高考物理知识点总结:光的折射全反射
光的折射定律及光的全反射

光的折射定律及光的全反射光是一种电磁波,具有波粒二象性,既可以传播作为波动,也可以表现为光子粒子。
当光传播的时候,会遇到不同介质的边界,这时就会出现光的折射和全反射现象。
光的折射定律和光的全反射是研究光在不同介质传播过程中重要的规律。
一、光的折射定律当光从一种介质射向另一种介质并发生折射时,光线在界面上发生折射,折射光线的传播方向会发生改变。
根据实验观察和数学推导,得到了光的折射定律,即斯涅尔定律。
光的折射定律表达了光线在两个介质之间传播时入射角、折射角和两个介质的折射率之间的关系。
根据光的折射定律,可以得到如下公式:n1sinθ1 = n2sinθ2其中,n1和n2分别表示两个介质的折射率,θ1和θ2分别表示入射角和折射角。
从光的折射定律可以看出,光在从光疏介质射向光密介质时,折射角会小于入射角;光从光密介质射向光疏介质时,折射角会大于入射角。
这是因为光在不同介质中传播时,其速度发生改变,从而导致折射角的变化。
光的折射定律不仅解释了折射现象,还可以用于计算折射率、入射角度和折射角度之间的关系。
通过光的折射定律,人们可以推断出光在不同介质中的传播路径和传播性质。
二、光的全反射当光从光密介质射向光疏介质时,如果入射角大于临界角,就会发生光的全反射现象。
在全反射时,光线完全被反射回入射介质中,不再传播进入下一个介质。
光的全反射是一种光的传播方式,只有在特定条件下才会发生。
当光从光密介质射向光疏介质时,如果入射角超过一个特定的临界角,那么光将无法穿过界面,而是全部被反射回原介质。
这个临界角取决于两个介质的折射率,可以通过光的折射定律进行计算。
全反射现象在光学的实际应用中有重要意义。
例如光纤通信中,利用光的全反射使光信号能够在光纤内部长距离传播。
此外,还有各种光学仪器和光学设备中也常常利用光的全反射现象来实现光的传输和控制。
总结:光的折射定律和光的全反射是光在不同介质中传播过程中的重要规律。
光的折射定律描述了光在两个介质之间传播时入射角、折射角和两个介质的折射率之间的关系,可以用于计算入射角度和折射角度之间的变化。
光学中的光的折射与全反射知识点总结

光学中的光的折射与全反射知识点总结光学是研究光的传播和相互作用的学科,其中折射和全反射是光在介质中传播时常见的现象。
本文将就光的折射和全反射的相关知识点进行总结,以加深对光学原理的理解。
一、光的折射光的折射是指光线在从一种介质进入另一种介质时的方向改变。
根据斯涅尔定律,光的折射遵循折射定律,即入射角和折射角之间的关系可以由下式表示:n₁sinθ₁ = n₂sinθ₂其中,n₁和n₂分别为两种介质的折射率,θ₁为入射角,θ₂为折射角。
该定律表明了光线在两种介质之间传播时的路径和方向的关系。
除了折射定律,还有一些光的折射规律需要了解:1. 光从光疏介质透过到光密介质时,入射角大于折射角,光线向法线偏离,折射角变小;2. 光从光密介质透过到光疏介质时,入射角小于折射角,光线离开法线,折射角变大;3. 光从光密介质透过到光密介质时,入射角等于折射角,光线不改变方向。
光的折射现象可以观察到很多实际应用中,比如光在水面上的折射现象,照相机镜头的设计等。
二、全反射全反射是在光从一种光密介质射向一种光疏介质时,入射角大于临界角时发生的现象。
当入射角等于临界角时,出射角为90度,光线沿界面传播。
如果入射角大于临界角,光将会被完全反射回光密介质中,不会传播到光疏介质中。
