原核生物翻译
原核生物和真核生物基因表达调控复制、转录、翻译特点的比较
原核生物和真核生物基因表达调控、复制、转录、翻译特点的比较1.相同点:转录起始是基因表达调控的关键环节①结构基因均有调控序列;②表达过程都具有复杂性,表现为多环节;③表达的时空性,表现为不同发育阶段和不同组织器官上的表达的复杂性;2.不同点:①原核基因的表达调控主要包括转录和翻译水平。
真核基因的表达调控主要包括染色质活化、转录、转录后加工、翻译、翻译后加工多个层次。
②原核基因表达调控主要为负调控,真核主要为正调控。
③原核转录不需要转录因子,RNA聚合酶直接结合启动子,由sita因子决定基因表的的特异性,真核基因转录起始需要基础特异两类转录因子,依赖DNA-蛋白质、蛋白质-蛋白质相互作用调控转录激活。
④原核基因表达调控主要采用操纵子模型,转录出多顺反子RNA,实现协调调节;真核基因转录产物为单顺反子RNA,功能相关蛋白的协调表达机制更为复杂。
⑤真核生物基因表达调控的环节主要在转录水平,其次是翻译水平。
原核生物基因以操纵子的形式存在。
转录水平调控涉及到启动子、sita因子与RNA聚合酶结合、阻遏蛋白、负调控、正调控蛋白、倒位蛋白、RNA聚合酶抑制物、衰减子等。
翻译水平的调控涉及SD序列、mRNA的稳定性不稳定(5’端和3’端的发夹结构可保护不被酶水解mRNA的5’端与核糖体结合可明显提高稳定性)、翻译产物及小分子RNA的调控作用。
真核生物基因表达的调控环节较多:在DNA水平上可以通过染色体丢失、基因扩增、基因重排、DNA甲基化、染色体结构改变影响基因表达。
在转录水平主要通过反式作用因子调控转录因子与TATA盒的结合、RNA聚合酶与转录因子-DNA复合物的结合及转录起始复合物的形成。
在转录后水平主要通过RNA修饰、剪接及mRNA运输的控制来影响基因表达。
在翻译水平有影响起始翻译的阻遏蛋白、5’AUG、5’端非编码区长度、mRNA的稳定性调节及小分子RNA。
真核基因调控中最重要的环节是基因转录,真核生物基因表达需要转录因子、启动子、沉默子和增强子。
分子生物学简答题
1.(1)说明基因组的大小和基因组复杂性的含义基因组的大小:指在基因组中DNA的总量基因组复杂性:指基因组中所有单一序列的总长度(2)这个基因组的大小怎样?4000bp(3)这个基因组的复杂性如何?450 bp2.试比较原核生物与真核生物的翻译原核生物与真核生物的翻译比较如下:仅述真核生物的,原核生物与此相反。
①起始Met不需甲酰化②无SD序列,但需要一个扫描过程③tRNA先于mRNA与核糖体小亚基结合④起始因子比较多⑤只一个终止释放因子3.试比较真核生物与原核生物mRNA转录的主要区别原核生物:操纵子RNA聚合酶核心酶加δ因子不需加工与翻译相偶联类核真核生物:单基因RNA聚合酶Ⅱ聚合酶加转录因子需加工故与翻译相分离核内4.激活蛋白(CAP)对转录的正调控作用环腺苷酸(cAMP)受体蛋白CRP,cAMP与CRP结合后所形成的复合物称激活蛋白CAP。
当大肠杆菌生长在缺乏葡萄糖的培养基中时,CAP合成量增加,CAP具有激活乳糖(Lac)等启动子的功能。
一些依赖于CRP的启动子缺乏一般启动子所具有的典型的-35区序列特征(TTGACA)。
因此RNA聚合酶难以与其结合。
CAP的存在(功能):能显著提高酶与启动子结合常数。
主要表现以下二方面:①CAP通过改变启动子的构象以及与酶的相互作用帮助酶分子正确定向,以便与-10区结合,起到取代-35区功能的作用。
②CAP还能抑制RNA聚合酶与DNA中其它位点的结合,从而提高与其特定启动子结合的概率。
5.原核生物与真核生物启动子的主要差别原核生物TTGACA——TATAA T——起始位点-35 -10真核生物增强子——GC——CAAT——TA TAA——5mGpp——起始位点-110 -70 -256.比较DNA复制和RNA转录的异同相同点:DNA复制和RNA转录在原理上是基本一致的,体现在:①这两种合成的直接前提是核苷三磷酸,从它的一个焦磷酸键获得能量促使反应走向合成②两种合成都是一个酶为四种核苷酸工作③两种合成都是以DNA为模板④合成前都必须将双链DNA解旋成单链⑤合成的方向都是5-37.假设从一种生物抽提了核酸,你将用什么简便的方法,区别它是DNA或RNA?是单股或双股?我们可用紫外分光光度计对抽提的核酸进行鉴定。
