数学 考研真题及答案详解
2020年考研数学一真题及答案(全)
全国硕士研究生入学统一考试数学(一)试题一、选择题:1~8小题,每小题4分,共32分.下列每题给出的四个选项中,只有一个选项是符合题目要求的.请将所选项前的字母填在答题纸...指定位置上. (1)若函数0(),0x f x b x >=⎪≤⎩在x 连续,则 (A) 12ab =. (B) 12ab =-. (C) 0ab =. (D) 2ab =.【答案】A【详解】由011lim 2x b ax a +→-==,得12ab =.(2)设函数()f x 可导,且()'()0f x f x >则(A) ()()11f f >- . (B) ()()11f f <-. (C) ()()11f f >-. (D) ()()11f f <-.【答案】C【详解】2()()()[]02f x f x f x ''=>,从而2()f x 单调递增,22(1)(1)f f >-. (3)函数22(,,)f x y z x y z =+在点(1,2,0)处沿着向量(1,2,2)n =的方向导数为 (A) 12. (B) 6.(C) 4.(D)2 .【答案】D【详解】方向余弦12cos ,cos cos 33===αβγ,偏导数22,,2x y z f xy f x f z '''===,代入cos cos cos x y z f f f '''++αβγ即可.(4)甲乙两人赛跑,计时开始时,甲在乙前方10(单位:m)处.图中,实线表示甲的速度曲线1()v v t =(单位:m/s),虚线表示乙的速度曲线2()v v t =(单位:m/s),三块阴影部分面积的数值一次为10,20,3,计时开始后乙追上甲的时刻记为(单位:s),则(A) 010t =. (B) 01520t <<. (C) 025t =. (D) 025t >.【答案】C【详解】在025t =时,乙比甲多跑10m,而最开始的时候甲在乙前方10m 处. (5)设α为n 维单位列向量,E 为n 阶单位矩阵,则 (A) TE -αα不可逆. (B) TE +αα不可逆. (C) T 2E +αα不可逆. (D) T2E -αα不可逆.【答案】A【详解】可设T α=(1,0,,0),则T αα的特征值为1,0,,0,从而T αα-E 的特征值为011,,,,因此T αα-E 不可逆.(6)设有矩阵200021001A ⎛⎫ ⎪= ⎪ ⎪⎝⎭,210020001B ⎛⎫ ⎪= ⎪ ⎪⎝⎭,122C ⎛⎫ ⎪= ⎪ ⎪⎝⎭(A)A 与C 相似,B 与C 相似. (B) A 与C 相似,B 与C 不相似.(C) A 与C 不相似,B 与C 相似. (D) A 与C 不相似,B 与C 不相似. 【答案】B【详解】,A B 的特征值为221,,,但A 有三个线性无关的特征向量,而B 只有两个,所以A 可对角化,B 则不行.(7)设,A B 为随机事件,若0()1P A <<,0()1P B <<,则(|)(|)P A B P B A >的充分必要条件(A) (|)(|)P B A P B A >. (B) (|)(|)P B A P B A <. (C) (|)(|)P B A P B A >. (D) (|)(|)P B A P B A <.【答案】A【详解】由(|)(|)P A B P A B >得()()()()()()1()P AB P AB P A P AB P B P B P B ->=-,即()>()()P AB P A P B ;由(|)(|)P B A P B A >也可得()>()()P AB P A P B . (8)设12,,,(2)n X X X n 为来自总体(,1)N μ的简单随机样本,记11ni i X X n ==∑,则下列结论不正确的是 (A)21()nii X μ=-∑服从2χ分布 . (B) 212()n X X -服从2χ分布.(C)21()nii XX =-∑服从2χ分布. (D) 2()n X -μ服从2χ分布.【答案】B【详解】222211~(0,1)()~(),()~(1)1n ni i i i i X N X n X X n ==----∑∑μμχχ; 221~(,),()~(1);X N n X n-μμχ2211()~(0,2),~(1)2n n X X X X N --χ.二、填空题:9~14小题,每小题4分,共24分.请将答案写在答题纸...指定位置上. (9)已知函数21(),1f x x=+(3)(0)f = . 【答案】0 【详解】2421()1(11)1f x x x x x==-++-<<+,没有三次项.(10)微分方程032=+'+''y y y 的通解为 .【答案】12e ()xy C C -=+【详解】特征方程2230r r ++=得1r =-,因此12e ()x y C C -=+.(11)若曲线积分⎰-+-L y x aydy xdx 122在区域{}1),(22<+=y x y x D 内与路径无关,则=a. 【答案】1-【详解】有题意可得Q Px x∂∂=∂∂,解得1a =-. (12)幂级数111)1(-∞=-∑-n n n nx 在(-1,1)内的和函数()S x = .【答案】21(1)x + 【详解】112111(1)[()](1)n n n n n nxx x ∞∞--=='-=--=+∑∑.(13)⎪⎪⎪⎭⎫ ⎝⎛=110211101A ,321ααα,,是3维线性无关的列向量,则()321,,αααA A A 的秩为 .【答案】2【详解】123(,,)()2r r ααα==A A A A(14)设随即变量X 的分布函数4()0.5()0.5()2x F x x -=Φ+Φ,其中)(x Φ为标准正态分布函数,则EX = . 【答案】2 【详解】00.54()d [0,5()()]d 222x EX xf x x x x x +∞+∞-∞-==+=⎰⎰ϕϕ. 三、解答题:15~23小题,共94分.解答应写出文字说明、证明过程或演算步骤.请将答案写在答题纸...指定位置上. (15)(本题满分10分).设函数(,)f u v 具有2阶连续偏导数,(e ,cos ),xy f x =求2200,x x dyd y dxdx==.【答案】(e ,cos )x y f x =()''12'12''''''''''111212122222''''11122sin ,0(1,1)sin (sin )sin cos 0(1,1)(1,1)(1,1)x x x x x dyf e f x dx dy x f dx d y f e f x e f e f e f x x f x dx d y x f f f dx ∴=-∴===-+---==+- (16)(本题满分10分).求2limln(1)n k kn n→∞+.【答案】212221120012202lim ln(1)1122lim ln(1)ln(1)...ln(1)11122lim ln(1)ln(1)...ln(1)1ln(1)ln(1)21111ln(1)02211111ln 2221n k n n k k nn n n n n n n n n n n n n n n n n n x x dx x d x x x x dxx x ∞→∞=→∞→∞+⎛⎫=++++++ ⎪⎝⎭⎛⎫=++++++ ⎪⎝⎭=+=+=+-+-+=-∑⎰⎰⎰1011002111ln 2[(1)]22111111ln 2[()ln(1)]002221111ln 2(1ln 2)2224dxxx dx dx xx x x +=--++=--++=--+=⎰⎰⎰(17)(本题满分10分).已知函数)(x y 由方程333320x y x y +-+-=确定,求)(x y 的极值. 【答案】333320x y x y +-+-=①,方程①两边对x 求导得:22''33330x y y y +-+=②,令'0y =,得233,1x x ==±.当1x =时1y =,当1x =-时0y =.方程②两边再对x 求导:'22''''66()330x y y y y y +++=,令'0y =,2''6(31)0x y y ++=,当1x =,1y =时''32y =-,当1x =-,0y =时''6y =. 所以当1x =时函数有极大值,极大值为1,当1x =-时函数有极小值,极小值为0.(18)(本题满分10分).设函数()f x 在区间[0,1]上具有2阶导数,且(1)0f >,0()lim 0x f x x+→<.证明: (I )方程()0f x =在区间(0,1)内至少存在一个实根;(II )方程2()''()['()]0f x f x f x +=在区间(0,1)内至少存在两个不同实根. 【答案】 (1)()lim 0x f x x+→<,由极限的局部保号性,(0,),()0c f c δ∃∈<使得,又(1)0,f >由零点存在定理知,(c,1)ξ∃∈,使得,()0f ξ=.(2)构造()()'()F x f x f x =,(0)(0)'(0)0F f f ==,()()'()0F f f ξξξ==,()lim 0,'(0)0,x f x f x +→<∴<由拉格朗日中值定理知(1)(0)(0,1),'()010f f f ηη-∃∈=>-,'(0)'()0,f f η<所以由零点定理知1(0,)(0,1)ξη∃∈⊂,使得1'()0f ξ=,111()()'()0,F f f ξξξ∴== 所以原方程至少有两个不同实根。