全反射的发生是因为光在在光密介质和光疏介质的传播速度不同,当光从快速传播的光密介质射向传播速度较慢的光疏介质时,光线会被界面反射回光密介质。
全反射也有一些重要规律需要了解:1. 全反射只在入射角大于临界角时发生;2. 临界角和介质的折射率有关,临界角越大,折射率越小。
全反射在光纤通信中有着重要的应用,利用全反射原理可以将光信号在光纤中进行传输,实现远距离的通信。
三、应用与实例在现实生活中,光的折射和全反射有着广泛的应用。
下面列举几个常见的实例:1. 鱼眼镜头:鱼眼镜头利用全反射的原理,使得光线以较大的视场角进入相机镜头,从而实现了广角效果。
2. 光纤通信:光纤通信是利用光在光纤中的全反射传输信号。
光的折射和全反射

光的折射和全反射光的折射和全反射是光在不同介质中传播时常见的现象。
了解光的折射和全反射,能够帮助我们理解光的传播规律以及光在光纤通信等领域的应用。
一、光的折射光的折射指的是光射入不同介质时,由于介质的光密度不同,光线的传播方向发生改变的现象。
根据斯涅尔(Snell)定律,光在两种不同介质之间传播时,入射角和折射角之间的关系为:n₁sinθ₁ =n₂sinθ₂。
其中,n₁和n₂分别为两种介质的折射率,θ₁为入射角,θ₂为折射角。
根据这个定律,当光从光密度较大的介质(高折射率)射入光密度较小的介质(低折射率)时,光线向法线方向偏离;而当光从光密度较小的介质射入光密度较大的介质时,光线朝法线方向靠拢。
光的折射现象在我们生活中随处可见,比如光通过玻璃、水等介质时会发生折射。
这一现象也是为什么在水中看到的物体会有折断的视觉效果。
二、全反射全反射是指光射入光密度较小的介质时,折射角大于90度,无法从介质中传播到光密度较大的介质中的现象。
当光从光密度较大的介质射入光密度较小的介质时,若入射角超过临界角,光将完全被反射,无法透过界面。
临界角的大小与两种介质的折射率有关,公式为:θc =arcsin(n₂/n₁)。
其中,θc为临界角,n₁和n₂分别为两种介质的折射率。
全反射在光纤通信中起着重要作用。
光纤的工作原理便是基于光的全反射。
光信号在光纤中通过多次全反射进行传播,从而实现信息的传输。
光纤的高速传输和远距离传输能力得益于光的全反射特性。
除了光纤通信,全反射还应用于显微镜、光导板等光学仪器中。
在显微镜中,通过目镜和物镜的组合,利用全反射的原理使得显微镜能够放大微小物体的图像。
光导板则是利用全反射将光线从一侧引导到另一侧,可以实现光的聚光和分光效果。
总结:光的折射和全反射是光在不同介质中传播时所呈现出的现象。
光的折射遵循斯涅尔定律,表示光线在入射介质和折射介质之间传播时,入射角和折射角之间的关系。
全反射则是当光从光密度较大的介质射入光密度较小的介质时,折射角大于90度,无法透过介质传播的现象。
光的折射与全反射知识点总结

光的折射与全反射知识点总结光的折射和全反射是光学中非常重要的现象和概念。
通过研究折射和全反射的特点和原理,我们可以更深入地了解光的传播规律和光在不同介质中的行为。
本文将对光的折射和全反射的知识点进行总结。
一、光的折射1. 折射现象:当光从一种介质传播到另一种介质时,由于两种介质的光速度不同,光线会发生偏折的现象,这就是折射现象。
2. 折射定律:光的折射现象遵循折射定律,即斯涅尔定律。
根据斯涅尔定律,光线在两个介质之间传播时,入射角、折射角和两个介质的折射率之间有一定的关系,可以用如下公式表示:n1 * sin(θ1) = n2 * sin(θ2)。
其中,n1和n2分别表示两个介质的折射率,θ1和θ2分别表示入射角和折射角。