简述原核生物翻译过程
简述原核生物翻译过程
原核生物翻译是指细菌、嗜藻菌、古菌和叶绿体等原核生物细胞中蛋白质合成的过程。
原核生物翻译的过程包括以下几个步骤:
开始信号识别:翻译因子将转录后的mRNA分子绑定到翻译器上,并在mRNA的开始密码子处识别开始信号。
起始密码子识别:翻译因子在mRNA的起始密码子处识别一个氨基酸密码子,并将其连接到转录因子的氨基端。
合成新氨基酸:翻译因子在mRNA的密码子序列上移动,并逐个识别密码子,将相应的氨基酸连接到转录因子的氨基端。
蛋白质链拼接:转录因子在mRNA上拼接氨基酸,形成新的蛋白质。
原核生物翻译起始过程
原核生物翻译起始过程
相同之处:
(1)都需生成翻译起始复合物;
(2)都需多种起始因子参加;
(3)翻译起始的第一步都需核糖体的大、小亚基先分开;
(4)都需要mRNA和氨酰- tRNA结合到核糖体的小亚基上;
(5)mRNA在小亚基上就位都需一定的结构成分协助。
(6)小亚基结合mRNA和起始者tRNA后,才能与大亚基结合。
(7)都需要消耗能量。
不同之处:
(1)真核生物核糖体是80S(40S+60S);eIF种类多(10多种);起始氨酰- tRNA是met- tRNA(不需甲酰化),mRNA 没有SD序列;mRNA在小亚基上就位需5′端帽子结构和帽结合蛋白以及eIF2;mRNA先于met-tRNA结合到小亚基上。
(2)原核生物核糖体是70S(30S+50S);IF种类少(3种);起始氨酰- tRNA是fmet- tRNA(需甲酰化);需SD序列与16S-tRNA配对结合,rps-1辩认识别序列;小亚基与起始氨酰-tRNA结合后,才与mRNA结合。
细胞生物学考研名词解释
Prokaryotic cell (原核细胞)组成原核生物的细胞。
这类细胞主要特征是没有明显可见的细胞核,同时也没有核膜和核仁,只有拟核,进化地位较低。
由原核细胞构成的生物称为原核生物。
Eukaryotic cell(真核细胞)构成真核生物的细胞称为真核细胞,具有典型的细胞结构,有明显的细胞核、核膜、核仁和核基质;遗传信息量大,并且有特化的膜相结构。
mesosome (中膜体) 中膜体又称间体或质膜体,是细菌细胞质膜向细胞质内陷折皱形成的。
每个细胞有一个或数个中膜体,其中含有细胞色素和琥珀酸脱氢酶,为细胞提供呼吸酶,具有类似线粒体的作用,故又称为拟线粒体。
nucleoid (拟核)细菌细胞具有原始的核,没有核膜,更没有核仁,结构简单。
FPR (荧光漂白恢复) 研究膜蛋白和脂质平移扩散以及溶质通过质膜在细胞内转运的一种技术。
包括三个步骤:荧光染料与膜成分交联,激光照射猝灭(漂白)膜上部分荧光,检测猝灭部位荧光再现速率(由于膜成分的流动性)。
原位杂交用单链RNA或DNA探针通过杂交法对细胞或组织中的基因或mRNA分子在细胞涂片或组织切片上进行定位的方法。
放射自显影技术是利用放射性同位素的电离辐射对乳胶(含AgBr或AgCl)的感光作用,对细胞内生物大分子进行定性、定位与半定量研究的一种细胞化学技术。
IIF(间接免疫荧光法)以荧光素标记抗球蛋白抗体,抗体与相应抗原结合后,荧光标记的抗球蛋白抗体与已结合的抗体发生作用,从而推知抗原或抗体的存在。
原代培养细胞直接从有机体取出组织,通过组织块长出单层细胞,或者用酶消化或机械方法将组织分散成单个细胞,在体外进行培养,在首次传代前的培养称为原代培养。
传10代以内的细胞称为原代培养细胞。
传代培养细胞原代培养形成的单层培养细胞汇合以后,需要进行分离培养,否则细胞会因生存空间不足或由于细胞密度过大引起营养枯竭,将影响细胞的生长,这一分离培养称为传代细胞培养。
进行传代培养的细胞称为传代培养细胞。
生物化学(简单清晰)第12章 翻译
IF-2:促进起始tRNA与小亚基结合。
IF-3:促进大小亚基分离,提高P位 对结合起始tRNA敏感性。
(一)原核生物翻译起始复合物形成