2023年考研数学一真题及答案
2023年考研数学一真题及答案一、选择题:1~10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一个选项是最符合题目要求的,请将所选项前的字母填在答题纸指定位置上.1. 的斜渐近线为( )A. B.C. D.【答案】B.【解析】由已知,则,,所以斜渐近线为.故选B.2.若的通解在上有界,则().A. B.C. D.【答案】D. 【解析】微分方程的特征方程为.若,则通解为;若,则通解为;若,则通解为.由于在上有界,若,则中时通解无界,若,则中时通解无界,故.时,若,则,通解为,在上有界.时,若,则,通解为,在上无界. 综上可得,.3. 设函数由参数方程确定,则( ).A .连续,不存在 B.存在,在处不连续C.连续,不存在D.存在,在处不连续【答案】C【解析】,故在连续..时,;时,;时,,故在连续.,,故不存在.故选C.4.设,且与收敛,绝对收敛是绝对收敛的().A.充分必要条件B.充分不必要条件C.必要不充分条件D.既非充分又非必要条件【答案】A.【解析】由已知条件可知为收敛的正项级数,进而绝对收敛.设绝对收敛,则由与比较判别法,得绝对收玫; 设绝对收敛,则由与比较判别法,得绝对收敛.故选A.5.设均为阶矩阵,,记矩阵的秩分别为,则( )A. B. C. D.【答案】B【解析】由矩阵的初等变换可得,故.,故.,故. 综上,比较可得B正确.6. 下列矩阵不能相似对角化的是( )A. B.C. D.【答案】D.【解析】由于A.中矩阵的特征值为,特征值互不相同,故可相似对角化.B.中矩阵为实对称矩阵,故可相似对角化.C.中矩阵的特征值为,且,故可相似对角化.D.中矩阵的特征值为,且,故不可相似对角化. 选D.7. 已知向量,,,,若既可由线性表示,也可由线性表示,则( ) A . B.C. D.【答案】D.【解析】设,则,对关于的方程组的系数矩阵作初等变换化为最简形,,解得,故.8.设服从参数为1的泊松分布,则().A. B. C. D.【答案】C.【解析】方法一由已知可得,,,故,故选C.方法二由于,于是,因此. 由已知可得,,故,故选C. 9.设为来自总体的简单随机样本,为来自总体的简单随机样本,且两样本相互独立,记,,,,则( )A. B.C. D.【答案】D.【解析】由两样本相互独立可得与相互独立,且,,因此,故选D.10. 已知总体服从正态分布,其中为未知参数,,为来自总体的简单随机样本,且为的无偏估计,则( ).A. B. C. D.【答案】A.【解析】由与,为来自总体的简单随机样本,,相互独立,且,,因而,令,所以的概率密度为,所以,又由为的无偏估计可得,,即,解得,故选A.二、填空题:11~16小题,每小题5分,共30分.请将答案写在答题纸指定位置上.11.当时,与是等价无穷小,则.【答案】【解析】由题意可知,,于是,即,从而.12.曲面在处的切平面方程为_ .【答案】【解析】由于在点处的法向量为,从而曲面在处的切平面方程为.13.设是周期为的周期函数,且,则.【答案】【解析】由题意知,于是.14.设连续函数满足,,则.【答案】【解析】.15.已知向量,若,则.【答案】【解析】,;,;,.故.16. 设随机变量与相互独立,且则. 答案】【解析】.三、解答题:17~22小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.(本题满分10分)设曲线经过点,该曲线上任意一点到轴的距离等于该点处的切线在轴上的截距.(1)求;(2)求函数在的最大值.【解】(1)曲线在点处的切线方程为,于是切线在轴上的截距为,由题意可知,即,此为一阶线性微分方程,根据通解公式可得,将代入上式得,即.(2)由(1)知,于是,. 令,解得唯一驻点,,故.18.(本题满分12分)求函数的极值.【解】由已知可得,,由解得驻点为.又,,.在处,,,取,于是,从而在的领域内;取,于是,从而在的领域内,从而在点处不去极值;在处,,于是,故不是极大值点在处,,于是,是极小值点,极小值.19.(本题满分12分)已知有界闭区域是由,,所围的,为边界的外侧,计算曲面积分.【解】由高斯公式,有.由于关于坐标面对称,是关于的奇函数,因此,所以.20.(本题满分12分)设函数在上有二阶连续导数.(1)证明:若,存在,使得;(2)若在上存在极值,证明:存在,使得.【证明】(1)将在处展开为,其中介于与之间.分别令和,则,,,,两式相加可得,又函数在上有二阶连续导数,由介值定理知存在,使得,即.(2)设在处取得极值,则.将在处展开为,其中介于与之间.分别令和,则,,,,两式相减可得,所以,即.21.(本题满分12分)设二次型,,(1)求可逆变换,将化为.(2)是否存在正交矩阵,使得时,将化为.【解】(1) 由配方法得..令,则,即时,规范形为.令,则时,规范形为.故可得时化为,可逆变换,其中. (2)二次型的矩阵为.,所以的特征值为.二次型的矩阵为.,所以的特征值为.故合同但不相似,故不存在可逆矩阵使得.若存在正交矩阵,当时,,即,即相似,矛盾,故不存在正交矩阵,使得时,化为.22.(本题满分12分)设二维随机变量的概率密度函数为(1)求和的协方差;(2)判断和是否相互独立;(3)求的概率密度函数.【解】(1)由题意可得,和的边缘概率密度分别为因此,其中,,,故.(2)由(1)可知,,故和不相互独立.(3)设的分布函数为,概率密度为,则根据分布函数的定义有当时,;当时,;当时,.综上,故。
2020年考研数学三真题及解析
2020全国硕士研究生入学统一考试数学三试题详解一、选择题:1~8小题,每小题4分,共32分,下列每小题给出的四个选项中,只有一项符合题目要求的,请将所选项前的字母填在答题纸...指定位置上. (1)设()()limx af x f a b x a →-=-,则sin ()sin lim x a f x ax a→-=- ( )(A )sin b a (B )cos b a (C )sin ()b f a (D )cos ()b f a 【答案】(B ) 【解析】由()lim,x a f x ab x a →-=-得(),()f a a f a b '==,则(2)函数11ln 1()(1)(2)x x e xf x e x -+=--的第二类间断点的个数为 ( )(A )1 (B )2 (C )3 (D )4 【答案】(C )【解析】由题设,函数的可能间断点有1,0,1,2x =-,由此11121111ln 1lim ()limlim ln 1(1)(2)3(1)x x x x x e x ef x x e x e ---→-→-→-+==-+=-∞---; 111000ln 1ln(1)1lim ()lim lim (1)(2)22x x x x x e x e x f x e x x e--→→→++==-=---; 1111111111111ln 1ln 2lim ()lim lim 0;(1)(2)1ln 1ln 2lim lim ;(1)(2)1x x x x x x x x x x x e x f x e e x e e x e e x e ---++--→→→--→→+===---+==-∞---;112222ln 1ln 31lim ()limlim (1)(2)(1)2x x x x x e x e f x e x e x -→→→+===∞---- 故函数的第二类间断点(无穷间断点)有3个,故选项(C )正确。
考研数学一真题及答案解析(完整版)
2021考研数学〔一〕真题完整版一、选择题:1~8小题,每题4分,共32分,以下每题给出的四个选项中,只有一项符合题目要求的,请将所选项前的字母填在答题纸...指定位置上. 〔1〕假设反常积分()11badx x x +∞+⎰收敛,那么〔 〕()()()()11111111A a bB a bC a a bD a a b <>>><+>>+>且且且且〔2〕函数()()21,1ln ,1x x f x x x -<⎧⎪=⎨≥⎪⎩,那么()f x 的一个原函数是〔 〕()()()()()()()()()()()()()()()()22221,11,1ln 1,1ln 11,11,11,1ln 11,1ln 11,1x x x x A F x B F x x x x x x x x x x x C F x D F x x x x x x x ⎧⎧-<-<⎪⎪==⎨⎨-≥+-≥⎪⎪⎩⎩⎧⎧-<-<⎪⎪==⎨⎨++≥-+≥⎪⎪⎩⎩〔3〕假设()()222211y x y x =+=+是微分方程()()y p x y q x '+=的两个解,那么()q x =〔 〕()()()()()()2222313111xx A x x B x x C D x x +-+-++〔4〕函数(),0111,,1,2,1x x f x x n n n n ≤⎧⎪=⎨<≤=⎪+⎩,那么〔 〕〔A 〕0x =是()f x 的第一类间断点 〔B 〕0x =是()f x 的第二类间断点 〔C 〕()f x 在0x =处连续但不可导 〔D 〕()f x 在0x =处可导〔5〕设A ,B 是可逆矩阵,且A 与B 相似,那么以下结论错误的选项是〔 〕 〔A 〕TA 与TB 相似 〔B 〕1A -与1B -相似 〔C 〕TA A +与TB B +相似 〔D 〕1A A -+与1B B -+相似〔6〕设二次型()222123123121323,,444f x x x x x x x x x x x x =+++++,那么()123,,2f x x x =在空间直角坐标下表示的二次曲面为〔 〕〔A 〕单叶双曲面 〔B 〕双叶双曲面 〔C 〕椭球面 〔C 〕柱面〔7〕设随机变量()()0,~2>σσμN X ,记{}2σμ+≤=X P p ,那么〔 〕〔A 〕p 随着μ的增加而增加 〔B 〕p 随着σ的增加而增加 〔C 〕p 随着μ的增加而减少 〔D 〕p 随着σ的增加而减少 〔8〕随机试验E 有三种两两不相容的结果321,,A A A ,且三种结果发生的概率均为31,将试验E 独立重复做2次,X 表示2次试验中结果1A 发生的次数,Y 表示2次试验中结果2A 发生的次数,那么X 与Y 的相关系数为〔 〕二、填空题:9-14小题,每题4分,共24分,请将答案写在答题纸...