2010年江苏省徐州市中考数学试卷及答案
江苏省徐州市中考数学真题试题(含解析)
江苏省徐州市中考数学试卷一、选择题(本大题共有8小题,每小题3分,共24分,在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置)1.(3分)﹣2的倒数是()A.﹣B.C.2 D.﹣22.(3分)下列计算正确的是()A.a2+a2=a4B.(a+b)2=a2+b2C.(a3)3=a9D.a3•a2=a63.(3分)下列长度的三条线段,能组成三角形的是()A.2,2,4 B.5,6,12 C.5,7,2 D.6,8,104.(3分)抛掷一枚质地均匀的硬币2000次,正面朝上的次数最有可能为()A.500 B.800 C.1000 D.12005.(3分)某小组7名学生的中考体育分数如下:37,40,39,37,40,38,40,该组数据的众数、中位数分别为()A.40,37 B.40,39 C.39,40 D.40,386.(3分)下图均由正六边形与两条对角线所组成,其中不是轴对称图形的是()A.B.C.D.7.(3分)若A(x1,y1)、B(x2,y2)都在函数y=的图象上,且x1<0<x2,则()A.y1<y2B.y1=y2C.y1>y2D.y1=﹣y28.(3分)如图,数轴上有O、A、B三点,O为原点,OA、OB分别表示仙女座星系、M87黑洞与地球的距离(单位:光年).下列选项中,与点B表示的数最为接近的是()A.5×106B.107C.5×107D.108二、填空題(本大题共有10小题,每小题3分,共30分.不需写出解答过程,请将答案直接填写在答题卡相应位置)9.(3分)8的立方根是.10.(3分)使有意义的x的取值范围是.11.(3分)方程x2﹣4=0的解是.12.(3分)若a=b+2,则代数式a2﹣2ab+b2的值为.13.(3分)如图,矩形ABCD中,AC、BD交于点O,M、N分别为BC、OC的中点.若MN=4,则AC的长为.14.(3分)如图,A、B、C、D为一个外角为40°的正多边形的顶点.若O为正多边形的中心,则∠OAD=.15.(3分)如图,沿一条母线将圆锥侧面剪开并展平,得到一个扇形,若圆锥的底面圆的半径r=2cm,扇形的圆心角θ=120°,则该圆锥的母线长l为cm.16.(3分)如图,无人机于空中A处测得某建筑顶部B处的仰角为45°,测得该建筑底部C处的俯角为17°.若无人机的飞行高度AD为62m,则该建筑的高度BC为m.(参考数据:sin17°≈0.29,cos17°≈0.96,tan17°≈0.31)17.(3分)已知二次函数的图象经过点P(2,2),顶点为O(0,0)将该图象向右平移,当它再次经过点P时,所得抛物线的函数表达式为.18.(3分)函数y=x+1的图象与x轴、y轴分别交于A、B两点,点C在x轴上.若△ABC 为等腰三角形,则满足条件的点C共有个.三、解答题(本大题共有10小题,共86分,请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)19.(10分)计算:(1)π0﹣+()﹣2﹣|﹣5|;(2)÷.20.(10分)(1)解方程:+1=(2)解不等式组:21.(7分)如图,甲、乙两个转盘分别被分成了3等份与4等份,每份内均标有数字.分别旋转这两个转盘,将转盘停止后指针所指区域内的两数相乘.(1)请将所有可能出现的结果填入下表:(2)积为9的概率为;积为偶数的概率为;(3)从1~12这12个整数中,随机选取1个整数,该数不是(1)中所填数字的概率为.22.(7分)某户居民2018年的电费支出情况(每2个月缴费1次)如图所示:根据以上信息,解答下列问题:(1)求扇形统计图中“9﹣10月”对应扇形的圆心角度数;(2)补全条形统计图.23.(8分)如图,将平行四边形纸片ABCD沿一条直线折叠,使点A与点C重合,点D落在点G处,折痕为EF.求证:(1)∠ECB=∠FCG;(2)△EBC≌△FGC.24.(8分)如图,AB为⊙O的直径,C为⊙O上一点,D为的中点.过点D作直线AC的垂线,垂足为E,连接OD.(1)求证:∠A=∠DOB;(2)DE与⊙O有怎样的位置关系?请说明理由.25.(8分)如图,有一块矩形硬纸板,长30cm,宽20cm.在其四角各剪去一个同样的正方形,然后将四周突出部分折起,可制成一个无盖长方体盒子.当剪去正方形的边长取何值时,所得长方体盒子的侧面积为200cm2?26.(8分)【阅读理解】用10cm×20cm的矩形瓷砖,可拼得一些长度不同但宽度均为20cm的图案.已知长度为10cm、20cm、30cm的所有图案如下:【尝试操作】如图,将小方格的边长看作10cm,请在方格纸中画出长度为40cm的所有图案.【归纳发现】观察以上结果,探究图案个数与图案长度之间的关系,将下表补充完整.27.(9分)如图①,将南北向的中山路与东西向的北京路看成两条直线,十字路口记作点A.甲从中山路上点B出发,骑车向北匀速直行;与此同时,乙从点A出发,沿北京路步行向东匀速直行.设出发xmin时,甲、乙两人与点A的距离分别为y1m、y2m.已知y1、y2与x之间的函数关系如图②所示.(1)求甲、乙两人的速度;(2)当x取何值时,甲、乙两人之间的距离最短?28.(11分)如图,平面直角坐标系中,O为原点,点A、B分别在y轴、x轴的正半轴上.△AOB的两条外角平分线交于点P,P在反比例函数y=的图象上.PA的延长线交x轴于点C,PB的延长线交y轴于点D,连接CD.(1)求∠P的度数及点P的坐标;(2)求△OCD的面积;(3)△AOB的面积是否存在最大值?若存在,求出最大面积;若不存在,请说明理由.参考答案与试题解析一、选择题(本大题共有8小题,每小题3分,共24分,在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置)1.(3分)﹣2的倒数是()A.﹣B.C.2 D.﹣2【分析】根据乘积是1的两个数叫做互为倒数解答.【解答】解:∵(﹣2)×(﹣)=1,∴﹣2的倒数是﹣.故选:A.【点评】本题考查了倒数的定义,是基础题,熟记概念是解题的关键.2.(3分)下列计算正确的是()A.a2+a2=a4B.(a+b)2=a2+b2C.(a3)3=a9D.a3•a2=a6【分析】分别根据合并同类项的法则、完全平方公式、幂的乘方以及同底数幂的乘法化简即可判断.【解答】解:A、a2+a2=2a2,故选项A不合题意;B.(a+b)2=a2+2ab+b2,故选项B不合题意;C.(a3)3=a9,故选项C符合题意;D.a3•a2=a5,故选项D不合题意.故选:C.【点评】本题主要考查了合并同类项的法则、幂的运算法则以及完全平方公式,熟练掌握法则是解答本题的关键.3.(3分)下列长度的三条线段,能组成三角形的是()A.2,2,4 B.5,6,12 C.5,7,2 D.6,8,10【分析】根据三角形两边之和大于第三边可以判断各个选项中的三天线段是否能组成三角形,本题得以解决.【解答】解:∵2+2=4,∴2,2,4不能组成三角形,故选项A错误,∵5+6<12,∴5,6,12不能组成三角形,故选项B错误,∵5+2=7,∴5,7,2不能组成三角形,故选项C错误,∵6+8>10,∴6,8,10能组成三角形,故选项D正确,故选:D.【点评】本题考查三角形三边关系,解答本题的关键是明确三角形两边之和大于第三边.4.(3分)抛掷一枚质地均匀的硬币2000次,正面朝上的次数最有可能为()A.500 B.800 C.1000 D.1200【分析】由抛掷一枚硬币正面向上的可能性为0.5求解可得.【解答】解:抛掷一枚质地均匀的硬币2000次,正面朝上的次数最有可能为1000次,故选:C.【点评】本题主要考查随机事件,关键是理解必然事件为一定会发生的事件;解决此类问题,要学会关注身边的事物,并用数学的思想和方法去分析、看待、解决问题,提高自身的数学素养.5.(3分)某小组7名学生的中考体育分数如下:37,40,39,37,40,38,40,该组数据的众数、中位数分别为()A.40,37 B.40,39 C.39,40 D.40,38【分析】根据众数和中位数的概念求解可得.【解答】解:将数据重新排列为37,37,38,39,40,40,40,所以这组数据的众数为40,中位数为39,故选:B.【点评】本题考查了中位数和众数的概念,一组数据中出现次数最多的数据叫做众数;将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.6.(3分)下图均由正六边形与两条对角线所组成,其中不是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形的概念求解可得.【解答】解:不是轴对称图形,故选:D.【点评】本题主要考查轴对称图形,解题的关键是掌握轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴,这时,我们也可以说这个图形关于这条直线(成轴)对称.7.(3分)若A(x1,y1)、B(x2,y2)都在函数y=的图象上,且x1<0<x2,则()A.y1<y2B.y1=y2C.y1>y2D.y1=﹣y2【分析】根据题意和反比例函数的性质可以解答本题.【解答】解:∵函数y=,∴该函数图象在第一、三象限、在每个象限内y随x的增大而减小,∵A(x1,y1)、B(x2,y2)都在函数y=的图象上,且x1<0<x2,∴y1<y2,故选:A.【点评】本题考查反比例函数图象上点的坐标特征,解答本题的关键是明确题意,利用反比例函数的性质解答.8.(3分)如图,数轴上有O、A、B三点,O为原点,OA、OB分别表示仙女座星系、M87黑洞与地球的距离(单位:光年).下列选项中,与点B表示的数最为接近的是()A.5×106B.107C.5×107D.108【分析】先化简2.5×106=0.25×107,再从选项中分析即可;【解答】解:2.5×106=0.25×107,(10×107)÷(0.25×107)=40,从数轴看比较接近;故选:D.【点评】本题考查数轴,科学记数法;能够将数进行适当的表示,结合数轴解题是关键.二、填空題(本大题共有10小题,每小题3分,共30分.不需写出解答过程,请将答案直接填写在答题卡相应位置)9.(3分)8的立方根是 2 .【分析】利用立方根的定义计算即可得到结果.【解答】解:8的立方根为2,故答案为:2.【点评】此题考查了立方根,熟练掌握立方根的定义是解本题的关键.10.(3分)使有意义的x的取值范围是x≥﹣1 .【分析】根据二次根式中的被开方数必须是非负数,可得x+1≥0,据此求出x的取值范围即可.【解答】解:∵有意义,∴x+1≥0,∴x的取值范围是:x≥﹣1.故答案为:x≥﹣1.【点评】此题主要考查了二次根式有意义的条件,要熟练掌握,解答此题的关键是要明确:二次根式中的被开方数必须是非负数,否则二次根式无意义.11.(3分)方程x2﹣4=0的解是±2 .【分析】首先把4移项,再利用直接开平方法解方程即可.【解答】解:x2﹣4=0,移项得:x2=4,两边直接开平方得:x=±2,故答案为:±2.【点评】此题主要考查了直接开平方法解一元二次方程,解这类问题要移项,把所含未知数的项移到等号的左边,把常数项移项等号的右边,化成x2=a(a≥0)的形式,利用数的开方直接求解.(1)用直接开方法求一元二次方程的解的类型有:x2=a(a≥0);ax2=b(a,b同号且a≠0);(x+a)2=b(b≥0);a(x+b)2=c(a,c同号且a≠0).法则:要把方程化为“左平方,右常数,先把系数化为1,再开平方取正负,分开求得方程解”.(2)用直接开方法求一元二次方程的解,要仔细观察方程的特点.12.(3分)若a=b+2,则代数式a2﹣2ab+b2的值为 4 .【分析】由a=b+2,可得a﹣b=2,代入所求代数式即可.【解答】解:∵a=b+2,∴a﹣b=2,∴a2﹣2ab+b2=(a﹣b)2=22=4.故答案为:4【点评】本题主要考查了完全平方公式,熟记公式是解答本题的关键.13.(3分)如图,矩形ABCD中,AC、BD交于点O,M、N分别为BC、OC的中点.若MN=4,则AC的长为16 .【分析】根据中位线的性质求出BO长度,再依据矩形的性质AC=BD=2BO进行求解问题.【解答】解:∵M、N分别为BC、OC的中点,∴BO=2MN=8.∵四边形ABCD是矩形,∴AC=BD=2BO=16.故答案为16.【点评】本题主要考查了矩形的性质以及三角形中位线的定理,解题的关键是找到线段间的倍分关系.14.(3分)如图,A、B、C、D为一个外角为40°的正多边形的顶点.若O为正多边形的中心,则∠OAD=140°.【分析】利用任意凸多边形的外角和均为360°,正多边形的每个外角相等即可求出多边形的边数,再根据多边形的内角和公式计算即可.【解答】解:多边形的每个外角相等,且其和为360°,据此可得多边形的边数为:,∴∠OAD=.故答案为:140°【点评】本题主要考查了正多边形的外角以及内角,熟记公式是解答本题的关键.15.(3分)如图,沿一条母线将圆锥侧面剪开并展平,得到一个扇形,若圆锥的底面圆的半径r=2cm,扇形的圆心角θ=120°,则该圆锥的母线长l为 6 cm.【分析】易得圆锥的底面周长,也就是侧面展开图的弧长,进而利用弧长公式即可求得圆锥的母线长.【解答】解:圆锥的底面周长=2π×2=4πcm,设圆锥的母线长为R,则:=4π,解得R=6.故答案为:6.【点评】本题考查了圆锥的计算,用到的知识点为:圆锥的侧面展开图的弧长等于底面周长;弧长公式为:.16.(3分)如图,无人机于空中A处测得某建筑顶部B处的仰角为45°,测得该建筑底部C处的俯角为17°.若无人机的飞行高度AD为62m,则该建筑的高度BC为262 m.(参考数据:sin17°≈0.29,cos17°≈0.96,tan17°≈0.31)【分析】作AE⊥BC于E,根据正切的定义求出AE,根据等腰直角三角形的性质求出BE,结合图形计算即可.【解答】解:作AE⊥BC于E,则四边形ADCE为矩形,∴EC=AD=62,在Rt△AEC中,tan∠EAC=,则AE=≈=200,在Rt△AEB中,∠BAE=45°,∴BE=AE=200,∴BC=200+62=262(m),则该建筑的高度BC为262m,故答案为:262.【点评】本题考查的是解直角三角形的应用﹣仰角俯角问题,掌握仰角俯角的概念、熟记锐角三角函数的定义是解题的关键.17.(3分)已知二次函数的图象经过点P(2,2),顶点为O(0,0)将该图象向右平移,当它再次经过点P时,所得抛物线的函数表达式为y=(x﹣4)2.【分析】设原来的抛物线解析式为:y=ax2.利用待定系数法确定函数关系式;然后利用平移规律得到平移后的解析式,将点P的坐标代入即可.【解答】解:设原来的抛物线解析式为:y=ax2(a≠0).把P(2,2)代入,得2=4a,解得a=.故原来的抛物线解析式是:y=x2.设平移后的抛物线解析式为:y=(x﹣b)2.把P(2,2)代入,得2=(2﹣b)2.解得b=0(舍去)或b=4.所以平移后抛物线的解析式是:y=(x﹣4)2.故答案是:y=(x﹣4)2.【点评】考查了二次函数图象与几何变换,二次函数的性质,二次函数图象上点的坐标特征.利用待定系数法确定原来函数关系式是解题的关键.18.(3分)函数y=x+1的图象与x轴、y轴分别交于A、B两点,点C在x轴上.若△ABC 为等腰三角形,则满足条件的点C共有 3 个.【分析】三角形ABC的找法如下:①以点A为圆心,AB为半径作圆,与x轴交点即为C;②以点B为圆心,AB为半径作圆,与x轴交点即为C;③作AB的中垂线与x轴的交点即为C;【解答】解:以点A为圆心,AB为半径作圆,与x轴交点即为C;以点B为圆心,AB为半径作圆,与x轴交点即为C;作AB的中垂线与x轴的交点即为C;故答案为3;【点评】本题考查一次函数的图象上点的特征,等腰三角形的性质;掌握利用两圆一线找等腰三角形的方法是解题的关键.三、解答题(本大题共有10小题,共86分,请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)19.(10分)计算:(1)π0﹣+()﹣2﹣|﹣5|;(2)÷.【分析】(1)先计算零指数幂、算术平方根、负整数指数幂和绝对值,再计算加减可得;(2)先化简各分式,再将除法转化为乘法,继而约分即可得.【解答】解:(1)原式=1﹣3+9﹣5=2;(2)原式=÷=(x﹣4)•=2x.【点评】本题主要考查分式的乘除法,解题的关键是掌握分式的乘除运算顺序和运算法则.20.(10分)(1)解方程:+1=(2)解不等式组:【分析】(1)两边同时乘以x﹣3,整理后可得x =;(2)不等式组的每个不等式解集为;【解答】解:(1)+1=,两边同时乘以x﹣3,得x﹣2+x﹣3=﹣2,∴x =;经检验x =是原方程的根;(2)由可得,∴不等式的解为﹣2<x≤2;【点评】本题考查分式方程,不等式组的解;掌握分式方程和不等式组的解法是关键.21.(7分)如图,甲、乙两个转盘分别被分成了3等份与4等份,每份内均标有数字.分别旋转这两个转盘,将转盘停止后指针所指区域内的两数相乘.(1)请将所有可能出现的结果填入下表:(2)积为9的概率为;积为偶数的概率为;(3)从1~12这12个整数中,随机选取1个整数,该数不是(1)中所填数字的概率为.【分析】(1)计算所取两数的乘积即可得;(2)找到符合条件的结果数,再根据概率公式计算可得;(3)利用概率公式计算可得.【解答】解:(1)补全表格如下:(2)由表知,共有12种等可能结果,其中积为9的有1种,积为偶数的有8种结果,所以积为9的概率为;积为偶数的概率为=,故答案为:,.(3)从1~12这12个整数中,随机选取1个整数,该数不是(1)中所填数字的有5和7这2种,∴此事件的概率为=,故答案为:.【点评】此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.22.(7分)某户居民2018年的电费支出情况(每2个月缴费1次)如图所示:根据以上信息,解答下列问题:(1)求扇形统计图中“9﹣10月”对应扇形的圆心角度数;(2)补全条形统计图.【分析】(1)从条形统计图中可得3﹣4月份电费240元,从扇形统计图中可知3﹣4月份电费占全年的10%,可求全年的电费,进而求出9﹣10月份电费所占的百分比,然后就能求出9﹣10月份对应扇形的圆心角的度数;(2)全年的总电费减去其它月份的电费可求出7﹣8月份的电费金额,确定直条画多高,再进行补全统计图.【解答】解:(1)全年的总电费为:240÷10%=2400元9﹣10月份所占比:280÷2400=,∴扇形统计图中“9﹣10月”对应扇形的圆心角度数为:360°×=42°答:扇形统计图中“9﹣10月”对应扇形的圆心角度数是42°(2)7﹣8月份的电费为:2400﹣300﹣240﹣350﹣280﹣330=900元,补全的统计图如图:【点评】考查条形统计图、扇形统计图的特点及反应数据的变化特征,两个统计图联系在一起,可以发现数据之间关系,求出在某个统计图中缺少的数据.23.(8分)如图,将平行四边形纸片ABCD沿一条直线折叠,使点A与点C重合,点D落在点G处,折痕为EF.求证:(1)∠ECB=∠FCG;(2)△EBC≌△FGC.【分析】(1)依据平行四边形的性质,即可得到∠A=∠BCD,由折叠可得,∠A=∠ECG,即可得到∠ECB=∠FCG;(2)依据平行四边形的性质,即可得出∠D=∠B,AD=BC,由折叠可得,∠D=∠G,AD =CG,即可得到∠B=∠G,BC=CG,进而得出△EBC≌△FGC.【解答】证明:(1)∵四边形ABCD是平行四边形,∴∠A=∠BCD,由折叠可得,∠A=∠ECG,∴∠BCD=∠ECG,∴∠BCD﹣∠ECF=∠ECG﹣∠ECF,∴∠ECB=∠FCG;(2)∵四边形ABCD是平行四边形,∴∠D=∠B,AD=BC,由折叠可得,∠D=∠G,AD=CG,∴∠B=∠G,BC=CG,又∵∠ECB=∠FCG,∴△EBC≌△FGC(ASA).【点评】本题主要考查了平行四边形的性质,平行四边形的对边相等;平行四边形的对角相等;平行四边形的对角线互相平分.24.(8分)如图,AB为⊙O的直径,C为⊙O上一点,D为的中点.过点D作直线AC的垂线,垂足为E,连接OD.(1)求证:∠A=∠DOB;(2)DE与⊙O有怎样的位置关系?请说明理由.【分析】(1)连接OC,由D为的中点,得到=,根据圆周角定理即可得到结论;(2)根据平行线的判定定理得到AE∥OD,根据平行线的性质得到OD⊥DE,于是得到结论.【解答】(1)证明:连接OC,∵D为的中点,∴=,∴∠BCD=BOC,∵∠BAC=BOC,∴∠A=∠DOB;(2)解:DE与⊙O相切,理由:∵∠A=∠DOB,∴AE∥OD,∵DE⊥AE,∴OD⊥DE,∴DE与⊙O相切.【点评】本题考查了直线与圆的位置关系,圆心角、弧、弦的关系,圆周角定理,熟练掌握切线的判定定理是解题的关键.25.(8分)如图,有一块矩形硬纸板,长30cm,宽20cm.在其四角各剪去一个同样的正方形,然后将四周突出部分折起,可制成一个无盖长方体盒子.当剪去正方形的边长取何值时,所得长方体盒子的侧面积为200cm2?【分析】设剪去正方形的边长为xcm,则做成无盖长方体盒子的底面长为(30﹣2x)cm,宽为(20﹣2x)cm,高为xcm,根据长方体盒子的侧面积为200cm2,即可得出关于x的一元二次方程,解之取其较小值即可得出结论.【解答】解:设剪去正方形的边长为xcm,则做成无盖长方体盒子的底面长为(30﹣2x)cm,宽为(20﹣2x)cm,高为xcm,依题意,得:2×[(30﹣2x)+(20﹣2x)]x=200,整理,得:2x2﹣25x+50=0,解得:x1=,x2=10.当x=10时,20﹣2x=0,不合题意,舍去.答:当剪去正方形的边长为cm时,所得长方体盒子的侧面积为200cm2.【点评】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.26.(8分)【阅读理解】用10cm×20cm的矩形瓷砖,可拼得一些长度不同但宽度均为20cm的图案.已知长度为10cm、20cm、30cm的所有图案如下:【尝试操作】如图,将小方格的边长看作10cm,请在方格纸中画出长度为40cm的所有图案.【归纳发现】观察以上结果,探究图案个数与图案长度之间的关系,将下表补充完整.【分析】根据已知条件作图可知40cm时,所有图案个数4个;猜想得到结论;【解答】解:如图:根据作图可知40cm时,所有图案个数4个;50cm时,所有图案个数5个;60cm时,所有图案个数6个;故答案为4,5,6;【点评】本题考查应用与设计作图,规律探究;能够根据条件作图图形,探索规律是解题的关键.27.(9分)如图①,将南北向的中山路与东西向的北京路看成两条直线,十字路口记作点A.甲从中山路上点B出发,骑车向北匀速直行;与此同时,乙从点A出发,沿北京路步行向东匀速直行.设出发xmin时,甲、乙两人与点A的距离分别为y1m、y2m.已知y1、y2与x之间的函数关系如图②所示.(1)求甲、乙两人的速度;(2)当x取何值时,甲、乙两人之间的距离最短?【分析】(1)设甲、乙两人的速度,并依题意写出函数关系式,再根据图②中函数图象交点列方程组求解;(2)设甲、乙之间距离为d,由勾股定理可得d2=(1200﹣240x)2+(80x)2 =64000(x﹣)2+144000,根据二次函数最值即可得出结论.【解答】解:(1)设甲、乙两人的速度分别为am/min,bm/min,则:y1=y2=bx由图②知:x=3.75或7.5时,y1=y2,∴,解得:答:甲的速度为240m/min,乙的速度为80m/min.(2)设甲、乙之间距离为d,则d2=(1200﹣240x)2+(80x)2=64000(x﹣)2+144000,∴当x=时,d2的最小值为144000,即d的最小值为120;答:当x=时,甲、乙两人之间的距离最短.【点评】本题考查了函数图象的读图识图能力,正确理解图象交点的含义,从图象中发现和获取有用信息,提高分析问题、解决问题的能力.28.(11分)如图,平面直角坐标系中,O为原点,点A、B分别在y轴、x轴的正半轴上.△AOB的两条外角平分线交于点P,P在反比例函数y=的图象上.PA的延长线交x轴于点C,PB的延长线交y轴于点D,连接CD.(1)求∠P的度数及点P的坐标;(2)求△OCD的面积;(3)△AOB的面积是否存在最大值?若存在,求出最大面积;若不存在,请说明理由.【分析】(1)如图,作PM⊥OAYM,PN⊥OB于N,PH⊥AB于H.利用全等三角形的性质解决问题即可.(2)设OA=a,OB=b,则AM=AH=3﹣a,BN=BH=3﹣b,利用勾股定理求出a,b之间的关系,求出OC,OD即可解决问题.(3)设OA=a,OB=b,则AM=AH=3﹣a,BN=BH=3﹣b,可得AB=6﹣a﹣b,推出OA+OB+AB =6,可得a+b+=6,利用基本不等式即可解决问题.【解答】解:(1)如图,作PM⊥OAYM,PN⊥OB于N,PH⊥AB于H.∴∠PMA=∠PHA=90°,∵∠PAM=∠PAH,PA=PA,∴△PAM≌△PAH(AAS),∴PM=PH,∠APM=∠APH,同理可证:△BPN≌△BPH,∴PH=PN,∠BPN=∠BPH,∴PM=PN,∵∠PMO=∠MON=∠PNO=90°,∴四边形PMON是矩形,∴∠MPN=90°,∴∠APB=∠APH+∠BPH=(∠MPH+∠NPH)=45°,∵PM=PN,∴可以假设P(m,m),∵P(m,m)在y=上,∴m2=9,∵m>0,∴m=3,∴P(3,3).(2)设OA=a,OB=b,则AM=AH=3﹣a,BN=BH=3﹣b,∴AB=6﹣a﹣b,∵AB2=OA2+OB2,∴a2+b2=(6﹣a﹣b)2,可得ab=18﹣6a﹣6b,∴9﹣3a﹣3b=ab,∵PM∥OC,∴=,∴=,∴OC=,同法可得OD=,∴S△COD=•OC•DO====6.(3)设OA=a,OB=b,则AM=AH=3﹣a,BN=BH=3﹣b,∴AB=6﹣a﹣b,∴OA+OB+AB=6,∴a+b+=6,∴2+≤6,∴(2+)≤6,∴≤3(2﹣),∴ab≤54﹣36,∴S△AOB=ab≤27﹣18,∴△AOB的面积的最大值为27﹣18.【点评】本题属于反比例函数综合题,考查了反比例函数的应用,全等三角形的判定和性质,勾股定理,平行线分线段成比例定理,基本不等式等知识,解题的关键是学会利用参数构建方程解决问题,属于中考压轴题.。
最新江苏省徐州市中考数学真题试卷附解析
