备战中考数学提高题专题复习旋转练习题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、旋转真题与模拟题分类汇编(难题易错题)
1.操作与证明:如图1,把一个含45°角的直角三角板ECF和一个正方形ABCD摆放在一起,使三角板的直角顶点和正方形的顶点C重合,点E、F分别在正方形的边CB、CD上,连接AF.取AF中点M,EF的中点N,连接MD、MN.
(1)连接AE,求证:△AEF是等腰三角形;
猜想与发现:
(2)在(1)的条件下,请判断MD、MN的数量关系和位置关系,得出结论.
结论1:DM、MN的数量关系是;
结论2:DM、MN的位置关系是;
拓展与探究:
(3)如图2,将图1中的直角三角板ECF绕点C顺时针旋转180°,其他条件不变,则(2)中的两个结论还成立吗?若成立,请加以证明;若不成立,请说明理由.
【答案】(1)证明参见解析;(2)相等,垂直;(3)成立,理由参见解析.
【解析】
试题分析:(1)根据正方形的性质以及等腰直角三角形的知识证明出CE=CF,继而证明出△ABE≌△ADF,得到AE=AF,从而证明出△AEF是等腰三角形;(2)DM、MN的数量关系是相等,利用直角三角形斜边中线等于斜边一半和三角形中位线定理即可得出结论.位置关系是垂直,利用三角形外角性质和等腰三角形两个底角相等性质,及全等三角形对应角相等即可得出结论;(3)成立,连接AE,交MD于点G,标记出各个角,首先证明出
MN∥AE,MN=AE,利用三角形全等证出AE=AF,而DM=AF,从而得到DM,MN数量相等的结论,再利用三角形外角性质和三角形全等,等腰三角形性质以及角角之间的数量关系得到∠DMN=∠DGE=90°.从而得到DM、MN的位置关系是垂直.
试题解析:(1)∵四边形ABCD是正方形,∴AB=AD=BC=CD,∠B=∠ADF=90°,∵△CEF 是等腰直角三角形,∠C=90°,∴CE=CF,∴BC﹣CE=CD﹣CF,即BE=DF,
∴△ABE≌△ADF,∴AE=AF,∴△AEF是等腰三角形;(2)DM、MN的数量关系是相等,DM、MN的位置关系是垂直;∵在Rt△ADF中DM是斜边AF的中线,∴AF=2DM,∵MN 是△AEF的中位线,∴AE=2MN,∵AE=AF,∴DM=MN;∵∠DMF=∠DAF+∠ADM,
AM=MD,∵∠FMN=∠FAE,∠DAF=∠BAE,∴∠ADM=∠DAF=∠BAE,
∴∠DMN=∠FMN+∠DMF=∠DAF+∠BAE+∠FAE=∠BAD=90°,∴DM⊥MN;(3)(2)中的
两个结论还成立,连接AE,交MD于点G,∵点M为AF的中点,点N为EF的中点,
∴MN∥AE,MN=AE,由已知得,AB=AD=BC=CD,∠B=∠ADF,CE=CF,又
∵BC+CE=CD+CF,即BE=DF,∴△ABE≌△ADF,∴AE=AF,在Rt△ADF中,∵点M为AF的
中点,∴DM=AF,∴DM=MN,∵△ABE≌△ADF,∴∠1=∠2,∵AB∥DF,∴∠1=∠3,同理可证:∠2=∠4,∴∠3=∠4,∵DM=AM,∴∠MAD=∠5,
∴∠DGE=∠5+∠4=∠MAD+∠3=90°,∵MN∥AE,∴∠DMN=∠DGE=90°,∴DM⊥MN.所以(2)中的两个结论还成立.
考点:1.正方形的性质;2.全等三角形的判定与性质;3.三角形中位线定理;4.旋转的性质.
2.在平面直角坐标系中,已知点A(0,4),B(4,4),点M,N是射线OC上两动点(OM<ON),且运动过程中始终保持∠MAN=45°,小明用几何画板探究其中的线段关系.
(1)探究发现:当点M,N均在线段OB上时(如图1),有OM2+BN2=MN2.
他的证明思路如下:
第一步:将△ANB绕点A顺时针旋转90°得△APO,连结PM,则有BN=OP.
第二步:证明△APM≌△ANM,得MP=MM.
第一步:证明∠POM=90°,得OM2+OP2=MP2.
最后得到OM2+BN2=MN2.
请你完成第二步三角形全等的证明.
(2)继续探究:除(1)外的其他情况,OM2+BN2=MN2的结论是否仍然成立?若成立,请证明;若不成立,请说明理由.
(3)新题编制:若点B是MN的中点,请你编制一个计算题(不标注新的字母),并直接给出答案(根据编出的问题层次,给不同的得分).
【答案】(1)见解析;(2)结论仍然成立,理由见解析;(3)见解析.
【解析】
【分析】
(1)将△ANB绕点A顺时针旋转90°得△APO,连结PM,则有BN=OP.证明
△APM≌△ANM,再利用勾股定理即可解决问题;
(2)如图2中,当点M,N在OB的延长线上时结论仍然成立.证明方法类似(1);(3)如图3中,若点B是MN的中点,求MN的长.利用(2)中结论,构建方程即可解决问题.
【详解】
(1)如图1中,将△ANB绕点A顺时针旋转90°得△APO,连结PM,则有BN=OP.
∵点A(0,4),B(4,4),
∴OA=AB,∠OAB=90°,
∵∠NAP=∠OAB=90°,∠MAN=45°,
∴∠MAN=∠MAP,
∵MA=MA,AN=AP,
∴△MAN≌△MAP(SAS).
(2)如图2中,结论仍然成立.
理由:如图2中,将△ANB绕点A顺时针旋转90°得△APO,连结PM,则有BN=OP.
∵∠NAP=∠OAB=90°,∠MAN=45°,
∴∠MAN=∠MAP,
∵MA=MA,AN=AP,
∴△MAN≌△MAP(SAS),
∴MN=PM,
∵∠ABN=∠AOP=135°,∠AOB=45°,
∴∠MOP=90°,
∴PM2=OM2+OP2,
∴OM2+BN2=MN2;
(3)如图3中,若点B是MN的中点,求MN的长.
设MN=2x,则BM=BN=x,
∵OA=AB=4,∠OAB=90°,
∴OB=42,
∴OM=42﹣x,
∵OM2+BN2=MN2.
∴(42﹣x)2+x2=(2x)2,
解得x=﹣22+26或﹣22﹣26(舍弃)
∴MN=﹣42+46.
【点睛】
本题属于几何变换综合题,考查了等腰直角三角形的性质和判定,全等三角形的判定和性质,勾股定理等知识,解题的关键是学会利用旋转法添加辅助线,构造全等三角形解决问题,属于中考压轴题.
3.如图1,ABCD和AEFG是两个能完全重合的平行四边形,现从AB与AE重合时开始,将ABCD固定不动,AEFG绕点A逆时针旋转,旋转角为α(0°<α<360°),
AB=a,BC=2a;并发现:如图2,当AEFG旋转到点E落在AD上时,FE的延长线恰好通过点C.
探究一:
(1)在图2的情形下,求旋转角α的度数;
探究二:
(2)如图3,当AEFG旋转到点E落在BC上时,EF与AD相交于点M,连接CM,DF,请你判断四边形CDFM的形状,并给予证明;
探究三:
(3)如图1,连接CF,BF,在旋转过程中△BCF的面积是否存在最大的情形,如果存在,求出最大面积,如果不存在,请说明理由.
【答案】(1)α=120°;(2)四边形CDFM是菱形,证明见解析;(3)存在△BCF的面积