• 核蛋白体大小亚基分离; • mRNA在小亚基定位结合; • 起始氨基酰-tRNA的结合; • 核蛋白体大亚基结合。
1. 核蛋白体大小亚基分离
tRNA在翻译过程 中起接合体(adaptor) 作用,又是氨基酸的运 载体。
氨基酸臂
反密码环
l 氨基酸的活化
(一)氨基酰-tRNA合成酶 (aminoacyl-tRNA synthetase)
氨基酰-tRNA合成酶
氨基酸 + tRNA
氨基酰- tRNA
ATP AMP+PPi
第一步反应
氨基酸+ATP+E —→氨基酰-AMP-E+AMP + PPi
30S小亚基:有mRNA结合位点
50S大亚基: E位:排出位(Exit site)
转肽酶活性
大小亚基共同组成:
A位:氨基酰位 (aminoacyl site) P位:肽酰位 (peptidyl site)
三、tRNA与氨基酸的活化
原 核 肽 链 合 成 终 止 过 程
COO-
RF
5'
UAG
3'
原核生物蛋白质合成的能量计算
氨基酸活化:2个~P
ATP
起始: 1个
GTP
延长: 2个
GTP
终止: 1个
GTP
结论:每合成一个肽键至少消耗4个~P。
多聚核蛋白体
(polysome) 一个mRNA分子可
同时有多个核蛋白体在 进行同一种蛋白质的合 成,这种mRNA和多个 核蛋白体的聚合物称为 多聚核蛋mRNA在小亚基定位结合
第四节原核生物的翻译过程
第四节原核生物的翻译过程无论原核生物还是真核生物,翻译过程可分为三个阶段,即起始(initiation)、延伸(elongation)和终止(termination)。
翻译的速度很快,在37℃为15个氨基酸/秒。
研究翻译过程的方法主要是应用体外翻译系统(如兔网织红细胞裂解物系统)。
一、翻译的起始。
翻译的起始是核糖体的大小亚基、tRNA和mRNA在起始因子的协助下组合成70S起始复合物的过程。
参与起始过程的核糖体亚基由游离存在的和终止后核糖体解离产生的亚基提供。
1. 30S亚基与mRNA的结合。
30S亚基能够识别mRNA编码区上游的一段称为核糖体结合位点(ribosome-binding site)的短序列,也称Shine-Dalgarno序列(SD序列)。
30S亚基单独并不能和mRNA结合,必须有起始因子(initiation factor,IF)。
细菌中有三种起始因子,分别为IF1、IF2和IF3。
IF3促进30S亚基与mRNA的结合;IF2参与起始tRNA与30S亚基的结合;IF1可能只是作为起始复合物的一个组分,只起稳定作用,而不是识别30S亚基中的特别成分。
IF3有两个作用,第一是稳定游离的30S亚基,第二个功能是保证小亚基与mRNA的结合。
只有IF3和小亚基共同作用才能形成正确的起始复合物。
mRNA与30S亚基的结合需要mRNA与16S rRNA之间的碱基配对关系。
在16SrRNA的3’端区域存在与mRNA互补的保守序列CCUCCU。
该序列的突变可抑制翻译的进行。
2.30S-IF3-mRNA复合物与起始tRNA结合。
在mRNA的核糖体结合位点,有一段序列是可译框架起始点的标志,即起始密码子,通常为AUG。
起始AUG由起始tRNA (fMet-tRNAf)识别,而延伸过程中的AUG由Met-tRNAm识别。
fMet-tRNAf在结构上和Met-tRNAm及其他tRNA不同。
起始tRNA携带的是甲酰化的甲硫氨酸,没有游离的氨基,其氨基端不能形成肽键,只能作为起始氨基酸。
原核生物与真核生物DNA复制转录和翻译的特征比较 ppt课件
启动子的识别也比原核生物要复杂得多。原核 生物的RNA聚合酶可以直接起始转录合成RNA 。
原核与真核生物 翻译的特点
1、翻译的相同点 2、翻译的不同点
PPT模板下载:/moban/ 行业PPT模板:/hangye/
优秀PPT下载:/xiazai/ PPT教程:/powerpoint/
Word教程: /word/ Excel教程:/excel/
资料下载:www. /ziliao/
PPT课件下载:www. /kejian/
范文下载:/fanwen/ 试卷下载:/shiti/
教案下载:www. /jiaoan/