江苏省徐州市中考数学真题试卷学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项: 1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上一、选择题1.如图所示,电路图上有A 、B 、C 三个开关和一个小灯泡,闭合开关C 或者同时闭合开关A 、B ,都可使小灯泡发光.现在任意闭合其中一个开关,则小灯泡发光的概率等于( ) A .32 B .21 C .31 D .412.如图,用一个平面去截长方体,则截面形状为( )3.如图,PA 切⊙O 于A ,PO 交⊙O 于B ,若PA=6,PB=4,则⊙O 的半径是( ) A .52B .56C .2D .54.如图,ABCD 是平行四边形,则图中与DEF △相似的三角形共有( )A .1个B .2个C .3个D .4个5.S 型电视机经过连续两次降价,每台售价由原来的1500元降到了980元.设平均每次降价的百分率为x ,则下列方程中正确的是( ) A .1500 (1+x )2=980 B .980(1+x )2=1500 C .1500 (1-x )2=980 D .980(1-x )2=1500 6.下列一次函数中,y 随x 的增大而减小的有( ) ①21y x =-+;②6y x =-;③13xy +=-;④(12)y x = . A .1个 B .2个 C .3个D . 4个7.在平面直角坐标系中,将三角形各点的纵坐标都减去3,横坐标保持不变,所得图形与原图形相比( )A .向右平移了3个单位B .向左平移了3个单位C .向上平移了3个单位D .向下平移了3个单位 8.下列函数中,是二次函数的有( )(1)25y x =-;(2)23y x =--;(3)(1)(3)y x x =-+;(4)23y x x =-;(5)22(1)y x x =--;(6)2y x π= A .5 个B .4 个C .3 个D .2 个9.为了考察甲、乙两种小麦,分别从中抽取5株苗,测得苗高(单位:cm )如下: 甲:2 4 6 8 10 乙:l 3 5 7 9用2S 甲和2S 乙分别表示这两个样本的方差,那么 ( )A .2S 甲>2S 乙B .2S 甲 <2S 乙C .2S 甲=2S 乙D .2S 甲与2S 乙的关系不能确定10.一个几何体的主视图,左视图和俯视图都是正方形,那么这个几何体可以是( ) A .圆锥B .立方体C .圆柱D .直六棱柱11.同时抛掷两枚质地均匀的正方体骰子,骰子的六个面上分别刻有 1 到 6 的点数. 下 列事件中,属于不可能事件的是( ) A 点数之和为 12 B .点数之和小于 3 C .点数之和大于4且小于 8 D .点数之和为 1312.如果23321133a b x y x y +--与是同类项,那么a 、b 的值分别是( )A .12a b =⎧⎨=⎩B .02a b =⎧⎨=⎩C .21a b =⎧⎨=⎩D .11a b =⎧⎨=⎩13.下列方程中,是一元一次方程的为( ) A .x+y=1B .2210x x -+=C .21x= D .x=014.用计算器求78+35的按键顺序正确的是( ) ①按数字键 ②按 ③按数字键④按键 A .①②③④B .①④②③C .①③②④D .①③④②15.如图,M N P R ,,,分别是数轴上四个整数所对应的点,其中有一点是原点,并且1MN NP PR ===.数a 对应的点在M 与N 之间,数b 对应的点在P 与R 之间,若3a b +=,则原点是( )A .M 或RB .N 或PC .M 或ND .P 或R二、填空题16. 如图,在高为 2m ,坡角为 30°的楼梯上铺地毯,则地毯长度至少要 m .17.在Rt △ABC 中,∠C=90°,已知a 边及∠A ,则b= . 18.已知一组比例线段的长度分别是x ,2,5,8,则x= .19.在⊙O 中,弦 AB ∥CD ,AB=24,CD=10,弦 AB 的弦心距为 5,则 AB 和 CD 之间的距离是 .20.请选择一组你喜欢的c b a 、、的值,使二次函数)0(2≠++=a c bx ax y 的图象同时满足下列条件:①开口向下,②当2<x 时,y 随x 的增大而增大;当2>x 时,y 随x 的增大而减小.这样的二次函数的解析式可以是 . y=-x 2+4x-4(答案不唯一)21.在相同条件下,对30辆同一型号的汽车进行耗油1 L 所行驶路程的试验,根据测得的数据画出频数分布直方图如图所示.本次试验中,耗油1 L 所行驶路程在13.8~14.3 km 范围内的汽车共有 辆.30辆汽车耗油1 L 所行驶路程的频数分布直方图22.如图,是几个相同的小正方体搭成的几何体的三种视图,则搭成这个几何体的小正方体的个数是 .三、解答题23.圆锥的侧面积为6π,侧面展开图的圆心角为270°,求圆锥的底面积. 4.5π24.如图,水管内原有积水的水面宽 CD=4 cm ,水深 GH= 1 cm ,因几天连续下雨水面上升 1 cm (即 EG= 1 cm). 求此时水面 AB 的宽是多少?25.画—个正方体的表面展开图.26.在△ABC 中,∠ACB=90°,AC=BC ,直线MN 经过点C ,且AD ⊥MN 于D ,BE ⊥MN 于E .(1)当直线MN 绕点C 旋转到图1的位置时,有①△ADC ≌△CEB ;②DE=AD +BE ,请说明理由.(2)当直线MN 绕点C 旋转到图2的位置时, DE=AD -BE ,请说明理由;(3)当直线MN 绕点C 旋转到图3的位置时,试问DE ,AD ,BE 具有怎样的等量关系?请写出这个等量关系,不必说明理由.27.如图,(1)在方格纸上作下列相似变换:把△ABC 的每条边扩大到原来的2倍; (2)放大后的图形的周长是原图形周长的多少倍? (3)放大后的图形的面积是原图形面积的多少倍?CBA E D图1N MABC DEMN图2ACBEDN M 图328.在数轴上表示下列各数:0,-2.5,213,-2,+5,311,并按从大到小的顺序排列.29.受强冷空气的影响,某地某日上午11时的气温为4℃,下午4时的气温已降为-2.5℃,平均每小时气温下降多少摄氏度?30.在数轴上-7 与 37 之间插入三个数,使这五个数的每相邻两个点之间的距离相等. 求插入的三个数.【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.C2.B3.A4.B5.C6.D7.D8.B9.C10.B11.D12.A13.D14.A15.A二、填空题 16.(2+17.Aatan 18. 20 或165或54 19.7 或 1720.21. 1222.5个三、解答题 23. 4.5π24.连结 CO 、AO ,∴.OG ⊥AB ,∴.CG=GD=2.在 Rt △OCG 中,222CO GG OG =+,∴CO=2. 5cm ,同理222E AO A OE =+∴cm ,∴此时水面 AB 的宽是25.答案不唯一,如26.(1)略;(2)略;(3)DE=BE-AD.27.(1)略,(2)2,(3)428.略29.1.3℃30.4,15,26。
2010年江苏中考数学试题(含答案)
二0一0年江苏常州市升学统一考试数学试卷说明:1.本试卷共5页,全卷满分120分,考试时间为120分钟。
考生应将答案全部填写在答题卡相应位置上,写在本试卷上无效,考试结束后,请将本试卷和答题卡一并交回,考试时不允许使用计算器。
2.答题前,考生务必将自己的姓名,考试证号填写在试卷上,并填写好答题卡上的考生信息。
3.作图必须用2B 铅笔,并请加黑加粗,描写清楚。
一、选择题(本大题共有8小题,每小题2分,共16分。
在每小题所给的四个选项中,只有一个是正确的)1.用激光测距仪测得之间的距离为14000000米,将14000000用科学记数法表示为A.71410⨯ B. 61410⨯ C.71.410⨯ D.80.1410⨯2.函数2y x=的图像经过的点是 A.(2,1) B.(2,1)- C.(2,4) D.1(,2)2-3.函数13y x =-的自变量x 的取值范围是 A.0x ≠ B.3x > C.3x ≠- D.3x ≠4.如图所示几何体的主视图是5.下列运算错误的是235= B. 236= 623= D.2(2)2= 6.若两圆的半径分别为2和3,圆心距为5,则两圆的位置关系为A.外离B.外切C.相交D.内切 7.某一公司共有51名员工(包括经理),经理的工资高于其他员工的工资。
今年经理的工资从去年的200000元增加到225000元,而其他员工的工资同去年一样,这样,这家公司所有员工今年工资的平均数和中位数与去年相比将会A.平均数和中位数不变B.平均数增加,中位数不变C.平均数不变,中位数增加D.平均数和中位数都增加8.如图,一次函数122y x =-+的图像上有两点A 、B ,A 点的横坐标为2,B 点的横坐标为(042)a a a <<≠且,过点A 、B 分别作x 的垂线,垂足为C 、D ,AOC BOD ∆∆、的面积分别为12S S 、,则12S S 、的大小关系是A. 12S S >B. 12S S =C. 12S S <D. 无法确定二、填空题(本大题共有9小题,第9小题4分,其余8小题每小题2分,共20分。
2010年江苏省徐州市中考数学试题(含答案)
绝密*启用前徐州市2010年初中毕业、升学考试数 学姓名 考试证号1.本试卷满分120分,考试时间为120分钟.2.答题前请将自己的姓名、考试证号用0.5毫米黑色签字笔写在本试卷和答题卡上. 3.考生答题全部答在答题卡上,答在本试卷上无效.考试结束,将本试卷和答题卡一并交回.第一部分(选择题 共30分)一、选择题(本大题共有8小题,每小题2分,满分16分,在每小题给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置.......上) 1. (2010江苏徐州,1,2分)-3的绝对值是( )A .3B .-3C .D .-2. (2010江苏徐州,2,2分)5月31日,参观上海世博会的游客约为505 000人,505 000用科学记数法表示为( )A .505×103B .5.05×103C .5.05×104D .5.05×1053. (2010江苏徐州,3,2分)下列计算正确的是( ) A . B .4. (2010江苏徐州,4,2分)下列四个图案中,是轴对称图形,但不是中心对称图形的是( )A . B. C. D.5. (2010江苏徐州,5,2分)为了解我市市区及周边近170万人的出行情况,科学规划轨道交通,2010年5月,400名调查者走入1万户家庭,发放3万份问卷,进行调查登记.该调查中的样本容量是( )A .170B .400C .1万D .3万6. (2010江苏徐州,6,2分)一个几何体的三视图如图所示,则此几何体是( )A .棱柱B .正方体C .圆柱13246a a a+=248a a a =D.圆锥7.(2010江苏徐州,7,2分)如图,在64方格纸中,格点三角形甲经过旋转后得到格点三角形乙,则其旋转中心是()A.点M B.格点N C.格点P D.格点Q8.(2010江苏徐州,8,2分)平面直角坐标系中,若平移二次函数y=(x-2009)(x-2008)+4的图象,使其与x轴交于两点,且此两点的距离为1个单位,则平移方式为()A.向上平移4个单位B.向下平移4个单位C.向左平移4个单位 D.向右平移4个单位二、填空题(本大题共有10小题,每小题3分,共30分.不需写出解答过程,请把答案直接填写在答题卡的相应位置........上)9.(2010江苏徐州,9,3分)写出1个比-1小的实数▲ .10.(2010江苏徐州,10,3分)计算(a-3)2的结果为▲ .∠αα11.(2010江苏徐州,11,3分)若=36°,则∠的余角为▲ .度.12.(2010江苏徐州,12,3分)若正多边形的一个外角是45°,则该正多边形的边数是▲ .1x−113.(2010江苏徐州,13,3分)函数中自变量x的取值范围是▲ .{2−x≤3,x2<1.14.(2010江苏徐州,14,3分)不等式组的解集是▲ .15.(2010江苏广州,15,3分)一个圆形转盘被等分成八个扇形区域,上面分别标有数字1、2、3、4,转盘指针的位置固定,转动转盘后任其自由停止.转动转盘一次,当转盘停止转动时,记指针指向标有“3”所在区域的概率为P(3),指针指向标有“4”所在区域的概率为P(4),则P(3) P(4).(填“﹥”、“=”、或“<”)16.(2010江苏徐州,16,3分)如图,在以O为圆心的两个同心圆中,大圆的弦AB与小圆相切于点C,若大圆的半径为5 cm,小圆的半径为3 cm,则弦AB的长为▲cm.θ17.(2010江苏徐州,16,3分)如图,扇形的半径为6,圆心角为120°,用这个扇形围成一个圆锥的侧面,所得圆锥的底面半径为▲.18.(2010江苏徐州,16,3分)用棋子按下列方式摆图形,依照此规律,第n个图形比第(n-1)个图形多▲枚棋子.三、解答题(本大题共10小题,满分74分,轻在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)19.(2010江苏徐州,19,6分)计算:20100−(12)−1+√9(1);(x2x+4−16x+4)÷x−4x(2).20.(2010江苏徐州,20,6分)2010年4月,国务院出台“房贷新政”,确定实行更为严格的差别化住房信贷政策,对楼市产生了较大的影响.下面是某市今年2月~5月商品住宅的月成交量统计图(不完整),请根据图中提供的信息,完成下列问题:(1)该市今年2月~5月共成交商品住宅______套;(2)请你补全条形统计图;(3)该市这4个月商品住宅的月成交量的极差是____套,中位数是_______套.21.(2010江苏徐州,21,6分)甲、乙两人玩“石头、剪子、布”游戏,游戏规则为:双方都做出“石头”、“剪子”、“布”三种手势(如图)中的一种,规定“石头”胜“剪子”,“剪子”胜“布”,“布”胜“石头”,手势相同,不分胜负.若甲、乙两人都随意做出三种手势中的一种,则两人一次性分出胜负的概率是多少?请用列表或画树状图的方法加以说明.22.(2010江苏徐州,22,6分)在5月举行的“爱心捐款”活动中,某校九(1)班共捐款300元,九(2)班共捐款225元,已知九(1)班的人均捐款额是九(2)班的1.2倍,且九(1)班人数比九(2)班多5人.问两班各有多少人?23.(2010江苏徐州,23,8分)如图,在△ABC中,D是BC边的中点,E、F分别在AD及其延长线上,CE∥BF,连接BE、CF.(1)求证:△BDF≌△CDE;(2)若AB=AC,求证:四边形BFCE是菱形.24.(2010江苏徐州,24,8分)图,小明在楼上点A处观察旗杆BC,测得旗杆顶部B的仰角为30°,测得旗杆底部C的俯角为60°,已知点A距地面的高AD为12m.求旗杆的高度.m25.(2010江苏徐州,25,8分)如x如图,已知A(n,-2),B(1,4)是一次函数y=kx+b的图象和反比例函数y=的图象的两个交点,直线AB与y轴交于点C.(1)求反比例函数和一次函数的关系式;(2)求△AOC的面积;m(3)求不等式kx+b-<0的解集(直接写出答案).x26.(2010江苏徐州,26,8分)如图①,梯形ABCD中,∠C=90°.动点E、F同时从点B出发,点E沿折线 BA—AD—DC运动到点C时停止运动,点F沿BC运动到点C时停止运动,它们运动时的速度都是 1 cm/s.设E、F出发t s时,△EBF的面积为y cm2.已知y与t的函数图象如图②所示,其中曲线OM为抛物线的一部分,MN、NP为线段.请根据图中的信息,解答下列问题:(1)梯形上底的长AD=_____cm,梯形ABCD的面积_____cm2;(2)当点E在BA、DC上运动时,分别求出y与t的函数关系式(注明自变量的取值范围);(3)当t为何值时,△EBF与梯形ABCD的面积之比为1:2.27.(2010江苏徐州,27,8分)如图①,将边长为4cm的正方形纸片ABCD沿EF折叠(点E、F分别在边AB、CD上),使点B落在AD边上的点 M处,点C落在点N处,MN与CD交于点P,连接EP.(1)如图②,若M为AD边的中点,①△AEM的周长=_____cm;②求证:EP=AE+DP;(2)随着落点M在AD边上取遍所有的位置(点M不与A、D重合),△PDM的周长是否发生变化?请说明理由.−14x2+32x+428.(2010江苏徐州,28,10分)如图,已知二次函数y=的图象与y轴交于点A,与x轴交于B、C两点,其对称轴与x轴交于点D,连接AC.(1)点A的坐标为_______ ,点C的坐标为_______ ;(2)线段AC上是否存在点E,使得△EDC为等腰三角形?若存在,求出所有符合条件的点E的坐标;若不存在,请说明理由;(3)点P为x轴上方的抛物线上的一个动点,连接PA、PC,若所得△PAC的面积为S,则S取何值时,相应的点P有且只有2个?1.【分析】一个数在数轴上对应的点到原点的距离是这个数的绝对值,所以一个数的绝对值是正数或零.【答案】A【涉及知识点】绝对值的意义【点评】本题属于基础题,主要考查学生对概念的掌握是否全面,考查知识点单一,有利于提高本题的信度.2.【分析】把一个较大的数写成a×10n(a是一个只有一位整数的数,n为正整数)的形式,这种记数方法即为科学计数法.在用科学计数法表示的数中,10的指数比原来的整数位少1,所以505 000=5.05×105.【答案】D【涉及知识点】科学记数法【点评】本题属于基础题,主要考查学生用科学记数法表示大数的能力,考查知识点单一,有利于提高本题的信度.3.【分析】A中两项不是同类项,不能合并;B中结果应为8a2;C中“同底数幂相除,底数不变,指数相减”;D中“幂的乘方,底数不变,指数相乘”,结果应为a6.【答案】C【涉及知识点】整式的运算【点评】本题属于基础题,主要考查整式的运算法则,整式的运算法则较多,如整式的加法法则、整式的乘法法则、幂的有关运算法则,注意不要将这些运算法则混淆.4.【分析】A、D都是轴对称图形,其中A不是中心对称图形,D是中心对称图形.【答案】A【涉及知识点】轴对称图形和中心对称图形的概念.【点评】本题考查了轴对称图形和中心对称图形的概念,要理解它们的区别:沿某条直线对折后,直线两旁的部分能够完全重合的图形是轴对称图形;绕某个点旋转180°后,能与自身重合的图形是中心对称图形.5.【分析】要考察对象的全体是总体,故“170万人的出行情况”是总体;组成总体的每一个考察对象叫做个体,故“每户家庭的出行情况”是个体;从总体中抽取的部分个体是样本,故“1万户家庭的出行情况”是样本;样本中包含的个体的数目叫做样本容量,故1万是样本容量.【答案】C【涉及知识点】抽样调查【点评】本题主要考察抽样调查的相关概念,解题时要注意总体、个体、样本之间的联系和区别.6.【分析】综合三视图可知该几何体时一个圆柱.【答案】C【涉及知识点】三视图【点评】本题主要三视图的知识,在求解此类试题时,只有将俯视图、主视图和左视图综合起来,才能得出正确的结论.7.【分析】如图,连接两组对应点,作对应点连线的垂直平分线,则交点N即为所求.【答案】B【涉及知识点】旋转的性质【点评】确定旋转中心的关键是确定两个图形上两组对应点的旋转中心,由旋转特征可知,这两组对应点的旋转中心就是整个图形的旋转中心.因此我们可以通过作两组旋转对应点所连线段的垂直平分线的交点来确定旋转中心.8. 【分析】因为二次函数y=(x-2009)(x-2008)的图象与x 轴交于点(2008,0)和(2009,0),这两点间的距离为1,而二次函数y=(x-2009)(x-2008)的图象可由二次函数y=(x-2009)(x-2008)+4的图象向下平移4个单位得到,故答案为B .【答案】B【涉及知识点】二次函数,平移【点评】本题主要考查二次函数与x 轴交点坐标的求法,以及二次函数图象的平移与函数表达式的关系:对于抛物线,若将其向左平移m (m>0)个单位,则在括号内添加上“+m”,反之,向右平移m (m>0)个单位,则在括号内添加上“-m”;对于抛物线,若将其向上平移n (n>0)个单位,则在括号外添加上“+n”,反之,向下平移n (n>0)个单位,则在括号外添加上“-n”.二、填空题 9.【答案】答案不唯一. 【涉及知识点】实数【点评】本题主要考查实数大小的比较,比较容易得分.10.【分析】完全平方公式,应用公式可得.【答案】 【涉及知识点】完全平方公式【点评】本题主要考查完全公式的应用,题目比较基础,容易得分,解题时注意完全平方公式和平方差公式的区别. α11.【分析】∠的余角为90°-36°=54°.【答案】54【涉及知识点】余角【点评】如果两个角的和为90°,那么这两个角互余;如果两个角的和为180°,那么这两个角互补.互余、互补是几何的基础概念,有时单独考查,有时与其它知识一起考查. 12.【分析】正多边形的外角和等于360°,所以该正多边形的边数是360°÷45°=8.【答案】8【涉及知识点】多边形的外角和【点评】正多边形的外角和等于360°,正多边形的内角和等于(n-2)180°,熟记这两条性质是解决多边形内角、外角问题的关键. 13.【分析】由于分式的分母不为0,即x-1≠0,即x≠1.【答案】x≠1【涉及知识点】分式有意义【点评】初中阶段涉及有意义的地方有三处,一是分式的分母不能为0,二是二次根式的被开方数必须是非负数,三是零指数的底数不能为零. 14.【分析】解不等式①,得x≥1;解不等式②,得x <2,所以不等式组的解集为-1≤x<2.【答案】-1≤x<22()y a x h k=++()222a b a ab b ±=±+()2222323369a a a a a -=-⨯⨯+=-+269a a -+【涉及知识点】不等式组的解法【点评】解不等式组是考查学生的基本计算能力,解不等式组的一般步骤是先分别解不等式,再确定两个解集的公共部分.确定不等式组解集有两种方法:(1)数轴表示,在用数轴表示不等式组的解集时要注意:有等号时用实心圆圈,无等号时用空心圆圈;(2)用口诀:大大取大;小小取小;大小小大取中间;大大小小题无解..15.【分析】P (3)=,P (4)=,所以P(3)﹥P (4). 【答案】﹥.【涉及知识点】概率的计算.【点评】本题是对等可能性下概率的计算的考查,设一个试验有n 种同等可能的基本结果,其中使事件A 发生的基本结果有m (m≤n)种,则事件A 发生的概率为. 16.【分析】连接OC ,则O C⊥AB ,根据勾股定理,得AC==4cm ,根据垂径定理,得AB=2AC=8cm .【答案】8【涉及知识点】切线的性质,垂径定理【点评】本题中线段AB 有“两个”角色,即小圆的切线和大圆的弦.17.【分析】根据弧长的计算公式,得,即圆锥底面的周长为,所以圆锥的底面半径.【答案】2【涉及知识点】弧长,圆锥的侧面展开图【点评】在解决圆锥的表面积计算问题时,要把握好两个相等关系:圆锥侧面展开图(扇形)的半径R 等于圆锥的母线长,扇形的弧长等于圆锥的底面周长. 18.【分析】观察所给图形,可知第2个图形比第1个图形多(3×2-2)个棋子,第3个图形比第2个图形多(3×3-2)个棋子,所以第n 个图形比第(n-1)个图形多(3n-2)枚棋子.【答案】3n-2【涉及知识点】图形的规律【点评】解决此类问题时,要认真光查图形,找出图形变化的规律,从而正确求解.三、解答题 19.【答案】解:(1)原式=1-2+3=2; (2)原式=. 【涉及知识点】零指数幂,负指数幂,二次根式,分式化简【点评】题(1)需要理解零指数幂和负指数幂的意义,题(2)需要掌握分式混合运算的方法和步骤. 20.【分析】(1)由于2月的频数2700,频率为15%,因此样本容量为:2700÷15%=18000;(2)3月的频数为18000×(1-15%-36%-24%)=4500;(3)2月~5月的成交量的最大值为6480,最小值为2700,所以极差为6480-2700=3780套;中位数为(4320+4500)328()m P A n==180n R l π=12064180l ππ⨯==422r ππ==l 2r π()()244164444x x x x xx x x x x ++--÷=⋅=++-÷2=4410套.【答案】(1)18 000;(2)如图:(3)3780,4410.【涉及知识点】条形统计图,扇形统计图,极差、中位数【点评】统计图表是中考的必考内容,本题主要考查了如何从统计图中获取有用信息,以及极差和中位数的概念. 21.【分析】列表或画树状图表示所有可能的结果,然后利用概率计算公式求得概率. 【答案】【涉及知识点】概率的计算【点评】概率是中考考查的必考内容之一,考查形式既有选择、填空题,也有解答题.在解题时,关键是利用列表法或画树状图的方法表示出所有可能的结果,然后利用概率计算公式P (A )=求概率. 22.【分析】根据等量关系“九(1)班的人均捐款额=九(2)班的人均捐款额×1.2”或“九(1)班人数=九(2)班人数+5”列分式方程求解.【答案】法一:解:设九(2)班有x 人,九(1)班有(x+5)人.根据题意,得解得x=45. 经检验,x=45是原方程的根. x+5=50.答:九(1)班有50人,九(2)班有45人.法二:设九(2)班人均捐款x 元,九(1)班人均捐款1.2x 元.根据题意,得解得x=5. 经检验,x=5是原方程的根.,50-5=45答:九(1)班有50人,九(2)班有45人.m n3002251.25x x=⨯+30022551.2x x=+300501.2x=【涉及知识点】分式方程应用题【点评】在利用分式方程解应用题时,既要检验其是否为所列分式方程的解,又要检验是否符合实际意义. 23.【分析】(1)由已知条件可知BD=CD ,∠DBF=∠DCE ,∠BDF=∠CDE ,∴△BD F≌△CDE (ASA );(2)由(1)可知BD=CD ,∴四边形BFCE 是平行四边形,当AB=AC 时,由“三线合一”可知EF ⊥BC ,所以平行四边形BFCE 是菱形(对角线互相垂直的平行四边形是菱形).【答案】解:(1)证明:∵D 是BC 的中点,∴BD=CD. ∵C E∥BF ,∴∠DBF=∠DCE.又∵∠BDF=∠CDE ,∴△BD F≌△CDE. (2)证明:∵△CDE ≌△BD F ,∴DE=DF. ∵BD=CD ,∴四边形BFCE 是平行四边形.在△ABC 中,∵AB=AC ,BD=CD ,∴A D⊥BC ,即EF ⊥BC. ∴四边形BFCE 是菱形.【涉及知识点】全等三角形,平行四边形的判定,菱形的判定【点评】本题主要考查学生演绎推理的能力,属于中等难度的题型. 24.【分析】过点A 作A E⊥BC,将△ABC 分成两个直角三角形,分别求解.【答案】解:过点A 作A E⊥BC,垂足为E ,得矩形ADCE ,∴CE=AD=12.Rt△ACE 中,∵∠EAC=60°,CE=12,∴AE=.Rt△ABE 中,∵∠BAE=30°,BE=AE .∴BC=CE+BE=16m.答:旗杆的高度为16m. 【涉及知识点】锐角三角函数【点评】解直角三角形是每年中考的必考知识点之一,在利用锐角三角函数解决实际问题时,许多问题中并不见直角三角形,而是通过构造直角三角形,即化“斜”为“直”的方法,将问题转化.m x m x25.【分析】(1)利用待定系数法求函数表达式;(2)利用(1)中所求函数表达式求出点C 的坐标,可得OC ,由点A 的坐标可得到△AOC 边OC 上的高,从而可求△AOC 的面积;(3)不等式kx+b-<0(kx+b<)的解集,即一次函数图象在反比例函数图象下方时对应的x 的取值范围.【答案】(1)将B (1,4)代入中,得m=4,∴. 将A (n,-2)代入中,得n=-2.将A (-2,-2)、B (1,4)代入,得. 解得,∴.(2)当x=0时,y=2,43tan 60CE =tan 304=m y =4xm y x =y kx b =+224k b k b -+=-⎧⎨+=⎩22k b =⎧⎨=⎩22y x =+12222AOCS=⨯⨯=∴OC=2,∴.(3)或.【涉及知识点】反比例函数,一次函数【点评】本题是一道综合考查一次函数和反比例函数的题目,在各省市中考中出现频率较多,应予以重视.26.【分析】(1)观察图象,当时,△EBF 的面积不变,由此可知当t=5时,点F 运动到点C ,点E 运动到点A ,即AB=BC=5;当t=7时,点E 运动到点D ,可知AD=7-5=2;过点A 作梯形ABCD 的高,利用勾股定理可求得高为4,可知梯形ABCD 的面积=.(2)画出图形,分别求出△EBF 的底和高.(3)将y=代入(2)中函数解析式求解. 【答案】解:(1)2,14.(2)①当点E 在边BA 上运动时,如图①,此时.分别过点E ,A 作E G⊥BC ,AH ⊥BC ,垂足分别为G 、H ,则△BEG ∽△BAH.∴,即,∴.∴. (若直接将点M (5,10)代入解得则扣1分).②当点E 在DC 上运动时,如图②,此时.∴CE=11-t ,∴. (3)当时,,∴; 当时,,∴t =8.2. ∴当或t=8.2时,△EBF 与梯形ABCD 的面积之比为1:2. 【涉及知识点】梯形,相似三角形,二次函数,一次函数【点评】动态问题是各省市中考试题中的热点和难点题型,它能综合考查各种知识,也能考查学生的能力,具有较好的区分度. 27.【分析】(1)由折叠的性质可知AE+EM=AE+BE ,所以△AEM 的周长=2+4=6;(2)取EP 的中点G ,连接MG ,可知MG 既是梯形AEPD 的中位线,又是Rt△MEP 的中线,由梯形和直角三角形的中线的性质可证;(3)设AM=xcm ,利用勾股定理求得AE ,由△AEM∽△DMP 求得△PDM 的周长.【答案】解:(1)①6.②解法一:取EP 的中点G ,连接MG.梯形AEPD 中,∵M、G 分别是AD 、EP 的中点,∴MG=. 由折叠,得∠EMP=∠B=90°,又G 为EP 的中点,∴MG=. 故EP=AE+DP.解法二:设AE=xcm ,则EM=(4-2x <-01x <<57t ≤≤1(25)4142+⨯=11472⨯=05t ≤≤BE EG BA AH =54t EG =45EG t =211422255y BF EG t t t =⋅=⋅⋅=2y ax =225y t=711t ≤≤115555(11)2222y BC CE t t =⋅=⨯⨯-=--05t ≤≤2275t =702t =711t ≤≤555722t --=702t =1()2AE DP +12EPx)cm.Rt△EAM 中,由,可得,解得,即AE. ∵∠AME+∠AEM=90°,∠AME+∠PMD=90°,∴∠AEM=∠PMD.又∵∠A=∠D=90°,∴△AEM∽△DMP.∴,即DP=.过点E 作EQ⊥CD,垂足为点Q ,得矩形AEQD,∴EQ=AD=4,PQ=,, 故EP=AE+DP.(2)△PMD 的周长保持不变.证明:设AM=xcm ,则DM=(4-x)cm.Rt△EAM 中,由,可得AE=2-. ∵∠AME+∠AEM=90°,∠AME+∠PMD=90°,∴∠AEM=∠PMD. 又∵∠A=∠D=90°,∴△AEM∽△DMP.∴,即, ∴=8cm. 故△PMD 的周长保持不变.【涉及知识点】正方形,相似三角形,折叠(轴对称),勾股定理【点评】本题是一道综合题,具有较大的难度,可以很好地考查学生的解题能力,具有较好的区分度.28.【分析】(1)由二次函数表达式求得点A 、C 的坐标;(2)先用待定系数法求出AC 的解析式,然后分DE=DC 、ED=EC 和CD=CE 三种情况讨论;(3)设P ,求出m 与S 之间的函数关系式,利用二次函数的关系式求解.【答案】解:(1)A (0,4),C (8,0). (2) 易得D (3,0),CD=5.设直线AC 对应的函数关系式为,则,解得,∴. ①当DE=DC 时,∵OA=4,OD=3,∴DA=5,∴.②当ED=EC 时,可得. ③当CD=CE 时,如图,过点E 作EG⊥CD,则△CEG∽△CAO,∴. 即,∴.综上,符合条件的点E 有三个:,,.(3)如图,过点P 作PH⊥OC,垂足为H ,交222AE AM EM +=()2244x x +=-32x =32=AE AM DM DP =83837326-=22725466PE ⎛⎫=+= ⎪⎝⎭()2224AE x AE +=-218x PMDMAE C DM C AE=241428PMD C x x x -=+-()244128PMD x C x x-=⋅+-213,442m m m ⎛⎫-++ ⎪⎝⎭y kx b =+480b k b =⎧⎨+=⎩124k b ⎧=-⎪⎨⎪=⎩142y x =-+1(0,4)E 2115(,)24E EG CG CEOA OC AC==5,25EG CG ==3(825,5)E -1(0,4)E 2115()24E 3(825,5)E -直线AC 于点Q.设P ,则Q. ①当时,PQ=,. ∴.②当时,PQ=, . ∴. 故S=16时,相应的点P 有且只有两个.【涉及知识点】二次函数,一次函数,等腰三角形,分类讨论【点评】本题是一道关于二次函数的压轴题,考查了分类讨论思想,既有较强的综合性.213,442m m m ⎛⎫-++ ⎪⎝⎭1,42m m ⎛⎫-+ ⎪⎝⎭08m <<2213114424224m m m m m⎛⎫⎛⎫-++--+=-+ ⎪ ⎪⎝⎭⎝⎭()22118241624APCCPQ APQ S S S m m m ∆∆∆⎛⎫=+=⨯⨯-+=--+ ⎪⎝⎭016S <≤20m -<<2211314422424m m m m m ⎛⎫⎛⎫-+--++=- ⎪ ⎪⎝⎭⎝⎭()22118241624APC CPQ APQ S S S m m m ∆∆∆⎛⎫=-=⨯⨯-=-- ⎪⎝⎭020S <<。