3. 折射率:折射率是介质对光的折射能力的度量,是一个与介质的性质相关的物理量。
折射率越大,光的速度越慢,折射弯曲程度越大。
4. 全反射:当光从光密介质(折射率较大)入射到光疏介质(折射率较小)时,当入射角大于一定的临界角时,光将完全发生反射,不发生折射。
这种现象称为全反射。
二、全反射1. 全反射的条件:光发生全反射需要满足两个条件。
首先,光需要从光密介质入射到光疏介质,使得折射角大于90度。
其次,入射角需要大于临界角。
2. 临界角的计算:临界角可以通过折射定律计算得出。
当折射角为90度时,入射角达到临界角。
假设两个介质的折射率为n1和n2,则临界角可以通过如下公式计算:θc = arcsin(n2 / n1)。
3. 光纤的应用:全反射在光纤中得到了广泛的应用。
光纤是一种可以将光信号传输的光学器件,其基本原理就是利用了光的全反射现象。
光信号通过光纤的内部发生反射,从而实现了光信号的传输。
总结:光的折射和全反射是光学中重要的现象和原理。
通过折射定律可以计算光线在两种介质之间的入射角和折射角的关系,而全反射则是当光从光密介质入射到光疏介质时,避免发生折射的现象。
这些知识点对于理解光的传播和应用具有重要意义,例如光纤通信等。
高考物理知识点总结:光的折射全反射

光的折射、全反射 一、光的折射1.折射现象:光从一种介质斜.射入另一种介质,传播方向发生改变的现象.2.折射定律:折射光线、入射光线跟法线在同一平面内,折射光线、入射光线分居法线两侧,入射角的正弦跟折射角的正弦成正比. 3.在折射现象中光路是可逆的.二、折射率1.定义:光从真空射入某种介质,入射角的正弦跟折射角的正弦之比,叫做介质的折射率.注意:指光从真空射入介质.2.公式:n=sini/sin γ0sin 1C v c ='==λλ,折射率总大于1.即n >1.3.各种色光性质比较:红光的n 最小,ν最小,在同种介质中(除真空外)v 最大,λ最大,从同种介质射向真空时全反射的临界角C 最大,以相同入射角在介质间发生折射时的偏折角最小(注意区分偏折角...和折射角...)。
4.两种介质相比较,折射率较大的叫光密介质,折射率较小的叫光疏介质.三、全反射1.全反射现象:光照射到两种介质界面上时,光线全部被反射回原介质的现象. 2.全反射条件:光线从光密介质射向光疏介质,且入射角大于或等于临界角. 3.临界角公式:光线从某种介质射向真空(或空气)时的临界角为C ,则sinC=1/n=v/c四、棱镜与光的色散1.棱镜对光的偏折作用一般所说的棱镜都是用光密介质制作的。
入射光线经三棱镜两次折射后,射出方向与入射方向相比,向底边偏折。
(若棱镜的折射率比棱镜外介质小则结论相反。
) 作图时尽量利用对称性(把棱镜中的光线画成与底边平行)。
由于各种色光的折射率不同,因此一束白光经三棱镜折射后发生色散现象,在光屏上形成七色光带(称光谱)(红光偏折最小,紫光偏折最大。
)在同一介质中,七色光与下面几个物理量的对应关系如表所示。
光学中的一个现象一串结论2.全反射棱镜出后偏转90o(右图1)或180o(右图2)。
要特别注意两种用法中光线在哪个表面发生全反射。
3.玻璃砖所谓玻璃砖一般指横截面为矩形的棱柱。
当光线从上表面入射,从下表面射出时,其特点是:⑴射出光线和入射光线平行;⑵各种色光在第一次入射后就发生色散;⑶射出光线的侧移和折射率、入射角、玻璃砖的厚度有关;⑷可利用玻璃砖测定玻璃的折射率。
光学重点知识总结光的折射和全反射现象