指定位置上. 〔9〕()__________cos 1sin 1ln lim200=-+⎰→x dt t t t xx〔10〕向量场()()zk xyj i z y x z y x A ++++=,,的旋度_________=rotA〔11〕设函数()v u f ,可微,()y x z z ,=由方程()()y z x f x y z x ,122-=-+确定,那么()_________1,0=dz〔12〕设函数()21arctan axxx x f +-=,且()10''=f ,那么________=a 〔13〕行列式100010014321λλλλ--=-+____________. 〔14〕设12,,...,n x x x 为来自总体()2,Nμσ的简单随机样本,样本均值9.5x =,参数μ的置信度为0.95的双侧置信区间的置信上限为10.8,那么μ的置信度为0.95的双侧置信区间为______.三、解答题:15—23小题,共94分.请将解答写在答题纸...指定位置上.解容许写出文字说明、证明过程或演算步骤.〔15〕〔此题总分值10分〕平面区域()(),221cos ,22D r r ππθθθ⎧⎫=≤≤+-≤≤⎨⎬⎩⎭,计算二重积分Dxdxdy ⎰⎰.〔16〕〔此题总分值10分〕设函数()y x 满足方程'''20,y y ky ++=其中01k <<.()I 证明:反常积分0()y x dx +∞⎰收敛;()II 假设'(0)1,(0)1,y y ==求0()y x dx +∞⎰的值.〔17〕〔此题总分值10分〕设函数(,)f x y 满足2(,)(21),x y f x y x e x-∂=+∂且(0,)1,tf y y L =+是从点(0,0)到点(1,)t 的光滑曲线,计算曲线积分(,)(,)()tL f x y f x y I t dx dy x y∂∂=+∂∂⎰,并求()I t 的最小值〔18〕设有界区域Ω由平面222=++z y x 与三个坐标平面围成,∑为Ω整个外表的外侧,计算曲面积分()zdxdyydzdx dydz xI 3212+-+=⎰⎰∑〔19〕〔此题总分值10分〕函数()f x 可导,且(0)1f =,10'()2f x <<,设数列{}n x 满足1()(1,2...)n n x f x n +==,证明: 〔I 〕级数11()n n n xx ∞+=-∑绝对收敛;〔II 〕lim n n x →∞存在,且0lim 2n n x →∞<<.〔20〕〔此题总分值11分〕设矩阵1112221,11112A a B a a a --⎛⎫⎛⎫⎪⎪== ⎪ ⎪ ⎪ ⎪----⎝⎭⎝⎭当a 为何值时,方程AX B =无解、有唯一解、有无穷多解?〔21〕〔此题总分值11分〕矩阵011230000A -⎛⎫⎪=- ⎪ ⎪⎝⎭〔I 〕求99A〔II 〕设3阶矩阵23(,,)B ααα=满足2B BA =,记100123(,,)B βββ=将123,,βββ分别表示为123,,ααα的线性组合。
2023考研数学二真题+详解答案解析(超清版)
2023年全国硕士研究生入学统一考试数学(二)试题及答案考试时间:180分钟,满分:150分一、选择题:1~10小题,每小题5分,共50分,下列每题给出的四个选项中,只有一个选项符合题目要求,请将所选项前的字母填在答题纸指定位置上.(1)曲线1ln()1yx e x =+−的斜渐近线方程为( ) (A)y x e =+ (B)1y x e=+(C)y x = (D)1y x e=−【答案】B 【解析】1limlimln()11x x y ke x x →∞→∞==+=−,11lim()lim()lim[ln(]lim [ln(ln ]11x x x x b y kx y x x e x x e e x x →∞→∞→∞→∞=−==−=+−=+−−−111lim ln(1lim (1)(1)x x x x e x e x e→∞→∞=+==−−,所以渐进线方程为1y x e =+,答案为B(2)设0()(1)cos ,0x f x x x x ≤=+>⎩的一个原函数为( )(A)),0()(1)cos sin ,0x x F x x x x x ⎧⎪−≤=⎨+−>⎪⎩(B))1,0()(1)cos sin ,0x x F x x x x x ⎧⎪−+≤=⎨+−>⎪⎩(C)),0()(1)sin cos ,0x x F x x x x x ⎧⎪+≤=⎨++>⎪⎩(D))1,0()(1)sin cos ,x x F x x x x x ⎧⎪++≤=⎨++>⎪⎩【答案】D【解析】根据原函数的连续性,可排除(A)(C);再根据原函数的可导性,可排除选项(B),答案为(D) (3)已知{}n x ,{}n y 满足1112x y ==,1sin n n x x +=,21(1,2,)n n y y n +== ,则当n →∞时( )(A)n x 是n y 的高阶无穷小(B)n y 是n x 的高阶无穷小(C)n x 与n y 是等价无穷小(D)n x 与n y 是同阶但不等价的无穷小【答案】B【解析】由已知可得,{}n x ,{}n y 均单调递减,且12n y ≤,又因为sin x x 在(0,2π上单调递减,故2sin 1x x π<<,所以2sin x x π>,所以21112sin sin 24n n n n nn n n n n ny y y y y y x x x x x ππ++==≤=,依次类推可得,111100()444n nn n n n y y y n x x x πππ++⎛⎫⎛⎫≤≤≤≤=→→∞ ⎪ ⎪⎝⎭⎝⎭,故n y 是n x 的高阶无穷小,答案为B (4)若微分方程0y ay by ′′′++=的解在(,)−∞+∞上有界,则( )(A)0,0a b <>(B)0,0a b >>(C)0,0ab =>(D)0,0ab =<【答案】C 【解析】0y ay by ′′′++=的解一共三种情形:①240a b Δ=−>,1212x xy C e C e λλ=+,但此时无论12,λλ取何值,y 在(,)−∞+∞上均无界;②240a b Δ=−=,12()xy C C x eλ=+,但此时无论λ取何值,y 在(,)−∞+∞上均无界;③240a b Δ=−<,12(cos sin )xy e C x C x αββ=+,此时若y 在(,)−∞+∞上有界,则需满足0α=,所以0,0a b =>,答案为(C)(5)设函数()y f x =由2sin x t ty t t⎧=+⎪⎨=⎪⎩确定,则( ) (A)()f x 连续,(0)f ′不存在(B)(0)f ′不存在,()f x ′在0x =处不连续(C)()f x ′连续,(0)f ′′不存在(D)(0)f ′′存在,()f x ′′在0x =处不连续【答案】C 【解析】当0t =时,有0x y ==①当0t>时,3sin x t y t t=⎧⎨=⎩,可得sin 33x xy =,故()f x 右连续;②当0t<时,sin x ty t t=⎧⎨=−⎩,可得sin y x x =−,故()f x 左连续,所以()f x 连续;因为0sin 033(0)lim 0x x x y x ++→−′==;0sin 0(0)lim 0x x x y x −−→−−′==,所以(0)0f ′=;③当0x >时,1sin sin cos 333393x x x x x y ′⎛⎫′==+ ⎪⎝⎭,所以0lim ()0x y x +→′=,即()f x ′右连续;④当0x <时,()sin sin cos y x x x x x ′′=−=−−,所以0lim ()0x y x −→′=,即()f x ′左连续,所以()f x ′连续;考虑01sin cos 23393(0)lim 9x x x xf x ++→+′′==;0sin cos (0)lim 2x x x x f x −−→−−′′==−,所以(0)f ′′不存在,答案为C(6)若函数121()(ln )f dx x x αα+∞+=⎰在0αα=处取得最小值,则0α=( ) (A)1ln(ln 2)−(B)ln(ln 2)− (C)1ln 2(D)ln 2【答案】A 【解析】当0α>时,121()(ln )f dx x x αα+∞+=⎰收敛, 此时21122111111()ln (ln )(ln )(ln )(ln 2)f dx d x x x x x ααααααα+∞+∞+∞++===−=⎰⎰,故211111ln ln 2()(ln 2)(ln 2)(ln 2)f ααααααα′⎡⎤−′==−⎢⎥⎣⎦,令()0f α′=,解得0α=1ln(ln 2)−(7)设函数2()()x f x x a e =+,若()f x 没有极值点,但曲线()y f x =有拐点,则a 的取值范围是( )(A)[0,1)(B)[1,)+∞(C)[1,2)(D)[2,)+∞【答案】C 【解析】2()()x f x x a e =+,2()(2)x f x x x a e ′=++,2()(42)x f x x x a e ′′=+++,因为()f x 没有极值点,所以440a −≤;又因为曲线()y f x =有拐点,所以164(2)0a −+>,联立求解得:[1,2)a ∈(8)设A ,B 为n 阶可逆矩阵,*M 为矩阵M 的伴随矩阵,则*A E OB ⎛⎫= ⎪⎝⎭( ) (A)****A B B A O B A ⎛⎫−⎪⎝⎭(B)****B A A B O A B ⎛⎫−⎪⎝⎭(C)****B A B A OA B ⎛⎫−⎪⎝⎭(D)****A B A B OB A ⎛⎫−⎪⎝⎭【答案】B【解析】*11111A E A E A E A AB A B O B O B O B O B −−−−−⎛⎫−⎛⎫⎛⎫== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭111***1*A B A A B A B B A A B O A B B OA B −−−−⎛⎫⎛⎫−−== ⎪ ⎪⎝⎭⎝⎭,答案为B (9)二次型222123121323(,,)()()4()f x x x x x x x x x =+++−−的规范形为( )(A)2212y y +(B)2212y y −(C)2221234y y y +−(D)222123y y y +−【答案】B 【解析】222123121323(,,)()()4()f x x x x x x x x x =+++−−222123121323233228x x x x x x x x x =−−+++二次型矩阵为211134143A ⎛⎫⎪=− ⎪ ⎪−⎝⎭,211134(7)(3)143E A λλλλλλλ−−−−=−+−=+−−−+ 故答案为B(10)已知向量1123α⎛⎫ ⎪= ⎪ ⎪⎝⎭,2211α⎛⎫ ⎪= ⎪ ⎪⎝⎭,1259β⎛⎫ ⎪= ⎪ ⎪⎝⎭,2101β⎛⎫ ⎪= ⎪⎪⎝⎭,若γ既可由12,αα线性表示,也可由12,ββ线性表示,则γ=( )(A)33,4k k R ⎛⎫⎪∈ ⎪ ⎪⎝⎭ (B)35,10k k R ⎛⎫ ⎪∈ ⎪ ⎪⎝⎭ (C)11,2k k R −⎛⎫ ⎪∈ ⎪ ⎪⎝⎭(D)15,8k k R ⎛⎫⎪∈ ⎪ ⎪⎝⎭【答案】D 【解析】令γ11221122k k l l ααββ=+=+,则有112211220k k l l ααββ+−−=,即12121212(,)0k k l l ααββ⎛⎫ ⎪ ⎪−−= ⎪ ⎪⎝⎭而121212211003(,)2150010131910011ααββ−−⎛⎫⎛⎫ ⎪ ⎪−−=−→− ⎪ ⎪⎪ ⎪−−⎝⎭⎝⎭所以1212(,,,)(3,1,1,1),TT k k l l c c R =−−∈,所以12(1,5,8)(1,5,8),T T c c c k k R γββ=−+=−=∈,答案为D二、填空题:11~16小题,每小题5分,共30分,请将答案写在答题纸指定位置上. (11)当0x →时,函数2()ln(1)f x ax bx x =+++与2()cos x g x e x =−是等价无穷小,则ab =________【答案】2−【解析】由已知可得:2222200022221(())()ln(1)2lim lim lim 1()cos (1())(1())2x x x x ax bx x x o x f x ax bx x g x e x x o x x o x →→→++−++++==−++−−+220221(1)(()2lim 13()2x a x b x o x x o x →++−+==+所以1310,22a b +=−=,即1,2a b =−=,所以2ab =−(12)曲线y =⎰的弧长为________43π【解析】由题意可得函数定义域为[x ∈,根据公式可得:2302sin 24cos L x t tdtπ====⎰304(1cos 2)t dt π=+=⎰43π+(13)设函数(,)z z x y =由2ze xz x y +=−确定,则2(1,1)2zx∂=∂_________【答案】32−【解析】代入(1,1)点可得,0z =,先代入1y =,可得21z e xz x +=−,两边对x 求导,2z e z z xz ′′++=,得(1)1z ′=两边再对x 求导,20z ze z e z z z xz ′′′′′′′++++=,代入(1,1)及0z =,(1)1z ′=得2(1,1)232zx∂=−∂(14)曲线35332x y y =+在1x =对应点处的法线斜率为________【答案】119−【解析】代入1x =得到1y =,两边对x 求导,242956x y y y y ′′=+,代入1x =,1y =可得:911y ′=,故1x =对应点处的法线斜率为1119y −=−′(15)设连续函数()f x 满足:(2)()f x f x x +−=,2()0f x dx =⎰,则31()f x dx =⎰_______【答案】12【解析】323211121()()()()(2)f x dx f x dx f x dx f x dx f x dx=+=++⎰⎰⎰⎰⎰[]2121111()()()022f x dx f x x dx f x dx xdx =++=+=+=⎰⎰⎰⎰(16)已知线性方程组13123123121202ax x x ax x x x ax ax bx +=⎧⎪++=⎪⎨++=⎪⎪+=⎩有解,其中,a b 为常数,若0111412a a a =,则11120a a ab =_______【答案】8【解析】由题意可得:方程组系数矩阵秩为3,可得增广矩阵的秩也为3,即011110012002a a a ab =按照第四列进行行列式展开可得:144411011(1)122(1)11012a a a a a b a ++⋅−+⋅−⋅=所以111280a a ab =三、解答题:17~22小题,共70分.请将解答写在答题纸指定的位置上.解答应写出文字说明、证明过程或演算步骤.(17)(本题满分10分)设曲线:()()L y y x x e =>经过点2(,0)e ,L 上任一点(,)P x y 到y 轴的距离等于该点处的切线在y 轴上的截距(1)求()y x ;(2)在L 上求一点,使得该点处的切线与两坐标轴所围三角形的面积最小,并求此最小面积【答案】(1)()(2ln )y x x x =− (2)33221(,)2e e ,最小面积是3e 【解析】(1)曲线L 上任一点(,)P x y 处的切线方程为()Y y y X x ′−=−,令0X =,则y 轴上的截距为Y y xy ′=−,则有x y xy ′=−,即11y y x′−=−,解得(ln )y x C x =−,其中C 为任意常数,代入2(,0)e 可得2C =,故()(2ln )y x x x =−(2)该点设为000(,(2ln ))x x x −,切线方程为0000(2ln )(1ln )()Y x x x X x −−=−− 令0X =,解得0Y x =;令0Y =,解得00ln 1x X x =−;所以该点处的切线与两坐标轴所围三角形的面积为:200011()22ln 1x S x XY x ==−求导00020(2ln 3)()2(ln 1)x x S x x −′=−,令0()0S x ′=,解得320x e =且为最小值点,最小面积为332()S e e =(18)(本题满分12分) 求函数2cos (,)2yx f x y xe=+的极值【答案】极小值为21(,2)2f e k e π−=−(k Z ∈) 【解析】先求驻点cos cos 0(sin )0y xy y f e x f xe y ⎧′=+=⎪⎨′=−=⎪⎩,解得驻点为1(,(21))e k π−−+和(,2)e k π−,其中k Z∈下求二阶偏导数,cos cos 2cos 1(sin )sin cos xx yxy y y yy f f e y f xe y xe y ⎧′′=⎪⎪′′=−⎨⎪′′=−⎪⎩代入1(,(21))e k π−−+(k Z ∈),解得210xxxy yy A f B f C f e −⎧′′==⎪⎪′′==⎨⎪′′==−⎪⎩,20AC B −<,故1(,(21))e k π−−+不是极值点; 代入(,2)e k π−(k Z ∈),解得210xxxy yy A f B f C f e ⎧′′==⎪⎪′′==⎨⎪′′==⎪⎩,20AC B −>且0A >,故(,2)e k π−是极小值点,其极小值为21(,2)2f