江苏省2010年中考数学试题(13份含有答案及解析)-6
泰州市二○一○年初中毕业、升学统一考试数学试题(考试时间:120分钟 满分:150分)请注意:1.本试卷分选择题和非选择题两部分.2.所有试题的答案均填写在答题卡上,答案写在试卷上无效.3.作图必须用2B 铅笔作答,并请加黑加粗,描写清楚.第一部分 选择题(共24分)一、选择题(本大题共有8小题,每小题3分,共24分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项的字母代号填涂在答题卡相应位置上)1.(2010江苏泰州,1,3分)3-的倒数为( )A.3-B.31C.3D. 31- 【分析】如果两个数的积为1,那么这两个数互为倒数.所以3-的倒数为31-. 【答案】D【涉及知识点】有理数的有关概念【点评】涉及与有理数有关的概念题型,关键是对概念的理解,“回到定义中去”直接运用概念解题.【推荐指数】★★★★2.(2010江苏泰州,2,3分)下列运算正确的是( )A.623·a a a = B. 632)(a a -=- C. 33)(ab ab = D.428a a a =÷ 【分析】根据幂的运算性质,“同底数幂相乘,底数不变,指数相加”,选项A 不正确;“积的乘方,等于积中各因式乘方的积”,选项C 不正确;“同底数幂相除,底数不变,指数相减”,选项D 也不正确.【答案】B【涉及知识点】幂的运算性质【点评】用幂的运算性质解答问题,只要熟练掌握根据幂的运算性质即可.【推荐指数】★★★3.(2010江苏泰州,3,3分)据新华社2010年2月9日报道:受特大干旱天气影响,我国西南地区林地受灾面积达到43050000亩.用科学计数法可表示为( )A.810305.4⨯亩B. 610305.4⨯亩C. 71005.43⨯亩D. 710305.4⨯亩【分析】43050000可表示为4.305×10000000,100000=107,因此43050000=4.305×107.【答案】D【涉及知识点】科学记数法【点评】把一个数写成a ×10n的形式(其中1≤a <10,n 为整数,这种计数法称为科学记数法.科学记数法是每年中考试卷中的必考问题,应掌握:⑴表达形式为:,101(10<≤⨯a a n n 表示小数点移动的位数).科学记数法可以表示绝对值大于10的数,也可以表示绝对值小于1的数.⑵当表示绝对值大于10的数时应注意:小数点向左移到第一位数字后,看小数点移动了几位,n 的值就是几,表达式中的n 是应为正整数.⑶当表示绝对值小于1的数时应注意:小数点向右移到第一位不为零的数后,看小数点移动了几位,n 的值就是几,表达式中的n 应为负整数.【推荐指数】★★★★★4.(2010江苏泰州,4,3分)下面四个几何体中,主视图与其它几何体的主视图不同的是( )A. B. C. D.【分析】选项A 、B 、D 的主视图都是矩形,只有选项C 的主视图是三角形与其它三个几何体的主视图不同.【答案】C【涉及知识点】三视图【点评】由立体图形到视图的过程,通常称为读图.要注意两点:一是长、宽、高的关系;二是上下、左右、前后的关系.当然,平时学习中知识的积累也很重要.【推荐指数】★★★★5.(2010江苏泰州,5,3分)下列函数中,y 随x 增大而增大的是( ) A.x y 3-= B. 5+-=x y C. 12y x = D. )0(212<=x x y 【分析】选项A 反比例函数,其增减性要有前提条件,即在“各个象限内”,不能笼统地进行描述,应舍去;B 是一次函数,系数小于零,所以y 随x 增大而减小,舍去,选项D 中的二次函数开口向上,在对称轴的左侧(0)x <,y 随x 增大而减小,舍去.故选C .【答案】C【涉及知识点】一次函数、反比例函数、二次函数的增减性【点评】关于函数的增减性,对于一次函数而言,由系数k 即可确定,二次函数要由开口方向与对称轴来确定,而反比例函数,特别要注意“在每一个象限”这一限制条件.【推荐指数】★★★★6.(2010江苏泰州,6,3分)下列命题:①正多边形都是轴对称图形;②通过对足球迷健康状况的调查可以了解我国公民的健康状况;③方程1312112-=+--x x x 的解是0=x ;④如果一个角的两边与另一个角的两边分别平行,那么这两个角相等.其中真命题的个数有( )A.1个B.2个C.3个D.4个【分析】正多边形都是轴对称图形,对于正偶数边形,即是轴对称图形又是中心对称图形,①正确;对足球迷健康状况调查样本不具有代表性,②不正确;通过解答,③也是正确的;如果一个角的两边与另一个角的两边分别平行,那么这两个角相等或互补,④不正确.【答案】B【涉及知识点】轴对称与中心对称 随机抽样 分式方程的解法 简单的推理【点评】选择题中的判断正误题,往往是多个数学知识点组合在一起,在判断时,一是注意其表达的语言方式,二是注意漏解的情况.【推荐指数】★★★7.(2010江苏泰州,7,3分)一个铝质三角形框架三条边长分别为24cm 、30cm 、36cm ,要做一个与它相似的铝质三角形框架,现有长为27cm 、45cm 的两根铝材,要求以其中的一根为一边,从另一根上截下两段(允许有余料)作为另外两边.截法有( )A.0种B. 1种C. 2种D. 3种【分析】⑴假设以27cm 为一边,把45cm 截成两段,设这两段分别为xcm 、ycm (x <y ).则可得:24303627x y ==①或24303627x y==②(注:27cm 不可能是最小边),由①解得x=18,y=22.5,符合题意;由②解得x =1085,y =1625,x + y =1085+1625=2705=54>45,不合题意,舍去.⑵假设以45cm 为一边,把27cm 截成两段,设这两段分别为xcm 、ycm (x <y ).则可得:24303645x y ==(注:只能是45是最大边),解得x =30,y =752,x + y =30+37.5=67.5>27,不合题意,舍去.综合以上可知,截法只有一种.【答案】B【涉及知识点】相似三角形的判定【点评】在判定三角形相似,未明确对应关系时,特别注意不要忘了分类,再根据不同的对应关系分别计算要求的线段.【推荐指数】★★★★8.(2010江苏泰州,8,3分)已知m m Q m P 158,11572-=-=(m 为任意实数),则P 、Q 的大小关系为( )A.Q P >B. Q P =C. Q P <D.不能确定【分析】可用特殊值法或差值法.特殊值法:取m =15,分别代入得P =6,Q =217,故P <Q ;差值法:P -Q =27811515m m m ⎛⎫⎛⎫--- ⎪ ⎪⎝⎭⎝⎭=21m m -+-=21324m ⎛⎫--- ⎪⎝⎭<0,故P <Q .【答案】C【涉及知识点】代数式的大小比较【点评】代数式的大小比交,最常用的方法就是特殊值法、差值法及商值法,在填空题及选择题中,用特殊值法是最简捷的,要注意字母所取值必满足条件.【推荐指数】★★★第二部分 非选择题(共126分)二、填空题(本大题共有10小题,每小题3分,共30分.不需写出解答过程,请把答案直接填写在答题卡相应位置上)9.(2010江苏泰州,9,3分)数据-1,0,2,-1,3的众数为 .【分析】众数是指一组数据中出现次数最多的那个数,因为这组数据中-1出现的次数最多,所以这组数据的众数为-1.【答案】-1【涉及知识点】众数的概念【点评】平均数、中位数、众数概念是中考试题中的基本题型,只要掌握它们的概念,对照概念即可求出结果.要注意的是,求中位数时要先按大小顺序排列,另外,一组数据的平均数、中位数只有一个,而众数可能多于一个或者没有.【推荐指数】★★10.(2010江苏泰州,10,3分)不等式642-<x x 的解集为 .【分析】移项得246x x -<-、合并同类项得26x -<-、系数化为1,得x >3.【答案】x >3【涉及知识点】一元一次不等式的解法【点评】一元一次不等式的解法步骤与一元一次方程的解法相似,只是在不等式两边乘或除以同一个负数时,不等号的方向要改变.【推荐指数】★★★★11.(2010江苏泰州,11,3分)等腰△ABC 的两边长分别为2和5,则第三边长为 .【分析】等腰三角形有两条边相等,所以这个等腰三角形的三边长可以是2、2、5或2、5、5这两种情况,但2+2<5,不满足三角形三边关系定理,故舍去,其第三边长只能为5.【答案】5【涉及知识点】等腰三角形 三角形三边关系【点评】在计算等腰三角形的有关边长时,往往只注意分情况求边长,而忘了等腰三角形的三边长仍然需要满足三角形的三边关系定理,在解决此类问题时,千万不能顾此失彼.【推荐指数】★★★★★12.(2010江苏泰州,12,3分)已知扇形的圆心角为120°,半径为15cm ,则扇形的弧长为 cm (结果保留π).【分析】n °圆心角的弧长公式是: 180n R l π=.所以只要将n =120,R =15代入即可. 【答案】10π【涉及知识点】弧长计算公式【点评】圆周长公式为:C=2R π;所以n °圆心角的弧长公式即为: 180n R l π=.在计算弧长时只需将n 、R 分别代入.有时计算不规则图形时,要把不规则图形的问题转化为规则图形的问题.【推荐指数】★★★★★13.(2010江苏泰州,13,3分)一次函数b kx y +=(k 为常数且0≠k )的图象如图所示,则使0>y 成立的x 的取值范围为 .【分析】观察图象可知,直线在x 轴上方即0 y 时,x 的取值在-2的左侧,所以x 的取值范围是x <-2.【答案】x <-2【涉及知识点】一次函数与二元一次方程的关系【点评】二元一次方程转化为用含一个未知数的代数式表示另一个未知数,即得一次函数,在直角坐标系中画出其图象即可直观地看出当自变量取何值时,函值y 的值是大于0、等于0、还是小于0,这也是数形结合思想方法的简单运用.【推荐指数】★★★★★14.(2010江苏泰州,14,3分)已知点A 、B 的坐标分别为(2,0),(2,4),以A 、B 、P 为顶点的三角形与△ABO 全等,写出一个符合条件的点P 的坐标: .【分析】由题意在平面直角坐标系中标出点A 、点B ,要使以A 、B 、P 为顶点的三角形与△ABO 全等,因AB 是公共边,所以∠PBA 或∠PAB 为直角,且PA 或PB 等于2,由此可标出P 1(4,0),再由对称、翻折等图形的变化可求得满足条件的点P 有4个.【答案】(4,0);(4,4);(0,4);(0,0)(只要写出一个即可)【涉及知识点】平面直角坐标系 全等三角形的判定【点评】将全等三角形的判定置于平面直角坐标系中,只要画出图形,根据全等三角形的判定,确定其它的边的位置及大小,即可很方便地求出其坐标.【推荐指数】★★★★★15.(2010江苏泰州,15,3分)一个均匀的正方体各面上分别标有数字1、2、3、4、5、6,这个正方体的表面展开图如图所示.抛掷这个正方体,则朝上一面所标数字恰好等于朝下一面所标数字的3倍的概率是 .【分析】由正方体的展开图可知:1与3相对;2与6相对;4与5相对.这样抛掷这个正方体,点数朝上共有6种等可能的结果,其中朝上一面是6或3时恰好等于朝下一面所标数字的3倍,所以其概率是26即13. 【答案】13【涉及知识点】求简单事件发生的概率.【点评】简单的一步试验事件发生的概率等于事件包含的结果数k 除以所有等可能出现的结果数n ,k P n=.本题就是用这个公式得出方程从而求出n 的值.概率是研究随机现象规律的学科,是新课程增加的内容之一,在中考中作为重要的考点.近年来,概率题不只以“投骰子”和 “扑克牌”为背景,更多的是以生活实际、游戏和新课程核心内容为背景,成为中考试题中一道亮丽的风景..【推荐指数】★★★★★16.(2010江苏泰州,16,3分)如图在68⨯的网格图(每个小正方形的边长均为1个单位长度)中,⊙A 的半径为2个单位长度,⊙B 的半径为1个单位长度,要使运动的⊙B 与静止的⊙A 内切,应将⊙B 由图示位置向左平移 个单位长度.【分析】由图形可直观地得到⊙B 应向左平移4个或6个单位长度,即可与⊙A 内切.【答案】4或6【涉及知识点】两圆内切的概念【点评】注意⊙B 向左移动与⊙A 慢慢靠近再渐渐远去的过程,就不会出现漏解的情况.【推荐指数】★★★17. (2010江苏泰州,17,3分)观察等式:①4219⨯=-,②64125⨯=-,③86149⨯=-…按照这种规律写出第n 个等式: .【分析】先看等式左边,①式是32-1,②式是52-1,③式是72-1…所以第n 个等式左边应是()2211n +-;再看等式右边,①式是24⨯,②式是46⨯,③式是68⨯,所以第n 个等式右边应是2(22)n n +.【答案】())22(21122+=-+n n n 【涉及知识点】规律归纳猜想【点评】规律性猜想题,提供的信息是一种规律,但它隐含在题目中,有待挖掘和开发,一般只要注重观察数字(式)变化规律,经归纳便可猜想出结论.如果实在有困难,还可在平面直角坐标系中描点,根据图像猜测其蕴含的规律.【推荐指数】★★★★18.(2010江苏泰州,18,3分)如图⊙O 的半径为1cm ,弦AB 、CD 的长度分别为2,1cm cm ,则弦AC 、BD 所夹的锐角α= .【分析】由题意易得AB 所对的圆心角为90°,CD 所对的圆心角为60°,连结AD ,则锐角α=∠1+∠2,而∠1与∠2分别是CD 和AB 所对的圆周角,所以∠1+∠2=12(90°+60°).【答案】75°【涉及知识点】圆周角的性质【点评】解决圆中角度计算问题关键是掌握圆心角和圆周角之间的关系,利用同弧和等弧之间的关系进行转化.另外,往往添加能构成直径上的圆周角的辅助线,以便利用直径所对的圆周角是直角这个条件进行计算和证明.【推荐指数】★★★三、解答题:(本大题共有10小题,共96分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)19.(2010江苏泰州,19⑴,8分)计算: (1)12)21(30tan 3)21(01+-+︒---;【分析】根据零指数幂与负整指数幂即:a 0=1(a ≠0)、pp a a 1=-(a ≠0)可得1111()212--=⎛⎫- ⎪⎝⎭=-2、0(12)-=1,由特殊锐角三角函数值可知03tan 303=,再化简二次根式2122323=⨯=.【答案】原式=3231233--⨯++=23123--++=13-+.【涉及知识点】实数的混合运算 零指数幂与负整指数幂 特殊锐角三角函数值 二次根式的化简【点评】实数的混合运算首先注意运算顺序,其次运算律的灵活运用,最后是掌握幂的运算性质、特殊锐角三角函数值、二次根式的化简等知识点.【推荐指数】★★★(2010江苏泰州,19⑵,8分)(2))212(112aa a a a a +-+÷--. 【分析】先对括号内的两个分式通分,最简公分母是a (a +2),再做除法,最后做加减.【答案】原式=()21112a a a a a ---÷+=()()()21111a a a a a a +--⋅+-=211a a +-+ =()121a a a +-++=121a a a +--+=11a -+. 【涉及知识点】分式的加减乘除混合运算【点评】分式的混合运算,要牢记运算法则和运算顺序,并能灵活应用,分式的运算结果应是最简分式或整式.这里要强调一下,在进行分式通分后,根据分式加减法法则进行分式的加减运算,是分母不变,把分子相加减,有些同学生容易受解分式方程去分母这一步的影响,同时把分母去掉了,要引起重视,不能相混淆.【推荐指数】★★★★20.(2010江苏泰州,20,8分)已知△ABC ,利用直尺和圆规,根据下列要求作图(保留作图痕迹,不要求写作法),并根据要求填空:(1)作∠ABC 的平分线BD 交AC 于点D ;(2)作线段BD 的垂直平分线交AB 于点E ,交BC 于点F .由⑴、⑵可得:线段EF 与线段BD 的关系为【分析】(1)作∠ABC 的平分线BD 交AC 于点D :①用圆规在BA 、BC 边上分别截取等长的两线段BG 、BH .②分别以点G 、点H 为圆心,以相同半径画弧,两弧交点为O .③连结BO 并延长交AC 于点D .(2)作线段BD 的垂直平分线交AB 于点E ,交BC 于点F :①分别以点A 和点B 为圆心,以大于21AB 的长为半径作弧,两弧相交于点M 和点N ;②作直线MN .分别交AB 于点E ,交BC 于点F .由作图可证得四边形EBFD 是菱形,所以EF 与BD 互相垂直平分.【答案】⑴、⑵题作图如下:由作图可知线段EF 与线段BD 的关系为:互相垂直平分..【涉及知识点】尺规作图作角的平分线作线段的垂直平分线【点评】中考需要掌握的尺规作图部分有如下的要求:①完成以下基本作图:作一条线段等于已知线段,作一个角等于已知角,作角的平分线,作线段的垂直平分线.②利用基本作图作三角形:已知三边作三角形;已知两边及其夹角作三角形;已知两角及其夹边作三角形;已知底边及底边上的高作等腰三角形.③探索如何过一点、两点和不在同一直线上的三点作圆.④了解尺规作图的步骤,对于尺规作图题,会写已知、求作和作法(不要求证明).我们在掌握这些方法的基础上,还应该会解一些新颖的作图题,进一步培养形象思维能力.【推荐指数】★★★★21.(2010江苏泰州,21,8分)学校奖励给王伟和李丽上海世博园门票共两张,其中一张为指定日门票,另一张为普通日门票.班长提出由王伟和李丽分别转动下图的甲、乙两个转盘(转盘甲被二等分、转盘乙被三等分)确定指定日门票的归属,在两个转盘都停止转动后,若指针所指的两个数字之和为偶数,则王伟获得指定日门票;若指针所指的两个数字之和为奇数,则李丽获得指定日门票;若指针指向分隔线,则重新转动.你认为这个方法公平吗?请画树状图或列表,并说明理由.【分析】求两步(或超过两步)事件概率的题目是中考命题的重点,其计算方法有两种,一种列表法,另一种是画树状图法.用利表法或画树状图法计算两步试验的随机事件的概率时,应把两步试验的所有可能的情况表示出来,从而计算随机事件的概率.【答案】根据题意列表(或画树状图)如下:由列表(或树状图)可知:()2163==和为偶数P ,()2163==和为奇数P . 所以这个方法是公平的.【涉及知识点】利用事件发生的概率判断游戏的公平性【点评】判断事件是否公平,要先用树状图或列表法求出双方获胜的概率,看游戏的规则使双方获胜的可能性是否相同,即概率是否相等.这种类型的题目,如果游戏不公平,有时还要求修改游戏规则使游戏变得公平,修改的方法一是看所有可能的结果中,哪些结果占一半【推荐指数】★★★★★22.(2010江苏泰州,22,8分)如图,四边形ABCD 是矩形,∠EDC =∠CAB ,∠DEC =90°.(1)求证:AC ∥DE ;(2)过点B 作BF ⊥AC 于点F ,连结EF ,试判断四边形BCEF 的形状,并说明理由.【分析】(1)要证AC ∥DE ,设法证两个内错角相等,由已知∠EDC =∠CAB ,再由矩形利用两边平行将∠ACD 作为中间量进行转化;(2)可先猜想四边形BCEF 是平行四边形,设法证EF 、BC 与AD 的关系运用EF 、BC 平行且相等可得证.【答案】⑴在矩形ABCD 中,AC ∥DE ,∴∠DCA =∠CAB ,∵∠EDC =∠CAB ,∴∠DCA =∠EDC ,∴AC ∥DE ;⑵四边形BCEF 是平行四边形.理由:由∠DEC =90°,BF ⊥AC ,可得∠AFB =∠DEC =90°,又∠EDC =∠CAB ,AB=CD ,∴△DEC ≌△AFB ,∴DE =AF ,由⑴得AC ∥DE ,∴四边形AFED 是平行四边形,∴AD ∥EF 且AD =EF ,∵在矩形ABCD 中,AD ∥BC 且AD =BC ,∴EF ∥BC 且EF =BC ,∴四边形BCEF 是平行四边形.【涉及知识点】矩形的性质 平行四边形的判定 全等三角形的判定【点评】从中考试卷来看,平行四边形这一节不会有很复杂的证明题,主要考查平行四边形的性质特征及判别方法综合运用. 掌握这部分内容,首先搞清平行四边形与矩形、菱形、 正方形之间的包含关系.注重把握特殊平行四边形与一般平行四边形的异、同点,才能准确地、灵活地运用.【推荐指数】★★★★★23.(2010江苏泰州,23,10分)近期以来,大蒜和绿豆的市场价格离奇攀升,网民戏称为“蒜你狠”、“豆你玩”.以绿豆为例,5月上旬某市绿豆的市场价已达16元/千克.市政府决定采取价格临时干预措施,调进绿豆以平抑市场价格.经市场调研预测,该市每调进100吨绿豆,市场价格就下降1元/千克.为了即能平抑绿豆的市场价格,又要保护豆农的生产积极性,绿豆的市场价格控制在8元/千克到10元/千克之间(含8元/千克和10元/千克).问调进绿豆的吨数应在什么范围内为宜?【分析】理解了“每调进100吨绿豆,市场价格就下降1元/千克”,即“每调进1吨绿豆,市场价格就下降1001元/千克”,并比较容易列不等式组了. 【答案】设调进绿豆x 吨,根据题意,得1681001610.100x x -≥-≤⎧⎪⎪⎨⎪⎪⎩, 解得 600≤x ≤800. 答:调进绿豆的吨数应不少于600吨,并且不超过800吨.【涉及知识点】一元一次不等式组的应用【点评】本例是不等式组在实际生活中的综合运用,侧重考查如何把生活问题转化为数学问题的能力,建立不等式模型,即“数学建模”. 从近两年的中考题来看,一元一次不等式(组)的实际应用题比以前要有所增加,其呈现的方式通常是与方程、一次函数等知识结合来求解.另外还常常辅以图表来说明有关信息,我们要抓住相等或不等的数量关系,结合图表观察、分析、猜想、归纳从而找到解题的最佳途径.【推荐指数】★★★★24.(2010江苏泰州,24,10分)玉树地震后,全国人民慷慨解囊,积极支援玉树人民抗震救灾,他们有的直接捐款,有的捐物.国家民政部、中国红十字会、中华慈善总会及其他基金会分别接收了捐赠,青海省也直接接收了部分捐赠.截至5月14日12时,他们分别接收捐赠(含直接捐款数和捐赠物折款数)的比例见扇形统计图(图①),其中,中华慈善总会和中国红十字会共接收...捐赠约合人民币15.6亿元.请你根据相关信息解决下列问题:(1)其他基金会接收捐赠约占捐赠总数的百分比是 ;(2)全国接收直接捐款数和捐物折款数共计约 亿元;(3)请你补全图②中的条形统计图;(4)据统计,直接捐款数比捐赠物折款数的6倍还多3亿元,那么直接捐款数和捐赠物折款数各多少亿元?【分析】⑴1-33%-33%-13%-17%=4%,故应填4%;⑵因为中华慈善总会和中国红十字会共接收...捐赠约合人民币15.6亿元,而这两家机构点捐赠的百分比为(13%+17%)=30%,所以全国接收的捐款数和捐物折款数为:15.6÷30%=52亿,应填52亿.⑶由13%×52=6.76亿,可知中华慈善总会所受赠款物的条形高度.⑷小题是一道简单的一元一次方程的应用题,只要抓住总接收的捐款数和和捐物折款数为52亿即可列出方程.【答案】⑴4%;⑵52亿;⑶补全图如下:⑷设直接捐款数为x,则捐赠物折款数为:(52-x)依题意得:x=6(52-x)+3解得x=45(亿)(52-x)=52-45=7(亿)答:直接捐款数和捐赠物折款数分别为45亿,7亿元..【涉及知识点】扇形统计图条形统计图【点评】对数据进行整理和分析,要能从统计图中获取信息和数据,并作出合理的判断和预测,有些题目还要求对由数据得到的结论进行合理的质疑.这类题型充分展现了数学的实效性.解决这类题要以生活经验寻求基本的数量关系,要有针对性,要克服光靠图象,不加数学分析的主观臆断.【推荐指数】★★★★★25.(2010江苏泰州,25,10分)庞亮和李强相约周六去登山,庞亮从北坡山脚C处出发,以24米/分钟的速度攀登,同时,李强从南坡山脚B 处出发.如图,已知小山北坡的坡度31∶=i ,山坡长为240米,南坡的坡角是45°.问李强以什么速度攀登才能和庞亮同时到达山顶A ?(将山路AB 、AC 看成线段,结果保留根号)【分析】由题意通过作辅助线构造两个共边的直角三角形,再由解直角三角形的知识可求得山坡AB 的长,要使得李强和庞亮同时到达山项,只要将庞亮登到山项的时间算出即可得李强的速度.【答案】过点A 作AD ⊥BC 于点D ,在Rt △ADC 中,由3:1=i 得tan C =3331=∴∠C =30°∴AD =21AC =21×240=120(米) 在Rt △ABD 中,∠B =45°∴AB =2AD =1202(米) 1202÷(240÷24)=1202÷10=122(米/分钟)答:李强以122米/分钟的速度攀登才能和庞亮同时到达山顶A .【涉及知识点】解直角三角形【点评】转化是解直角三解形的关键,解斜三角形一般要通过辅助线把斜三角形转化为几个直角三角形,再解直角三角形.【推荐指数】★★★★★26.(2010江苏泰州,26,10分)保护生态环境,建设绿色社会已经从理念变为人们的行动.某化工厂2009年1 月的利润为200万元.设2009年1 月为第1个月,第x 个月的利润为y 万元.由于排污超标,该厂决定从2009年1 月底起适当限产,并投入资金进行治污改造,导致月利润明显下降,从1月到5月,y 与x 成反比例.到5月底,治污改造工程顺利完工,从这时起,该厂每月的利润比前一个月增加20万元(如图).⑴分别求该化工厂治污期间及治污改造工程完工后y 与x 之间对应的函数关系式.⑵治污改造工程完工后经过几个月,该厂月利润才能达到2009年1月的水平?⑶当月利润少于100万元时为该厂资金紧张期,问该厂资金紧张期共有几个月?【分析】当1≤x ≤5时,图象是反比例函数的图象,设解析式将(1,200)代入即可求其解析式;当x >5时,是一次函数的图象,根据从这时起,该厂每月的利润比前一个月增加20万元,可得一次函数解析式.利润少于100万元要分别从反比例函数和一次函数中求对应的月份.【答案】⑴①当1≤x ≤5时,设k y x =,把(1,200)代入,得200k =,即200y x =;②当5x =时,40y =,所以当x >5时,4020(5)2060y x x =+-=-;⑵当y =200时,20x -60=200,x=13,所以治污改造工程顺利完工后经过13-5=8个月后,该厂利润达到200万元; ⑶对于200y x=,当y =100时,x =2;对于y =20x -60,当y =100时,x =8,所以资金紧张的时间为8-2=6个月.【涉及知识点】反比例函数、一次函数的性质及应用【点评】本题是一道反比例函数及一次函数有关的图象信息题,巧妙地这两个函数结合在一起,考查了同学们对数学知识的实际应用能力.图象信息题的主要特点是已知条件陷臧在给出的图象中,解决此类问题的关键是读懂图象,从图象中找出解题所需要的相关条件,然后正确求解.【推荐指数】★★★★27.(2010江苏泰州,27,12分)如图,二次函数c x y +-=221的图象经过点D ⎪⎭⎫ ⎝⎛-29,3,与x 轴交于A 、B 两点.⑴求c 的值;⑵如图①,设点C 为该二次函数的图象在x 轴上方的一点,直线AC 将四边形ABCD 的面积二等分,试证明线段BD 被直线AC 平分,并求此时直线AC 的函数解析式;⑶设点P 、Q 为该二次函数的图象在x 轴上方的两个动点,试猜想:是否存在这样的点P 、Q ,使△AQP ≌△ABP ?如果存在,请举例验证你的猜想;如果不存在,请说明理由.(图②供选用)。
江苏省徐州市中考数学真题试题(含解析)
【答案】-2.
【解析】
k
试题解析:•••反比例函数y=的图象经过点M(-2,1),
X
k
•1=-,解得k=-2.
2
考点:反比例函数图象上点的坐标特征.
13.ABC中,点D,E分别是AB, AC的中点,DE7,则BC
【答案】14.
【解析】
试题解析:•••D,E分别是△ABC的边AC和AC的中点,
•••DE是△ABC的中位线,
考点:科学记数法—表示较小的数.
4.下列运算正确的是( )
A
5 3 0
C.
答案】B.
解析】 试题解析:A、原式=a-b-c,故本选项错误;
B、原式=6a2+2x+1,故本选项错误;
故选B.
考点:1.单项式乘单项式;2.整式的加减;3 .完全平方公式.
AOB
【解析】
试题解析:•••OA丄BC,BC=2,
•••根据垂径定理得:bd=2bc=i.
BD
在Rt△ABD中sin/A=AB2
•••/ A=30°.
••AB与OO相切于点B,
•••/ ABO=90° .
•••/ AOB=60° .
考点:切线的性质
17.如图,矩形ABCD中,AB 4,AD3,点Q在对角线AC上,且AQ AD,连接DQ并延长,与边BC交于点P,则线段AP.
.
<飞.J
■■I?
[b=0
解得h<iabxo.
故迭A.|
考点:抛物线与x轴的交点.
第n卷(共90分)
二、填空题(本大题有10小题,每题3分,满分30分,将答案填在答题纸上)
9.4的算术平方根是.
