小九九”计算7×8和8×9的两个示例,且左手伸出的手指数不大于右手伸出的手指数.若用法国的“小九九”计算7×9,左、右手依次伸出手指的个数是( )7×8=?8×9=?因为两手伸出的手指数的和为5,未伸出的手指数的积为6,所以7×8=56.7×8=10×(2+3)+3×2=56因为两手伸出的手指数的和为7,未伸出的手指数的积为2,所以8×9=72.8×9=10×(3+4)+2×1=72A .2,4B .1,4C .3,4D .3,110.如图是节选课本110页上的阅读材料,请根据材料提供的方法求和:11×2+12×3+13×4+⋅⋅⋅+12020×2021,它的值是( )上题是利用一系列等式相加消去项达到求和,这种方法不仅限于整数求和,如1―12=11×2①12―13=12×3②13―14=13×4③14―15=14×5④ ……继续写出上述第n 个算式,并把这些算式两边分别相加,会得到:11×2+12×3+13×4+⋅⋅⋅+1n ×(n +1).A .1B .20202021C .20192020D .12021二、填空题11.12的相反数是 . 12.-2的绝对值是 13.定义一种新运算“⊗”,规则如下:a ⊗b =a 2―ab ,例如:3⊗1=32―3×1=6,则4⊗[2⊗(―5)]的值为 .14.如图所示的运算程序中,若开始输入的值为―2,则输出的结果为 .15.若a ―2+|3―b |=0,则3a +2b = .16.若a ,b ,c 都不为0,则 a |a |+b |b |+c |c |+abc |abc | 的值可能是 . 三、解答题17.把下列各数在数轴上表示出来,并用“<”号把它们连接起来.―3,|―3|,32,(―2)2,―(―2)18.将有理数―2.5,0,212023,―35%,0.6分别填在相应的大括号里.2,整数:{ …};负数:{ …};正分数:{ …}19.小明有5张写着不同数字的卡片,完成下列各问题:(1)把卡片上的5个数在数轴上表示出来;(2)从中取出3张卡片,将这3张卡片上的数字相乘,乘积的最大值为 ;(3)从中取出2张卡片,将这2张卡片上的数字相除,商的最小值为 20.把相同的瓷碗按如图方式整齐地叠放在一起.叠放4个时,测量的高度为9.5cm;叠放6个时,测量的高度为12.5cm.(1)根据题意,可知每增加一个瓷碗,高度增加 cm;(2)求碗高;(3)若叠放10个瓷碗,高度为 cm.21.若a,b互为相反数,c,d互为倒数,m的绝对值为2.(1)直接写出a+b=______,cd=____,m=____.的值.(2)求m―cd+3a+3bm22.我们知道,|a|可以理解为|a―0|,它表示:数轴上表示数a的点到原点的距离,这是绝对值的几何意义.进一步地,数轴上的两个点A,B,分别用数a,b表示,那么A,B两点之间的距离为AB=|a―b|,反过来,式子|a―b|的几何意义是:数轴上表示数a的点和表示数b的点之间的距离,利用此结论,回答以下问题:(1)数轴上表示数8的点和表示数3的点之间的距离是_________,数轴上表示数―1的点和表示数―3的点之间的距离是_________.(2)数轴上点A用数a表示,则①若|a―3|=5,那么a的值是_________.②|a―3|+|a+6|有最小值,最小值是_________;③求|a+1|+|a+2|+|a+3|+⋯+|a+2021|+|a+2022|+|a+2023|的最小值.23.数轴上点A表示的数为10,点M,N分别以每秒a个单位长度,每秒b个单位长度的速度沿数轴运动,a,b满足|a-5|+(b-6)2=0.(1)请直接与出a= ,b= ;(2)如图1,点M从A出发沿数轴向左运动,到达原点后立即返回向右运动:同时点N从原点0出发沿数轴向左运动,运动时间为t,点P为线段ON的中点若MP=MA,求t的值:(3)如图2,若点M从原点向右运动,同时点N从原点向左运动,运动时间为t时M运动到点A的右侧,若此时以M,N,O,A为端点的所有线段的长度和为142,求此时点M对应的数.答案解析部分1.【答案】B2.【答案】A3.【答案】B4.【答案】D5.【答案】A6.【答案】B7.【答案】C8.【答案】C9.【答案】A10.【答案】B11.【答案】﹣1212.【答案】213.【答案】―4014.【答案】815.【答案】1216.【答案】0或4或﹣417.【答案】图见解答,―3<3<―(―2)<|―3|<(―2)2218.【答案】解:整数:0,2023;负数:―2.5,―35%;,0.6.正分数:21219.【答案】(1)解:如图所示(2)50(3)-820.【答案】(1)1.5(2)解:设碗高为xcm,根据题意得x+1.5×3=9.5.解方程得,x=5 .答:碗高为5cm .(3)18.521.【答案】(1)0,1,±2;(2)1或―322.【答案】(1)5,2(2)①8或―2;②9;③102313223.【答案】(1)5;6(2)解:①点M 未到达O 时(0<t≤2时),NP=OP=3t ,AM=5t ,OM=10-5t ,MP=3t+10-5t即3t+10-5t=5t ,解得t =107,②点M 到达O 返回,未到达A 点或刚到达A 点时,即当(2<t≤4时),OM=5t-10,AM=20-5t , MP=3t+5t-10即3t+5t-10=20-5t ,解得t =3013③点M 到达O 返回时,在A 点右侧,即t >4时OM=5t-10,AM=5t-20,MP=3t+5t-10,即3t+5t-10=5t-20,解得t =―103(不符合题意舍去).综上t =107或t =3013;(3)解:如下图:根据题意:NO=6t ,OM=5t ,所以MN=6t+5t=11t依题意: NO+OA+AM+AN+OM+MN=MN+MN+OA+MN=33t+10=142,解得t=4.此时M 对应的数为20.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
人教版七年级数学上册第一单元测试题及
答案
一、仔细选一选(30分)
1. 0是()
A.正有理数 B.负有理数 C.整数 D.负整数
2. 中国第一座跨海大桥——杭州湾跨海大桥全长36千米,其中36属于() A.计数 B.测量 C.标号或排序D.以上都不是
3. 下列说法不正确的是( )
A.0既不是正数,也不是负数 B.0的绝对值是0
C.一个有理数不是整数就是分数 D.1是绝对值最小的数
4. 在数- , 0 , 4.5, |-9|, -6.79中,属于正数的有( )个
A.2 B.3 C.4 D.5
5. 一个数的相反数是3,那么这个数是()
A.3 B.-3 C. D.