e k e π−=−(k Z ∈) (19)(本题满分12分)已知平面区域{(,)01}D x y y x =≤≤≥(1)求D 的面积(2)求D 绕x 轴旋转所成旋转体的体积【答案】(1)ln(1S = (2)24V ππ=−【解析】(1)222214441tan sec csc ln csc cot tan sec D S x t tdt tdt t tt t ππππππ+∞====−⎰⎰⎰ln(1=+;(2)22222111111(1)1x V dx dx dx x x x x πππ+∞+∞+∞⎛⎫===− ⎪++⎝⎭⎰⎰⎰11arctan x x π+∞⎛⎫=−− ⎪⎝⎭24ππ=−(20)(本题满分12分)设平面有界区域D 位于第一象限,由曲线221x y xy +−=,222x y xy +−=与直线y =,0y =围成,计算2213Ddxdy x y +⎰⎰【解析】本题采用极坐标计算,322013Ddxdy d x y πθ=+⎰⎰⎰333222222000111ln 3cos sin 3cos sin 3cos sin d r d d πππθθθθθθθθθ===+++⎰⎰332220011111ln 2ln 2tan ln 22(3tan )cos 23tan 2d d ππθθθθθ=⋅=⋅==++⎰⎰(21)(本题满分12分) 设函数()f x 在[,]a a −上具有2阶连续导数,证明: (1)若(0)0f =,则存在(,)a a ξ∈−,使得21()[()()]f f a f a aξ′′=+−(2)若()f x 在(,)a a −内取得极值,则存在(,)a a η∈−,使得21()()()2f f a f a aη′′≥−−【答案】(1)利用泰勒公式在0x =处展开,再利用介值性定理; (2)利用泰勒公式在极值点处展开,再利用基本不等式进行放缩;【解析】(1)在0x =处泰勒展开,22()()()(0)(0)(0)2!2!f c f c f x f f x x f x x ′′′′′′=++=+, 其中c 介于0与x 之间;代入两个端点有:211()()(0),(0,)2!f f a f a a a ξξ′′′=+∈222()()(0)(),(,0)2!f f a f a a a ξξ′′′−=−+∈−两式相加可得:212()()()()2f f f a f a a ξξ′′′′++−=即122()()1[()()]2f f f a f a a ξξ′′′′++−=因为()f x 在[,]a a −上具有2阶连续导数,所以()f x ′′存在最大值M 与最小值m , 根据连续函数的介值性定理可得,12()()2f f m M ξξ′′′′+≤≤,所以存在(,)a a ξ∈−,使得12()()()2f f f ξξξ′′′′+′′=,即21()[()()]f f a f a aξ′′=+−成立;(2)若()f x 在(,)a a −内取得极值,不妨设0x 为其极值点,则由费马引理可得,0()0f x ′=将()f x 在0x 处泰勒展开,22000000()()()()()()()()()2!2!f d f d f x f x f x x x x x f x x x ′′′′′=+−+−=+−其中d 介于0x 与x 之间;代入两个端点有:210010()()()(),(,)2!f f a f x a x x a ηη′′=+−∈ 220020()()()(),(,)2!f f a f x a x a x ηη′′−=+−−∈−两式相减可得:221200()()()()()()22f f f a f a a x a x ηη′′′′−−=−−−−所以22120022()()11()()()()2222f f f a f a a x a x a a ηη′′′′−−=−−−− 22102021[()()()()]4f a x f a x aηη′′′′≤−++,记112()max[(),()]f f f ηηη′′′′′′=, 又因为22220000()()[()()]4a x a x a x a x a −++≤−++=,所以21()()()2f a f a f aη′′−−≤成立 (22)(本题满分12分)设矩阵A 满足对任意123,,x x x 均有112321233232x x x x A x x x x x x x ++⎛⎫⎛⎫ ⎪ ⎪=−+ ⎪ ⎪⎪ ⎪−⎝⎭⎝⎭(1)求A(2)求可逆矩阵P 与对角矩阵Λ,使得1P AP −=Λ【答案】(1)111211011A ⎛⎫⎪=− ⎪⎪−⎝⎭11 /11 (2)401310112P −⎛⎫ ⎪=− ⎪ ⎪⎝⎭,1221P AP −⎛⎫ ⎪=Λ=− ⎪ ⎪−⎝⎭【解析】(1)因为任意123,,x x x 均有112321233232x x x x A x x x x x x x ++⎛⎫⎛⎫ ⎪ ⎪=−+ ⎪ ⎪ ⎪ ⎪−⎝⎭⎝⎭,即112233*********x x A x x x x ⎛⎫⎛⎫⎛⎫ ⎪ ⎪⎪=− ⎪ ⎪⎪ ⎪ ⎪⎪−⎝⎭⎝⎭⎝⎭故可分别取单位向量100010001⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,,,可得100111100010211010001011001A ⎛⎫⎛⎫⎛⎫ ⎪ ⎪⎪=− ⎪ ⎪⎪ ⎪ ⎪⎪−⎝⎭⎝⎭⎝⎭所以111211011A ⎛⎫ ⎪=− ⎪ ⎪−⎝⎭(2)111101101211221(2)2110110(2)1011E A λλλλλλλλλλλ−−−−−−−−=−+−=−+−=+−−−+−++−+101(2)211(2)(2)(1)20λλλλλλ−−=+−−=+−+− 所以A 的特征值为21,2−−,,下求特征向量: 当2λ=−时,解方程组(2)0E A x −−=,可得基础解系为1(0,1,1)T ξ=−;当1λ=−时,解方程组()0E A x −−=,可得基础解系为2(1,0,2)Tξ=−当2λ=时,解方程组(2)0E A x −=,可得基础解系为3(4,3,1)T ξ=令401310112P −⎛⎫ ⎪=− ⎪ ⎪⎝⎭,有1221P AP −⎛⎫ ⎪=Λ=− ⎪ ⎪−⎝⎭成立。
考研数学一真题及答案(全)
全国硕士研究生入学统一考试数学(一)试题一、选择题:1~8小题,每小题4分,共32分.下列每题给出的四个选项中,只有一个选项是符合题目要求的.请将所选项前的字母填在答题纸...指定位置上.(1)若函数10(),0x f x axb x ⎧->⎪=⎨⎪≤⎩在x 连续,则 (A) 12ab =. (B) 12ab =-. (C) 0ab =. (D) 2ab =.【答案】A【详解】由011lim2x b ax a +→-==,得12ab =. (2)设函数()f x 可导,且()'()0f x f x >则(A) ()()11f f >- . (B) ()()11f f <-.(C) ()()11f f >-. (D) ()()11f f <-. 【答案】C【详解】2()()()[]02f x f x f x ''=>,从而2()f x 单调递增,22(1)(1)f f >-. (3)函数22(,,)f x y z x y z =+在点(1,2,0)处沿着向量(1,2,2)n =的方向导数为(A) 12. (B) 6. (C) 4. (D)2 .【答案】D【详解】方向余弦12cos ,cos cos 33===αβγ,偏导数22,,2x y z f xy f x f z '''===,代入cos cos cos x y z f f f '''++αβγ即可.(4)甲乙两人赛跑,计时开始时,甲在乙前方10(单位:m)处.图中,实线表示甲的速度曲线1()v v t =(单位:m/s),虚线表示乙的速度曲线2()v v t =(单位:m/s),三块阴影部分面积的数值一次为10,20,3,计时开始后乙追上甲的时刻记为(单位:s),则(A) 010t =. (B) 01520t <<.(C) 025t =. (D)025t >.【答案】C【详解】在025t =时,乙比甲多跑10m,而最开始的时候甲在乙前方10m 处.(5)设α为n 维单位列向量,E 为n 阶单位矩阵,则(A) T E -αα不可逆. (B) T E +αα不可逆.(C) T 2E +αα不可逆. (D) T 2E -αα不可逆.【答案】A【详解】可设T α=(1,0,,0),则T αα的特征值为1,0,,0,从而T αα-E 的特征值为011,,,,因此T αα-E 不可逆.(6)设有矩阵200021001A ⎛⎫ ⎪= ⎪ ⎪⎝⎭,210020001B ⎛⎫ ⎪= ⎪ ⎪⎝⎭,122C ⎛⎫⎪= ⎪ ⎪⎝⎭(A)A 与C 相似,B 与C 相似. (B) A 与C 相似,B 与C 不相似.(C) A 与C 不相似,B 与C 相似.(D) A 与C 不相似,B 与C 不相似.【答案】B【详解】,A B 的特征值为221,,,但A 有三个线性无关的特征向量,而B 只有两个,所以A 可对角化, B 则不行.(7)设,A B 为随机事件,若0()1P A <<,0()1P B <<,则(|)(|)P A B P B A >的充分必要条件(A) (|)(|)P B A P B A >. (B) (|)(|)P B A P B A <. (C) (|)(|)P B A P B A >. (D) (|)(|)P B A P B A <.