1、转录的相同点
RNA合成方向都是从5’到3’,以DNA双链中 的反义链为模版,在RNA聚合酶催化下,以4 种三磷酸腺苷为原料,根据碱基互补配对原则 ,各核苷酸之间通过形成磷酸二酯键,不需要 引物的参与,合成的RNA带有与DNA编码链相 同的序列。转录的基本过程包括模版识别、转 录起始、通过启动子及转录的延伸和终止。
2、DNA复制的不同点
1)真核生物DNA的合成只是在细胞周期 的S期进行,而原核生物则在整个细胞生长 过程中都可进行DNA合成 ; 2)真核生物每条染色质上有多处复制起始 点,而原核生物只有一个起始点;且真核 生物DNA复制的起始需要起始点复合物( ORC)的参与,而原核生物是由多种蛋白 质有序地作用与复制起始点来引发DNA的 复制过程; 3)真核生物DNA的合成所需的RNA引物 及后随链上合成的冈崎片段的长度比原核 生物要短。
范文下载:/fanwen/ 试卷下载:/shiti/
教案下载:www. /jiaoan/
生物化学第14章翻译
第二步反应:酶找相应的tRNA
氨基酰-AMP-E + tRNA
↓
氨基酰-tRNA + AMP + E
氨基酰tRNA合成酶的活性是绝对
专一性的,酶同时对氨基酸和tRNA 高度特异地识别。
氨基酰tRNA合成酶有20种,分别特异
Met f fMet-tRNAi
大肠杆菌起始密码子编码的met须甲酰化
CH3 S 转甲酰基酶 CH2 N10-CHO-FH4 CH2 O H2N CH COO tRNAfMet H-C-HN CH3 S CH2 CH2 CH COO tRNAfMet
真核细胞起始密码子编码的met不须甲酰化
20/56
合成原料:20种有遗传密码的氨基酸
能源:
ATP主要参与氨基酸的活化; GTP提供翻译起始、延长、终止阶段 所需能量
参与的蛋白质因子、酶及酶的辅助因子:
如起始阶段的起始因子、延长阶段的延 长因子、终止阶段的释放因子,转肽酶、
氨基酰-tRNA合成酶。
一、翻译模板mRNA及遗传密码
mRNA是遗传信息的携带者
3. 蛋白质的靶向输送
第一节
蛋白质合成体系
Protein Biosynthesis System
参与蛋白质生物合成的物质包括
三种RNA
–mRNA(messenger RNA, 信使RNA)
–rRNA(ribosomal RNA, 核蛋白体RNA)
–tRNA(transfer RNA, 转移RNA)
终止密码(termination coden):
UAA,UAG,UGA
遗 传 密 码 表
分子生物学复习题1
生物信息的传递(上)——从DNA到RNA一、名词解释1、增强子:DNA上能强化转录起始的序列,能够在启动子任何方向以及任何位置(上游或下游)作用。
2、RNA编辑:某些RNA,特别是mRNA的一种加工方式,发生编辑后,导致DNA所编码的遗传信息的改变。
3、不对称转录:DNA片段转录时,双链DNA中只有一条链作为转录的模板,这种转录方式称为不对称转录。
4、转录泡:是由DNA双链,RNA聚合酶与新合成的转录本RNA局部形成的结构,它贯穿于延长过程的始终。
5、转录单位:DNA链上从启动子直到终止子为止的长度称为一个转录单位。
一个转录单位可以包括一个基因,也可以包括几个基因。
6、选择性剪接:在mRNA前体的剪接过程中,参加剪接的外显子可以不按其线性次序剪接,内含子也可以不被切除而保留,即一个外显子或内含子是否出现在成熟mRNA中是可以选择的,这种剪接方式称为选择性剪接。
二、选择题1、有关RNA转录合成的叙述,其中错误的是 A 。
A、转录过程RNA聚合酶需要引物B、转录时只有一股DNA作为合成RNA的模板C、RNA链的生长方向是5'3'D、所有真核生物RNA聚合酶都不能特异性地识别promoter2、以下有关大肠杆菌转录的叙述,哪一个是正确的? B 。
A、-35区和-10区序列间的间隔序列是保守的B、-35区和-10区序列距离对转录效率非常重要C、转录起始位点后的序列对于转录效率不重要D、-10区序列通常正好位于转录起始位点上游10bp处3、真核生物转录过程中RNA链延伸的方向是 A 。