【答案】2
【解析】
2010年江苏省徐州市中考试卷及答案
徐州市2010年初中毕业、升学考试英语试题一、选择填空(共15小题,每小题1分,满分15分)从A、B、C、D四个选项中选出可以填人空白处的最佳选项。
1. -It's too hot. What about having a glass of cold drink? -______!A. Good ideaB. Good luckC. That's rightD. Me, too2. Many young people become interested in playing ______ football because of the World Cup.A. theB. 不填C. aD. an3. -How often does he write emails to his friend?-______.A. Once a monthB. In a weekC. For half an hourD. Last Monday4. His Walkman is different from, and it is more expensive.A. himB. mineC. myD. her5. I'm very glad I have my own room in my house. I ______ do what I want in it.A. mustB. have toC. needD. can6. The old pen is broken, I'd like ______ one to write with.A. the otherB. anotherC. othersD. the others7. The doctors in ORBIS have done ______ an important job ______ the patients are all grateful to them.A. too, toB. so, thatC. such, thatD. as, as8. I used to spend all my pocket money on clothes and snacks. But now, I try to ______ some money for charities.A. wasteB. useC. saveD. take9. Could you please tell me ______? I want to see him right now.A. where does Jim liveB. where did Jim liveC. where Jim livedD. where Jim lives10. -Our city looks more beautiful!-Yes. Lots of trees and grass ______ since last year.A. have been plantedB. are plantedC. will be plantedD. were planted11. Liu Qian is famous ______ his amazing magic shows.A. withB. forC. atD. on12. Alice ______ watches the news round-up, so she knows little about the world.A. seldomB. usuallyC. sometimesD. always13. - Where are you going, Lily?-I'm going to the ______ to fly a kite.A. shopB. libraryC. parkD. post office14. It's very warm here in the room. You'd better ______ your coat.A. take inB. take awayC. take outD. take off15. Which of the following pictures means "Please don't take photos here. "?A. B. C. D.二、完形填空(共15小题,每小题1分,满分15分)根据短文内容,从各题所给的A、B、C、D四个选项中选出最佳选项。
江苏省徐州市中考数学试题.doc
徐州市初中毕业、升学考试数学试题注意事项:1.本试卷满分l 考试时间为I .2. 答题前前将自己的姓名、准考证号用0.5毫米黑色墨水签字笔写在本试卷和答题卡上,3. 考生答题全部涂、写在答题卡上,写在本试卷上无效,考试结束,将本试卷和答题卡一并交回。
一、选择题(本大题共有10小题,每小题2分,共在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上) 1,2-的相反数是 A .2B. 2-C.12D. 12-2. 我国总人口约为l 370 000 000人,该人口数用科学记数法表示为 A .110.13710⨯ B .91.3710⨯C .813.710⨯D .713710⨯3.估计11的值A .在2到3之间B .在3到4之间C .在4到5之间D .在5到6之间4.下列计算正确的是A .22x x x ⋅=B .22()xy xy = C .236()x x = D .224x x x +=5.若式子1x -在实数范围内有意义,则x 的取值范围是 A .1x ≥ B .1x > C .1x < D .1x ≤6.若三角形的两边长分别为6 ㎝,9 cm ,则其第三边的长可能为 A .2㎝ B .3 cmC .7㎝D .16 cm7.以下各图均由彼此连接的六个小正方形纸片组成,其中不能..折叠成一个正方体的是ABCDB B'(第9题)(第12题)BCD8.下列事件中,属于随机事件的是 A .抛出的篮球会下落B .从装有黑球、白球的袋中摸出红球C .367人中有2人是同月同日出生D .买一张彩票,中500万大奖9的正方形ABCD 沿对角线平移,使点A 移至线段AC 的中点A ’处,得新正方形A ’B ’C ’D ’,新正方形与原正方形重叠部分(图中阴影部分)的面积是 A B .12C .1D .1410.平面直角坐标系中,已知点O(0,o)、A(0,2)、B(1,0),点P 是反比例函数1y x=-图象上的一个动点,过点P 作PQ ⊥x 轴,垂足为点Q .若以点O 、P 、Q 为顶点的三角形与△OAB 相似, 则相应的点P 共有A .1个B .2个C .3个D .4个二、填空题(本大题共有8小题,每小题3分.共24分.不需写出解答过程.请把答案直接填写在答题卡相应位置上) 11.0132-- =__________.12.如图.AB ∥CD ,AB 与DE 交于点F ,∠B=40°,∠D=70°.则∠E= __________13.若直角三角形的一个锐角为则另一个锐角等于__________。
江苏省2010年中考数学试题(13份含有答案及解析)-4
江苏省淮安市2010年初中毕业暨中等学校招生文化统一考试数学试题欢迎参加中考,相信你能成功!请先目读以下几点注意事项:1.本卷分为第1卷和第Ⅱ卷两部分,共6页。
满分150分。
考试时闻120分钟。
2.第1卷每小题选出答案后,请用2B铅笔把答题卡上对应题目的答案标号涂黑,如需要改动,请用橡皮擦干净后.再选涂其他答案。
答案答在本试题卷上无效。
3.作答第Ⅱ卷时,用O.5毫米黑色墨水签字笔将答案写在答题卡上的指定位置。
答案答在本试题卷上或规定区域以外无效。
4.作图必须用2B铅笔作答,并请加黑加粗,描写清楚。
5.考试结束,将本试卷和答题卡一并交回。
第Ⅰ卷(选择题共24分)一、选择题(本大题共有8小题,每小题3分,共24分.在每小题给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上) 1.(2010江苏淮安,1,3分)-(-2)的相反数是A.2 B.12C.-12D.-2【分析】一个实数a的相反数为-a,所以首先对-(-2)化简为,-(-2)表示-2 的相反数,所以-(-2)=2,故-(-2)的相反数是-2.【答案】D【涉及知识点】相反数的意义【点评】本题属于基础题,主要考查学生对概念的掌握以及多重符号的化简的知识,考查知识点单一,有利于提高本题的信度.【推荐指数】★2.(2010江苏淮安,2,3分)计算32a a 的结果是A.a6B.a5C.2a3D.a【分析】同底数幂的乘法,底数不变指数相加,所以结果为B.【答案】B【涉及知识点】同底数幂的乘法法则【点评】本题属于基础题,主要考查学生对法则的应用,知识点比较单一.【推荐指数】★3.(2010江苏淮安,3,3分)2010年5月27日,上海世博会参观人数达到37.7万人,37.7万用科学记数法表示应为A.0.377×l06 B.3.77×l05C.3.77×l04D.377×103【分析】37.7万可以表示为377000,用a×10n科学记数法表示时,10指数为整数位数减去1,所以377000=3.77×l05.【答案】B【涉及知识点】科学记数法【点评】本题属于基础题,主要考查学生对较大数的科学记数法的表示方法,以及“万”、“亿”等单位与0之间的转化,此类问题一般是比较简单的问题.【推荐指数】★★★★4.(2010江苏淮安,4,3分)在一次信息技术考试中,某兴趣小组8名同学的成绩(单位:分)分别是:7,10,9,8,7,9,9,8,则这组数据的众数是A.7 B.8 C.9 D.10【分析】众数是一组数据中出现次数最多的数据,所以次数据中的众数为9.【答案】C【涉及知识点】众数的概念【点评】本题属于基础题,主要考查学生对概念的掌握,考查知识点单一,有利于提高本题的信度.【推荐指数】★5.(2010江苏淮安,5,3分)若一个多边形的内角和小于其外角和,则这个多边形的边数是A.3 B.4 C.5 D.6【分析】三角形的内角和为180°,四边形的内角和是360°,而且边数越多,内角和越大,而多边形的外角和是360°与边数无关,所以选择A.【答案】A【涉及知识点】多边形的内角和、外角和【点评】本题主要是常见多边形的内角和与外角和的应用,本题比较简单,但是也可以利用不等式的问题解决.【推荐指数】★★6.(2010江苏淮安,6,3分)如图,圆柱的主视图是【分析】主视图是在正面内得到由前向后观察的视图,所以应选择B.【答案】B【涉及知识点】主视图的概念【点评】本题属于基础题,主要考查学生对概念的理解,掌握好正视图概念是解决此问题的关键.【推荐指数】★★7.(2010江苏淮安,7,3分)下面四个数中与11最接近的数是A.2 B.3 C.4 D.5【分析】由于9<11<16,所以11的平方根应在3和4 之间,又因为3.52=12.25,所以11最接近的数为B.【答案】B【涉及知识点】实数的估算【点评】本题主要考察对实数的估算的知识,解决此类问题的步骤是首先确定所在整数的范围,然后再确定两个整数之间的数的平方,进而确定出其范围.【推荐指数】★★8.(2010江苏淮安,8,3分)观察下列各式:()1121230123⨯=⨯⨯-⨯⨯ ()1232341233⨯=⨯⨯-⨯⨯()1343452343⨯=⨯⨯-⨯⨯……计算:3×(1×2+2×3+3×4+…+99×100)= A .97×98×99 B .98×99×100 C .99×100×101 D .100×101×102 【分析】从材料可以得出1×2,2×3,3×4,……可以用式子表示,即原式=.()()()1113123012234123991001019899100333⎡⎤⨯⨯⨯-⨯⨯+⨯⨯-⨯⨯+⋅⋅⋅⋅⋅⋅+⨯⨯-⨯⨯⎢⎥⎣⎦=123012234123991001019899100⨯⨯-⨯⨯+⨯⨯-⨯⨯+⋅⋅⋅⋅⋅⋅+⨯⨯-⨯⨯=99×100×101,所以选择C. 【答案】C【涉及知识点】材料阅读题【点评】对于材料阅读的问题是中考问题中的常见问题,也属于难度较大的问题,这种问题的规律性比较强,所以找出材料中的规律是解决此类问题的关键. 【推荐指数】★★★★第Ⅱ卷(非选择题 共126分)二、填空题(本大题共有lO 小题,每小题3分,共30分.不需写出解答过程,请把答案直接写在答题卡相应位置上)9. (2010江苏淮安,9,3分)当x= 时,分式13x -与无意义. 【分析】分式无意义的条件是分母为0,所以x -3=0,即x=3. 【答案】x=3【涉及知识点】分是无意义的条件【点评】本题属于基础题,主要考查学生对分式无意义的条件的考察,考查知识点单一. 【推荐指数】★10.(2010江苏淮安,10,3分)已知周长为8的等腰三角形,有一个腰长为3,则最短的一条串位线长为 .【分析】根据等腰三角形的周长和一腰的长,可以求出底边长为5,所以根据三角形中位线的性质,可知较短的中位线是与腰平行的中位线,所以长度为1.5.【答案】1.5【涉及知识点】三角形的中位线和等腰三角形【点评】本题是结合等腰三角形的知识和中位线的性质的问题,三角形的中位线是指连接三角形两边中点的线段,中位线的特征是平行于第三边且等于第三边的一半.【推荐指数】★★11.(2010江苏淮安,11,3分)化简:()()2222x x x+--= .【分析】首先根据完全平方公式可得224444x x x xx++-+-,然后再得88xx=.【答案】8【涉及知识点】分式的约分和完全平方公式【点评】本题属于基础题,主要考查学生的计算能力和对公式的把握程度.【推荐指数】★★12.(2010江苏淮安,12,3分)若一次函数y=2x+l的图象与反比例函数图象的一个交点横坐标为l,则反比例函数关系式为.【分析】由于交点在一次函数上,所以把x=1代入函数的解析式,可得y=3,所以点的坐标为(1,3),设反比例函数的解析式为kyx=,把(1,3)代入可得k=3,所以反比例函数的解析式为3yx =.【答案】B【涉及知识点】反比例函数和一次函数【点评】本题主要考察点在函数图像上的知识和反比例函数解析式的确定方法,属于中等难度的问题.【推荐指数】★★★13.(2010江苏淮安,13,3分)如图,已知点A,B,C在⊙O上,AC∥0B,∠BOC=40°,则∠ABO= .题13图【分析】由于∠BOC和∠BAC都是弧BC所对的圆周角和圆心角,所以可知2∠BAC=∠BOC,所以∠BAC=20°,又因为AC∥0B,所以∠ABO=∠BAC=20°.【答案】20°【涉及知识点】圆周角的性质和平行线的性质【点评】本题是圆周角与平行线知识相结合的问题,属于中等难度的问题,解决此类问题的关键是记忆在同圆或等圆中,同弧或等弧所对的圆周角等于圆心角的一半.【推荐指数】★★14.(2010江苏淮安,14,3分)在比例尺为1:200的地图上,测得A,B两地间的图上距离为4.5 cm,则A,B两地间的实际距离为m.【分析】根据图上距离:实际距离=比例尺,所以可以得到A、B间的实际距离=4.5×200=900cm=9m.【答案】9【涉及知识点】相似比【点评】本题属于基础问题,主要考察的是比例尺=图上距离:实际距离.【推荐指数】★15.(2010江苏淮安,15,3分)将半径为5,圆心角为144°的扇形围成一个圈锥的侧面,则这个圆锥的底面半径为.【分析】根据弧长公式可以求出圆锥底面周长为14454180ππ⨯=,所以底面半径为422ππ=. 【答案】2【涉及知识点】弧长公式【点评】本题属于中难度的问题,主要是考察对弧长公式的记忆,以及圆锥和扇形之间的关系.【推荐指数】★★★★16.(2010江苏淮安,16,3分)小明根据方程5x+2=6x -8编写了一道应用题.请你把空缺的部分补充完整.某手工小组计划教师节前做一批手工品赠给老师,如果每人做5个,那么就比计划少2个; .请问手工小组有几人?(设手工小组有x 人)【分析】从题目可以看出总工作量为5x+2,所以该空格可以填写,若每人作6个,就比原计划多8个.【答案】若每人作6个,就比原计划多8个 【涉及知识点】一元一次方程【点评】本题是实际应用型的问题,属于中等难度的问题. 【推荐指数】★ 17.(2010江苏淮安,17,3分)如图,在直角三角形ABC 中,∠ABC=90°,AC=2,BC=3,以点A 为圆心,AB 为半径画弧,交AC 于点D ,则阴影部分的面积是 .题17图 题18图 【分析】首先根据勾股定理求出AB=1,又因为AC=2,所以∠C=30°,然后根据阴影部分的面积等于三角形的面积131322⨯⨯=,减去扇形的面积6013606ππ⋅⋅=,所以阴影部分的面积为326π-. 【答案】326π- 【涉及知识点】扇形的面积公式、勾股定理、直角三角形30°的判定 【点评】本题属于综合型的问题,属于中等偏难的问题. 【推荐指数】★★★★18.(2010江苏淮安,18,3分)已知菱形ABCD 中,对角线AC=8cm ,BD=6cm ,在菱形内部(包括边界)任取一点P ,使△ACP 的面积大于6 cm 2的概率为 . 【分析】根据三角形的面积公式可知当△ACP 面积为6时,高为32cm ,所以当点P 在垂直于BD 距离AC 32cm 的直线上时,所构成的面积均为6,然后再结合相似三角形的面积比,可知概率为:14. 【答案】14【涉及知识点】菱形的性质、相似三角形的性质、概率【点评】本题是概率的知识和相似三角形的知识的综合问题,属于较难的问题. 【推荐指数】★★★三、解答题(本大题共有10小题,共96分.请在答题卡指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤)19.(2010江苏淮安,19,8分)(1)计算:1913-+--;(2)解不等式组30,2(1) 3.x x x -<⎧⎨+≥+⎩【答案】(1)原式=3+1-3=1.(2)30,.2(1)3x x x -<⎧⎨++⎩①≥②解①得:x <3,解②得:x ≥1,所以不等式的解集为:1≤x <3.【点评】本题主要是考察基本运算和不等式的基本解法,题目一般是不难,最主要是书写格式必须要注意.【推荐指数】★★★ 20.(2010江苏淮安,20,8分)已知:如图,点C 是线段AB 的中点,CE=CD ,∠ACD=∠BCE, 求证:AE=BD .题20图【分析】要证明AE=BD ,所以可以证明△ACE 和△BCD 全等,由于两个三角形中具备AC=BC ,CE=CD 两条边相等,所以只要再具备夹角相等即可. 【答案】证明:∵点C 是线段AB 的中点, ∴AC=BC ,∵∠ACD=∠BCE,∴∠ACD+∠DCE=∠BCE+∠DCE, 即∠ACE=∠BCD,在△ACE和△BCD中,AC BCACE BCD CE CD⎧=⎪∠=∠⎨⎪=⎩,∴△ACE≌△BCD(SAS),∴AE=BD.【涉及知识点】三角形全等的条件【点评】本题是一个简单考察三角形全等条件的证明题,关键是对证明方法的选用.【推荐指数】★★★21.(2010江苏淮安,21,8分)在完全相同的五张卡片上分别写上1,2,3,4,5五个数字后,装入一个不透明的口袋内搅匀.(1)从口袋内任取一张卡片,卡片上数字是偶数的概率是;(2)从口袋内任取一张卡片记下数字后放回.搅匀后再从中任取一张,求两张卡片上数字和为5的概率.【分析】在(1)中由于卡片中共有5个数字,而偶数的个数为2个,所以概率为25;(2)中的问题可以列出树形图,共有25中可能,而其中是5的倍数的有5中情况,所以概率为1 5【答案】解:(1)2 5(2)1 5【涉及知识点】概率【点评】本题主要是对概率的求法,此问题属于中等难度的问题.【推荐指数】★★★★22.(2010江苏淮安,22,8分)有A,B,C,D四个城市,人口和面积如下表所示:A城市B城市C城市D城市人口(万人) 300 150 200 100面积(万平方公里) 20 5 10 4(1)问A城市的人口密度是每平方公里多少人?(2)请用最恰当的统计图......表示这四个城市的人口密度.【分析】人口密度表示单位面积中人口的数量,所以可以求出人口密度.【答案】解:(1)A城市的人口密度:3001520=(万人/万平方公里);B城市的人口密度:150305=(万人/万平方公里);C城市的人口密度:2002010=(万人/万平方公里);D城市的人口密度:100254=(万人/万平方公里).(2)可以用条形统计图表示:【涉及知识点】统计图【点评】统计图表是中考的必考内容,本题主要考察合理选择统计图表的知识,数据的问题在中考试卷中也有越来越综合的趋势.【推荐指数】★★★★23.(2010江苏淮安,23,10分)玉树地震后,有一段公路急需抢修.此项工程原计划由甲工程队独立完成,需要20天.在甲工程队施工4天后,为了加快工程进度,又调来乙工程队与甲工程队共同施工,结果比原计划提前10天,为抗震救灾赢得了宝贵时间.求乙工程队独立完成这项工程需要多少天.【分析】可设乙工程队单独完成这项任务需要x天,则可以根据甲工作4天的工作量与甲乙合作6天的工作量的和为整体1解决.【答案】解:设乙工程队独立完成这项工程需要x天,所以1114()(20104)12020x⨯++⨯--=,解得x=12,经检验x=12是分式方程的解,所以乙工程队独立完成这项工程需12天.【涉及知识点】分式方程的应用【点评】本题属于难度比较大的问题,所考察的知识点比较单一,主要是考察利用分式方程解决实际问题,这种问题是中考中的常见问题,通常是以社会生活中的热点问题为背景.【推荐指数】★★★★24.(2010江苏淮安,24,10分)已知二次函数y=ax2+bx+c的图象与y轴交于点A(O,-6),与x轴的一个交点坐标是B(-2,0).(1)求二次函数的关系式,并写出顶点坐标;(2)将二次函数图象沿x轴向左平移52个单位长度,求所得图象对应的函数关系式.【分析】.【答案】解:(1)【涉及知识点】【点评】.【推荐指数】★★★★★25.(2010江苏淮安,25,10分)某公园有一滑梯,横截面如图薪示,AB表示楼梯,BC 表示平台,CD表示滑道.若点E,F均在线段AD上,四边形BCEF是矩形,且sin∠BAF=23,BF=3米,BC=1米,CD=6米.求:(1) ∠D的度数;(2)线段AE的长.题25图【分析】(1)要求∠D的度数,可以求出CE和CD的长度,进而根据直角三角形30°角的判定方法求出∠D的度数;(2)要求AD的长度,可以根据解直角三角形的正弦值,求出AF,然后再结合勾股定理求出DE,从而求出AD.【答案】解:(1)∵四边形BCEF是矩形,∴∠BFE=∠CEF=90°,CE=BF,BC=FE,∴∠BFA=∠CED=90°,∵CE=BF,BF=3米,∴CE=3米,∵CD=6米,∠CED=90°,∴∠D=30°.(2)∵sin∠BAF=23,∴23 BFAB,∵BF=3米,∴AB=92米,∴22935322AF⎛⎫=-=⎪⎝⎭米,∵CD=6米,∠CED=90°,∠D=30°,∴3 cos302DECD==∴33DE=米,∴AE=9322+米.【涉及知识点】解直角三角形、勾股定理、直角三角形的性质、矩形的性质【点评】本题属于综合性的问题,设计的知识点比较多,属于中等偏难的问题.【推荐指数】★★★★26.(2010江苏淮安,26,10分)(1)观察发现如题26(a)图,若点A,B在直线l同侧,在直线l上找一点P,使AP+BP的值最小.做法如下:作点B关于直线l的对称点B',连接AB',与直线l的交点就是所求的点P 再如题26(b)图,在等边三角形ABC中,AB=2,点E是AB的中点,AD是高,在AD 上找一点P,使BP+PE的值最小.做法如下:作点B关于AD的对称点,恰好与点C重合,连接CE交AD于一点,则这点就是所求的点P,故BP+PE的最小值为.题26(a)图题26(b)图(2)实践运用如题26(c)图,已知⊙O的直径CD为4,AD的度数为60°,点B是AD的中点,在直径CD上找一点P,使BP+AP的值最小,并求BP+AP的最小值.题26(c)图题26(d)图(3)拓展延伸如题26(d)图,在四边形ABCD的对角线AC上找一点P,使∠APB=∠APD.保留作图痕迹,不必写出作法.【分析】(1)由于等边三角形是极其特殊的三角形,所以根据勾股定理求出CE的长度;(2)首先根据材料提供的方法求出P点的位置,然后再结合圆周角等的性质,求出最短的距离;(3)从(1)(2)可以得出,理由轴对称来解决,找B关于AC对称点E,连DE 延长交AC于P即可.【答案】解:(1)3;(2)如图:作点B关于CD的对称点E,则点E正好在圆周上,连接OA、OB、OE,连接AE交CD与一点P,AP+BP最短,因为AD的度数为60°,点B是AD的中点,所以∠AEB=15°,因为B关于CD的对称点E,所以∠BOE=60°,所以△OBE为等边三角形,所以∠OEB=60°,所以∠OEA=45°,又因为OA=OE,所以△OAE为等腰直角三角形,所以AE=22.(3)找B关于AC对称点E,连DE延长交AC于P即可,【涉及知识点】圆周角的性质、勾股定理、对称【点评】本题属于综合性的问题,此类问题设计的知识点比较多,解决起来有点难度.【推荐指数】★★★★★27.(2010江苏淮安,27,12分)红星食品厂独家生产具有地方特色的某种食品,产量y1(万千克)与销售价格x(元/千克)(2≤x≤10)满足函数关系式y1=0.5x+11.经市场调查发现:该食品市场需求量y2(万千克)与销售价格x(元/千克)(2≤x≤10)的关系如图所示.当产量小于或等于市场需求量时,食品将被全部售出;当产量大于市场需求量时,只能售出符合市场需求量的食品,剩余食品由于保质期短将被无条件销毁.(1)求y2与x的函数关系式;(2)当销售价格为多少时,产量等于市场需求量?(3)若该食品每千克的生产成本是2元,试求厂家所得利润W(万元)与销售价格x(元/千克) (2≤x ≤10)之间的函数关系式.题27图【分析】从图像可以看出函数是一次函数,所以可以根据待定系数法求出函数的解析式,然后再根据题意表示出利润和销售价格之间的函数关系.【答案】解:(1)设函数的解析式为y 2=kx+b ,把(2,12)和(10,4)代入函数的解析式可得:212104k b k b ⎧+=⎨+=⎩,解得114k b ⎧=-⎨=⎩,所以函数的解析式为y 2=-x+14.(2)由题意可得:0.5x+11=-x+14,所以x=2,所以当销售价格为2元时,产量等于市场需求量.(3)设当销售单价为x 时,产量为y , 则由题意得:W=(x -2)y=(x -2)(0.5x+11) =0.5x 2+10x -22=()2110722x +-(2≤x ≤10) 【涉及知识点】二次函数、一次函数【点评】本题属于综合性的问题,设计的知识点比较多,此类问题是每年中考问题中的必考点.【推荐指数】★★★★★28.(2010江苏淮安,28,12分)如题28(a)图,在平面直角坐标系中,点A 坐标为(12,0),点B 坐标为(6,8),点C 为OB 的中点,点D 从点O 出发,沿△OAB 的三边按逆时针方向以2个单位长度/秒的速度运动一周.(1)点C 坐标是( , ),当点D 运动8.5秒时所在位置的坐标是( , ); (2)设点D 运动的时间为t 秒,试用含t 的代数式表示△OCD 的面积S,并指出t 为何值 时,S 最大;(3)点E 在线段AB 上以同样速度由点A 向点B 运动,如题28(b)图,若点E 与点D 同时 出发,问在运动5秒钟内,以点D ,A ,E 为顶点的三角形何时与△OCD 相似(只考虑以点A .O 为对应顶点的情况):题28(a)图 题28(b)图【分析】(1)若求点的坐标,可以过该点作x 轴的垂线,所以可以借助于平行线等分线段定理解决,求出D 和C 的坐标;(2)此问题是分类得问题,当点D 在不同的边上时,三角形的面积是不同的,然后根据图形之间的关系求出函数解析式,然后根据求最值的问题解决;(3)与(2)一样,只不过借助于三角形相似来解决.【答案】解:(1)C (3,4)、D (9,4)(2)当D 在OA 上运动时,14242S t t =⨯⨯=(0<t <6); 当D 在AB 上运动时,过点O 作OE ⊥AB ,过点C 作CF ⊥AB ,垂足分别为E 和F ,过D 作DM ⊥OA ,过B 作BN ⊥OA ,垂足分别为M 和N ,如图:设D 点运动的时间为t 秒,所以DA=2t -12,BD=22-2t , 又因为C 为OB 的中点, 所以BF 为△BOE 的中位线, 所以12CF OE =, 又因为11822AB OE OA ⋅=⨯, 所以485OE =,所以245CF =, 因为BN ⊥OA ,DM ⊥OA , 所以△ADM ∽△ABN , 所以212108t DM-=,所以8485t DM -=, 又因为△△△△BCD OCDOAB OAD SS S S =--,所以△1184812412812(222)22525OCD t S t -=⨯⨯-⨯⨯-⨯-⨯, 即△2426455OCD t S =-+(6≤t <11), 所以当t=6时,△OCD 面积最大,为△2462642455OCD S ⨯=-+=; 当D 在OB 上运动时,O 、C 、D 在同一直线上,S=0(11≤t ≤16). (3)设当运动t 秒时,△OCD ∽△ADE ,则O CO DA DA E=,即521222tt t=-,所以t=3.5;设当运动t 秒时,△OCD ∽△AED ,则O C O DA E A D=,即522122t t t =-,所以225300t t +-=,所以152654t -+=,252654t --=(舍去),所以当t 为3.5秒或52654-+秒时两三角形相似.【涉及知识点】一次函数的最值、平面直角坐标系、相似三角形【点评】本题是综合性比较强的问题,它巧妙的运用运动的观点,把相似三角形和平面直角坐标系以及一次函数等知识结合起来,属于难度较大的问题.【推荐指数】★★★★★。