光学重点知识总结光的折射和全反射现象光学重点知识总结——光的折射和全反射现象在光学中,折射和全反射是重要的现象和理论,对于我们理解光的行为和应用具有重要意义。
本文将对光的折射和全反射进行总结,帮助读者更好地理解这些光学现象。
一、光的折射现象光的折射是指当光线从一种介质进入到另一种介质时,由于两种介质的光速不同,光线发生偏离原来的传播方向的现象。
这种现象是由于光在不同介质中传播速度的差异所导致的。
根据折射定律,我们可以得出以下结论:入射光线、折射光线和介质分界面上的法线所在的平面三者共面。
此外,根据斯涅尔定律,我们可以得出:折射光线的入射角和折射角满足一个固定的比例关系,即$$\frac{{\sin{\theta_1}}}{{\sin{\theta_2}}}=\frac{{v_1}}{{v_2}}$$,其中$$\theta_1$$为入射角,$$\theta_2$$为折射角,$$v_1$$为光在第一种介质中的传播速度,$$v_2$$为光在第二种介质中的传播速度。
二、光的全反射现象光的全反射是指当光线从光密介质射入光疏介质时,入射角大于临界角时,光线无法从光疏介质传播到光密介质,而被完全反射的现象。
临界角可以通过折射定律进行计算:当光线从光密介质射入光疏介质时,令入射角等于临界角,此时折射角为90度,即$$\sin{\theta_c}=\frac{{v_1}}{{v_2}}$$,其中$$\theta_c$$为临界角,$$v_1$$为光在光密介质中的传播速度,$$v_2$$为光在光疏介质中的传播速度。
三、应用举例1. 光纤通信光纤通信是利用光的全反射现象来进行信号传输的技术。
光纤中的光通过全反射在纤芯内部传播,从而实现将信号从发送端传输到接收端。
由于全反射的特性,光信号能够在光纤中长距离传输而几乎不损耗,提供了高速、大带宽的通信方式。
2. 光学棱镜光学棱镜是利用光的折射现象进行光线的偏折和分光的光学元件。
物理高三考点梳理光学中的折射与反射规律

物理高三考点梳理光学中的折射与反射规律光学是研究光的传播和光与物质相互作用的学科,其中折射与反射规律是光学中的重要内容。
本文将对高三物理考点中的光学知识进行梳理和总结,探讨光的折射与反射规律。
一、光的反射规律光的反射规律是光线与界面之间的关系,也是光学中的基本原理之一。
光的反射规律可以通过“入射角等于反射角”的表达进行阐述。
当光线从一种介质的界面射向另一种介质时,入射光线、反射光线和法线(垂直于界面的线)三者在同一平面上,且入射角(光线与法线的夹角)等于反射角(反射光线与法线的夹角)。
光的反射规律可以应用于很多实际问题中,比如平面镜的成像问题。
根据光的反射规律,通过确定入射角和法线,可以准确地确定反射光线的方向。
二、光的折射规律光的折射规律描述了光线从一种介质进入另一种介质时的行为。
光的折射规律包括了入射角、折射角和两种介质的折射率之间的关系。
光的折射规律可以通过“光线从光密介质进入光疏介质,入射角的正弦与折射角的正弦之比等于两种介质折射率的比值”来描述。
这一关系可以用一个简洁的数学表达式来表示:n₁sinθ₁=n₂sinθ₂,其中n₁和n₂分别表示两种介质的折射率,θ₁和θ₂分别表示入射角和折射角。
光的折射规律在实际应用中具有广泛的意义,例如光的折射在透镜和棱镜的成像中起到重要的作用。
根据光的折射规律,通过确定入射角、折射角和两种介质的折射率,我们可以预测光在不同介质中的传播路径和行为。
三、光的全反射现象当光从光密介质射向光疏介质,并且入射角大于临界角时,会发生全反射现象。
全反射是一种光线在界面上完全发生反射的现象,没有折射光线发生。