A、5'3'方向B、3'5'方向C、N端C端D、C端N端4、真核生物mRNA转录后加工不包括 A 。
A、加CCA—OHB、5'端“帽子”结构C、3'端poly(A)尾巴D、内含子的剪接5、以下对DNA聚合酶和RNA聚合酶的叙述中,正确的是: B 。
A、RNA聚合酶的作用需要引物B、两种酶催化新链的延伸方向都是5'3'C、DNA聚合酶能以RNA作模板合成DNAD、RNA聚合酶用NDP作原料三、判断题1、在真核生物中,所有rRNA都是由RNA聚合酶Ⅱ转录的。
第四章(2)原核生物的翻译过程
遗传密码
➢密码子(codon) 在mRNA的开放阅读框架区,以每3个相邻的
核苷酸为一组,代表一种氨基酸(或其他信息),这 种三联体形式的核苷酸序列称为密码子。 ➢起始密码子和终止密码子:
起始密码子(initiation codon):AUG 终止密码子(termination codon) :UAA、UAG、UGA
fMet-tRNAfMet的生成是一碳化合物转移和 利用的过程之一,反应由转甲酰基酶催化,甲 酰基从N10-甲酰四氢叶酸转移到甲硫氨酸的α-氨 基上。
(二)延长因子
大肠杆菌延长因子(elongation factor, EF)有3种: 1.EF-Tu:其功能是与氨酰-tRNA以及GTP结合形成三元
一、mRNA是蛋白质生物合成的直接模板
mRNA的基本结构
Start of genetic message Cap
5
5’-端非翻译区 开放阅读框架
End
Tail
3
3’-端非翻译区
从mRNA 5-端起始密码子AUG到3-端终止密 码子之间的核苷酸序列,称为开放阅读框架 (open reading frame, ORF)。
定义 蛋白质生物合成(protein biosynthesis)也称
翻译(translation),是生物细胞以mRNA为模板, 按照mRNA分子中核苷酸的排列顺序所组成的 密码信息合成蛋白质的过程。
生物学意义
(1)维持多种生命活动 (2)适应环境的变化 (3)参与组织的更新和修复
蛋白质生物合成体系 (补充)
二蛋白质因子起始因子initiationfactorif延长因子elongationfactoref释放因子releasefactorrf参与原核生物翻译的各种蛋白质因子及其生物学功能种类生物学功能起始因子if1占据a位防止结合其他trnaif2促进起始trna与小亚基结合if3促进大小亚基分离提高p位对结合起始trna的敏感性延长因子eftu促进氨基酰trna进入a位结合并分解gtpefts调节亚基efg有转位酶活性促进mrna肽酰trna由a位移至p位促进trna卸载与释放释放因子rf1特异识别uaauag诱导转肽酶转变为酯酶rf2特异识别uaauga诱导转肽酶转变为酯酶rf3可与核蛋白体其他部位结合有gtp酶活性能介导rf1及rf2与核蛋白体的相互作用蛋白质生物合成的能源物质为atp和gtp
翻译生物考试知识点
eIF2结合带有甲硫氨酸的其实tRNA。形成三重复合物(43s复合物)
翻译的延伸
1。在A位点上的密码子的指导下,正确的氨基酰tRNA位于A位点上
2.A位点的氨基酰tRNA与P位点的肽酰tRNA上的肽链形成肽键。
3.在A位点形成的肽酰tRNA和相应的密码子必须易位至P位点,是核糖体为下一循环的密码子识别和肽键的形成做好充分的准备
真核mRNA5‘及3’被修饰,5‘-cap,吸引核糖体到mRNA,结合后会扫描起始密码,3’-polyA机构,提高核糖体循环水品,增强翻译。kozak序列。:部分mRNA有,促进翻译
tRNA:三叶草结构。受体臂,D环,反密码子环,可变环,wU环;3‘端CAA序列
原核生物翻译起始
mRNA通过SD序列的碱基配对募集到小亚基上
当起始密码子与起始tRNA碱基配对后,小亚基构想发生变化导致IF3离去。在IF3离去后,大亚基自由地与小亚基及其负载的IF1,IF2,mRNA和起始tRNA结合。雨打牙祭的结合激活IF2-GTP酶活性,引起GTP水解。水解后IF2-GDP与核糖体和起始tRNA的亲和力降低,导致IF2-GDP和IF1从核糖体释放出来。这样就形成了一个完整的70s核糖体。