【答案】A【详解】由(|)(|)P A B P A B >得()()()()()()1()P AB P AB P A P AB P B P B P B ->=-,即()>()()P AB P A P B ;由(|)(|)P B A P B A >也可得()>()()P AB P A P B .(8)设12,,,(2)n X X X n 为来自总体(,1)N μ的简单随机样本,记11ni i X X n ==∑,则下列结论不正确的是(A)21()ni i X μ=-∑服从2χ分布 . (B) 212()n X X -服从2χ分布.(C)21()nii XX =-∑服从2χ分布. (D) 2()n X -μ服从2χ分布.【答案】B【详解】222211~(0,1)()~(),()~(1)1n ni i i i i X N X n X X n ==----∑∑μμχχ;221~(,),()~(1);X N n X n-μμχ2211()~(0,2),~(1)2n n X X X X N --χ.二、填空题:9~14小题,每小题4分,共24分.请将答案写在答.题纸..指定位置上.(9)已知函数21(),1f x x=+(3)(0)f = . 【答案】0 【详解】2421()1(11)1f x x x x x==-++-<<+,没有三次项.(10)微分方程032=+'+''y y y 的通解为 .【答案】12e ()x y C C -=+【详解】特征方程2230r r ++=得1r =-+,因此12e ()x y C C -=+.(11)若曲线积分⎰-+-L y x aydyxdx 122在区域{}1),(22<+=y x y x D 内与路径无关,则=a.【答案】1-【详解】有题意可得Q Px x∂∂=∂∂,解得1a =-. (12)幂级数111)1(-∞=-∑-n n n nx 在(-1,1)内的和函数()S x = .【答案】21(1)x +【详解】112111(1)[()](1)n n n n n nxx x ∞∞--=='-=--=+∑∑.(13)⎪⎪⎪⎭⎫ ⎝⎛=110211101A ,321ααα,,是3维线性无关的列向量,则()321,,αααA A A 的秩为 .【答案】2【详解】123(,,)()2r r ααα==A A A A(14)设随即变量X 的分布函数4()0.5()0.5()2x F x x -=Φ+Φ,其中)(x Φ为标准正态分布函数,则EX = . 【答案】2【详解】00.54()d [0,5()()]d 222x EX xf x x x x x +∞+∞-∞-==+=⎰⎰ϕϕ. 三、解答题:15~23小题,共94分.解答应写出文字说明、证明过程或演算步骤.请将答案写在答题纸...指定位置上.(15)(本题满分10分).设函数(,)f u v 具有2阶连续偏导数,(e ,cos ),xy f x =求2200,x x dyd y dxdx==.【答案】(e ,cos )x y f x =()''12'12''''''''''111212122222''''11122sin ,0(1,1)sin (sin )sin cos 0(1,1)(1,1)(1,1)x x x x x dyf e f x dx dy x f dx d y f e f x e f e f e f x x f x dx d y x f f f dx ∴=-∴===-+---==+- (16)(本题满分10分).求2limln(1)n k k n n→∞+. 【答案】212221120012202lim ln(1)1122lim ln(1)ln(1)...ln(1)11122lim ln(1)ln(1)...ln(1)1ln(1)ln(1)21111ln(1)02211111ln 2221n k n n k k nn n n n n n n n n n n n n n n n n n x x dx x d x x x x dxx x ∞→∞=→∞→∞+⎛⎫=++++++ ⎪⎝⎭⎛⎫=++++++ ⎪⎝⎭=+=+=+-+-+=-∑⎰⎰⎰1011002111ln 2[(1)]22111111ln 2[()ln(1)]002221111ln 2(1ln 2)2224dxxx dx dx xx x x +=--++=--++=--+=⎰⎰⎰(17)(本题满分10分).已知函数)(x y 由方程333320x y x y +-+-=确定,求)(x y 的极值. 【答案】333320x y x y +-+-=①,方程①两边对x 求导得:22''33330x y y y +-+=②, 令'0y =,得233,1x x ==±. 当1x =时1y =,当1x =-时0y =.方程②两边再对x 求导:'22''''66()330x y y y y y +++=, 令'0y =,2''6(31)0x y y ++=,当1x =,1y =时''32y =-,当1x =-,0y =时''6y =.所以当1x =时函数有极大值,极大值为1,当1x =-时函数有极小值,极小值为0.(18)(本题满分10分).设函数()f x 在区间[0,1]上具有2阶导数,且(1)0f >,0()lim 0x f x x+→<.证明:(I )方程()0f x =在区间(0,1)内至少存在一个实根;(II )方程2()''()['()]0f x f x f x +=在区间(0,1)内至少存在两个不同实根. 【答案】 (1)()lim 0x f x x+→<,由极限的局部保号性,(0,),()0c f c δ∃∈<使得,又(1)0,f >由零点存在定理知,(c,1)ξ∃∈,使得,()0f ξ=.(2)构造()()'()F x f x f x =,(0)(0)'(0)0F f f ==,()()'()0F f f ξξξ==,0()lim 0,'(0)0,x f x f x+→<∴<由拉格朗日中值定理知(1)(0)(0,1),'()010f f f ηη-∃∈=>-,'(0)'()0,f f η<所以由零点定理知1(0,)(0,1)ξη∃∈⊂,使得1'()0f ξ=,111()()'()0,F f f ξξξ∴== 所以原方程至少有两个不同实根。
2021考研数学一真题及答案解析
2021年全国硕士研究生入学统-考试数学-试题解析一、选择题:1-10小题,每小题5分,共50分,下列每小题给出的四个选项中,只有一项符合题目要求的,请将所选项前的字母填在答题纸指定位置上.处AU - YA 在AυAU #= X X --x e -Ih fttBT』t,一、、IF/x r’’飞、f’J 数的CA)连续且取极大值.CB)连续且取极小值.cc )口J导且导数为0.CD)口j导且导数不为0.【答案】CD)e' -1 . x M析】根据题设,由手limf(x)= l i m 一一=li m 一=l=f (O ),故f(x)在x=O 处连续。
Y →O x →O x r →Ox又因e x 一l .f '(O ) =〕(x )-f (0) = li m 二二=l i m 亡;二三=1,-u x →O x 故f(x)在x=O 处口J导,且导数不为0,即选项(D)为D 确j在项。
(2)设函数f(x,y)叫做,且f(x +l,e')= x (x+ 1)2 ,f(x,x 2)= 2x 2 l n x ,则df(l,I)= C (A) dx +dy.(8))dy.CD)-dy.【答案】cc)【解析】根据题设,对厅理f(x+l,e')= x(x+ 1)2两边关于变量x 求导,可得J;'(x + I ,e ')十元υ+l,e')·e'=(x+l)(3x+l ). ① 对力程f(x ,x 2)= 2x 2l n x 两边关手变量x 求导,口J得兀飞x ,x 1)+元’(x ,x 2)· 2x = 4x In x + 2x .②若将x=O 代入①式,将x=I 代入②式,则口j得r (l ,l )+ J ;(t 归兀飞1,1) + 2万(1,1)= 2。
2020考研数学一真题及答案解析
I xf xy 2x ydydz yf (xy) 2y xdzdx zf xy z dxdy
.
【详解】将曲面 Z x2 y2 向 xoy 面投影得 Dxy
Dxy 为1
x2
y2
4
,又
Z
' x
x x2
y2
,
Z
' y
y x2 y2
I
{[ xf
(
xy)
又 G(0) G(1) 0 ,从而 G(x) 0 ,即 f (x) Mx , 0 x 1 .
因此 f(1) M ,从而 M 0 .
综上所述,最终 M 0
(20)(本题满分 11 分)
设二次型
f
x1, x2
x12
4 x1x2
4 x22
经正交变化
x1 x2
Q
y1 y2
化为二次型
,
AC A
1
B2 =3>0 0
x y
1 6 1 12
,为极小值点
f (1 , 1 ) 1 极小值为 6 12 216
(16)(本题满分 10 分)
I
计算
L
4x 4x2
y y
2
dx
x y 4x2 y2
dy
,其中
L为
x2
y2
2
,方向为逆时针方向.
【详解】补曲线 L1 : 4x2 y2 2 ,逆时针方向
(C)3 可由1 ,2 线性表示
(D)1,2 ,3 线性无关
【答案】(C).