2010年江苏省苏州市中考数学试题及答案
2010年苏州市初中毕业暨升学考试试卷数 学注意事项:1.本试卷由选择题、填空题和解答题三大题组成,共29小题,满分130分,考试时间120分钟;2.答题前,考生务必将自己的姓名、考点名称、考场号、座位号用0.5毫米黑色墨水签字笔填写在答题卡的相应位置上,并认真核对条形码上的准考号、姓名是否与本人的相符;3.答选择题必须用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,请用橡皮擦干净后,再选涂其他答案;答非选择题必须用0.5毫米黑色墨水签字笔写在答题卡指定的位置上,不在答题区域内的答案一律无效,不得用其他笔答题; 4.考生答题全部答在答题卡上,答在本试卷和草稿纸上无效.一、选择题:本大题共有10小题,每小题3分,共30分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上......... 1.32的倒数是 A .32 B .23 C .32- D .23-2.函数11y x =-的自变量x 的取值范围是A .x ≠0B .x ≠1C .x ≥1D .x ≤13.据报道,2010年苏州市政府有关部门将在市区完成130万平方米老住宅小区综合整治工作.130万(即1 300 000)这个数用科学记数法可表示为A .1.3×104B .1.3×105C .1.3×106D .1.3×107 4.有一组数据:10,30,50,50,70.它们的中位数是A .30B .45C .50D .70 5.化简211a a a a--÷的结果是 A .1aB .aC .a -1D .11a -6.方程组125x y x y +=⎧⎨-=⎩,的解是A .12.x y =-⎧⎨=⎩,B .23.x y =-⎧⎨=⎩,C .21.x y =⎧⎨=⎩,D .21.x y =⎧⎨=-⎩,7.如图,在△ABC 中,D 、E 两点分别在BC 、AC 边上.若BD=CD,∠B=∠CDE,DE=2,则AB的长度是A.4 B.5C.6 D.78.下列四个说法中,正确的是A.一元二次方程22 452x x++=有实数根;B.一元二次方程23 45x x++=有实数根;C.一元二次方程25 453x x++=有实数根;D.一元二次方程x2+4x+5=a(a≥1)有实数根.9.如图,在菱形ABCD中,DE⊥AB,3cos5A=,BE=2,则tan∠DBE的值是A.12B.2 C.52D.5510.如图,已知A、B两点的坐标分别为(2,0)、(0,2),⊙C的圆心坐标为(-1,0),半径为1.若D是⊙C上的一个动点,线段DA与y轴交于点E,则△ABE面积的最小值是A.2 B.1 C.222-D.22二、填空题:本大题共8小题,每小题3分,共24分.把答案直接填在答题卡相对应的.......位置上....11.分解因式a2-a= ▲.12.若代数式3x+7的值为-2,则x= ▲.13.一个不透明的盒子中放着编号为1到10的10张卡片(编号均为正整数),这些卡片除了编号以外没有任何其他区别.盒中卡片已经搅匀.从中随机地抽出1张卡片,则“该卡片上的数字大于163”的概率是▲.14.如图,四边形ABCD是正方形,延长AB到E,使AE=AC,则∠BCE的度数是▲°.15.如图,在平行四边形ABCD中,E是AD边上的中点.若∠ABE=∠EBC,AB=2,则平行四边形ABCD的周长是▲.16.如图,在4×4的方格纸中(共有16个小方格),每个小方格都是边长为1的正方形.O、A、B分别是小正方形的顶点,则扇形OAB的弧长等于▲.(结果保留根号及π).17.若一元二次方程x2-(a+2)x+2a=0的两个实数根分别是3、b,则a+b= ▲.18.如图,已知A、B两点的坐标分别为()230,、(0,2),P是△AOB外接圆上的一点,且∠AOP=45°,则点P的坐标为▲.三、解答题:本大题共11小题,共76分.把解答过程写在答题卡相应的位置上.........,解答时应写出必要的计算过程、推演步骤或文字说明.作图时用2B铅笔或黑色墨水签字笔.19.(本题满分5分)计算:1 243⎛⎫-+- ⎪⎝⎭.20.(本题满分5分)先化简,再求值:2a(a+b)-(a+b) 2,其中3a=,5b=.21.(本题满分5分)解不等式组:()20213 1.xx x->⎧⎪⎨+≥-⎪⎩,22.(本题满分6分)解方程:()221120x xx x----=.23.(本题满分6分)如图,C是线段AB的中点,CD平分∠ACE,CE平分∠BCD,CD=CE.(1)求证:△ACD≌△BCE;(2)若∠D=50°,求∠B的度数.24.(本题满分6分)学生小明、小华到某电脑销售公司参加社会实践活动,了解到2010年该公司经销的甲、己两种品牌电脑在第一季度三个月(即一、二、三月份)的销售数量情况.小明用直方图表示甲品牌电脑在第一季度每个月的销售量的分布情况,见图①;小华用扇形统计图表示乙品牌电脑每个月的销售量与该品牌电脑在第一季度的销售总量的比例分布情况,见图②.根据上述信息,回答下列问题:(1)这三个月中,甲品牌电脑在哪个月的销售量最大? ▲月份;(2)已知该公司这三个月中销售乙品牌电脑的总数量比销售甲品牌电脑的总数量多50台,求乙品牌电脑在二月份共销售了多少台?25.(本题满分8分)如图,在△ABC中,∠C=90°,AC=8,BC=6.P是AB边上的一个动点(异于A、B两点),过点P分别作AC、BC边的垂线,垂足为M、N.设AP=x.(1)在△ABC中,AB= ▲;(2)当x= ▲时,矩形PMCN的周长是14;(3)是否存在x的值,使得△PAM的面积、△PBN的面积与矩形PMCN的面积同时相等?请说出你的判断,并加以说明.26.(本题满分8分)如图,四边形OABC是面积为4的正方形,函数kyx(x>0)的图象经过点B.(1)求k的值;(2)将正方形OABC分别沿直线AB、BC翻折,得到正方形MABC′、MA′BC.设线段MC′、NA′分别与函数kyx=(x>0)的图象交于点E、F,求线段EF所在直线的解析式.27.(本题满分9分)如图,在等腰梯形ABCD中,AD∥BC.O是CD边的中点,以O为圆心,OC长为半径作圆,交BC边于点E.过E作EH⊥AB,垂足为H.已知⊙O与AB边相切,切点为F(1)求证:OE∥AB;(2)求证:EH=12 AB;(3)若14BHBE=,求BHCE的值.28.(本题满分9分)刘卫同学在一次课外活动中,用硬纸片做了两个直角三角形,见图①、②.图①中,∠B=90°,∠A=30°,BC=6cm;图②中,∠D=90°,∠E=45°,DE=4cm.图③是刘卫同学所做的一个实验:他将△DEF的直角边DE与△ABC的斜边AC 重合在一起,并将△DEF沿AC方向移动.在移动过程中,D、E两点始终在AC边上(移动开始时点D与点A重合).(1)在△DEF沿AC方向移动的过程中,刘卫同学发现:F、C两点间的距离逐渐▲.(填“不变”、“变大”或“变小”)(2)刘卫同学经过进一步地研究,编制了如下问题:问题①:当△DEF移动至什么位置,即AD的长为多少时,F、C的连线与AB平行?问题②:当△DEF移动至什么位置,即AD的长为多少时,以线段AD、FC、BC的长度为三边长的三角形是直角三角形?问题③:在△DEF的移动过程中,是否存在某个位置,使得∠FCD=15°?如果存在,求出AD的长度;如果不存在,请说明理由.请你分别完成上述三个问题的解答过程.29.(本题满分9分)如图,以A为顶点的抛物线与y轴交于点B.已知A、B两点的坐标分别为(3,0)、(0,4).(1)求抛物线的解析式;(2)设M(m,n)是抛物线上的一点(m、n为正整数),且它位于对称轴的右侧.若以M、B、O、A为顶点的四边形四条边的长度是四个连续的正整数,求点M的坐标;(3)在(2)的条件下,试问:对于抛物线对称轴上的任意一点P,PA2+PB2+PM2>28是否总成立?请说明理由.答案详解一、选择题(本大题共有10小题,每小题3分,共30分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上.........) 1.(2010苏州,1,3分)32的倒数是 A .32 B .23 C .32- D .23-【分析】1除以32就得32的倒数.两个有理数的乘积为1,则称这两个数互为倒数.【答案】B.【涉及知识点】有理数的倒数 2.(2010苏州,2,3分)函数11y x =-的自变量x 的取值范围是 A .0x ≠ B .1x ≠ C .1x ≥ D .1x ≤【分析】分式有意义,只要使分母不为0. 【答案】B .【涉及知识点】分式有意义的条件,一元一次不等式的解法 3.(2010苏州,3,3分)据报道,2010年苏州市政府有关部门将在市区完成130万平方米老住宅小区综合整治工作.130万(即1 300 000)这个数用科学记数法可表示为 A .1.3×104 B .1.3×105 C .1.3×106 D .1.3×107【分析】把一个数表示成(110)a a ≤<与10的幂相乘的形式,叫做科学记数法. 【答案】C.【涉及知识点】科学计数法. 4.(2010苏州,4,3分)有一组数据:10,30,50,50,70.它们的中位数是 A .30 B .45 C .50 D .70【分析】这组数据有6个,偶数个数据,中位数为50与50之和的一半,结果还是50,因此中位数是50.【答案】C.【涉及知识点】中位数. 5.(2010苏州,5,3分)化简211a a a a--÷的结果是 A .1a B .a C .1a - D .11a - 【分析】211a a a a--÷221(1)1(1)a a a a a a a a a --=⋅==--. 【答案】B.【涉及知识点】分式的乘除及基本性质.6.(2010苏州,6,3分)方程组125x y x y +=⎧⎨-=⎩,的解是A .12.x y =-⎧⎨=⎩,B .23.x y =-⎧⎨=⎩,C .21.x y =⎧⎨=⎩,D .21.x y =⎧⎨=-⎩,【分析】二元一次方程的解法有:加减消元法和代入消元法,本题利用加减消元法即可求解.【答案】D.【涉及知识点】二元一次方程组的解法.7.(2010苏州,7,3分)如图,在ABC ∆中,D 、E 两点分别在BC 、AC 边上. 若BD CD =,B CDE ∠=∠,2DE =,则AB 的长度是 A .4 B .5 C .6 D .7(第7题)【分析】由B CDE ∠=∠,可得//AB DE ,又BD CD =,所以DE 是ABC ∆的中位线,根据三角形中位线的性质得AB 的长度. 【答案】A.【涉及知识点】中位线、平行线的判定. 8.(2010苏州,8,3分)下列四个说法中,正确的是 A .一元二次方程2245x x ++=B .一元二次方程23452x x ++=有实数根; C .一元二次方程25453x x ++=有实数根; D .一元二次方程245(1)x x a a ++=≥有实数根.【分析】对于一元二次方程是否有实数根,只需将一元二次方程化为一般形式(20ax bx c ++=,其中0a ≠),并计算24b ac -是否大于等于0.【答案】D.【涉及知识点】一元二次方程解的个数的判别方法,配方法.9.(2010苏州,9,3分)如图,在菱形ABCD 中,DE AB ⊥,3cos 5A =,2BE =,则tan DBE ∠的值是A .12B .2C .52D .55(第9题)【分析】由DE AB ⊥,3cos 5A =,可设5AD x =,则4DE x =,3AE x =,又因为四边形ABCD 是菱形,所以AD AB =,且2BE =,所以AD AE EB =+,即532x x =+,解得1x =,所以4DE =,tan DBE ∠422DE BE ===.【答案】B.【涉及知识点】三角函数,菱形的性质. 10.(2010苏州,10,3分)如图,已知A 、B 两点的坐标分别为(2,0)、(0,2),C e 的圆心坐标为(-1,0),半径为1.若D 是C e 上的一个动点,线段DA 与y 轴交于点E ,则ABE ∆面积的最小值是A .2B .1C .22-D .22-(第10题)【分析】ABE ∆中BE 边上的高AO =2,要使面积最小,只需BE 最短,由图知DE 为C e 切线时,BE 最短.【答案】C.【涉及知识点】三角形的面积公式及直线方程和切线的性质.二、填空题(本大题共8小题,每小题3分,共24分.把答案直接填在答题..卡相..对应的...位置上....) 11.(2010苏州,11,3分)分解因式2a a -= ▲ .【分析】本题主要考查提取公因式法.【答案】(1)a a -.【涉及知识点】因式分解12.(2010苏州,12,3分)若代数式3x+7的值为-2,则x= ▲ .【分析】由题意得372x +=-,解之得3x =-.【答案】3-.【涉及知识点】一元一次方程的解13.(2010苏州,13,3分)一个不透明的盒子中放着编号为1到10的10张卡片(编号均为正整数),这些卡片除了编号以外没有任何其他区别.盒中卡片已经搅匀.从中随机地抽出1张卡片,则“该卡片上的数字大于163”的概率是 ▲ . 【分析】等可能性事件的概率的计算.【答案】12【涉及知识点】概率14.(2010苏州,14,3分)如图,四边形ABCD 是正方形,延长AB 到E ,使AE AC =,则BCE ∠的度数是 ▲ °.(第14题)【分析】由AE AC =,得ACE ∆是等腰三角形,则有67.5E ACE ∠=∠=︒,又ACE ACB BCE ∠=∠+∠,且45ACB ∠=︒,所以BCE ∠67.54522.5=︒-︒=︒.【答案】22.5【涉及知识点】正方形、等腰三角形的性质,三角形的内角和.15.(2010苏州,15,3分)如图,在平行四边形ABCD 中,E 是AD 边上的中点.若ABE EBC ∠=∠,2AB =,则平行四边形ABCD 的周长是 ▲ .【分析】由四边形ABCD 是平行四边形,得//AD BC ,所以AEB EBC ∠=∠.又因为ABE EBC ∠=∠,所以ABE AEB ∠=∠.即2AB AE ==.又因为E 是AD 边上的中点,所以24AD AE ==,因此平行四边形ABCD 的周长等于2212AD AB +=.【答案】12【涉及知识点】角平分线的性质、平行四边形的性质、线段的中点、等腰三角形的判定.16.(2010苏州,16,3分)如图,在4×4的方格纸中(共有16个小方格),每个小方格都是边长为1的正方形. O 、A 、B 分别是小正方形的顶点,则扇形OAB 的弧长等于 ▲ .(结果保留根号及π).【分析】由图形可知90AOB ∠=︒,扇形的半径22AO =根据扇形的弧长公式可2π.2π【涉及知识点】扇形的弧长公式.17.(2010苏州,17,3分)若一元二次方程2(2)20x a x a -++=的两个实数根分别是3、b ,则a b += ▲ .【分析】把3x =代入方程2(2)20x a x a -++=得,93(2)20a a -++=,解得3a =,再将3a =代入原方程,求出另一个根2b =.【答案】5.【涉及知识点】方程的解、一元二次方程的解法.18.(2010苏州,18,3分)如图,已知A 、B 两点的坐标分别为()23,、(0,2),P 是△AOB 外接圆上的一点,且∠AOP=45°,则点P 的坐标为 ▲ .【分析】圆周角是直角所对的弦的直径,由AOP ∠=45°,可设(,)P x x ,然后在直角三角形BPA 中求得.【答案】( 3 +1, 3 +1).【涉及知识点】坐标,圆,直角三角形.三、解答题(本大题共11小题,共76分.把解答过程写在答题卡相应的位置上.........,解答时应写出必要的计算过程、推演步骤或文字说明.作图时用2B 铅笔或黑色墨水签字笔.)19.(2010苏州,19,5分)(本题满分5分)计算:01243⎛⎫- ⎪⎝⎭. 【分析】01243⎛⎫-+ ⎪⎝⎭2213=+-=. 【答案】3.【涉及知识点】有理数的绝对值、算术平方根、零指数幂.20.(2010苏州,20,5分)(本题满分5分)先化简,再求值:22()()a a b a b +-+,其中3a =5b =【分析】先利用分配律和完全平方公式展开,特别要注意的是完全平方前是减号,为避免出错,小括号先留着,等完全平方展开后再去括号.【答案】22()()a a b a b +-+ 22222(2)a ab a ab b =+-++222222a ab a ab b =+---22a b =- 当3a =5b =原式22=-35=-2=-.【涉及知识点】整式的运算.21.(2010苏州,21,5分)(本题满分5分)解不等式组:()20213 1.x x x ->⎧⎪⎨+≥-⎪⎩, 【分析】只需分别求出两个不等式的解,再取它们的公共部分即可.【答案】()20213 1.x x x ->⎧⎪⎨+≥-⎪⎩,①② 由①得2x >,由②得3x ≤所以原不等式组的解为23x <≤.【涉及知识点】一元一次不等式组22.(2010苏州,22,6分)(本题满分6分)解方程:()221120x x x x----=. 【分析】原方程的两边同时乘以公分母2x 后,转化为整式方程,注意分式方程解后要检验.【答案】去分母得22(1)(1)20x x x x ----=去括号得2222120x x x x x -+-+-=合并同类项得2210x x +-= 1211,2x x =-= 经检验1211,2x x =-=是原方程的解. 【涉及知识点】分式方程的解法.23.(2010苏州,23,6分)(本题满分6分)如图,C 是线段AB 的中点,CD 平分ACE ∠,CE 平分BCD ∠,CD CE =.(1)求证:ACD ∆≌BCE ∆;(2)若D ∠=50°,求B ∠的度数.【分析】根据SAS 判定两个三角形全等,再利用全等三角形的性质求出1∠与3∠的度数,结合三角形的内角和及平角的意义求出所要求的角.【答案】(1)∵点C 是线段AB 的中点,∴AC BC =,又∵CD 平分ACE ∠,CE 平分BCD ∠,∴∠1=∠2,∠2=∠3,∴∠1=∠3.在ACD ∆和BCE ∆中,⎪⎩⎪⎨⎧=∠=∠=BC AC CE CD 31∴ACD ∆≌BCE ∆.(2)解:∴∠1+∠2+∠3=180°,∴∠1=∠2=∠3=60°.∵ACD ∆≌BCE ∆.∴E D ∠=∠=50°,∴180370B E ∠=︒-∠-∠=︒.【涉及知识点】三角形全等的判定及三角形的内角和定理.24.(2010苏州,24,6分)(本题满分6分)学生小明、小华到某电脑销售公司参加社会实践活动,了解到2010年该公司经销的甲、己两种品牌电脑在第一季度三个月(即一、二、三月份)的销售数量情况.小明用直方图表示甲品牌电脑在第一季度每个月的销售量的分布情况,见图①;小华用扇形统计图表示乙品牌电脑每个月的销售量与该品牌电脑在第一季度的销售总量的比例分布情况,见图②.根据上述信息,回答下列问题:(1)这三个月中,甲品牌电脑在哪个月的销售量最大? ▲ 月份;(2)已知该公司这三个月中销售乙品牌电脑的总数量比销售甲品牌电脑的总数量多50台,求乙品牌电脑在二月份共销售了多少台?【分析】如何从条形统计图及扇形统计图读出有关信息,销售量的最大的月份可以从条形统计图中读得.要求乙品牌电脑在二月份销售量,只需根据两统计图找出它与其它两个月份的数量关系,并计算可得.【答案】(1)二.(2)甲品牌电脑三个月总销售量为:150+180+120=450(台) .乙品牌电脑三个月总销售量为:450+50=500(台).乙口牌电脑二月份销售量为:500×30%=150(台).答:乙口牌电脑二月份销售量为150台.【涉及知识点】条形统计图与扇形统计图.25.(2010苏州,25,8分)(本题满分8分)如图,在ABC ∆中,90C ∠=︒,8AC =,BC=6.P 是AB 边上的一个动点(异于A 、B 两点),过点P 分别作AC 、BC 边的垂线,垂足为M 、N .设AP x =.(1)在ABC ∆中,AB = ▲ ;(2)当x = ▲ 时,矩形PMCN 的周长是14;(3)是否存在x 的值,使得PAM ∆的面积、PBN ∆的面积与矩形PMCN 的面积同时相等?请说出你的判断,并加以说明.【分析】在直角三角形ABC ∆,已知两直角边长,由勾股定理可求出斜边AB .已知矩形周长,列出关于x 的方程,可求出x 的值.存在性问题,可根据题意列出方程,将问题转化为方程是否有解的问题.【答案】(1) 在ABC ∆中,∵90C ∠=︒,8AC =,6BC =,∴AB ==10.(2) 5.(3)∵PM AC ⊥,PN BC ⊥,∴90AMP PNB ∠=∠=︒.∵//AC PN ,∴A NPB ∠=∠.∴AMP ∆∽PNB ∆∽ABC ∆.由AP x = ∴610MP x =,810AM x =,10PB x =-,8(10)10PN x =-,6(10)10BN x =- 若存在x 的值,使得PAM ∆的面积、PBN ∆的面积与矩形PMCN 的面积同时相等,则有1122MP NP AM MP NP BN ⋅=⋅=⋅ 即2,2MP BN NP AM ==662(10)1010x x ⨯=-且882(10)1010x x ⨯-= 即310x =,此时103x = ∴存在能使得PAM ∆的面积、PBN ∆的面积与矩形PMCN 面积同时相等的103x =的值.【涉及知识点】相似三角形26.(2010苏州,26,8分)(本题满分8分)如图,四边形OABC 是面积为4的正方形,函数k y x=(0x >)的图象经过点B . (1)求k 的值;(2)将正方形OABC 分别沿直线AB 、BC 翻折,得到正方形MABC '、MA BC '.设线段MC '、NA '分别与函数k y x=(0x >)的图象交于点E 、F ,求线段EF 所在直线的解析式.【分析】比例系数k xy =,而四边形OABC 的面积刚好为xy .要求直线的解析式,只需设出这条直线的解析式,并列出与之相关系的二元一次方程即可.【答案】(1)∵四边形OABC 是面积为4的正方形,∴OA OC = =2.∴点B 坐标为(2,2).∴k xy = =2×2=4.(2)∵正方形MABC '、MA BC '由正方形OABC 翻折所得,∴2ON OM OA == =4,∴点E 横坐标为4,点F 纵坐标为4.∵点E 、F 在函数y=4x的图像上, ∴当4x =时,1y =,即(4,1)E .当4y =时,1x =,即(1,4)F .设直线EF 解析式为y mx n =+,将E 、F 两点坐标代入,得⎩⎨⎧=+=+.4,14n m n m ∴1,5m n =-=.∴直线EF 解析式为5y x =-+.【涉及知识点】比例系数的意义,求一次函数的解析式,解二元一次方程组.27.(2010苏州,27,9分)(本题满分9分)如图,在等腰梯形ABCD 中,//AD BC .O是CD 边的中点,以O 为圆心,OC 长为半径作圆,交BC 边于点E .过E 作EH AB ⊥,垂足为H .已知O e 与AB 边相切,切点为F(1)求证://OE AB ;(2)求证:12EH AB =; (3)若14BH BE =,求BH CE的值.【分析】要说明12EH AB =,只需证明四边形OEHF 是平行四边形,要说明OEHF 是平行四边形,已知它有一组对边平行,只需再说明另一组对边平行;要求BH CE,只要说明EHB ∆∽DEC ∆,再根据相似三角形的性质来求.【答案】(1)证明:在等腰梯形ABCD 中,AB DC =,∴B C ∠=∠,∵OE OC =,∴OEC C ∠=∠,B OEC ∠=∠,∴//OE AB .(2)证明:连结OF ,∵O e 与AB 边相切,切点为F ,∴OF AB ⊥,∵EH AB ⊥,∴//OF EH ,又∵//OE AB ,∴四边形OEHF 为平行四边形,∴12EH AB =. (3)解:连结DE .∵CD 是直径,∴90DEC ∠=︒则DEC EHB ∠=∠.又∵B C ∠=∠,∴EHB ∆∽DEC ∆.∴BH BE CE CD =.∵14BH BE =,设BH k =,则4BE k =,2215EH BE BH k =-= ∴2215CD EH k ==.∴21515215BH BE CE CD k === 【涉及知识点】切线及等腰梯形的性质.28.(2010苏州,28,9分)(本题满分9分)刘卫同学在一次课外活动中,用硬纸片做了两个直角三角形,见图①、②.图①中,90B ∠=︒,30A ∠=︒,6BC cm =;图②中,90D ∠=︒,45E ∠=︒,4DE cm =.图③是刘卫同学所做的一个实验:他将DEF ∆的直角边DE 与ABC ∆的斜边AC 重合在一起,并将DEF ∆沿AC 方向移动.在移动过程中,D 、E 两点始终在AC 边上(移动开始时点D 与点A 重合).(1)在DEF ∆沿AC 方向移动的过程中,刘卫同学发现:F 、C 两点间的距离逐渐 ▲ .(填“不变”、“变大”或“变小”)(2)刘卫同学经过进一步地研究,编制了如下问题:问题①:当DEF ∆移动至什么位置,即AD 的长为多少时,F 、C 的连线与AB 平行?问题②:当DEF ∆移动至什么位置,即AD 的长为多少时,以线段AD 、FC 、BC的长度为三边长的三角形是直角三角形?问题③:在DEF ∆的移动过程中,是否存在某个位置,使得15FCD ∠=︒?如果存在, 求出AD 的长度;如果不存在,请说明理由.请你分别完成上述三个问题的解答过程.【分析】“ F 、C 两点间的距离”可利用勾股定理求得;动态几何问题是近几年中考考试是热点,着重考查学生的分析能力. 以线段AD 、FC 、BC 的长度为三边长的三角形是否是直角三角形,只需对三边是否能组成直角三角形进行行为,要对三边哪边是斜边进行讨论.【答案】(1)变小(2)问题①:解:∵90B ∠=︒,30A ∠=︒,6BC cm =,∴12AC =.∵90FDE ∠=︒,45,4DEF DE ∠=︒=,∴4DF =.连结FC ,设//FC AB .∴30FCD A ∠=∠=︒,在Rt FDC ∆中,DC=4 3 .∴AD AC DC =-=12-4 3 .即12AD =-时,//FC AB问题②:解:设当AD x =,在Rt FDC ∆中,2222(12)16FC DC FD x =+=-+.(Ⅰ)当FC 为斜边时,由222AD BC FC +=得,2226(12)16x x +=-+,316x =. (Ⅱ)当AD 为斜边时,由222FC BC AD +=得,222(12)166x x -++=,4986x =>(不符合题意,舍去).(Ⅲ)当BC 为斜边时,由222AD FC BC +=得,222(12)166x x +-+=,212620x x -+=,∆=144-248<0,∴方程无解.∴由(Ⅰ)、(Ⅱ)、(Ⅲ)得,当316x =时,以线段AD 、FC 、BC 的长度为三边长的三角形是直角三角形.问题③不存在这样的位置,使得15FCD ∠=︒.假设15FCD ∠=︒,由45FED ∠=︒,得30EFC ∠=︒.作EFC ∠的平分线,交AC 于P ,则15EFP CFP FCP ∠=∠=∠=︒,∴,60PF PC DFP DFE EFP =∠=∠+∠=︒.∴PD =28PC PF FD ===.∴812PC PD +=+>.∴不存在这样的位置,使得15FCD ∠=︒.【涉及知识点】勾股定理及一元二次方程的解法.29.(2010苏州,29,9分)(本题满分9分)如图,以A 为顶点的抛物线与y 轴交于点B .已知A 、B 两点的坐标分别为(3,0)、(0,4).(1)求抛物线的解析式;(2)设(,)M m n 是抛物线上的一点(m 、n 为正整数),且它位于对称轴的右侧.若以M 、B 、O 、A 为顶点的四边形四条边的长度是四个连续的正整数,求点M 的坐标;(3)在(2)的条件下,试问:对于抛物线对称轴上的任意一点P ,22228PA PB PM ++>是否总成立?请说明理由.【分析】(1)已知抛物线的顶点坐标,求其解析式,可设这个抛物线的解析式为顶点式.(2)要求点的坐标与m 有关系,对m 的取值进行分类讨论.【答案】(1)设2(3)y a x =-,把(0,4)B 代入,得49a =. ∴24(3)9y x =-. (2)∵,m n 为正整数,24(3)9n m =-, ∴2(3)m -应该是9的倍数.∴m 是3 的倍数.又∵3m >,∴6,9,12m =…当6m =时,4n =,此时,5,6MA MB ==.∴四边形OAMB 的四边长为3,4,5,6.当9m ≥时,6MB >,∴四边形OAMB 的四边长不能是四个连续的正整数.∴点M 坐标只有一种可能(6,4).(3) 设(3,)P t ,MB 与对称轴交点为D .则||,|4|PA t PD t ==-. 222(4)9PM PB t ==-+. ∴222PA PB PM ++=22228862[(4)9]316503()33t t t t t +-+=-+=-+. ∴当83t =时,222PA PB PM ++有最小值863 , ∴22228PA PB PM ++>总是成立.【涉及知识点】抛物线的解析式的求法.。
2010年江苏省苏州市中考数学试卷及答案(完整版、含答案详解)