EF-G因子。在A位点tRNA构想发生变化是,给携带了GTP的EF-G提供了空间。当EF-G-GTP结合后,在大亚基因子结合中心的催化下水解。EF-G-GDP构想的变化使它可以进入小亚基并刺激A位点tRNA易位。以为完成后,变化了构象的EF-G对核糖体亲和力极大地降低。使延伸因子从核糖体中释放出去
起始tRNA比较特殊。N-乙酸甲硫氨酸(fMet)
3种起始因子催化
第8章蛋白质的生物合成——翻译
第8章蛋白质的生物合成——翻译一、名词解释1.翻译2.密码子3.密码的简并性4.同义密码子5.变偶假说6.移码突变 7.同功受体 8.Anticodon 9.多核糖体 10.Paracodon 11.Signal peptide二、填空题1.蛋白质的生物合成是以___________为模板,以___________为原料直接供体,以_________为合成杨所。
2.生物界共有______________个密码子,其中___________个为氨基酸编码,起始密码子为_________;终止密码子为_______、__________、____________。
3.原核生物的起始tRNA以___________表示,真核生物的起始tRNA以___________表示,延伸中的甲硫氨酰tRNA以__________表示。
4.植物细胞中蛋白质生物合成可在__________、___________和___________三种细胞器内进行。
5.延长因子T由Tu和Ts两个亚基组成,Tu为对热___________蛋白质,Ts为对热________蛋白质。
6.原核生物中的释放因子有三种,其中RF-1识别终止密码子_____________、____________;RF-2识别__________、____________;真核中的释放因子只有___________一种。
7.氨酰-tRNA合成酶对__________和相应的________有高度的选择性。
8.原核细胞的起始氨基酸是_______,起始氨酰-tRNA是____________。
9.原核细胞核糖体的___________亚基上的__________协助辨认起始密码子。
l0.每形成一个肽键要消耗_____________个高能磷酸键,但在合成起始时还需多消耗___________个高能磷酸键。
11.肽基转移酶在蛋白质生物合成中的作用是催化__________形成和_________的水解。
分子生物学 翻译
fMet fMet
Tu GTP
5'
AUG
3'
进 位
成肽
转 位
(四)真核生物延长过程
真核生物肽链合成的延长过程与原核 基本相似,但有不同的反应体系和延长因 子。
另外,真核细胞核蛋白体没有E位,转 位时卸载的tRNA直接从P位脱落。
三、肽链合成的终止
当mRNA上终止密码出现后,多肽链 合成停止,肽链从肽酰-tRNA中释出, mRNA、核蛋白体等分离,这些过程称 为肽链合成终止。
胞浆 胞浆
tRNA rRNA
74-95个核苷酸
28S,5400个核苷酸 18S,2100个核苷酸 5.8S,160个核苷酸 5S, 120个核苷酸
转运氨基酸 与密码子识别
构成核糖体 , 蛋白质合成场 所
S:沉降系数 (1S=10-13秒)
碱基数量:bp, Kb, Mb
原核生物16S rRNA的二级结构
(一)原核生物翻译起始复合物形成
• 核蛋白体大小亚基分离; • mRNA在小亚基定位结合; • 起始氨基酰-tRNA的结合; • 核蛋白体大亚基结合。
1. 核蛋白体大小亚基分离
IF-1 IF-3
2. mRNA在小亚基定位结合
5'
AUG
3'
IF-1
IF-3
S-D序列:
在原核生物mRNA起始密码AUG上 游,存在4~9个富含嘌呤碱的一致性序列, 如-AGGAGG-,称为S-D序列。又称为核 蛋白体结合位点(ribosomal binding site,RBS)
氨基酸的活化形式:氨基酰-tRNA 氨基酸的活化部位:α-羧基 氨基酸与tRNA连接方式:酯键 氨基酸活化耗能:2个~P
为什么原核生物转录和翻译要偶联在一起
为什么原核生物转录和翻译要偶联在一起?与真核生物相比,原核生物基因表达的一个重要特点是,转录和翻译偶联在一起。