(7)
PA
PB
PC
1 4
,
P AB
0,
P AC
历年2020年-1987年考研数学一真题及答案
x y
2
lim
f (0, 0), f (0,0), 1 x, y, f x, y
x
y
x2 y2
( x , y ) (0,0)
f x, y f (0, 0) f x(0, 0)( x 0) f y (0, 0)( y 0)
lim
垂直,则(
(A)
(B)
)
n x , y , f x, y
lim
x , y 0,0
x2 y 2
0 存在
n x , y , f x, y
lim
x , y 0,0
0 存在
x2 y 2
(C)
(D)
lim
x, y , f x , y
【解析】因为 R 为幂级数 an x 的收敛半径,所以 R 为幂级数 a2 n x 的收敛半径,
n 1
n 1
第2页
当
a
2n
r 2 n 发散时,由阿贝尔定理得 r R ,选(A)。
n 1
(5)若矩阵 A 经初等变换化成 B ,则(
)
(A)存在矩阵 P ,使得 PA B
(B)存在矩阵 P ,使得 BP A
2
0
经比较,选(D)
(2)设函数 f x 在区间 1,1 内有定义,且 lim f x 0, 则(
)
x 0
(A)当 lim
f x
x 0
(B)当 lim
x 0
x
f x
x2
0 时, f x 在 x 0 处可导。
考研数学试题及答案详解
考研数学试题及答案详解一、选择题(每题4分,共40分)1. 设函数f(x) = x^2 - 6x + 8,求f(3)的值。
A. -1B. 1C. 3D. 5答案:B解析:将x=3代入函数f(x)中,得到f(3) = 3^2 - 6*3 + 8 = 9- 18 + 8 = 1。
2. 求极限lim(x→2) (x^2 - 4) / (x - 2)。
A. 0B. 2C. 4D. 8答案:D解析:原式可以化简为lim(x→2) (x^2 - 4) / (x - 2) =lim(x→2) (x + 2) = 2 + 2 = 4。
3. 设矩阵A = \[\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}\],求A的行列式。
A. 0C. 5D. 8答案:C解析:矩阵A的行列式为1*4 - 2*3 = 4 - 6 = -2,但选项中没有-2,因此需要检查题目是否有误。
4. 求不定积分∫x^2 dx。
A. (1/3)x^3 + CB. (1/2)x^2 + CC. x^3 + CD. 2x + C答案:A解析:根据积分公式,∫x^n dx = (1/(n+1))x^(n+1) + C,代入n=2,得到∫x^2 dx = (1/3)x^3 + C。
5. 设函数f(x) = sin(x),求f'(x)。
A. cos(x)B. sin(x)C. -cos(x)D. -sin(x)答案:A解析:根据导数公式,f'(x) = cos(x)。
6. 若方程x^2 - 5x + 6 = 0的两个根为α和β,则α + β的值为。
B. 2C. 3D. 4答案:C解析:根据一元二次方程的根与系数的关系,α + β = -b/a = 5。
7. 设函数f(x) = e^x,求f'(x)。
A. e^xB. e^(-x)C. -e^xD. -e^(-x)答案:A解析:根据导数公式,f'(x) = e^x。
2020考研数学三真题及答案解析
旺旺id 河北师大研胜教育
积函数为偶函数的变限积分函数为奇函数。所以,本题选 A ;对于 C和D 选项, f ′(x) 为偶
函数,则 cos= f ′(x) cos f ′(−x) 为偶函数, f (x) 为奇函数,则 cos f ′(x) + f (x) 既非奇函数又
非偶函数。
∞
∞
(4).已知幂级数 ∑ nan (x − 2)n 的收敛区间为 (−2, 6) ,则 ∑ an (x + 1)2n 的收敛区间为
又 ABC ⊂ AB , P( ABC) ≤ P( AB) = 0
原式 = 1 − 1 + 1 − 1 + 1 − 1 − 1 = 5 4 12 4 12 4 12 12 12
(8) .若二维随机变量 (X ,Y ) 服从 N 0,0;1,4;− 1 ,则下列服从标准正态分布且与 X 独立的
2
是(
4
12
()
(A). 3
4
(B). 2
3
(C) . 1
2
(D). 5
12
旺旺id 河北师大研胜教育
【答案】(D)
【解析】
P( ABC) + P( ABC) + P( ABC) = P( A I B UC) + P(B I A UC) + P(C I A U B) = P( A) − P( AB) − P( AC) + P( ABC) + P(B) − P( AB) − P(BC) + P( ABC) + P(C) − P( AC) − P(BC) + P( ABC)
dx
(11)设产量为 Q ,单价为 P ,厂商成本函数为 C(Q=) 100 +13Q ,需求函数为 Q= (P) 800 − 2 ,
考研数学一真题及答案
考研数学一真题(一)一、填空题(本题共6小题,每小题4分,满分24分。
答案写在题中横线上)(1)曲线的斜渐近线方程为。
【答案】【解析】所以斜渐近线方程为。
综上所述,本题正确答案是。
【考点】高等数学—一元函数微分学—函数图形的凹凸性、拐点及渐近线(2)微分方程满足的解为。
【答案】【解析】原方程等价于所以通解为将代入可得综上所述,本题正确答案是。
【考点】高等数学—常微分方程—一阶线性微分方程(3)设函数,单位向量,则。
【答案】【解析】因为所以综上所述,本题正确答案是。
【考点】高等数学—多元函数微分学—方向导数和梯度(4)设是由锥面与半球面围成的空间区域,是的整个边界的外侧,则。
【答案】。
【解析】综上所述,本题正确答案是。
【考点】高等数学—多元函数积分学—两类曲面积分的概念、性质及计算(5)设均为三维列向量,记矩阵如果,那么。
【答案】2。
【解析】【方法一】【方法二】由于两列取行列式,并用行列式乘法公式,所以综上所述,本题正确答案是2。
【考点】线性代数—行列式—行列式的概念和基本性质,行列式按行(列)展开定理(6)从数中任取一个数,记为,再从中任一个数,记为,则。
【答案】。
【解析】【方法一】先求出的概率分布,因为是等可能的取,故关于的边缘分布必有,而只从中抽取,又是等可能抽取的概率为所以即:X Y12341000200304所以【方法二】1综上所述,本题正确答案是。
【考点】概率论与数理统计—多维随机变量及其分布—二维离散型随机变量的概率分布、边缘分布和条件分布二、选择题(本题共8小题,每小题4分,满分32分。
在每小题给出的四个选项中,只有一项符合题目要求。
)(7)设函数,则(A)处处可导 (B)恰有一个不可导点 (C)恰有两个不可导点 (D)恰有三个不可导点 【答案】C 。
【解析】 由知由的表达式和其图像可知在处不可导,在其余点均可导。
综上所述,本题正确答案是C 。
【考点】高等数学—一元函数微分学—导数和微分的概念 (8)设是连续函数的一个原函数,表示的充分必要条件是,则必有(A)是偶函数是奇函数 (B)是奇函数是偶函数 (C)是周期函数是周期函数 (D)是单调函数是单调函数【答案】A 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
绝密★启用前2017年全国硕士研究生入学统一考试数学(二)(科目代码302)考生注意事项1.答题前,考生必须在试题册指定位置上填写考生姓名和考生编号;在答题卡指定位置上填写报考单位、考生姓名和考生编号,并涂写考生编号信息点。
2.考生须把试题册上的试卷条形码粘贴条取下,粘贴在答题卡“试卷条形码粘贴位置”框中。
不按规定粘贴条形码而影响评卷结果的,责任由考生自负。
3.选择题的答案必须涂写在答题卡相应题号的选项上,非选择题的答案必须书写在答题卡指定位置的边框区域内。
超出答题区域书写的答案无效;在草稿纸、试题册上答题无效。
4.填(书)写部分必须使用黑色字迹签字笔或者钢笔书写,字迹工整、笔迹清楚;涂写部分必须使用2B铅笔填涂。
5.考试结束后,将答题卡和试题册按规定一并交回,不可带出考场。
2017年全国硕士研究生入学统一考试数学二试题一、选择题:1~8小题,每小题4分,共32分,下列每小题给出的四个选项中,只有一项符合题目要求的,请将所选项前的字母填在答题纸...指定位置上. (1)若函数0(),0x f x b x >=⎪≤⎩在0x =处连续,则( ) (A)12ab =(B)12ab =-(C)0ab =(D)2ab =(2)设二阶可导函数()f x 满足(1)(1)1,(0)1f f f =-==-且''()0f x >,则( )()()1111011110()()0()0()()()()()A f x dx B f x dx C f x dx f x dxD f x dx f x dx----><><⎰⎰⎰⎰⎰⎰(3)设数列{}n x 收敛,则( )()A 当limsin 0n n x →∞=时,lim 0n n x →∞= ()B当lim(0n n x →∞=时,lim 0n n x →∞=()C 当2lim()0n n n x x →∞+=时,lim 0n n x →∞= ()D 当lim(sin )0n n n x x →∞+=时,lim 0n n x →∞=(4)微分方程的特解可设为 (A )22(cos 2sin 2)xx Ae e B x C x ++ (B )22(cos 2sin 2)x x Axe e B x C x ++ (C )22(cos 2sin 2)xx Aexe B x C x ++ (D )22(cos 2sin 2)x x Axe e B x C x ++(5)设(,)f x y 具有一阶偏导数,且对任意的(,)x y ,都有(,)(,)0,0f x y f x y x y∂∂>>∂∂,则 (A )(0,0)(1,1)f f > (B )(0,0)(1,1)f f < (C )(0,1)(1,0)f f > (D )(0,1)(1,0)f f <(6)甲乙两人赛跑,计时开始时,甲在乙前方10(单位:m )处,图中实线表示甲的速度曲线1()v v t =(单位:/m s ),虚线表示乙的速度曲线2()v v t =,三块阴影部分面积的数值依次为10,20,3,计时开始后乙追上甲的时刻记为0t (单位:s ),则( ) (A )010t =(B )01520t <<(C )025t =(D )025t >()s(7)设A 为三阶矩阵,123(,,)P ααα=为可逆矩阵,使得1012P AP -⎛⎫ ⎪= ⎪ ⎪⎝⎭,则123(,,)A ααα=( ) (A )12αα+ (B )232αα+ (C )23αα+ (D )122αα+(8)设矩阵200210100021,020,020*********A B C ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥===⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦,则( ) (A ),A C B C 与相似与相似(B ),A C B C 与相似与不相似 (C ),A C B C 与不相似与相似(D ),A C B C 与不相似与不相似二、填空题:9?14小题,每小题4分,共24分,请将答案写在答题纸...