6. 下列式子正确的是()
A.2>0>-4>-1 B.-4>-1>2>0 C.-4<-1<0<2 D.0<2>-1<-4
7. 一个数的相反数是最大的负整数,则这个数是()
A.1 B.±1 C.0 D.-1
8. 把数轴上表示数2的点移动3个单位后,表示的数为()
A.5 B.1 C.5或1 D.5或-1
9. 大于-2.2的最小整数是()
A.-2 B.-3 C.-1 D.0
10. 学校、家、书店依次座落在一条东西走向的大街上,学校在家的西边20米,书店在家东边100米,张明同学从家里出发,向东走了50米,接着又向西走了70米,此时张明的位置在 ( )
A. 在家
B. 在学校
C. 在书店
D. 不在上述地方
二、认真填一填(本题共30分)
11.若上升15米记作+15米,则-8米表示。
12.举出一个既是负数又是整数的数。
13.计算: __________。
14.计算5.24÷6.55,结果用分数表示是______;用小数表示是________。
15.绝对值大于1而不大于3的整数是。
16.最小的正整数是_____;最大的负整数是_____。
17.比较下面两个数的大小(用“<”,“>”,“= ”)
(1) 1 -2; (2) -0.3;
18.如果点A表示+3,将A 向左移动7个单位长度,再向右移动3个单位长度,则终点表示的数是。
19.相反数等于本身的数是______,绝对值等于本身的数是_______________。
20.观察下面一列数,根据规律写出横线上的数,
-;;-;;;;……;第2013个数是。
三、全面答一答(本题有5个小题,共40分)
21、(8分)把下列各数的序号填在相应的数集内:
①1 ②-③+3.2 ④0 ⑤ •⑥-6.5 ⑦+108 ⑧-4 ⑨-6错误!嵌入对象无效。
.
(1)正整数集合{ …}
(2)正分数集合{ …}
(3)负分数集合{ …}
(4)负数集合{ …}
22、(8分)求0,–2.5,的相反数并把这些数及其相反数表示在数轴上;并按从大到小的顺序排列。
23计算:(6分)
(1)(2)
24、(8分)云云的爸爸驾驶一辆汽车从A地出发,且以A为原点,向东为正方向。
他先向东行驶15千米,再向西行驶25千米,然后又向东行驶20千米,再向西行驶40千米,问汽车最后停在何处?已知这种汽车行驶100千米消耗的油量为8.9升,问这辆汽车这次消耗了多少升汽油?
25、(10分)为参加2012年奥运会,某体育用品公司通过公开招标,接到一批生产比赛用的篮球业务,而比赛用的篮球质量有严格规定,其中误差±5g符合要求,现质检员从中抽取6个篮球进行检查,检查结果如下表:单位:g
①②③④⑤⑥
+3 -2 +4 -6 +1 -3
(1)有几个篮球符合质量要求?
(2)其中质量最接近标准的是几号球?
2012学年第一学期七年级数学第一单元检测
参考答案
一、仔细选一选:
1 C
2 B
3 D
4 A
5 B
6 C
7 A
8 D
9 A 10 B
二、仔细填一填:
11.下降8米
12.答案不唯一;
13. 10;
14. ,0.8;
15.±2,±3
16. 1 ﹣1
17. < <
18. ﹣1
19.0,零或正数,(非负数)
20.
三、全面答一答
21.(1)(①,⑦)
(2)(③,⑤)
(3)(②,⑥,⑨)
(4)(②,⑥,⑧,⑨)
22.解:0的相反数是0;﹣2.5的相反数是2.5;的相反数是﹣;(3分)
画数轴略(2分)
从大到小排列:,2.5, 0,﹣2.5,﹣(3分)
23.(1)20,(2)3
24.①+15-25+20-40=-30(千米)答:在A地西30千米处
②15+25+20+40=100(千米)
因为这种汽车行驶100千米消耗的油量为8.9升,所以本次耗油为8.9升。
25.(1)①②③⑤⑥
(2)⑤。