具体说,也就是在一个mRNA转录尚未完成时,此mRNA已经合成的区段便开始了蛋白质翻译过程。
这一现象,分子生物学教科书中给出的理由是:只有转录和翻译同时进行,才有可能实现色氨酸操纵子的衰减调控(attenuator)。
学习生物学要注意,教材(包括国际著名教材)中的很多说法都经不住深究,善于思考的同学应该能发现这些经不起推敲的说法。
这种操作子在基因组中占少数,但原核生物所有的编码蛋白质的基因转录和翻译都是偶联。
前几年,有人提出转录和翻译同时进行是为了避免R-loop的形成(1)。
基因转录过程中,新产生的mRNA可能和DNA模板结合形成DNA:RNA双链,另外一条DNA 链单独存在,此状态称为R-loop。
研究显示,R-loop会引起DNA损伤等一些不良效应。
如果新产生的mRNA结合上了蛋白质合成机器-核糖体,mRNA也就没机会与DNA互补配对了。
因此,有关学者提出,转录和翻译紧密偶联是为了避免R-loop的形成及其对生物体的不良影响。
这种说法至少在逻辑上没有漏洞,属于令人满意的假说。
将来也许证明R-loop的危害不是太大,或者核糖体的阻隔效果不够强,从而说明转录和翻译紧密偶联对避免R-loop的形成及其对生物体的不良影响意义不大。
但目前,这种假说至少还是应该关注。
去年,Science上发表了三篇论文(一篇评论+两篇原始研究论文)(2-4),发现核糖体有效地结合在mRNA上并不断向前移动可以起到推着RNA聚合酶向前走、防止倒退的作用。
"Efficient binding and progression of ribosomes along mRNA increase the speed of RNA polymerase" "prevents retraction of the emerging mRNA into RNA polymerase, and thus inhibitsbacktracking-associated pauses that slow RNA polymerase in the absence of the ribosome."看完了这些文章,喜欢思考问题的读者会想到,RNA聚合酶倒退(backtracking)是什么大事吗?我查了查文献,确是有一些关于backtracking的介绍,但也没看出来危害有多大。
蛋白质生物合成—翻译及翻译后过程
9
精选课件ppt
真核生物mRNA的特点
真核生物没有S-D序列, 靠帽子结构识别核糖体 真核生物的起始密码位 于Kozak序列 (CCACCAUGG)中, 增加翻译起始的效率
10
精选课件ppt
二、生物合成的场所 — 核蛋白体 (Ribosomes)
11
精选课件ppt
核蛋白体蛋白及rRNA的组成特点
31
精选课件ppt
进 位
成肽
转 位
32
精选课件ppt
三、肽链合成终止 (Termination)
1. 终止密码的辨认及肽链从 肽酰-tRNA水解出。
2. mRNA从核蛋白体中分 离及大小亚基的拆开
3. 终止过程需释放因子 (RF)。
33
精选课件ppt
释放因子(release factor, RF):与肽链合成 终止相关的蛋白因子
等是由小泡介导的 49
精选课件ppt
6
精选课件ppt
7
精选课件ppt
阅读框架(reading frames)
开放阅读框(open reading frame, ORF): 从起始密码AUG 到终止密码处的正确可阅读序列
8
精选课件ppt
原核生物mRNA的特点
S-D序列:原核生物mRNA起始密码AUG上游8~13核苷酸 处,存在一段5′-UAAGGAGG-3′的保守序列,称为S-D 序列。是mRNA与核蛋白体识别、结合的位点
原核生物释放因子:RF-1,RF-2,RF-3 真核生物释放因子:eRF
1. 识别终止密码,如RF-1特异识别UAA、UAG;而RF-2可识 别UAA、UGA
2. 诱导转肽酶改变为酯酶活性,催化肽酰基转移到-OH上,使 肽链从核蛋白体上释放。
原核生物和真核生物基因表达调控复制、转录、翻译特点的比较