全反射是光学中的重要现象,也是一些实际应用的基础。
例如光纤通信中利用全反射来传输光信号,通过不断折射和反射来实现光信号的传输和扩展。
全反射还可以解释一些自然现象,比如光在水面上的倒影,湖面上的“镜面世界”等。
四、光的色散现象光的色散是指光线在不同介质中传播时由于折射率的不同而导致的颜色分散现象。
高考物理考点详析 光的折射和全反射

1.折射现象光从一种介质斜射进入另一种介质时传播方向改变的现象。
2.折射定律(1)内容:如图所示,折射光线与入射光线、法线处在同一平面内,折射光线与入射光线分别位于法线的两侧;入射角的正弦与折射角的正弦成正比。
(2)表达式:n =21sin sin θθ。
(3)在光的折射现象中,光路是可逆的。
3.折射率(1)折射率是一个反映介质的光学性质的物理量。
(2)定义式:21sin sin θθ=n 。
(3)计算公式:vcn =,因为v <c ,所以任何介质的折射率都大于1。
(4)当光从真空(或空气)射入某种介质时,入射角大于折射角;当光由介质射入真空(或空气)时,入射角小于折射角。
4.全反射现象(1)条件:①光从光密介质射入光疏介质。
②入射角大于或等于临界角。
(2)现象:折射光完全消失,只剩下反射光。
5.临界角:折射角等于90°时的入射角,用C 表示,sin C =n1。
6.光的色散(1)光的色散现象:含有多种颜色的光被分解为单色光的现象。
(2)光谱:含有多种颜色的光被分解后,各种色光按其波长的有序排列。
(3)光的色散现象说明: ①白光为复色光;②同一介质对不同色光的折射率不同,频率越大的色光折射率越大; ③不同色光在同一介质中的传播速度不同,波长越短,波速越慢。
(4)棱镜①含义:截面是三角形的玻璃仪器,可以使光发生色散,白光的色散表明各色光在同一介质中的折射率不同。
②三棱镜对光线的作用:改变光的传播方向,使复色光发生色散。
7.折射定律的理解与应用 解决光的折射问题的一般方法: (1)根据题意画出正确的光路图。
(2)利用几何关系确定光路中的边、角关系,确定入射角和折射角。
(3)利用折射定律建立方程进行求解。
8.玻璃砖对光路的控制两平面平行的玻璃砖,出射光线和入射光线平行,且光线发生了侧移,如图所示。
9.三棱镜对光路的控制(1)光密三棱镜:光线两次折射均向底面偏折,偏折角为δ,如图所示。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
光的折射、全反射
一、光的折射
1.折射现象:光从一种介质斜.
射入另一种介质,传播方向发生改变的现象. 2
.折射定律:折射光线、入射光线跟法线在同一平面内,折射光线、入射光线分居法线两侧,入射角的正弦跟折射角的正弦成正比.
3.在折射现象中光路是可逆的.
二、折射率
1.定义:光从真空射入某种介质
,入射角的正弦跟折射角的正弦之比,叫做介质的折射率.注意:指光从真空射入介质.
2.公式:n=sini/sin γ0sin 1C v c ='==λλ,折射率总大于1.即n >1.
3.各种色光性质比较:红光的n 最小,ν最小,在同种介质中(除真空外)v 最大,λ最大,从同种介质射向真空时全反射的临界角C 最大,以相同入射角在介质间发生折射时的偏折角最小(注意区分偏折角...和折射角...
)。
4.两种介质相比较,折射率较大的叫光密介质,折射率较小的叫光疏介质.
三、全反射
1.全反射现象:光照射到两种介质界面上时,光线全部被反射回原介质的现象.
2.全反射条件:光线从光密介质射向光疏介质,且入射角大于或等于临界角.