2010年苏州市初中毕业暨升学考试试卷数 学注意事项:1.本试卷由选择题、填空题和解答题三大题组成,共29小题,满分130分,考试时间120分钟;2.答题前,考生务必将自己的姓名、考点名称、考场号、座位号用0.5毫米黑色墨水签字笔填写在答题卡的相应位置上,并认真核对条形码上的准考号、姓名是否与本人的相符;3.答选择题必须用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,请用橡皮擦干净后,再选涂其他答案;答非选择题必须用0.5毫米黑色墨水签字笔写在答题卡指定的位置上,不在答题区域内的答案一律无效,不得用其他笔答题!4.考生答题全部答在答题卡上,答在本试卷和草稿纸上无效.一、选择题:本大题共有10小题,每小题3分,共30分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上.1.的倒数是 A . B. C.D. 2.函数的自变量的取值范围是A . B. C.D.3.据报道,2010年苏州市政府有关部门将在市区完成130万平方米老住宅小区综合整治工作.130万(即1 300 000)这个数用科学记数法可表示为 A. B. C. D. 4.有一组数据:10,30,50,50,70.它们的中位数是 A .30 B.45 C.50 D.70 5.化简的结果是 A. B. C. D. 6.方程组的解是A. B. C. D. 7.如图,在中,两点分别在边上. 若则的长度是 A .4 B. 5 C. 6 D. 7 8.下列四个说法中,正确的是A .一元二次方程32322332-23-11y x =-x 0x ≠1x ≠1x ≥1x ≤41.310⨯51.310⨯61.310⨯71.310⨯211a a a a--÷1a a 1a -11a -125x y x y +=⎧⎨-=⎩,12.x y =-⎧⎨=⎩,23.x y =-⎧⎨=⎩,21.x y =⎧⎨=⎩,21.x y =⎧⎨=-⎩,ABC △D E 、BC AC 、BD CD =,B CDE ∠=∠,2DE =,AB 245x x ++=(第7题)B. 一元二次方程C. 一元二次方程有实数根;D. 一元二次方程有实数根.9.如图,在菱形中,则的值是A . B.C.D.10.如图,已知两点的坐标分别为的圆心坐标为半径为1.若是上的一个动点,线段与轴交于点则面积的最小值是( ) A . B. C.D.二、填空题:本大题共8小题,每小题3分,共24分.把答案直接填在答题卡相对应的位置上. 11.分解因式_________.12.若代数式的值为,则_________.13.一个不透明的盒子中放着编号为1到10的10张卡片(编号均为正整数),这些卡片除了编号以外没有任何其他区别.盒中卡片已经搅匀.从中随机地抽出1张卡片,则“该卡片上的数字大于”的概率是_________.14.如图,四边形是正方形,延长到使则的度数是_____°. 15.如图,在平行四边形中,是边上的中点.若则平行四边形的周长是_________.245x x ++=245x x ++=()2451x x a a ++=≥ABCD DE AB ⊥,3cos 25A BE ==,tan DBE ∠122A B 、()()2002,、,,C ⊙()10-,,D C ⊙DA y E ,ABE △21222a a -=37x +2-x =163ABCD AB E ,AE AC =,BCE ∠ABCD E AD ABE EBC ∠=∠,2AB =,ABCD (第10题)(第9题)第14题16.如图,在的方格中(共有16个小格),每个小方格都是边长为1的正方形. 分别是小正方形的顶点,则扇形的弧长等于_________.(结果保留根号及) 17.若一元二次方程的两个实数根分别是则_________.18.如图,已知两点的坐标分别为是外接圆上的一点,且则点的坐标为_________.三、解答题:本大题共11小题,共76分.把解答过程写在答题卡相对应的位置上,解答时应写出必要的计算过程、推演步骤或文字说明.作图时用2B 铅笔或黑色墨水签字笔. 19.(本题满分5分)20.(本题满分5分)先化简,再求值:其中21.(本题满分5分)解不等式组:22.(本题满分6分)解方程:44⨯O A B 、、OAB π()2220xa x a -++=3b 、,a b +=A B 、()()002、,,P AOB △45AOP ∠=°,P 01.3⎛⎫- ⎪⎝⎭()()22a a b a b +-+,a b ==()20213 1.x x x ->⎧⎪⎨+-⎪⎩,≥()221120.x x x x----=(第15题)(第16题)23.(本题满分6分)如图,是线段的中点,平分平分(1)求证: (2)若求的度数.24.(本题满分6分)学生小明、小华到某电脑销售公司参加社会实践活动,了解到2010年该公司销售的甲、乙两种品牌电脑在第一季度三个月(即一、二、三月份)的销售数量情况.小明用直方图表示甲品牌电脑在第一季度每个月的销售量的分布情况,见图①;小华用扇形统计图表示乙品牌电脑每个月的销售量与该品牌电脑在第一季度的销售总量的比例分布情况,见图②.根据上述信息,回答下列问题:(1)这三个月中,甲品牌电脑在哪个月的销售量最大?_________月份;(2)已知该公司这三个月中销售乙品牌电脑的总数量比销售甲品牌电脑的总数量多50C AB CD ACE ∠,CE BCD ∠,.CD CE =ACD BCE △≌△;50D ∠=°,B∠(第23题)(图①)(图②)台,求乙品牌电脑在二月份共销售了多少台?25.(本题满分8分)如图,在中,是边上的一个动点(异于两点),过点分别作边的垂线,垂足为设(1)在中,___________;(2)当___________时,矩形的周长是14;(3)是否存在的值,使得的面积、的面积与矩形的面积同时相等?请说出你的判断,并加以说明.26.(本题满分8分)如图,四边形是面积为4的正方形,函数的图象经过点ABC △9086C AC BC P ∠===°,,,AB A B 、P AC BC 、.M N 、.AP x =ABC △AB =x =PMCN x PAM △PBN △PMCN OABC ()0ky x x=>.B (第25题)(1)求的值;(2)将正方形分别沿直线翻折,得到正方形设线段分别与函数的图象交于点求线段所在直线的解析式.27.(本题满分9分)如图,在等腰梯形中,是边的中点,以为圆心,长为半径作圆,交边于点过作垂足为已知与边相切,切点为 (1)求证:(2)求证: (3)若,求的值.28.(本题满分9分)刘卫同学在一次课外活动中,用硬纸片做了两个直角三角形,见图①、②.图①中,图②中, 图③是刘卫同学所做的一个实验:他将的直角边与k OABC AB BC 、.MABC NA BC ′、′MC NA′、′()0ky x x=>E F 、,EF ABCD .AD BC ∥O CD O OC BC .E E EH AB ⊥,.H O ⊙AB .F OE AB ∥;12EH AB =;14BH BE =BHCE90306cm B A BC ∠=∠==°,°,;90D ∠=°,45E ∠=°,4cm DE =.DEF △DE ABC△(第26题)(第27题)的斜边重合在一起,并将沿方向移动.在移动过程中,两点始终在边上(移动开始时点与点重合).(1)在沿方向移动的过程中,刘卫同学发现:两点间的距离逐渐_________.(填“不变”、“变大”或“变小”)(2)刘卫同学经过进一步地研究,编制了如下问题: 问题①:当移动至什么位置,即的长为多少时,的连线与平行? 问题②:当移动至什么位置,即的长为多少时,以线段的长度为三边长的三角形是直角三角形? 问题③:在的移动过程中,是否存在某个位置,使得如果存在,求出的长度;如果不存在,请说明理由. 请你分别完成上述三个问题的解答过程.29.(本题满分9分)如图,以为顶点的抛物线与轴交于点已知两点的坐标分 别为 AC DEF △AC D E 、AC D A DEF △AC F C 、DEF △AD F C 、AB DEF △AD AD FC BC 、、DEF △15FCD ∠=°?AD A y .B A B 、()()3004.,、,(图①)(图②)(图③)(1)求抛物线的解析式;(2)设是抛物线上的一点(为正整数),且它位于对称轴的右侧.若以为顶点的四边形四条边的长度是四个连续的正整数,求点的坐标;(3)在(2)的条件下,试问:对于抛物线对称轴上的任意一点是否总成立?请说明理由.参考答案一、选择题:(每题3分,共30分)1.B2.B3.C4.C5.B6.D7.A8.D9.B 10.C()M m n ,m n 、M B O A 、、、M P ,22228PA PB PM ++>(第29题)二、填空题:(每题3分,共24分) 11. 12. 13. 14. 15. 17. 18.三、解答题:19.解:原式=20.解法一:原式=当时,原式=解法二:原式= 当时,原式=21.解:由得由得∴不等式组的解集是22.解法一:去分母,得化简,得 解得 经检验,是原方程的解. 解法二:令则原方程可化为 解得当时,解得 当时,解得 经检验,是原方程的解.23.证明:(1)∵点是线段的中点, ∴又∵平分平分 ∴ ∴在和中,()1a a -3-1222.5125)11++221 3.+-=()22222222.a ab a ab b ab +-++=-a b == 2.-()()()()222.a b a a b a b a b a b +--=+-=-a b == 2.-20x ->, 2.x >()2131x x +-≥,223 1.x x +-≥3.x ≤2 3.x <≤()()221120x x x x ----=,2210x x +-=,1211.2x x =-=,12112x x =-=,1x t x-=,220t t --=,122 1.t t ==-,2t =12x x -=, 1.x =-1t =-11x x -=-,1.2x =112x x =-=,C AB .AC BC =CD ACE ∠,CE BCD ∠,1223∠=∠∠=∠,,1 3.∠=∠ACD △BCE △∴(2)解:∵ ∴ ∵ ∴∴ 24.解:(1)二.(2)甲品牌电脑三个月总销售量为:150+180+120=450(台). 乙品牌电脑三个月总销售量为:450+50=500(台). 乙品牌电脑二月份销售量为:500×30%=150(台). 答:乙品牌电脑二月份销售量为150台. 25.解:(1)10. (2)5.(3)解法一:∵ ∴ ∵ ∴∴∴当为中点,即时,∴此时 而矩形面积=∴不存在能使得的面积、的面积与矩形面积同时相等的的值.解法二:∵ ∴∵在中, ∴在中,∴∴ 若则13.CD CE AC BC =⎧⎪∠=∠⎨⎪=⎩,,.ACD BCE △≌△123180∠+∠+∠=°,12360∠=∠=∠=°.ACD BCE △≌△,50E D ∠=∠=°,180370B E ∠=-∠-∠=°°.PM AC PN BC ⊥⊥,,90.AMP PNB ∠=∠=°AC PN ∥,.A NPB ∠=∠.AMP PNB △∽△P AB AP PB =.AMP PNB △≌△1143622AMP PNB S S AM MP ===⨯⨯=△△·,PMCN 3412PM MC =⨯=·.PAM △PBN △PMCN x PM AC PN BC ⊥⊥,,90.AMP PNB ∠=∠=°Rt ABC △34sin cos 55A A ==,,Rt AMP △3sin 5PM AP A x ==·,4cos .5AM AP A x ==·485MC AC AM x =-=-,36.5NB BC CN x =-=-()22161610.225225AMP PNB S AM MP x S PN NB x ====-△△·,·AMP PNB S S =△△, 5.x=此时而矩形面积=∴不存在能使得的面积、的面积和矩形面积同时相等的的值.26.解:(1)∵四边形是面积为4的正方形,∴∴点坐标为∴(2)∵正方形由正方形翻折所得, ∴∴点横坐标为4,点纵坐标为4.∵点在函数的图像上, ∴当时,即当时,即设直线解析式为将两点坐标代入,得 ∴ ∴直线的解析式为27.(1)证明:在等腰梯形中,∴∵∴∴∴(2)证明:连结∵与切于点∴∵∴又∵∴四边形为平行四边形.∴∵ ∴ 6.AMP PNB S S ==△△PMCN 3412.PM MC =⨯=·PAM △PBN △PMCN x OABC 2.OA OC ==B ()22.,22 4.k xy ==⨯=MABC NA BC ′、′OABC 24ON OM OA ===,E F E F 、4y x=4x =1y =,()41.E ,4y =1x =,()14.F ,EF y mx n =+,E F、414.m n m n +=⎧⎨+=⎩,1 5.m n =-=,EF 5y x =-+.ABCD AB DC =,.B C ∠=∠OE OC =,.OEC C ∠=∠.B OEC ∠=∠.OE AB ∥.OF O ⊙AB F ,.OF AB ⊥EH AB ⊥,.OF EH ∥OE AB ∥,OEHF .EH OF =1122OF CD AB ==,1.2EH AB=(3)解:连结∵是直径,∴则又∵∴ ∴ ∵ 设 则∴∴ 28.(1)变小.(2)问题①:解:∵∴∵∴连结设∴∴在中,∴即时,问题②:解:设在中, (Ⅰ)当为斜边时,由得, (Ⅱ)当为斜边时, 由得,(不符合题意,舍去). (Ⅲ)当为斜边时,由得, .DE CD 90DEC ∠=°..DEC EHB ∠=∠B C ∠=∠,.EHB DEC △∽△.BH BE CECD=14BH BE=BH k =,4BH k EH ===,,2.CD EH ==BH BE CE CD ===90306B A BC ∠=∠==°,°,,12.AC =90454FDE DEF DE ∠=∠==°,°,,DF =4.FC ,.FC AB ∥30.FCD A ∠=∠=°Rt FDC △DC =12AD AC DC =-=-(12cm AD =-.FC AB ∥AD x =,Rt FDC △()22221216.FC DC FD x =+=-+FC 222AD BC FC +=()2223161216.6x x x +=-+=,AD 222FC BC AD +=()222491216686x x x -++==>,BC 222AD FC BC +=()22221216612620x x x x +-+=-+=,,∴方程无解.另解:不能为斜边.∵∴∴中至少有一条线段的长度大于6.∴不能为斜边.∴由(Ⅰ)、(Ⅱ)、(Ⅲ)得,当时,经线段的长度为三边长的三角形是直角三角形.问题③:解法一:不存在这样的位置,使得理由如下:假设由得作的平分线,交于点,则∴∴∴∴不存在这样的位置,使得解法二:不存在这样的位置,使得假设由得作垂足为∴ 且∵为公共角,∴∴ 又 ∴ 1442480∆=-<,BC FC CD >,12.FC AD +>FC AD 、BC 31cm 6x =AD FC BC 、、15FCD ∠=°.15FCD ∠=°.45FED ∠=°,30EFC ∠=°.EFC ∠AC P 15EFP CFP FCP ∠=∠=∠=°,60PF PC DFP DFE EFP =∠=∠+∠=,°.28.PD PC PF FD ====812.PC PD +=+>15FCD ∠=°.15FCD ∠=°.15.FCD AD x ∠==°,45FED ∠=°,30EFC ∠=°.EH FC ⊥,.H 12HE EF ==8CE AC AD DE x =--=-,()221216.FC x =-+90FDC EHC DCF ∠=∠=∠°,.CHE CDF △∽△.EC HE FC DF=221.2HE DF ⎛⎫== ⎪⎝⎭21.2EC FC ⎛⎫= ⎪⎝⎭即 整理后,得到方程∴(不符合题意,舍去),(不符合题意,舍去).∴不存在这样的位置,使得29.解:(1)设把代入,得 ∴ (2)解法一:∵四边形的四边长是四个连续的正整数, ∴可能的情况有三种:1、2、3、4;2、3、4、5; 3、4、5、6. ∵点位于对称轴右侧,且为正整数,∴是大于或等于4的正整数,∴∵∴只有两种可能:∴或当时,(不是整数,舍去); 当时,(不是整数,舍去); 当时,当时, 因此,只有一种可能,即当点的坐标为时,四边形的四条边长分别为3、4、5、6.解法二:∵为正整数, ∴应该是9的倍数.∴是3的倍数.又∵∴当时,此时, ∴四边形的四边长为3、4、5、6.当时,∴四边形的四边长不能是四个连续的正整数. ()()2281.21216x x -=-+28320.x x --=140x =-<248x =+>15FCD ∠=°.()23y a x =-,()04B ,4.9a =()243.9y x =-OAMB M m n ,m 4.MB >34AO OB ==,,MB 5MB = 6.MB =4m =()2444399n =-=5m =169n =6m =46n MB ==,;7m ≥ 6.MB >M ()64,65MB MA ==,,OAMB m n ,()2439n m =-,()23m -m 3m >,6912m = ,,,6m =4n =,5MA =,6MB =.OAMB 9m ≥6MB >,OAMB∴点的坐标只有一种可能(3)设与对称轴交点为 则∴ ∴当时,有最小值 ∴总是成立.M ()64,.()3P t MB ,,.D 4.PA t PD t ==-,()22249PM PB t ==-+,()22222249PA PB PM t t ⎡⎤++=+-+⎣⎦22316508863.33t t t =-+⎛⎫=-+ ⎪⎝⎭83t =222PA PB PM ++863,22228PA PB PM ++>。
最新初中中考数学题库 2010年中考江苏镇江卷数学试题答案(word版)
镇江市2010年初中毕业升学考试 数学试题参考答案及评分标准一、填空题(本大题共有12小题,每小题2分,共计24分)1.3,21 2.—1,—6 3.43,a a 4.4,2 5.12),3(+-x a a 6.7,8 7.40,50 8.1,1≥x 9.<<,1n 10.6,254 11.3 12.4二、选择题(本大题共有5小题,每小题3分,共计15分) 13.A 14.A 15.B 16.D 17.C三、解答题(本大题共有11小题,共计81分) 18.(1)原式415+-=(3分,每对1个得1分)=8 (5分) (2)原式31)3)(3(6-+-+=x x x (1分))3)(3(36-+-+=x x x (3分))3)(3(3-++=x x x (4分).31-=x (5分) 19.(1)由①得,1>x ;(2分)由②得,3≤x (4分)∴原不等式组的解集为31≤<x (5分)(2)223x x =-,(1分)0232=+-x x , (2分) 0)1)(2(=--x x , (3分) .1,221==∴x x (4分)经检验,1,221==x x 中原方程的解. (5分) 20.(1)∵∠BAC=∠DAE ,AB=AD ,∠B=∠D ,∴△ABD ≌△ADE.(3分) (2)∵△ABC ≌△ADE ,∴AC 与AE 是一组对应边, ∴∠CAE 的旋转角,(4分) ∵AE=AC ,∠AEC=75°,∴∠ACE=∠AEC=75°, (5分)∴∠CAE=180°—75°—75°=30°. (6分) 21.(1)见图21;(2分) (2)见图21;(4分) (3).17 (6分)22.(1)设直线l 的函数关系式为)0(≠+=k b kx y , ① (1分)把(3,1),(1,3)代入①得⎩⎨⎧=+=+,3,13b k b k (2分)解方程组得⎩⎨⎧=-=.4,1b k (3分)∴直线l 的函数关系式为.4+-=x y ② (4分)(2)在②中,令)0,4(,4,0),4,0(,4,0A x y B y x ∴==∴==得令得 (5分).8442121=⨯⨯=⋅=∴∆BO AO S AOB (6分) 23.(1),1,1)1(222-=-++=++=x m x m x x y 对称轴为 (1分)x 与 轴有且只有一个公共点,∴顶点的纵坐标为0.∴C 1的顶点坐标为(—1,0) (2分) (2)设C 2的函数关系式为,)1(2k x y ++=把A (—3,0)代入上式得,4,0)13(2-==++-k k 得 ∴C 2的函数关系式为.4)1(2-+=x y (3分)∵抛物线的对称轴为x x 与,1-=轴的一个交点为A (—3,0),由对称性可知,它与x 轴的另一个交点坐标为(1,0). (4分)(3)当x y x 随时,1-≥的增大而增大,当.2,,121>∴>-≥n y y n 时 (5分))6(.42:.4,22,,12),,2(),(,12111分或综上所述且的对称点坐标为时当-<>-<∴>--∴>-≥-----<n n n n y y n y n y n P n24.(1)80,(1分)40,(2分) 47%;(3分)(2)设有x 人从甲部门改到丙部门报名,(4分)则:%),15%47(200%80)50(40%20)70(+⨯=⨯+++⨯-x x (5分) 化简得:0.630=x ,.50=x答:有50人从甲部门改到丙部门报名,恰好增加15%的录取率.(6分) 25.(1);2ab abb a =++(1分).ab b a =+(2分) (2)证明:,2,222ab ababb a ab a b b a =++∴=++ (3分) )6.(,0,0,0,0)5(,)()()4(,)(222222分分分ab b a ab b a b a ab b a ab ab b a =+∴>>+>>=+∴=++∴ 26.(1)∵AB 是直径,∴∠ADB=90° (1分),)2(.//,.,BC DE BC OD BO AO CD AD BC AB ⊥∴==∴= 分又又 ∴OD ⊥DE ,∴DE 是⊙O 的切线. (3分) (2)在 30,3,=∠=∆ACB CD CBD Rt 中,.2,223330cos =∴===∴AB CDBC(4分))6(.27)23(1,)5(.2332121,30,3,2222分中在分中在=+=+=∆=⨯==∴=∠=∆OE OD OE ODE Rt CD DE ACB CD CDE Rt(3).127127+<<-r (7分) 27.(1))2,2(;(1分)(2)),1,(,21tt B OAB Rt 得的面积为由∆,)(222CD AB AC BD -+=4)1(221)21()2(22222++-+=-+==∴t t tt t t BD ① (2分).)21(2)1(22)1(22-+=++-+=tt t t t t (3分).21|21|-+=-+=∴tt t t BD ② (4分)(注:不去绝 对值符号不扣分)(3)[法一]若OB=BD ,则.22BD OB =,1,22222tt AB OA OB OAB Rt +=+=∆中在 由①得,4)1(2212222++-1+=+t t t t t t (5分))6(..,024)2(,012,2122分此方程无解得BD OB t t tt ≠∴∴<-=-=∆=+-∴=+[法二]若OB=BD ,则B 点在OD 的中垂线CM 上.),22,22(,),0,2(M OCM Rt C 可求得中在等腰∆ ∴直线CM 的函数关系式为2+-=x y , ③ (5分),1,21xy B OAB Rt =∆点坐标满足函数关系式得的面积为由 ④联立③,④得:0122=+-x x ,)6(..,024)2(2分此方程无解BD OB ≠∴∴<-=-=∆[法三]若OB=BD ,则B 点在OD 的中垂线CM 上,如图27 – 1 过点B 作,,H y CM G y BG 轴于交轴于⊥)6(..)5(,2121222121,210分矛盾显然与分而BD OB S S S S S S S BG HNO DOC MOC OMH OAB OBG ≠∴>=⨯⨯⨯=====∆∆∆∆∆∆∆(4)如果45,=∠∆BED BDE 因为为直角三角形,①当三点重合此时时M E F EBD ,,,90=∠,如图27 – 2.//,,DC BF x DC x BF ∴⊥⊥轴轴∴此时四边形BDCF 为直角梯形.(7分) ②当,90时=∠EBD 如图27 – 3.//,,.//,DC BF x DC x AB CF BD OD CF ∴⊥⊥∴⊥轴轴又∴此时四边形BDCF 为平行四边形.(8分) 下证平行四边形BDCF 为菱形:[法一]在222,BD OD OB BDO +=∆中,,221,4)1(221412222=+∴++-++=+∴t t t t tt t t [方法①]OD BD t t 在 ,01222=+-上方121,12;21,12-=+=+=-=tt t t 或解得(舍去).得),12,12(+-B[方法②]由②得:.222221=-=-+=tt BD此时,2==CD BD∴此时四边形BDCF 为菱形(9分) [法二]在等腰EDB Rt OAE Rt ∆∆与等腰中)9(.,2].[.221,122,22)22(2.22,2,分为菱形此时四边形此时法一以下同即则BDCF CD BD tt t t t t t BE AE AB T BD ED t OE t AE OA ∴===+=-∴-=-+=+=∴-=====28.(1)①3;(1分)②9447<≤x ; (2分) (2)①证明:[法一]设n n x n n x ,2121,+<≤->=<则为非负整数; (3分) m n m n m x m n +++<+≤-+且又,21)(21)(为非负整数,.><+=+>=+∴<x m m n m x (4分)[法二]设b x k b k x ,,的整数部分为+=为其小数部分.)3(..,,)(,,5.001分为其小数部分的整数部分为时当><+>=+∴<+>=+∴<++++=+∴>=<<≤x m m x km x m b x m k m b k m x m k x b)4(.:.,1.,,)(,1,5.02分综上所述为其小数部分的整数部分为则时当><+>=+<><+>=+∴<++>=+∴<++++=++>=<≥x m m x x m x m k m m x b x m k m b k m x m k x b ②举反例:,13.17.06.0,2117.06.0>=>=<+<=+=<>+><而><+>>=<+∴<>+>≠<<+>∴<y x y x ,7.06.07.06.0不一定成立.(5分)(3)[法一]作x y x y 34,=>=<的图象,如图28 (6分) (注:只要求画出草图,如果没有把有关点画成空心点,不扣分)),2,23(),1,43(),0,0(34点点图象交于点的图象与x y x y =>=< .23,43,0=∴x (7分)[法二],,34,34,0为整数设为整数k k x x x =≥)7(.23,43,0,2,1,0,20)6(,0,214321,43.43分分则=∴=∴≤≤≥+<≤-∴>=∴<=x k k k k k k k k k x(4)n x x x y ,)21(4122-=+-=函数 为整数, 当x y n x n 随时,1+<≤的增大而增大,2222)21()21(,)211()21(+<≤--+<≤-∴n y n n y n 即, ①,2,2,,3,2,1,,4141222222y n n n n n n n n n n y y n n y n n 个共为整数+-+-+-+-=∴++<≤+-∴ .2n a =∴ ② (8分),,0n k k >=<>则,)21()21(,212122+<≤-∴+<≤-n k n n k n ③ 比较①,②,③得:.2n b a == (9分)。
【备考2023江苏中考】江苏省徐州市近三年中考(含一模、二模)真题重难点汇编——选择题
5.(2019·江苏徐州·统考一模)如右图,矩形ABCD的边BC在x轴的负半轴上,顶点D(a,b)在反比例函数 的图像上,直线AC交y轴点E,且S△BCE=4,则k的值为()
A.-16B.-8C.-4D.-2
6.(2018·江苏徐州·统考一模)如图,在矩形 中, , ,动点 满足 ,则点 到 、 两点距离之和 的最小值为()
A.9B.12C.15D.18
40.(2022·江苏徐州·统考一模)如图,在四边形ABCD中,AD BC, ,则 的值为().
A. B. C. D.
41.(2022·江苏徐州·校联考一模)下在平面直角坐标系中,将二次函数 的图像平移后经过点 和点 ,则所得抛物线对应的函数表达式为()
A. B. C. D.
▊▊备考2023中考▊▊
徐州市历年中考数学(含一模、二模)真题重难点汇编
选择题
1.(2022·江苏徐州·统考中考真题)将一枚飞镖任意投掷到如图所示的正六边形镖盘上,若飞镖落在镖盘上各点的机会相等,则飞镖落在阴影区域的概率为()
A. B. C. D.
2.(2022·江苏徐州·校考一模)如图,在平面直角坐标系中,将正方形OABC绕点O逆时针旋转45°后得到正方形OA1B1C1,依此方式,绕点O连续旋转2020次得到正方形OA2020B2020C2020,如果点A的坐标为(1,0),那么点B2020的坐标为()
A.(﹣1,1)B. C.(﹣1,﹣1)D.
3.(2022·江苏徐州·校联考一模)如图,点A,B的坐标分别为 ,点C为坐标平面内一点, ,点M为线段 的中点,连接 ,则 的最大值为()