1.相同点:转录起始是基因表达调控的关键环节①结构基因均有调控序列;②表达过程都具有复杂性,表现为多环节;③表达的时空性,表现为不同发育阶段和不同组织器官上的表达的复杂性;2.不同点:①原核基因的表达调控主要包括转录和翻译水平。
真核基因的表达调控主要包括染色质活化、转录、转录后加工、翻译、翻译后加工多个层次。
②原核基因表达调控主要为负调控,真核主要为正调控。
③原核转录不需要转录因子,RNA聚合酶直接结合启动子,由sita因子决定基因表的的特异性,真核基因转录起始需要基础特异两类转录因子,依赖DNA-蛋白质、蛋白质-蛋白质相互作用调控转录激活。
④原核基因表达调控主要采用操纵子模型,转录出多顺反子RNA,实现协调调节;真核基因转录产物为单顺反子RNA,功能相关蛋白的协调表达机制更为复杂。
⑤真核生物基因表达调控的环节主要在转录水平,其次是翻译水平。
原核生物基因以操纵子的形式存在。
转录水平调控涉及到启动子、sita因子与RNA聚合酶结合、阻遏蛋白、负调控、正调控蛋白、倒位蛋白、RNA聚合酶抑制物、衰减子等。
翻译水平的调控涉及SD序列、mRNA的稳定性不稳定(5’端和3’端的发夹结构可保护不被酶水解mRNA的5’端与核糖体结合可明显提高稳定性)、翻译产物及小分子RNA的调控作用。
真核生物基因表达的调控环节较多:在DNA水平上可以通过染色体丢失、基因扩增、基因重排、DNA甲基化、染色体结构改变影响基因表达。
在转录水平主要通过反式作用因子调控转录因子与TATA盒的结合、RNA聚合酶与转录因子-DNA复合物的结合及转录起始复合物的形成。
在转录后水平主要通过RNA修饰、剪接及mRNA运输的控制来影响基因表达。
在翻译水平有影响起始翻译的阻遏蛋白、5’AUG、5’端非编码区长度、mRNA的稳定性调节及小分子RNA。
真核基因调控中最重要的环节是基因转录,真核生物基因表达需要转录因子、启动子、沉默子和增强子。
真核生物和原核生物复制的不同点:①真核生物DNA的合成只是在细胞周期的S期进行,而原核生物则在整个细胞生长过程中都可进行DNA合成②原核生物DNA的复制是单起点的,而真核生物染色体的复制则为多起点的。
简答及问答题
简答及问答题1、原核生物基因组有何特点?①为一条环状双链DNA;②只有一个复制起点;③具有操纵子结构;④绝大部分为单拷贝;⑤可表达基因约50%,大于真核生物小于病毒;⑥基因一般是连续的,无内含子;⑦重复序列很少。
2、真核生物基因组各有何特点?①真核生物基因组远大于原核生物基因组,结构复杂,基因数庞大,具有多个复制起点;②基因组DNA与蛋白质结合成染色体,储存于细胞核内;③真核基因为单顺反子,而细菌和病毒的结构基因多为多顺反子;④基因组中非编码区多于编码区;⑤真核基因多为不连续的断裂基因,由外显子和内含子镶嵌而成;⑥存在大量的重复序列;⑦功能相关的基因构成各种基因家族;⑧存在可移动的遗传因素3、简述DNA的C值和C值矛盾?生物体的一个特征是一个单倍体基因组的全部DNA含量总是相对恒定的。
通常称为该物种的C值。
真核生物基因组的C值:是指生物单倍体基因组中DNA 的含量,以pg表示。
C值和生物结构或组成的复杂性不一致的现象。
要表现为:C值不随生物的进化程度和复杂性而增加;亲缘关系密切的生物C值相差很大;高等真核生物具有比用于遗传高得多的C值。
4、以大肠杆菌为例叙述转录全过程?起始:核心酶在σ因子的参与下与模板的DNA接触,生成非专一的,不稳定的复合物在模板上移动。
起始识别:全酶与模板的启动子结合,产生封闭的“酶-启动子二元复合物”。
酶紧密地结合在启动子的-10序列处,模板DNA局部变性,形成“开放性起始复合体”,暴露模板链。
三元复合物形成,酶在起始位点开始聚合最初几个核苷酸。
延伸:延伸的时候,酶后端边缘的分界线也可作为RNA链延伸的末端处。
即酶的后端向前每移动1bp,RNA延伸的末端也就加上了一个rNTP,但酶的前端并没有移动,仍保持原来的位置,只不过酶整体收缩了1bp的长度。
酶内部所覆盖的DNA双链的开放区及RNA的生长点(3′端)都向前移动了1个bp。
当RNA链已延伸到多个nt时,酶的前端突然向前一下子延伸7-8bp。