指定位置上. (9) 曲线21arcsiny x x ⎛⎫=+ ⎪⎝⎭的斜渐近线方程为_______ (10) 设函数()y y x =由参数方程sin t x t e y t⎧=+⎨=⎩确定,则220t d ydx ==______ (11)2ln(1)(1)x dx x +∞+=+⎰_______ (12) 设函数(,)f x y 具有一阶连续偏导数,且(,)(1)yydf x y ye dx x y e dy =++,(0,0)0f =,则(,)______f x y =(13)11tan ______y xdy dx x=⎰⎰(14)设矩阵41212311A a -⎡⎤⎢⎥=⎢⎥⎢⎥-⎣⎦的一个特征向量为112⎛⎫⎪ ⎪ ⎪⎝⎭,则_____a =三、解答题:15—23小题,共94分.请将解答写在答题纸...指定位置上.解答应写出文字说明、证明过程或演算步骤.(15)(本题满分10分)求极限0lim t x dt +→(16)(本题满分10分)设函数(,)f u v 具有2阶连续偏导数,(,cos )xy f e x =,求x dy dx=,22x d y dx =(17)(本题满分10分)求21lim ln 1nn k k k nn →∞=⎛⎫+ ⎪⎝⎭∑(18)(本题满分10分)已知函数()y x 由方程333320x y x y +-+-=确定,求()y x 的极值(19)(本题满分10分)设函数()f x 在区间[0,1]上具有2阶导数,且0()(1)0,lim 0x f x f x+→><,证明: ()I 方程()0f x =在区间(0,1)内至少存在一个实根;()∏方程2''()()(())0f x f x f x +=在区间(0,1)内至少存在两个不同实根。
(20)(本题满分11分)已知平面区域(){}22,|2,D x y x y y =+≤计算二重积分()21Dx dxdy +⎰⎰。
(21)(本题满分11分)设()y x 是区间30,2⎛⎫ ⎪⎝⎭内的可导函数,且(1)0y =,点P 是曲线L: ()y y x =上任意一点,L 在点P 处的切线与y 轴相交于点()0,p Y ,法线与x 轴相交于点(),0p X ,若p p X Y =,求L 上点的坐标(),x y 满足的方程。
(22)(本题满分11分)设3阶矩阵()123,,A ααα=有3个不同的特征值,且3122ααα=+。
()I 证明:()2r A =()∏若123βααα=++,求方程组Ax β=的通解。
(23)(本题满分11分)设二次型222123123121323(,,)2282f x x x x x ax x x x x x x =-++-+在正交变换X QY =下的标准型221122y y λλ+,求a 的值及一个正交矩阵Q .参考答案1.【答案】A【解析】00112lim lim ,()2x x xf x ax a++→→==Q 在0x =处连续11.22b ab a ∴=⇒=选A. 2.【答案】B 【解析】()f x 为偶函数时满足题设条件,此时011()()f x dx f x dx -=⎰⎰,排除C,D.取2()21f x x =-满足条件,则()112112()2103f x dx xdx --=-=-<⎰⎰,选B. 3.【答案】D 【解析】特值法:(A )取n x π=,有limsin 0,lim n n n n x x π→∞→∞==,A 错;取1n x =-,排除B,C.所以选D.4.【答案】A 【解析】特征方程为:21,248022iλλλ-+=⇒=±222*2*212()(1cos 2)cos 2,(cos 2sin 2),x x x x x f x e x e e x y Ae y xe B x C x =+=+∴==+Q 故特解为:***2212(cos 2sin 2),x xy y y Ae xe B x C x =+=++选C.5.【答案】C 【解析】(,)(,)0,0,(,)f x y f x y f x y x y∂∂><⇒∂∂是关于x 的单调递增函数,是关于y 的单调递减函数,所以有(0,1)(1,1)(1,0)f f f <<,故答案选D. 6.【答案】B 【解析】从0到0t 这段时间内甲乙的位移分别为120(t),(t),t t v dt v dt ⎰⎰则乙要追上甲,则210(t)v (t)10t v dt -=⎰,当025t =时满足,故选C.7.【答案】 B 【解析】11231232300011(,,)(,,)12222P AP AP P A αααααααα-⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪=⇒=⇒==+ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,因此B 正确。
8.【答案】B 【解析】由0E A λ-=可知A 的特征值为2,2,1,因为3(2)1r E A --=,∴A 可相似对角化,即100~020002A ⎛⎫ ⎪⎪ ⎪⎝⎭由0E B λ-=可知B 特征值为2,2,1.因为3(2)2r E B --=,∴B 不可相似对角化,显然C 可相似对角化,∴~A C ,但B 不相似于C.9.【答案】2y x =+【解析】()22limlim(1arcsin )1,lim lim arcsin 2,2x x x x y y x x x x xy x →∞→∞→∞→∞=+=-==∴=+Q10.【答案】18-【解析】()'220222cos cos ,11cos sin (1)cos 1181t tt tt t t dy dx dy t t e dt dt dx e t d y t e te d y e dx dx dx e dt===+⇒=+⎛⎫⎪-+-+⎝⎭⇒==⇒=-+11.【答案】1【解析】2022ln(1)1ln(1)(1)1ln(1)11(1)11.(1)x dx x d x x x dx xx dx x +∞+∞+∞+∞+∞+=-+++⎤+⎡=--⎥⎢++⎣⎦==+⎰⎰⎰⎰12.【答案】yxye 【解析】,(1),(,)(),y y y yx y f ye f x y e f x y ye dx xyec y ''==+==+⎰故()y y y y y f xe xye c y xe xye ''=++=+,因此()0c y '=,即()c y C =,再由(0,0)0f =,可得(,).y f x y xye =13.【答案】ln cos1.【解析】交换积分次序:11110000tan tan tan ln cos1x y xx dy dx dx dy xdx x x ===⎰⎰⎰⎰⎰ 14.【答案】-1【解析】设112α⎛⎫⎪= ⎪ ⎪⎝⎭,由题设知A αλα=,故4121111211323112222a a λλλλ-⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫ ⎪⎪ ⎪ ⎪ ⎪=⇒+= ⎪⎪ ⎪ ⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭故1a =-. 15.【答案】23【解析】0t x →,令x t u -=,则有00t x u x u xdt du du ++=-=⎰⎰⎰3300223122=limlim2limlim332xx uxu x x ux x x dueduxx du xx +→→→→====⎰⎰⎰原式16.【答案】2'''1112(1,1),(1,1),x x dyd yf f dxdx====【解析】 ()()'''''1212102''2''''''2''111221221222''''111220(,cos )(0)(1,1)sin (1,1)1(1,1)0(1,1)(sin )(sin )sin cos (1,1)(1,1)(1,1)x xx x x x x x x x y f e x y f dyf e f x f f f dxd y fef e x f e x f x f e f x dx d y f f f dx =====⇒=⇒=+-=⋅+⋅=⇒=+-+-++-⇒=+-结论: '102''''11122(1,1)(1,1)(1,1)(1,1)x x dy f dxd yf f f dx ====+-17.【答案】14【解析】 211122102000111111lim ln(1)ln(1)ln(1)(ln(1))2214nn k k k x x x dx x dx x x dx nn x →∞=-++=+=+=+⋅-=+∑⎰⎰⎰18.【解析】两边求导得:2233'33'0x y y y +-+= (1)令'0y =得1x =±对(1)式两边关于x 求导得 ()2266'3''3''0x y y y y y +++= (2)将1x =±代入原题给的等式中,得1110x x or y y ==-⎧⎧⎨⎨==⎩⎩, 将1,1x y ==代入(2)得''(1)10y =-< 将1,0x y =-=代入(2)得''(1)20y -=> 故1x =为极大值点,(1)1y =;1x =-为极小值点,(1)0y -= 19.【解析】(I )()f x 二阶导数,0()(1)0,lim 0x f x f x+→>< 解:1)由于0()lim 0x f x x +→<,根据极限的保号性得0,(0,)x δδ∃>∀∈有()0f x x<,即()0f x < 进而()0(0,)0x fδδ∃∈<有又由于()f x 二阶可导,所以()f x 在[0,1]上必连续那么()f x 在[,1]δ上连续,由()0,(1)0f f δ<>根据零点定理得:至少存在一点(,1)ξδ∈,使()0f ξ=,即得证(II )由(1)可知(0)0f =,(0,1),()0f ξξ∃∈=使,令()()'()F x f x f x =,则(0)()0f f ξ== 由罗尔定理(0,),'()0f ηξη∃∈=使,则(0)()()0F F F ηξ===,对()F x 在(0,),(,)ηηξ分别使用罗尔定理:12(0,),(,)ηηηηξ∃∈∈且1212,(0,1),ηηηη∈≠,使得12'()'()0F F ηη==,即()2'()()''()'()0F x f x f x f x =+=在(0,1)至少有两个不同实根。