A. B. C. D.
4.(2021·江苏徐州·统考一模)如图,C是线段AB上一动点,△ACD,△CBE都是等边三角形,M,N分别是CD,BE的中点,若AB=4,则线段MN的最小值为()
2010年数学中考试卷及答案
南京市2010年初中毕业生学业考试数 学一、选择题(本大题共有6小题,每小题2分,共12分.在每小题给出的四个选项中,恰有一项是符合题目要求的,请将正确选择项前的字母代号填涂在答题卡相应位置.......上) 1.-3的倒数是A .-3B .3C .- 13D .132.计算a 3·a 4的结果是A .a 6B .a 7C .a 8D .a 12 3.如图,下列各数中,数轴点A 表示的可能是A .4的算术平方根B .4的立方根C .8的算术平方根D .8的立方根4.甲各蔬菜保鲜适宜的温度是1℃~5℃,乙种蔬菜保鲜适宜的温度是3℃~8℃,将这两种蔬菜放在一起同时保鲜,适宜的温度是A .1℃~3℃B .3℃~5℃C .5℃~8℃D .1℃~8℃ 5.如图,在平面直角坐标系中,菱形OABC 的顶点C 的坐标是(3,4),则顶点A 、B 的坐标分别是A .(4,0)、(7,4)B .(5,0)、(8,4)C .(4,0)、(7,4)D .(5,0)、(8,4) 6.,如图,夜晚,小亮从点A 经过路灯C 的正下方沿直线走到点B ,他的影长y 随他与点A 之间的距离x的变化而变化,那么表示y 与x 之间的函数关系的图象大致为二、填空题(本大题共10个小题,每小题2分,共20分.不需写出解答过程,请把正确答案直接填写在答题卡相应位置上)7. -2的绝对值的结果是__________.8. 函数y = 1x -1中,自变量x 的取值范围是__________.9. 南京地铁2号线(含东延线)、1号线南延线开通后,南京地铁总里程约为85 000m ,将85 000用科学记数法表示为__________.10.如图,O 是直线l 上一点,∠AOB =100°,则∠1+∠2=__________°. 11.计算2a ·8a (a ≥0)的结果是__________.12.若反比例函数的图象经过点(-2, -1),则这个函数的图象位于第__________象限. 13则这两人5次射击命中的环数的平均数甲x =乙x =8,方差S 甲2___ S 乙2(填“>”、“<”或“=”) 14.如图,以O 为圆心的两个同心圆中,大圆的弦AB 是小圆的切线,C 为切点.若两圆的半径分别为3cm和5cm ,则AB 的长为__________ cm .15.如图,点C 在⊙O 上,将圆心角∠AOB 绕点O 按逆时针方向旋转到∠A ’OB ’,旋转角为α(0°<α<180°).若∠AOB =30°,∠BCA ’=40°,则∠α=__________°.16.如图,AB ⊥BC ,AB =BC =2cm ,OA⌒ 与OC ⌒ 关于点O 中心对称,则AB 、BC 、CO ⌒ 、OA ⌒ 所围成的图形的面积是________cm 2.三、解答题(本大题共12小题,共88分,请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)17.(6分)解方程组⎩⎨⎧=+=+.52,42y x y x18.(6分)计算(1a - 1b )÷a 2-b 2ab19.(6分)为了估计西瓜、苹果和香蕉三种水果一个月的销售量,某水果店对这三种水果7天的销售量进行了统计,统计结果如图所示.(1)若西瓜、苹果和香蕉的售价分别为6元/千克、8元/千克和3元/千克.则这7天销售额最大的小果品种是( ) A .西瓜 B .苹果 C .香蕉(2)估计一个月(按30天计算)该水果店可销售苹果多少千克?A B (第21题)第23题20.(7分)如图,小明欲利用测角仪测量树的高度.已知他离树的水平距离BC 为10m ,测角仪的高度CD为1.5m ,测得树顶A 的仰角为33°,求树的高度AB .(参考数据:sin33°≈0.54,cos33°≈0.84,tan33°≈0.65)21.如图,四边形ABCD 的对角线AC 、BD 相交于点O ,△ABC ≌△BAD .求证:(1)OA =OB ;(2)AB ∥CD .22.(7分)已知点A (1,1)在二次函数y =x 2-2ax -b 的图象上 (1)用含a 的代数式表示b ;(2)如果该二次函数的图象与x 轴只有一个交点,求这个二次函数的图象的顶点坐标. 23.(9分)某厂为新型号电视机上市举办促销活动,顾客每购买一台该型号电视机,可获得一次抽奖机会,该厂拟按10%设大奖,其余90%为小奖.厂家设计的抽奖方案是:在一个不透明的盒子中,放入10个黄球和90个白球,这些球除颜色外都相同,搅匀后从中任意摸出1个球,摸到黄球的顾客获得大奖在,摸到白球的顾客获得小奖.(1)厂家请教了一位数学老师,他设计的抽奖方案是:在一个不透明的盒子中,放入2个黄球和3个白球,这些球除颜色外都相同,搅匀后从中任意摸出2个球,摸到的2个球都是黄球的顾客获得大奖,其余的顾客获得小奖.该抽奖文案符合厂家的设奖要求吗?请说明理由;(2)下图是一个可以自由转动的转盘,请你将转盘分为2个扇形区域,分别涂上黄、白两种颜色,并设计抽奖方案,使其符合厂家的设奖要求.(友情提醒:1数.2.结合转盘简述获奖方式,不需说明理由.)第25题第26题’ C ’ 24.(8分)甲车从A 地出发以60km/h 的速度沿公路匀速行驶,0.5h 后,乙车也从A 地发出,以80km/h的速度沿该公路与甲车同向匀速行驶求乙车出发后几小时追上甲车. 请建立一次函数关系........解决上述问题. 25.(8分)如图,AB 是⊙O 的直径,点D 在⊙O 上,∠DAB =45°,BC ∥AD ,CD ∥AB . (1)判断直线CD 与⊙O 的位置关系,并说明理由;(2)若⊙O 的半径为1,求图中阴影部分的面积(结果保留π).26.(8分)学习《图形的相似》后,我们可以借助探索两个直角三角形全等的条件所获得的经验,继续探索两个直角三角形相似的条件 (1)“对于两个直角三角形,满足一边一锐角对应相等,或两直角边对应相等,两个直角三角形全等”.类似地,你可以得到“满足________________或_________________,两个直角三角形相似”; (2)“满足斜边和一条直角边对应相等的两个直角三角形全等”,类似地,你可以得到“满足__________的两个直角三角形相似”.请你结合下列所给图形,写出已知,并完成说理过程.已知:如图,_________________________________.求证:Rt △ABC ∽Rt △A ’B ’C ’ .27.(8分)某批发商以每件50元的价格购进800件T 恤.第一个月以单价80元销售,售出了200件;第二个月如果单价不变,预计仍可售出200件,批发商为增加销售量,决定降价销售,根据市场调查,单价每降低1元,可多售出10件,但最低单价应高于购进的价格;第二个月结束后,批发商将对剩余的T 恤一性清仓,清仓时单价为40元.设第二个月单价降低x 元. (1)填表(不需化简):第28题(2)如果批发商希望通过销售这批T 恤获利9 000元,那么第二个月的单价应是多少元?28.(8分)如图,正方形ABCD 的边长是2,M 是AD 的中点.点E 从点A 出发,沿AB 运动到点B 停止.连接EM 并延长交射线CD 于点F ,过M 作EF 的垂线交射线BC 于点G ,连接EG 、FG . (1)设AE =x 时,△EGF 的面积为y .求y 关于x 的函数关系式,并写出自变量x 的取值范围;(2)P 是MG 的中点,请直接写出点P 运动路线的长.南京市2010年初中数学毕业生学业考试数 学一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置.......上) 1. C 2. B 3. C 4. B 5. D 6.(2010江苏南京,6,2分)如图,夜晚,小亮从点A 经过路灯C 的正下方沿直线走到点B ,他的影长y随他与点A之间的距离x 的变化而变化,那么表示y 与x 之间的函数关系的图象大致为( )【分析】由生活经验知:当小亮走到路灯的正下方时,此时影长为0,因此可排除选项C 、D ;在确定答案是选项A 或B 上感觉不好下手.设小亮身高为a ,路灯C 到路面的距离为h ,点A 到路灯正下方的距离为b ,如图,由中心投影得a y hb x y=-+,整理得a ab y x h ah a=-+--,因此答案为A .【答案】A【涉及知识点】函数的图象、中心投影【点评】本题考查函数的图象函数的图象、中心投影,解决此类问题的关键是抓住横轴与纵轴的意义.由于此类问题抽象性较强,因此经常出现在各地中考试卷选择题的最后一题,具有一定的区分度.7. 2 8. x ≠1 9. 8.5×104 10. 80 11. 4a 12.一、三 13.> 14. 8 15.(2010江苏南京,1,2分)如图,点C 在⊙O 上,将圆心角∠AOB 绕点O 按逆时针方向旋转到∠A/OB /,旋转角为α(0°<α<180°).若∠AOB =30°,∠BCA /=40°,则∠α=_____°.【分析】根据圆心角的意义得∠BOA /=2∠BCA /=80°,所以∠α=∠AOB +∠BOA /=30°+80° =110°.【答案】110【涉及知识点】圆心角16.(2010江苏南京,16,2分)如图,AB ⊥BC ,AB =BC =2 cm ,OA 与OC 关于点O中心对称,则AB 、BC 、CO 、OA 所围成的图形的面积是_____ cm 2.【分析】连接AC ,根据中心对称的意义,将“AB 、BC 、CO 、OA 所围成的图形的面积”转化为求直角三角形ABC的面积,由AB =BC =2 cm 得S △ABC =2 cm 2.【答案】217.原方程组的解为12x y ==⎧⎨⎩. 18. 1()a b -+.19.【答案】(1)A;(2)140÷7×30=600(千克).答:估计一个月该水果店可销售苹果600千克.20.(2010江苏南京,20,7分)如图,小明欲利用测角仪测量树的高度.已知他离树的水平距离BC为10m,测角仪的高度CD为1.5m,测得树顶A的仰角为33°.求树的高度AB.(参考数据:sin33°≈0.54,cos33°≈0.84,tan33°≈0.65)【分析】观察图形发现可过点D作DE⊥AB,构造直角三角形ADE,由tan∠ADE=AEDE得AE=DE·tan∠ADE≈10×0.65=6.5,因此AB=AE+BE=AE+CD=6.5+1.5=8m.【答案】如图,过点D作DE⊥AB,垂足为E.在Rt△ADE中,DE=BC=10,∠ADE=33°,tan∠ADE=AE DE,∴AE=DE·tan∠ADE≈10×0.65=6.5,∴AB=AE+BE=AE+CD=6.5+1.5=8(m).答:树的高度AB约为8 m.21.(2010江苏南京,21,7分)如图,四边形ABCD的对角线AC、BD相交于点O,△ABC≌△BAD.求证:(1)OA=OB;(2)AB∥CD.【答案】(1)∵△ABC≌△BAD,∴∠CAB=∠DBA,∴OA=OB.(2)∵△ABC≌△BAD,∴AC=BD.又∵OA=OB,∴∠OCD=∠ODC.∵∠AOB=∠COD,∠CAB=1802AOB-∠,∠ACD=1802COD-∠,∴∠CAB=∠ACD,∴AB∥CD.22.(2010江苏南京,22,7分)已知点A(1,1)在二次函数y=x2-2ax+b的图象上.(1)用含a的代数式表示b;(2)如果该二次函数的图象与x轴只有一个交点,求这个二次函数的图象的顶点坐标.【分析】(1)根据题意得1=1-2a+b,所以b=2a;(2)由题意知方程x2-2ax+b=0有两个相等的实数根,所以所以4a2-4b=0,由(1)b=2a得4a2-8a=0,解得a=0,或a=2.进而分类可求得该二次函数的图象的顶点坐标.【答案】(1)因为点A(1,1)在二次函数y=x2-2ax+b的图象上,所以1=1-2a+b,可得b=2a.(2)根据题意,方程x2-2ax+b=0有两个相等的实数根,所以4a2-4b=4a2-8a=0,解得a=0,或a=2.当a=0时,y=x2,这个二次函数的顶点坐标为(0,0);当a=2时,y=x2-4x+4,这个二次函数的顶点坐标为(2,0).所以,这个二次函数的顶点坐标为(0,0)或(2,0).23.(2010江苏南京,23,9分)某厂为新型号电视机上市举办促销活动,顾客每购买一台该型号电视机,可获得一次抽奖机会,该项厂拟按10%设大奖,其余90%为小奖.厂家设计的抽奖方案是:在一个不透明的盒子中,放入10黄球和90个白球,这些球除颜色外都相同,搅匀后从中任意摸出1个球,摸到黄球的顾客获得大奖,摸到白球的顾客获得小奖.(1)厂家请教了一位数学老师,他设计的抽奖方案是:在一个不透明的盒子中,放入2黄球和3个白球,这些球除颜色外都相同,搅匀后从中任意摸出2个球,摸到的2个球都是黄球的顾客获得大奖,其余的顾客获得小奖.该抽奖方案符合厂家的设奖要求吗?请说明理由;(2)下图是一个可以自由转动的转盘,请你交转盘分为2个扇形区域,分别涂上黄、白两种颜色,并设计抽奖方案,使其符合厂家的设奖要求.(友情提醒:1.在用文字说明和扇形的圆心角的度数.2.结合转盘简述获奖方式,不需说明理由.)【分析】(1)是否符合要求是指该数学老师设计的方案能否体现“10%得大奖,90%得小奖”的厂家意图,因此可将数学老师的方案用排列法或画树状图的方法得到概率.如用黄1、黄2、白1、白2、白3表示这5个球.从中任意摸出2个球,可能出现的结果有:(黄1,黄2)、(黄1,白1)、(黄1,白2)、(黄1,白3)、(黄2,白1)、(黄2,白2)、(黄2,白3)、(白1,白2)、(白1,白3)、(白2,白3),共有10种,它们出现的可能性相同.所有的结果中,满足摸到2个球都是黄球(记为事件A)的结果有1种,即(黄1,黄2),所以P(A)=110.即顾客获得大奖的概率为10%,获得小奖的概率为90%.数学老师设计的方案符合要求;(2)本题求解方法不唯一,画图时只需将该转盘(圆)平均分为10份,某种颜色占1份,另一种颜色占9分.顾客购买该型号电视机时获得一次转动转盘的机会,指向1份颜色获得大奖,指向9份颜色获得小奖即可.【答案】(1)该抽奖方案符合厂家的设奖要求.分别用黄1、黄2、白1、白2、白3表示这5个球.从中任意摸出2个球,可能出现的结果有:(黄1,黄2)、(黄1,白1)、(黄1,白2)、(黄1,白3)、(黄2,白1)、(黄2,白2)、(黄2,白3)、(白1,白2)、(白1,白3)、(白2,白3),共有10种,它们出现的可能性相同.所有的结果中,满足摸到2个球都是黄球(记为事件A)的结果有1种,即(黄1,黄2),所以P(A)=110.即顾客获得大奖的概率为10%,获得小奖的概率为90%.(2)本题答案不唯一,下列解法供参考.如图,将转盘中圆心角为36°的扇形区域涂上黄色,其余的区域涂上白色.顾客每购买一台该型号电视机,可获得一次转动转盘的机会,任意转动这个转盘,当转盘停止时,指针指向黄色区域获得大奖,指向白色区域获得小奖.24.(2010江苏南京,24,8分)甲车从A地出发以60km/h的速度沿公路匀速行驶,0.5h后,乙车也从A 地出发,以80km/h的速度沿该公路与甲车同向匀速行驶,求乙车出发几小时追上甲车.请建立一次函数关系........解决上述问题.【分析】乙车出发几小时追上甲车是指两车行驶路程相等或在平面直角坐标系两条直线交点的意义,因此设乙车出发xh后,甲、乙两车离A地的路程分别是y1km、y2km,得y1=60x+30,y2=80x.当乙车追上甲车时,y1= y2,即60x+30=80x.解得x=1.5h.【答案】本题答案不唯一,下列解法供参考.设乙车出发xh后,甲、乙两车离A地的路程分别是y1km、y2km.根据题意,得y1=60(x+0.5)=60x+30,y2=80x.当乙车追上甲车时,y1= y2,即60x+30=80x.解这个方程得x=1.5(h).答:乙车出发1.5h追上甲车.25.【答案】(1)直线CD与⊙O相切.如图,连接OD.∵OA=OD,∠DAB=45°,∴∠ODA=45°,∴∠AOD=90°.∵CD∥AB,∴∠ODC=∠AOD=90°,即OD⊥CD.又∵点D在⊙O上,直线CD与⊙O相切.(2)∵BC∥AD,CD∥AB,∴四边形ABCD是平行四边形,∴CD=AB=2.∴S 梯形OBCD=()(12)13222 OB CD OD++⨯==,∴图中阴影部分的面积为S梯形OBCD-S扇形OBD= 313212424ππ-⨯=-.【点评】圆这部分难度在新课标中有较大幅度的减小,考查的知识点集中在圆心角与圆周角、垂径定理、圆与直线、圆与圆的位置关系以及的有关圆的计算等方面,考查难度中等.本题考查圆与直线的位置、圆的计算等知识点,解决与切线相关的问题时,连接圆心与切点的半径是常用的辅导线.26.(2010江苏南京,26,8分)学习《图形的相似》后,我们可以探索两个直角三角形全等的条件所获得的经验,继续探索两个直角三角形相似的条件.(1)“对于两个直角三角形,满足一边一锐角对应相等,或两直角边对应相等,两个直角三角形全等”,类似地,你可以得到“满足_____,或_____,两个直角三角形相似”;(2)“满足斜边和一条直角边对应相等的两个直角三角形全等”,类似地,你可以得到满足_____两个直角三角形相似”.请结合下列所给图形,写出已知,并完成说理过程.已知:如图,_____.试说明Rt△ABC∽Rt△A/B/C/.【分析】(1)我们知道:两个三角形只要满足两个角对应相等,则这两个三角形相似.由于两个直角三角形的中的直角相等是问题的隐含条件,因此只需再有一个锐角对应相等即可判定它们相似.类比“两直角边对应相等,两个直角三角形全等”可知“两直角对应成比例时” 两个直角三角形相似;(2)HL 是判定两个直角三角形全等的特殊方法,类比全等可得:斜边和一条直角边对应成比例的两个直角三角形相似.说理时可从全等是相似的特例入手,利用参数法,设两个直角三角形对应边的比值为k ,进而转化为三角形相似的判定条件获解.【答案】(1)一个锐角对应相等,两直角对应成比例; (2)斜边和一条直角边对应成比例. 在Rt △ABC 和Rt △A /B /C /中,∠C =∠C /=90°,////AB ACA B A C=. 解法一:设////AB ACA B A C==k ,则AB = k A /B /,AC = k A /C /. 在Rt △ABC 和Rt △A /B /C /中,//BC k B C===,∴//////AB AC BCA B A C B C==, ∴Rt △ABC ∽Rt △A /B /C /.解法二:如图,假设AB >A /B /,在AB 上截取AB //= A /B /,过点B //作B //C //⊥AC ,垂足为C //.∵∠C =∠AC //B //,∴BC ∥B //C //,∴Rt △ABC ∽Rt △A /B //C //,////AC ABAC AB=. ∵AB //= A /B /,∴////AC ABAC A B=. 又∵////AB AC A B A C =,∴//AC AC=//AC A C ,∴AC //=A /C /. ∵AB //= A /B /,∠C =∠AC //B //=90°,∴Rt△AB//C//≌Rt△A/B/C/,∴Rt△ABC∽Rt△A/B/C/.【点评】本题从教材中的直角三角形全等为背景,利用全等是相似的特例进行类比构造问题,根在教材,根在课堂,考在思想,考在方法,是一首难得的好题.解决此类问题通常需要认真阅读问题,在此基础上运用类比思想,结合相关知识进行求解.【推荐指数】★★★★27.(2010江苏南京,27,8分)某批发商以每件50元的价格购进800件T恤.第一个月以单价80元销售,售出了200件;第二个月如果单价不变,预计仍可售出200件,批发商为增加销售量,决定降价销售,根据市场调查,单价每降低1元,可多售出10件,但最低单位应高于购进的价格;第二个月结束后,批发商将对剩余的T恤一次性清仓销售,清仓时单价为40元.设第二个月单价降低x元.(1)填表(不需要化简)(2)如果批发商希望通过销售这批T恤获利9000元,那么第二个月的单价应是多少元?【答案】(1)80-x,200+10x,800-200-(200+10x);(2)根据题意,得80×200+(80-x)(200+10x)+40[800-200-(200+10x)] -50×800=9000.整理,得x2-20x+100=0,解这个方程得x1= x2=10,当x=10时,80-x=70>50.答:第二个月的单价应是70元.28.(2010江苏南京,28,8分)如图,正方形ABCD的边长是2,M是AD的中点.点E从点A出发,沿AB运动到点B停止.连接EM并延长交射线CD于点F,过M作EF的垂线交射线BC于点G,连接EG、FG.(1)设AE=x时,△EGF的面积为y.求y关于x的函数关系式,并填写自变量x的取值范围;(2)P是MG的中点,请直接写出点P运动路线的长.【分析】(1)欲求y关于x的函数关系式,即△EGF的面积,观察图形发现S△EGF=12EF·MG,由条件AM=DM及正方形的性质可得△AME≌△DMF,所以EF=2EM,因此求出面积的关键是求出MG.结合图形发现过点M作MN⊥BC,垂足为N可得Rt△AME∽Rt△NMG,进而运用相似三角形的性质得到MG的长,问题获解;(2)如图,P1P2(P1是P起始位置,P2是P终止位置.)是点P运动的路线,由Rt △ABM∽Rt△P1P2M,AB=2AM,得P1P2=2MP1=2.G1【答案】(1)当点E与点A重合时,x=0,y=12×2×2=2;当点E与点A不重合时,0<x≤2.在正方形ABCD中,∠A=∠ADC=90°,∴∠MDF=90°,∴∠A=∠MDF.∵AM=DM,∠AMF=∠DMF,∴△A M E≌△DMF,∴ME=MF.在Rt△AME中,AE=x,AM=1,MEEF=2MF过点M作MN⊥BC,垂足为N(如图).则∠MNG=90°,∠AMN=90°,MN=AB=AD=2AM.∴∠AME+∠EMN=90°.∵∠EMG=90°,∴∠GMN+∠EMN=90°,∴∠AME=∠GMN,∴Rt△AME∽Rt△NMG,∴AM MENM MG=,即12MEMG=,∴MG=2ME∴y=12EF·MG=12×x2+2,∴y =2x2+2,其中0≤x≤2.(2)点P运动路线的长为2.【点评】本题是一道以动点为背景求函数关系式的面积问题,添加恰当的辅导线构造相似三角形求MG的长是问题(1)的求解关键.由于此类问题综合多个知识点进行考查,再加学生对运动性问题的分析往往是难以“动中求静”,因此,近年来各地多以运动问题作为中考数学试卷的压轴题.。
江苏省徐州巿中考数学真题试题(含答案)
江苏省徐州巿xx年中考数学真题试题本试卷分第Ⅰ卷和第Ⅱ卷两部分,第Ⅰ卷1至2页,第Ⅱ卷3至8页.全卷共120分,考试时间120分钟.第Ⅰ卷注意事项:1.答Ⅰ第卷前考生务必将自己的考试证号、考试科目用2B铅笔填涂在答题卡上.2.作答选择题必须用2B铅笔把答题卡上对应题目的答案标号涂黑.如需改动,请用橡皮擦干净后,再选涂其它答案.不能答在第Ⅰ卷上.一、选择题(每小题2分,共20分.在每小题给出的四个选项中,有且只有....一个是正确的)1.4的平方根是A.2± B.2 C. -2 D 162.一方有难、八方支援,截至5月26日12时,徐州巿累计为汶川地震灾区捐款约为11 180万元,该笔善款可用科学记数法表示为A. 11.18×103万元B. 1.118×104万元C. 1.118×105万元D. 1.118×108万元3.函数11yx=+中自变量x的取值范围是A. x≥-1B. x≤-1C. x≠-1D. x=-14.下列运算中,正确的是A.x3+x3=x6B. x3·x9=x27C.(x2)3=x5D. x÷x2=x-15.如果点(3,-4)在反比例函数kyx=的图象上,那么下列各点中,在此图象上的是A.(3,4)B. (-2,-6)C.(-2,6)D.(-3,-4)6.下列平面展开图是由5个大小相同的正方形组成,其中沿正方形的边不能..折成无盖..小方盒的是A BC D7.⊙O1和⊙O2的半径分别为5和2,O1O2=3,则⊙O1和⊙O2的位置关系是A.内含B. 内切C.相交D.外切8.下列图形中,是轴对称图形但不是中心对称图形的是A.正三角形B.菱形C.直角梯形D.正六边形9.下列事件中,必然事件是A.抛掷1个均匀的骰子,出现6点向上B.两直线被第三条直线所截,同位角C.366人中至少有2人的生日相同D.实数的绝对值是非负数10.如图,小明随意向水平放置的大正方形内部区域抛一个小球,则小球停在小正方形内部(阴影)区域的概率为A.34 B. 13 C. 12 D. 14二、填空题(每小题3分,共18分.请将答案填写在第Ⅱ.........卷相应的位置上.......) 11.因式分解:2x 2-8=______▲________12.徐州巿部分医保定点医院xx 年第一季度的人均住院费用(单位:元)约为:12 320,11 880,10 370,8 570,10 640, 10240.这组数据的极差是_____▲_______元.13.若12,x x 为方程210x x +-=的两个实数根,则12x x +=___▲___.14.边长为a 的正三角形的面积等于______▲______.15.如图,AB 是⊙O 的直径,点C 在AB 的延长线上,CD 与⊙O 相切于点D.若,若∠C =18°,则∠CDA =______▲_______.16.如图,Rt △ABC 中,∠B =90°,AB =3cm ,AC =5cm ,将△ABC 折叠,使点C 与A 重合,得折痕DE ,则△ABE 的周长等于____▲_____cm.第Ⅱ卷三、解答题(每小题5分,共20分) 17.计算:20080131(1)()83π--+-+.18.已知231,23.x x x =+--求的值19.解不等式组12215(1)xx x ⎧>-⎪⎨⎪+≥-⎩,并写出它的所有整数解.(第10题图)(第15题图)(第16题图)20.如图,一座堤坝的横截面是梯形,根据图中给出的数据,求坝高和坝底宽(精确到0.1m )参考数据:2 1.414,31.732四、解答题(本题有A 、B 两类题,A 类题4分,B 类题6分,你可以根据自己的学习情况,在两类题中任意选做一题......,如果两类题都做,则以A 类题计分) 21.(A 类)已知如图,四边形ABCD 中,AB =BC ,AD =CD ,求证:∠A =∠C. (B 类)已知如图,四边形ABCD 中,AB =BC ,∠A =∠C ,求证:AD =CD.五、解答题(每小题7分,共21分)22.从称许到南京可乘列车A 与列车B ,已知徐州至南京里程约为350km ,A 与B 车的平均速度之比为10∶7,A 车的行驶时间比B 车的少1h ,那么两车的平均速度分别为多少?23.小王某月手机话费中的各项费用统计情况见下列图表,请你根据图表信息完成下列各题:项目 月功能费基本话费长途话费短信费 金额/元5(1) 该月小王手机话费共有多少元?50403020100项目金额/元月功能费4%短信费长途话费 36%基本话费 40%DCBAADB14m6m30︒45︒(第20题图)(第21题图)(2)扇形统计图中,表示短信费的扇形的圆心角为多少度?(3)请将表格补充完整;(4)请将条形统计图补充完整.24.如图,方格纸中的每个小方格都是边长为1个单位的正方形,在建立平面直角坐标系后,△ABC的顶点均在格点上,点B的坐标为(1,0)①画出△ABC关于x轴对称的△A1B1C1,②画出将△ABC绕原点O按逆时针旋转90°所得的△A2B2C2,③△A1B1C1与△A2B2C2成轴对称图形吗?若成轴对称图形,画出所有的对称轴;④△A1B1C1与△A2B2C2成中心对称图形吗?若成中心对称图形,写出所有的对称中心的坐标.六、解答题(每小题8分,共16分)25.为缓解油价上涨给出租车待业带来的成本压力,某巿自xx 年11月17日起,调整出租车运价,调整方案见下列表格及图像(其中a,b,c 为常数)行驶路程 收费标准调价前 调价后 不超过3km 的部分 起步价6元起步价a 元超过3km 不超出6km 的部分每公里2.1元每公里b 元 超出6km 的部分 每公里c 元设行驶路程xkm 时,调价前的运价y 1(元),调价后的运价为y 2(元)如图,折线ABCD 表示y 2与x 之间的函数关系式,线段EF 表示当0≤x ≤3时,y 1与x 的函数关系式,根据图表信息,完成下列各题: ①填空:a=______,b=______,c=_______.②写出当x >3时,y 1与x 的关系,并在上图中画出该函数的图象.③函数y 1与y 2的图象是否存在交点?若存在,求出交点的坐标,并说明该点的实际意义,若不存在请说明理由.26.已知四边形ABCD 的对角线AC 与BD 交于点O,给出下列四个论断 ① OA =OC ② AB =CD ③ ∠BAD =∠DCB ④ AD ∥BC请你从中选择两个论断作为条件,以“四边形ABCD 为平行四边形”作为结论,完成下列各题: ①构造一个真命题...,画图并给出证明; ②构造一个假命题...,举反例加以说明.七、解答题(第27题8分,第28题10分,共18分)27.已知二次函数的图象以A (-1,4)为顶点,且过点B (2,-5) ①求该函数的关系式;②求该函数图象与坐标轴的交点坐标;③将该函数图象向右平移,当图象经过原点时,A 、B 两点随图象移至A ′、B ′, 求△O A ′B ′的面积. FEDCB A 13.311.276763O xy28.如图1,一副直角三角板满足AB =BC ,AC =DE ,∠ABC =∠DEF =90°,∠EDF =30°【操作】将三角板DEF 的直角顶点E 放置于三角板ABC 的斜边AC 上,再将三角板....DEF ...绕点..E .旋转..,并使边DE 与边AB 交于点P ,边EF 与边BC 于点Q 【探究一】在旋转过程中, (1) 如图2,当CE1EA=时,EP 与EQ 满足怎样的数量关系?并给出证明. (2) 如图3,当CE2EA=时E P 与EQ 满足怎样的数量关系?,并说明理由. (3) 根据你对(1)、(2)的探究结果,试写出当CEEA=m 时,EP 与EQ 满足的数量关系式 为_________,其中m 的取值范围是_______(直接写出结论,不必证明)【探究二】若,AC =30cm ,连续PQ ,设△EPQ 的面积为S(cm 2),在旋转过程中:(1) S 是否存在最大值或最小值?若存在,求出最大值或最小值,若不存在,说明理由. (2) 随着S 取不同的值,对应△EPQ 的个数有哪些变化?不出相应S 值的取值范围.F C(E)A(D)Q PDEFCBAQPDEFCBA(图1) (图2) (图3)参 考 答 案1.A2.B3.C4.D5.C6.B7.B8.C9.D 10.C 11. 2(2)(2)x x -+ 12. 3750元 13.-1 14. 234a 15.126° 16.m17.解:原式=1+1-3+2=118.解:223(3)(1)x x x x --=-+,将31x =+代入到上式,则可得223(313)(311)(32)(32)1x x --=+-++=-+=-19.解:12215(1)xx x ⎧>-⎪⎨⎪+≥-⎩ 222221552x x x x x x >->-⎧⎧⇒⇒-<≤⎨⎨+≥-≤⎩⎩20.解:如图所示,过点A 、D 分别作BC 的垂线AE 、DF 分别交BC 于点E 、F , 所以△ABE 、△CDF 均为Rt △,又因为CD =14,∠DCF =30°,所以DF =7=AE ,且FC =7312.1所以BC =7+6+12.1=25.1m. 21.证明:(A ) 连结AC ,因为AB =AC , 所以∠BAC =∠BCA ,同理AD =CD 得∠DAC =∠DCA所以∠A =∠BAC +∠DAC =∠BCA +∠DCA =∠C (B )如(A )只须反过来即可.22.解方程的思想.A 车150km/h ,B 车125km/h. 23.解:(1)125元的总话费 (2)72° (3)项目 月功能费基本话费 长途话费 短信费 金额/元550452524. 25.解:(1) a=7, b=1.4, c=2.1 (2)1 2.10.3y x =- (3)有交点为31(,9)7其意义为当317x <时是方案调价前合算,当317x >时方案调价后合算. 26.解:(1)②③为论断时,(2)②④为论断时,此时可以构成一梯形. 27.解:(1)223y x x =--+ ADCB14m6m30︒45︒E FDCBA(3)略。
最新江苏省徐州市中考数学试卷附解析
江苏省徐州市中考数学试卷学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.在某城市,80%的家庭年收入不小于2.5万元,下面一定不小于2.5万元的是( )A .年收入的平均数B .年收入的众数C .年收入的中位数D .年收入的平均数和众数2.某中学现有 4200 人,计划一年后初中在校生增加 8%,高中在校生增加 11%,这样校在校生将增加10%. 这所学校现在的中在校生和高中在校生人数依次为( )A .1400 人和 2800 人B .1900 人和 2300人C .2800 人和 1400 人D .2300 人和 1900人3.某商场为促销将一种商品 A 按标价的九析出售,仍可获利润 10%. 若商品A 的标价是33元,那么该商品的进价为( )A .31元B .30.2元C .29.7元D .27元 4.下列关于分式263x χ--的说法,正确的 ( ) A . 当3x =时,分式有意义B . 当3x ≠时,分式没有意义C . 当3x =时,分式的值为零D . 分式的值不可能为零5. 已知222220a a b b ++++=,则1b a+的值是( ) A .2 B .1C .0D .-1 6.若(12)x y -+是2244xy x y m ---的一个因式,则m 的值为( )A .4B .1C .1-D .0 7. 一个数的绝对值比本身大,那么这个数必定是( ) A .正数B .负数C .整数D . 08.已知等腰三角形的两边长分别为 2cm cm ,那么它的周长为( )A 4) cmB .(2) cmC 4) cm 或(2) cmD .以上都不对 9.tan60°·cos30°的值为( )A .23B .21C .23D .63 10.下列关于x 的方程,一定是一元二次方程的是( )A . 2(2)210m x x +-+=B . 2230m x m +-=C . 21320x x +-=D .212203x x --= 11.某班同学毕业时都将自己的照片向全班其他同学各送一张表示留念,全班共送1035张照片,如果全班有x 名同学,根据题意,列出方程为( )A .x (x +1)=1035B .x (x -1)=1035×2C .x (x -1)=1035D .2x (x +1)=1035 12.如图所示,0为□ABCD 两对角线的交点,E ,F 分别为OA ,0C 的中点,图中全等的三角形有 ( )A .3对B .4对C .6对D .7对 13.已知扇形的半径为3 cm ,弧长为 4πcm ,则圆心角为( ) A .120°B . 240°C . 270°D . 320° 14.线段 a=6,b=8,c=15,则第四比例项d 为( )A .10B .20C .30D .48 15.已知,在等腰梯形 ABCD 中,AD ∥BC ,AD= 4 cm ,BC= 10 cm ,AB = 5 cm ,以点A 为圆心,AD 为半径作⊙A ,则⊙A 与 BC 的位置关系是( )A .相离B . 相切C . 相交D .不能确定 16.关于200920091()22⨯计算正确的是( )A . 0B .1C .-1D .2二、填空题17. 如图,直径为 1 个单位长度的圆从原点沿数轴向右滚动一周,圆周上的一点从原点 0到达 0′,则点 O ′代表的值为 .18.阳光下,高 8 m 的旗杆在地面的影长为l6m ,附近一棵小树的影长为 lO m ,则小树高为 m .19.“含有相同的字母,并且相同字母的指数也相同的项,叫做同类项”是 的定义.20.若代数式31-x 有意义,则实数x 的取值范围是 .21.在平面直角坐标系中,点P(26x -,5x -)在第四象限,则x 的取值范围是 .A B PO 22.不等式3(1)53x x +≥-的正整数解是 .23.鸡免同笼,共有 8个头、26条腿,则鸡、兔的只数依次分别是 .24.如图,点P 在AOB ∠的平分线上,若使AOP BOP △≌△,则需添加的一个条件是 .(只写一个即可,不添加辅助线)25.长方形是轴对称图形,它有 条对称轴.三、解答题 26.已知二次函数图象经过(23)-,,对称轴1x =,抛物线与x 轴两交点距离为4,求这个二次函数的解析式?27.如图,在△ABC 中,AB=AC ,D 是BC 上的一点,以CA ,CD 为边作□7ACDE ,连结AD ,BE ,试判断四边形ADBE 的形状,并说明理由.28.如图,四边形ABCD 为正方形,E ,F 分别为AD ,BC 的中点.求证:(1)△ABE ≌△CDF ;(2)四边形BEDF 为平行四边形.29.如图所示是某班学生一次数学考试成绩的统计图,其中纵轴表示学生数,横轴表示分数,观察图形并填空.(1)全班共有学生人;(2)若该班学生此次数学考试成绩组中值不低于70分的组为合格,则合格率为;(3)如果组中值为90的一组成绩为优良,那么该班学生此次数学考试成绩的优良率为;(4)该班此次考试的平均成绩大概是.30.用简便方法计算:(1)2003992711⨯-⨯;(2)171717 13.719.8 2.5313131⨯+⨯-⨯【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.C2.A3.D4.D5.A6.C7.B8.B9.A10.D11.C12.D13.B14.B15.B16.B二、填空题17.π18.519.同类项20.3>x 21.35x <<22.1,2,323.3、524.OA =OB25.2三、解答题26.∵抛物线与x 轴两交点距离为4,且以1x =为对称轴. ∴抛物线与x 轴两交点的坐标为(10)(30)-,,,.设抛物线的解析式(1)(3)y a x x =+-,将点(23)-,代入解得1a =.∴二次函数的解析式为223y x x =--. 27.等腰梯形,证△EBD ≌△ADB 28.略29.(1)40;(2)85%;(3)40%;(4)70分 30.(1)198000;(2)17。