3.临界角公式:光线从某种介质射向真空(或空气)时的临界角为C ,则sinC=1/n=v/c
四、棱镜与光的色散
1.棱镜对光的偏折作用
一般所说的棱镜都是用光密介质制作的。
入射光线经三棱镜两次折射后,射出方向与入射方向相比,向底边偏折。
(若棱镜的折射率比棱镜外介质小则结论相反。
)
作图时尽量利用对称性(把棱镜中的光线画成与底边平行)。
由于各种色光的折射率不同,因此一束白光经三棱镜折射后发生色散现象,在光屏上形成七色光带(称光谱)(红光偏折最小,紫光偏折最大。
)在同一介质中,七色光与下面几个物理量的对应关系如表所示。
光学中的一个现象一串结论
2.全反射棱镜
90o(右图1)或180o(右图2)。
要特别注意两种用法中光线在哪个表面发生全反射。
3.玻璃砖
所谓玻璃砖一般指横截面为矩形的棱柱。
当光线从上表面入射,从下表面射出时,其特点是:
⑴射出光线和入射光线平行;
⑵各种色光在第一次入射后就发生色散;
⑶射出光线的侧移和折射率、入射角、玻璃砖的厚度有关;
⑷可利用玻璃砖测定玻璃的折射率。
4.光导纤维
全反射的一个重要应用就是用于光导纤维(简称光纤)。
光纤有内、外两层材料,其中内层是光密介质,外层是光疏介质。
光在光纤中传播时,每次射到内、外两层材料的界面,都要求入射角大于临界角,从而发生全反射。
这样使从一个端面入射的光,经过多次全反射能够没有损失地全部从另一个端面射出。
五、各光学元件对光路的控制特征
(1)光束经平面镜反射后,其会聚(或发散)的程度将不发生改变。
这正是反射定律中“反射角等于入射角”及平面镜的反射面是“平面”所共同决定的。
(2)光束射向三棱镜,经前、后表面两次折射后,其传播光路变化的特征是:向着底边偏折,若光束由复色光组成,由于不同色光偏折的程度不同,将发生所谓的色散现象。
(3)光束射向前、后表面平行的透明玻璃砖,经前、后表面两次折射后,其传播光路变化的特征是;传播方向不变,只产生一个侧移。
(4)光束射向透镜,经前、后表面两次折射后,其传播光路变化的特征是:凸透镜使光束会聚,凹透镜使光束发散。
六、各光学镜的成像特征
物点发出的发散光束照射到镜面上并经反射或折射后,如会聚于一点,则该点即为物点经镜面所成的实像点;如发散,
则其反向延长后的会聚点即为物点经镜面所成的虚像点。
因此,判断某光学镜是否能成实(虚)像,关键看发散光束经该光学镜的反射或折射后是否能变为会聚光束(可能仍为发散光束)。
(1)平面镜的反射不能改变物点发出的发散光束的发散程度,所以只能在异侧成等等大的、正立的虚像。
(2)凹透镜的折射只能使物点发出的发散光束的发散程度提高,所以只能在同侧成缩小的、正立的虚像。
(3)凸透镜折射既能使物点发出的发散光束仍然发散,又能使物点发出发散光束变为聚光束,所以它既能成虚像,又能成实像。
七、几何光学中的光路问题
几何光学是借用“几何”知识来研究光的传播问题的,而光的传播路线又是由光的基本传播规律来确定。
所以,对于几何光学问题,只要能够画出光路图,剩下的就只是“几何问题”了。
而几何光学中的光路通常有如下两类:
(1)“成像光路”——一般来说画光路应依据光的传播规律,但对成像光路来说,特别是对薄透镜的成像光路来说,则是依据三条特殊光线来完成的。
这三条特殊光线通常是指:平行于主轴的光线经透镜后必过焦点;过焦点的光线经透镜后必平行于主轴;过光心的光线经透镜后传播方向不变。
(2)“视场光路”——即用光路来确定观察范围。
这类光路一般要求画出所谓的“边缘光线”,而一般的“边缘光线”往往又要借助于物点与像点的一一对应关系来帮助确定。