江苏省徐州市中考数学试题
徐州市初中毕业、升学考试数学试题注意事项:1.本试卷满分l 考试时间为I .2. 答题前前将自己的姓名、准考证号用0.5毫米黑色墨水签字笔写在本试卷和答题卡上,3. 考生答题全部涂、写在答题卡上,写在本试卷上无效,考试结束,将本试卷和答题卡一并交回。
一、选择题(本大题共有10小题,每小题2分,共在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上) 1,2-的相反数是 A .2B. 2-C.12D. 12-2. 我国总人口约为l 370 000 000人,该人口数用科学记数法表示为 A .110.13710⨯ B .91.3710⨯C .813.710⨯D .713710⨯3的值A .在2到3之间B .在3到4之间C .在4到5之间D .在5到6之间4.下列计算正确的是A .22x x x ⋅=B .22()xy xy = C .236()x x = D .224x x x +=5x 的取值范围是 A .1x ≥ B .1x > C .1x < D .1x ≤6.若三角形的两边长分别为6 ㎝,9 cm ,则其第三边的长可能为 A .2㎝ B .3 cmC .7㎝D .16 cm7.以下各图均由彼此连接的六个小正方形纸片组成,其中不能..折叠成一个正方体的是ABCDB B'(第9题)(第12题)BCD8.下列事件中,属于随机事件的是 A .抛出的篮球会下落B .从装有黑球、白球的袋中摸出红球C .367人中有2人是同月同日出生D .买一张彩票,中500万大奖9的正方形ABCD 沿对角线平移,使点A 移至线段AC 的中点A ’处,得新正方形A ’B ’C ’D ’,新正方形与原正方形重叠部分(图中阴影部分)的面积是 A B .12C .1D .1410.平面直角坐标系中,已知点O(0,o)、A(0,2)、B(1,0),点P 是反比例函数1y x=-图象上的一个动点,过点P 作PQ ⊥x 轴,垂足为点Q .若以点O 、P 、Q 为顶点的三角形与△OAB 相似, 则相应的点P 共有A .1个B .2个C .3个D .4个二、填空题(本大题共有8小题,每小题3分.共24分.不需写出解答过程.请把答案直接填写在答题卡相应位置上) 11.0132-- =__________.12.如图.AB ∥CD ,AB 与DE 交于点F ,∠B=40°,∠D=70°.则∠E= __________13.若直角三角形的一个锐角为则另一个锐角等于__________。
江苏省2010年中考数学试题(13份含有答案及解析)-7
2010年南通市初中毕业、升学考试数 学注 意 事 项考生在答题前请认真阅读本注意事项1.本试卷共6页,满分为150分,考试时间为120分钟.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、考试证号用0.5毫米黑色字迹的签字笔填写在试卷及答题卡指定的位置.3.答案必须按要求填涂、书写在答题卡上,在试卷、草稿纸上答题一律无效.一、选择题:本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应.....位置..上. 1. -4的倒数是 A .4B .-4C .14D .-142. 9的算术平方根是 A .3B .-3C .81D .-813. 用科学记数法表示0.000031,结果是A .3.1×10-4 B .3.1×10-5C .0.31×10-4D .31×10-64. 若36x -在实数范围内有意义,则x 的取值范围是A .2x -≥B .2x ≠-C .2x ≥D .2x ≠5. 如图,⊙O 的直径AB =4,点C 在⊙O 上,∠ABC =30°,则AC 的长是A .1B .2C .3D .26. 某纺织厂从10万件同类产品中随机抽取了100件进行质检,发现其中有5件不合格,那么估计该厂这10万件产品中合格品约为 A .9.5万件 B .9万件 C .9500件D .5000件7. 关于x 的方程12mx x -=的解为正实数,则m 的取值范围是(第5题)·O ABCA .m ≥2B .m ≤2C .m >2D .m <28. 如图,菱形ABCD 中,AB = 5,∠BCD = 120°,则对角线AC 的长是 A .20 B .15 C .10D .59. 如图,已知□ABCD 的对角线BD =4cm ,将□ABCD 绕其对称中心O 旋转180°,则点D 所转过的路径长为 A .4π cmB .3π cmC .2π cmD .π cm10.在平面直角坐标系xOy 中,已知点P (2,2),点Q 在y 轴上,△PQO 是等腰三角形,则满足条件的点Q 共有 A .5个 B .4个 C .3个 D .2个二、填空题:本大题共8小题,每小题3分,共24分.不需写出解答过程,请把答案直接填写在答题卡相应位置.......上. 11.如果正比例函数y kx =的图象经过点(1,-2),那么k 的值等于 ▲ .12.若△ABC ∽△DEF , △ABC 与△DEF 的相似比为1∶2,则△ABC 与△DEF 的周长比为 ▲ .13.分解因式:2ax ax -= ▲ .14.质地均匀的正方体骰子,其六个面上分别刻有1,2,3,4,5,6六个数字,投掷这个骰子一次,则向上一面的数字是偶数的概率为 ▲ . 15.在平面直角坐标系中,已知线段MN 的两个端点的坐标分别是M (-4,-1)、N (0,1),将线段MN 平移后得到线段M ′N ′ (点M 、N 分别平移到点M ′、N ′的位置),若点M ′的坐标为 (-2,2),则点N ′的坐标为 ▲ .16.如图,小章利用一张左、右两边已经破损的长方形纸片ABCD 做折纸游戏,他将纸片沿EF 折叠后,D 、C 两点分别落在D ′、C ′的位 置,并利用量角器量得∠EFB =65°,则∠AED ′等于 ▲ 度. 17.如图,正方形ABCD 的边长为4,点M 在边DC 上,M 、N 两点关BACD(第8题)(第9题)ABCDOA DM ·EDBD ′ A(第16题)F CC′于对角线AC对称,若DM=1,则tan∠ADN=▲.18.设x1、x2是一元二次方程x2+4x-3=0的两个根,2x1(x22+5x2-3)+a =2,则a=▲.三、解答题:本大题共10小题,共96分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤.19.(本小题满分10分)计算:(1)203(4)(π3)2|5|-+----;(2)2293(1)69aa a a-÷-++.20.(本小题满分8分)如图,⊙O的直径AB垂直于弦CD,垂足P是OB的中点,CD=6 cm,求直径AB的长.21.(本小题满分9分)如图,直线y x m=+与双曲线kyx=相交于A(2,1)、B两点.(1)求m及k的值;OBAD C·P(第20题)Ay213(2)不解关于x、y的方程组,,y x mkyx=+⎧⎪⎨=⎪⎩直接写出点B的坐标;(3)直线24y x m=-+经过点B吗?请说明理由.22.(本小题满分8分)某地区随机抽取若干名八年级学生进行地理会考模拟测试,并对测试成绩(x分)进行了统计,具体统计结果见下表:某地区八年级地理会考模拟测试成绩统计表分数段90<x≤100 80<x≤90 70<x≤80 60<x≤70 x≤60人数1200 1461 642 480 217 (1)填空:①本次抽样调查共测试了▲名学生;②参加地理会考模拟测试的学生成绩的中位数落在分数段▲上;③若用扇形统计图表示统计结果,则分数段为90<x≤100的人数所对应扇形的圆心角的度数为▲;(2)该地区确定地理会考成绩60分以上(含60分)的为合格,要求合格率不低于97%.现已知本次测试得60分的学生有117人,通过计算说明本次地理会考模拟测试的合格率是否达到要求?23.(本小题满分9分)光明中学九年级(1)班开展数学实践活动,小李沿着东西方向的公路以50 m/min的速度向正东方向行走,在A处测得建筑物C在北偏东60°方向上,20min后他走到B处,测得建筑物C在北偏西45°方向上,求建筑物C到公路AB的距离.(已知3 1.732≈)北北C45°24.(本小题满分8分)(1)将一批重490吨的货物分配给甲、乙两船运输.现甲、乙两船已分别运走其任务数的57、37,在已运走的货物中,甲船比乙船多运30吨.求分配给甲、乙两船的任务数各多少吨? (2)自编一道应用题,要求如下:①是路程应用题.三个数据100,25,15必须全部用到,不添加其他数据. ②只要编题,不必解答.25.(本小题满分8分)如图,已知:点B 、F 、C 、E 在一条直线上,FB =CE ,AC =DF .能否由上面的已知条件证明AB ∥ED ?如果能,请给出证明;如果不能,请从下列三个条件中选择一个..合适的条件.....,添加到已知条件中,使AB ∥ED 成立,并给出证明. 供选择的三个条件(请从其中选择一个): ①AB =ED ; ②BC =EF ; ③∠ACB =∠DFE .26.(本小题满分10分)小沈准备给小陈打电话,由于保管不善,电话本上的小陈手机号码中,有两个数字已模糊不清.如果用x 、y 表示这两个看不清的数字,那么小陈的手机号码为139x 370y 580(手机号码由11个数字组成),小沈记得这11个数字之和是20的整数倍.AB DEFC(第25题)(1)求x +y 的值;(2)求小沈一次拨对小陈手机号码的概率.27.(本小题满分12分)如图,在矩形ABCD 中,AB =m (m 是大于0的常数),BC =8,E 为线段BC 上的动点(不与B 、C 重合).连结DE ,作EF ⊥DE ,EF 与射线BA 交于点F ,设CE =x ,BF =y . (1)求y 关于x 的函数关系式; (2)若m =8,求x 为何值时,y 的值最大,最大值是多少?(3)若y =m 12,要使△DEF 为等腰三角形,m 的值应为多少?27.(本小题满分14分)已知抛物线y =ax2+bx +c 经过A (-4,3)、B (2,0)两点,当x =3和x =-3时,这条抛物线上对应点的纵坐标相等.经过点C (0,-2)的直线l 与x 轴平行,O 为坐标原点. (1)求直线AB 和这条抛物线的解析式;(2)以A 为圆心,AO 为半径的圆记为⊙A ,判断直线l 与⊙A 的位置关系,并说明理由;(3)设直线AB 上的点D 的横坐标为-1,P (m ,n )是抛物线y =ax2+bx +c 上的动点,当△PDO 的周长最小时,求四边形CODP 的面积.O xyA B CDE F2010年南通市中考数学试卷答案1、D2、A3、B4、C5、D6、A7、C8、D9、C 10、B 11、-2 12、1:2 13、ax(x-1) 14、21 15、(2,4) 16、50°17、3418、8 19、⑴4 ⑵ 3+a a20、3421、⑴ m=-1,k=2 ;⑵ (-1,-2);⑶经过点B 22、⑴ ①4000 ②80<x ≤90 ③108°; ⑵ 符合要求,合格率=5.97975.040001172171==--%>97%23、)13(50- m 24、分配给甲、乙两船的任务数分别是210吨和280吨 25、略26、⑴根据题意,设36+x+y=20k(k 为整数) 则x+y=20k-36 ∵0≤x+y ≤18 ∴0≤20k-36≤18 1.8≤k ≤2.7 ∵k 为整数 ∴k=2∴x+y=20×2-36=4 ⑵ x 0 1 2 3 4 y4321小沈一次拨对小陈手机号码的概率是51 27、解:(1)∵EF ⊥DE ,∴∠DEF =90°,∴∠BEF +∠CED =90°∵∠BEF +∠BFE =90°,∴∠BFE =∠CED 又∵∠B =∠C =90°,∴△BEF ∽△CDE ∴BE BF =CD CE ,即x y -8=mx∴y =-m 1x2+m8x ········································································ 4分 (2)若m =8,则y =-81x2+x =-81( x -4)2+2∴当x =4时,y 的值最大,y 最大=2 ················································· 7分(3)若y =m 12,则-m 1x2+m8x =m 12∴x2-8x +12=0,解得x 1=2,x 2=6 ················································ 8分∵△DEF 为直角三角形,∴要使△DEF 为等腰三角形,只能DE =EF 又DE 2=CD 2+CE 2=m2+x2,EF 2=BE 2+BF 2=( 8-x )2+y2=( 8-x )2+2144m∴m2+x2=( 8-x )2+2144m ,即m2+16x -64-2144m =0 当x =2时,m 2-32-2144m=0,即m 4-32m2-144=0解得m2=36或m2=-4(舍去)∵m >0,∴m =6 ········································································ 10分当x =6时,m2+32-2144m=0,即m4+32m2-144=0解得m2=-36(舍去)或m2=4∵m >0,∴m =2 ········································································ 12分28、解:(1)设直线AB 的解析式为y =px +q则⎩⎪⎨⎪⎧3=-4p +q 0=2p +q 解得⎩⎪⎨⎪⎧p =-21q =1∴直线AB 的解析式为y =-21x +1 ·················································· 2分∵当x =3和x =-3时,这条抛物线上对应点的纵坐标相等∴抛物线的对称轴为y 轴,∴b =0,∴y =ax2+c把A (-4,3)、B (2,0)代入,得:⎩⎪⎨⎪⎧3=16a +c0=4a +c 解得⎩⎪⎨⎪⎧a =41c =-1∴抛物线的解析式为y =41x2-1 ·················· 4分(2)∵A (-4,3),∴AO =2243+=5,即⊙A 的半径为5∵经过点C (0,-2)的直线l 与x 轴平行∴直线l 的解析式为y =-2,∴点A 到直线l 的距离为5∴直线l 与⊙A 相切 ······································································ 8分 (3)把x =-1代入y =-21x +1,得y =23,∴D (-1,23) 过点P 作PH ⊥直线l 于H ,则PH =n +2,即41m2+1 又∵PO =22n m+=222141)(-m m+=41m2+1y OxABClE∴PH =PO ················································································ 10分 ∵DO 的长度为定值,∴当PD +PO 即PD +PH 最小时,△PDO 的周长最小 当D 、P 、H 三点在一条直线上时,PD +PH 最小 ∴点P 的横坐标为-1,代入抛物线的解析式,得n =-43∴P (-1,-43) ···································· 12分 此时四边形CODP 的面积为: S 四边形CODP=S △PDO +S △PCO=21×( 23+43)×1+21×2×1=817 ············ 14分DAB O Cxyl P H。
年徐州市数学中考试题与答案
徐 州 市一、填空题(本大题共12题,第1题至第11题每空2分,第12题每空1分,共44分) 1. -(-3)= ;2-= ;12-= ;()32-= ;2. 不等式组⎩⎨⎧<->-0102x x 的解集是 ;3. 已知一次函数y =kx +1,当x =2时,y =5,则k = ;4. 如果方程032=+-m x x 有实数根,则m 的取值范围是 ;若方程有一个根为2,则另一个根为 ,m = ;5. 在实数范围内分解因式:22--2x x = ;6. 写一个函数的解析式,使它的图像不经过第一象限: ;7. 在英语口语测试中,某小组7位同学的分数分别为13,15,8,12,9,13,14,他们的平均成绩为 (分),这组数据的众数为 (分),中位数为 (分).8. 如图,直线AB ⊥CD 于O ,直线EF 过点O ,且∠AOE =40°,则∠BOF = 度,∠DOF = 度.9. 在Rt △ABC 中,∠C =90°,AC =4,BC =3,则tanA = ,cosA = ;10. 如图,AB 是⊙O 的直径,CD 是弦,且CD ⊥AB ,垂足是P ,如果CP =2,PB =l ,那么AP = ,OP = ;11. 如果圆柱的侧面展开图是长和宽分别为8cm 和4cm 的矩形,则圆柱的底面半径为 ;12. 有以下边长相等的三种图形:①正三角形,②正方形,③正八边形.选其中两种图形镶嵌成平面图形,请你写出两种不同的选法(用序号表示图形): ,或 ;二、选择题(本大题共5题,每题4分,共20分)每题给出的四个选项中只有一项是正确的.13. 2003年4月16日世界卫生组织宣布:冠状病毒的一个变种是引起非典型肺炎的病原体.某种冠状病毒的直径约为120nm ,1nm =910-m ,则这种冠状病毒的直径用科学记数法表示为( ). (A )120×910-m(B)1.2×610-m(C ) 1.2×710-m (D )1.2 ×810-m14. 如果式子()212-+-x x 化简的结果为2x -3,则x 的取值范围是( ).(A ) x ≤1 (B ) x ≥2 (C ) 1 ≤x ≤2 (D )x >015. 如果a +b <0,且b >0,那么a 、b 、一a 、一b 的大小关系为( ).(A )a <b <-a < b (B ) -b <a <-a < b (C )a <-b <-a <b (D ) a <-b <b <-a 16. 有以下4个命题:① 两条对角线互相平分的四边形是平行四边形; ② 两条对角线相等的四边形是菱形; ③ 两条对角线互相垂直的四边形是正方形; ④ 两条对角线相等且互相垂直的四边形是正方形. 则其中正确命题的个数为( ). (A )1 (B )2 (C )3 (D )417. 如图,⊙O 的直径EF 为10cm ,弦AB 、CD 分别为6cm 、8cm ,且AB ∥EF ∥CD .则图中阴影部分面积之和为( ).(A )2225cm π (B ) 2325cm π (C ) 2875cm π (D ) 212175cm π三、解答题(本大题共3题.每题7分.共其21分) 18. 计算: ()()()b a b a ba 22622283-÷+19. 计算:()2331913227--++-20. 解方程:0314122=--+⎪⎭⎫⎝⎛-x x x x 四、解答题(本大题共3题,每题8分,共24分)21. 巳知:如图,在梯形ABCD 中,AB =CD ,AD ∥BC ,点E 在AD 上,且EB =EC 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
徐州市2010年初中毕业、升学考试数学试题一、选择题(本大题共有8小题,每小题2分,共16分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上) 1.-3的绝对值是 A .3 B .-3 C .31 D .-312.5月31日,参观上海世博会的游客约为505 000人.505 000用科学记数法表示为 A .505×310 B .5.05×310 C .5.05×410 D .5.05×510 3.下列计算正确的是A .624a a a =+B .2a ·4a =8aC .325a a a =÷D .532)(a a = 4.下列四个图案中,是轴对称图形,但不是中心对称图形的是5.为了解我市市区及周边近170万人的出行情况,科学规划轨道交通,2010年5月,400名调查者走入1万户家庭,发放3万份问卷,进行调查登记.该调查中的样本容量是 A .170万 B .400 C .1万 D .3万 6.一个几何体的三视图如图所示,则此几何体是 A .棱柱 B .正方体 C .圆柱 D .圆锥7.如图,在6×4方格纸中,格点三角形甲经过旋转后得到格点三角形乙,则其旋转中心是 A .点M B .格点N C .格点P D .格点Q 8.平面直角坐标系中,若平移二次函数y=(x-2009)(x-2010)+4的图象,使其与x 轴交于两点,且此两点的距离为1个单位,则平移方式为A .向上平移4个单位B .向下平移4个单位C .向左平移4个单位D .向右平移4个单位二、填空题(本大题共有10小题,每小题3分,共30分.不需写出解答过程,请把答案直接填写在答题卡相应位置上)9.写出1个比一1小的实数_______. 10.计算(a-3)2的结果为_______.11.若α∠=36°,则∠α的余角为______度.DCBA12.若正多边形的一个外角是45°,则该正多边形的边数是_______. 13.函数y=11-x 中自变量x 的取值范围是________.14.不等式组⎪⎩⎪⎨⎧<≤-.12,32x x 的解集是_______.15.如图,一个圆形转盘被等分成八个扇形区域,上面分别标有数字1、2、3、4,转盘指针的位置固定,转动转盘后任其自由停止.转动转盘一次,当转盘停止转动时,记指针指向标有“3”所在区域的概率为P(3),指针指向标有“4”所在区域的概率为P(4),则P(3)_____P(4) (填“>”、“=”或“<”).16.如图,在以O 为圆心的两个同心圆中,大圆的弦AB 与小圆相切于点C ,若大圆的半径为5 cm ,小圆的半径为3 cm ,则弦AB 的长为_______cm .17.如图,扇形的半径为6,圆心角θ为120°,用这个扇形围成一个圆锥的侧面,所得圆锥的底面半径为________.18.用棋子按下列方式摆图形,依照此规律,第n 个图形比第(n-1)个图形多_____枚棋子.三、解答题(本大题共有10小题,共74分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤) 19.(本题6分)计算: 、 (1)92120101+--)(;(2)xx x x x4)41642-÷+-+(20.(本题6分)2010年4月,国务院出台“房贷新政”,确定实行更为严格的差别化住房信贷政策,对楼市产生了较大的影响.下面是某市今年2月~5月商品住宅的月成交量统计图(不完整),请根据图中提供的信息,完成下列问题:(1)该市今年2月~5月共成交商品住宅______套; (2)请你补全条形统计图;(3)该市这4个月商品住宅的月成交量的极差是____套,中位数是_______套.2l·(本题6分)甲、乙两人玩“石头、剪子、布”游戏,游戏规则为:双方都做出“石头”、“剪子”、 “布”三种手势(如图)中的一种,规定“石头”胜“剪子”, “剪子”胜“布”, “布”胜“石头”,手势 相同,不分胜负.若甲、乙两人都随意做出三种手势中的一种,则两人一次性分出胜负的概率是多少?请用列表或画树状图的方法加以说明.22.(本题6分)在5月举行的“爱心捐款”活动中,某校九(1)班共捐款300元,九(2)班共捐款225元,已知九(1)班的人均捐款额是九(2)班的1.2倍,且九(1)班人数比九(2)班多5人.问两班各有多少人?23.(本题8分)如图,在△ABC 中,D 是BC 边的中点,E 、F 分别在AD 及其延长线上, CE ∥BF ,连接BE 、CF . (1)求证:△BDF≌△CDE;(2)若AB=AC ,求证:四边形BFCE 是菱形.24.(本题8分)如图,小明在楼上点A 处观察旗杆BC ,测得旗杆顶部B 的仰角为30°,测得旗杆底部C 的俯角为60°,已知点A 距地面的高AD 为12m .求旗杆的高度.25.(本题8分)如图,已知A(n ,-2),B(1,4)是一次函数y=kx+b 的图象和反比例函数y=xm 的图象的两个交点,直线AB 与y 轴交于点C .(1)求反比例函数和一次函数的关系式; (2)求△AOC 的面积; (3)求不等式kx+b-xm <0的解集(直接写出答案).26.(本题8分)如图①,梯形ABCD 中,∠C=90°.动点E 、F 同时从点B 出发,点E 沿折线 BA —AD —DC 运动到点C 时停止运动,点F 沿BC 运动到点C 时停止运动,它们运动时的速度都是1 cm/s .设E 、F 出发t s 时,△EBF 的面积为y cm 2.已知y 与t 的函数图象如图②所示,其中曲线OM 为抛物线的一部分,MN 、NP 为线段.请根据图中的信息,解答下列问题: (1)梯形上底的长AD=_____cm ,梯形ABCD 的面积_____cm 2;(2)当点E 在BA 、DC 上运动时,分别求出y 与t 的函数关系式(注明自变量的取值范围); (3)当t 为何值时,△EBF 与梯形ABCD 的面积之比为1:2.27.(本题8分)如图①,将边长为4cm 的正方形纸片ABCD 沿EF 折叠(点E 、F 分别在边AB 、CD 上),使点B 落在AD 边上的点 M 处,点C 落在点N 处,MN 与CD 交于点P , 连接EP . (1)如图②,若M 为AD 边的中点, ①,△AEM 的周长=_____cm ;②求证:EP=AE+DP ;(2)随着落点M 在AD 边上取遍所有的位置(点M 不与A 、D 重合),△PDM 的周长是否发生变化?请说明理由.28.(本题10分)如图,已知二次函数y=423412++-x x 的图象与y 轴交于点A ,与x 轴交于B 、C 两点,其对称轴与x 轴交于点D ,连接AC . (1)点A 的坐标为_______ ,点C 的坐标为_______ ;(2)线段AC 上是否存在点E ,使得△EDC 为等腰三角形?若存在,求出所有符合条件的点E 的坐标;若不存在,请说明理由;(3)点P 为x 轴上方的抛物线上的一个动点,连接PA 、PC ,若所得△PAC 的面积为S ,则S 取何值时,相应的点P 有且只有2个?徐州市2010年中考 数学参考答案及评分建议一、选择题(本大题共有8小题,每小题2分,共16分)二、填空题(本大题共有10小题,每小题3分,共30分)9. 2-(答案不唯一) 10.269a a -+ 11.54 12.8 13.1x ≠14.12x -≤<15.>16.8 17.2 18.(32)n -三、解答题(本大题共有10小题,共74分)19.解:(1)原式=123-+(三项全对得2分,全错得0分,其它得1分)= 2.……3分(2)原式=()()()444444x x x x x xx xx +--÷=-⨯=+-.(每步1分) …………………6分20.解:(1)18 000; ……………………………2分(2)如图;……………………………………4分 (3)3 780,4 410. …………………………6分 214分P (一次性分出胜负)=3. ……………………………………………………………5分答:一次性分出胜负的概率为23.………………………………………………………6分22.解:设九(2)班有x 人,九(1)班有()5x +人.根据题意,得3002251.25x x=⨯+ ,…………………………………………………………………………3分解得45x =.…………………………………………………………………………………4分 经检验,45x =是原方程的根.…………5分 550x +=.答:九(1)班有50人,九(2)班有45人.……………………………………………6分23.(1)证明:∵ D 是BC 的中点,∴BD =CD . …………………………………………1分∵CE ∥BF ∴∠DBF=∠DCE . …………………………………………………………2分 又∵∠BDF=∠CDE ,…………… 3分 ∴△BDF ≌△CDE .……………………4分 (2)证明:∵△CDE ≌△BDF ,∴DE =DF . …………………………………………5分 ∵BD =CD ,∴四边形BFCE 是平行四边形. …………………………………………6分 在△ABC 中,∵AB =AC ,BD =CD . ∴AD ⊥BC ,即EF ⊥BC .……………………7分 ∴平行四边形BFCE 是菱形. ……………………………………………………………8分 (另解)∵△CDE ≌△BDF ,∴CE =BF . ……………………………………………5分 ∵CE ∥BF ,∴四边形BFCE 是平行四边形. …………………………………………6分 ∴BE =CF .在△ABC 中,∵AB =AC ,BD =CD .∴AD ⊥BC ,即AD 垂直平分BC ,∴BE =CE .…………………………………………7分 ∴平行四边形BFCE 是菱形. ……………………………………………………………8分 24.解:过点A 作AE ⊥BC ,垂足为E ,得矩形ADCE . ………………1分∴CE = AD =12. ………………………………………………………2分 Rt △ACE 中,∵60EAC ∠=︒,12C E =,∴tan 60CE AE ==︒4分Rt △ABE 中,∵30BAE ∠=︒,∴tan 304BE AE =⋅︒=.……………6分 ∴BC =CE +BE=16 m . …………………………………………………7分 答:旗杆的高度为16 m .………………………………………………8分(另解)过点A 作AE ⊥BC ,垂足为E ,得矩形ADCE . ……………………………1 分 ∴CE = AD =12.……………………………………………………………………………2分 设BE x =,Rt △ABE 中,∵30BAE ∠=︒,∴22AB BE x ==.………………………4分 同理4BC x =.∴124x x +=,解得4x =.……6分 ∴BC =CE +BE=16 m .………7分 答:旗杆的高度为16 m .…………………………………………………………………8分 25.解:(1)将B (1,4)代入m y x=中,得4m =.∴4y x=. …………………………1分将A (),2n -代入4y x=中,得2n =-. …………………………………………………2分将A ()2,2--,B (1,4)代入y kx b =+中,得22,4.k b k b -+=-⎧⎨+=⎩ ………………………3分解得2,2.k b =⎧⎨=⎩ ∴22y x =+. ……………………………………………………………4分(2)当0x =时,2y =.∴2O C =.……5分 ∴12222AO C S =⨯⨯= .…………6分(3)2x <-或01x <<. …………………………………………………………………8分 26.解:(1)2,14.……………………………………………………………………………2分(第24题)(第26题)(2)①当点E 在BA 上运动时,如图①,此时05t <≤.分别过点E ,A 作EG ⊥BC ,AH ⊥BC ,垂足分别为G ,H ,则△BEG ∽△BAH . ∴BE EG BAAH= ,即54t EG =,∴45EG t=.…………3分∴211422255y BF EG t t t=⋅=⋅⋅=.……………………4分② 当点E 在DC 上运动时,如图②,此时711t ≤<. ∴11C E t =-, ∴()115555112222y BC CE t t=⋅=⨯⨯-=-. …………5分(自变量的取值范围写全写对得1分,否则0分) …6分 (3)当05t <≤时,2275t =,∴2t =. …………7分当711t ≤<时,555722t -=, ∴8.2t =. …………8分∴2t =s 或8.2t = s 时,EBF ∆与梯形ABCD 的面积之比为1:2.27.解:(1)① 6 . …………………………………………………………………………2分②(图略)取EP 中点G ,连接MG .梯形AEPD 中,∵M 、G 分别是AD 、EP 的中点, ∴()12M G AE DP =+. (3)分由折叠得∠EMP =∠B =90︒,又G 为EP 的中点, ∴12M G EP=.……………………………………………4分故EP AE DP =+.…………………………………………5分(2)△PDM 的周长保持不变. 证明:如图,设A M x =cm ,Rt △EAM 中,由222(4)AE x AE +=-,可得:2128A E x=-.…6分∵∠AME +∠AEM =90︒,∠AME +∠PMD =90︒,∴∠AEM =∠PMD .又∵∠A =∠D =90︒,∴△AEM ∽△DMP . ……………………………………………7分 ∴D M P AEMC D M C A E= ,即241428D M P C x xx-=+-,∴24(4)8128D M P x C x x-=⋅+=-cm .…………8分故△PDM 的周长保持不变.28.解:(1)A (0,4),C (8,0).…………………………………………………………2分(2)易得D (3,0),CD =5.设直线AC 对应的函数关系式为y kx b =+,(第27题)NFPECDBMA则4,80.b k b =⎧⎨+=⎩ 解得1,24.k b ⎧=-⎪⎨⎪=⎩∴142y x =-+. ……………………………………3分①当DE =DC 时,∵OA =4,OD =3.∴DA =5,∴1E (0,4). ………………………4分 ②当ED =EC 时,可得2E (112,54).……………5分③当CD =CE 时,如图,过点E 作EG ⊥CD , 则△CEG ∽△CAO ,∴EG CG CE OAOCAC==.即EG =,CG =3E(8-).……………………………………6分 综上,符合条件的点E 有三个:1E (0,4),2E (112,54),3E(8-).(3)如图,过P 作PH ⊥OC ,垂足为H ,交直线AC 于点Q . 设P (m ,213442m m -++),则Q (m ,142m -+).①当08m <<时, PQ =(213442m m -++)-(142m -+)=2124m m -+,22118(2)(4)1624APC CPQ APQ S S S m m m =+=⨯⨯-+=--+ ,…………………………7分∴016S <≤; ……………………………………………………………………………8分 ②当20m -<<时, PQ =(142m -+)-(213442m m -++)=2124m m-,22118(2)(4)1624APC CPQ APQ S S S m m m =-=⨯⨯-=-- ,∴020S <<.………………………………………………………………………………9分 故16S =时,相应的点P 有且只有两个.………………………………………………10分。