微带天线设计
宽带圆极化微带天线分析与设计
宽带圆极化微带天线分析与设计一、本文概述本文旨在深入探讨宽带圆极化微带天线的分析与设计。
随着无线通信技术的飞速发展,天线作为无线通信系统的关键组成部分,其性能直接影响到整个系统的传输质量和效率。
宽带圆极化微带天线作为一种重要的天线类型,具有宽频带、圆极化、低剖面、易集成等优点,因此在卫星通信、移动通信、雷达系统等领域具有广泛的应用前景。
本文将首先介绍宽带圆极化微带天线的基本原理和特性,包括其辐射机制、极化特性、带宽特性等。
随后,将详细分析宽带圆极化微带天线的设计方法,包括天线尺寸的选择、馈电方式的设计、介质基板的选取等。
在此基础上,将探讨影响天线性能的关键因素,如阻抗匹配、交叉极化、增益等,并提出相应的优化策略。
本文还将通过具体的案例分析,展示宽带圆极化微带天线在实际应用中的性能表现。
通过对比分析不同设计方案下的天线性能,为工程师和研究者在实际应用中提供有益的参考。
本文将总结宽带圆极化微带天线的设计与优化策略,并展望其未来的发展趋势和应用前景。
通过本文的研究,旨在为宽带圆极化微带天线的分析与设计提供理论支持和实践指导。
二、圆极化微带天线的基本原理圆极化微带天线是一种能够在空间中产生圆形极化波的天线,它具有独特的电磁辐射特性,广泛应用于无线通信、雷达探测和卫星通信等领域。
了解圆极化微带天线的基本原理对于其分析与设计至关重要。
圆极化波是一种电磁波,其电场矢量在空间中随时间旋转,形成一个圆形的轨迹。
圆极化微带天线通过特定的设计和构造,能够在其辐射区域内产生这样的圆形极化波。
这种波形的特性在于,无论接收天线的极化方式如何,圆极化波都能在一定程度上被接收,因此具有更好的抗干扰能力和更广泛的适用性。
圆极化微带天线的基本原理主要基于电磁场理论和天线辐射原理。
它通过在微带天线的辐射贴片上引入特定的相位差,使得天线的两个正交分量产生90度的相位差,从而形成圆极化波。
这种相位差可以通过在辐射贴片上刻蚀特定的槽口或引入附加的相位延迟线来实现。
微波仿真论坛_HFSS设计微带天线
微波仿真论坛_HFSS设计微带天线
一、前言
微带天线,即微带感应力天线,是一种先进的电磁发射天线,它采用微细空心管及其他微带元件,广泛应用于宽带、多址无线通信、脉冲定位系统、脉冲探测系统等许多应用中。
以HFSS为工具,设计微带感应力天线,能够更加直观地分析微带天线的性能,从而帮助我们了解微带天线的传输特性,并根据实际应用需求实现天线高效性能设计。
二、微波仿真HFSS的设计步骤:
1、首先,选择好所采用的HFSS软件,确定需要分析的微带感应力天线的构型,并建立计算模型。
2、根据相关理论,计算出微带天线的基本参数,如振子长度、空心管半径和微带宽度等,以及天线的振荡频率、相位阶跃和频带宽等。
3、设置相应的仿真网格,根据天线实际的构形,划分仿真区域,确定网格大小和步长,以达到较高的空间分辨率,从而获得更准确的仿真结果。
4、设置仿真参考电路,根据计算出的微带天线振子长度、空心管半径和微带宽度等,及其传输特性,利用HFSS软件设置好参考模型,以及仿真频率。
5、开启仿真计算,间接计算和直接计算,从而获得微带感应力天线的S参数,用于评估微带天线的性能。
一种圆形开槽微带天线的设计
一种圆形开槽微带天线的设计介绍:微带天线是一种常见的天线形式,广泛应用于无线通信系统中。
圆形开槽微带天线是一种具有较大带宽和较高辐射效率的设计。
它由圆形金属基底和中心开槽组成,通过调整开槽的参数,可以实现不同频率上的工作。
设计步骤:1.选择合适的基底材料:常见的基底材料有FR-4玻璃纤维胶片和PTFE,选择材料时要考虑其介电常数和损耗因子。
2.计算基底尺寸:根据工作频率和介电常数,计算得到合适的基底尺寸。
对于圆形开槽微带天线,基底的直径应大于波长的四分之一3.设计圆形开槽:圆形开槽是通过在基底中心开一个圆形孔的方式实现的。
孔的直径和位置会影响天线的工作频率和辐射特性。
可以使用天线模拟软件进行仿真和优化。
4.添加微带线:在孔的边缘连接到微带线,微带线的宽度和长度也是可以调整的参数之一、微带线的长度可以根据公式l=λ/4来计算,其中l为微带线长度,λ为工作频率的波长。
5.优化设计:通过仿真和测试,对设计进行优化。
可以调整基底尺寸、开槽参数和微带线参数等,以实现更好的性能。
6.制作天线:使用PCB制作技术将设计好的天线印刷在基底上。
可以选择双面PCB板,将微带线印刷在一侧,然后通过焊接连接到另一侧,形成闭路。
7.测试性能:通过测试,检验天线的工作频率、辐射特性和带宽等性能指标。
8.优化设计:根据测试结果,对设计进行再次优化,进一步改善性能。
总结:圆形开槽微带天线是一种常见的天线设计,可以实现较大的带宽和较高的辐射效率。
在设计过程中,需要选择合适的基底材料和尺寸,并进行开槽和微带线的优化。
通过仿真、制作和测试,可以获得理想的性能。
这种设计可以广泛应用于无线通信系统中。
微带天线设计
微带天线设计天线大体可分为线天线和口径天线两类。
移动通信用的VHF 、UHF 天线,大多是以对称振子为基础而发展的各种型式的线天线,卫星地面站接收卫星信号大多用抛物面天线(口径天线)。
天线的特征与天线的形状、大小及构成材料有关。
天线的大小一般以天线发射或接收电磁波的波长l 来计量。
因为工作于波长l = 2m 的长为1m 的偶极子天线的辐射特性与工作于波长l = 2cm 的长为1cm 的偶极子天线是相同的。
与天线方向性有关参数:方向性函数或方向图 离开天线一定距离处,描述天线辐射的电磁场强度在空间的相对分布的数学表达式,称为天线的方向性函数; 把方向性函数用图形表示出来,就是方向图。
最大辐射波束通常称为方向图的主瓣。
主瓣旁边的几个小的波束叫旁瓣。
为了方便对各种天线的方向图进行比较,就需要规定一些表示方向图特性的参数,这些参数有:1.天线增益G (或方向性GD )、波束宽度(或主瓣宽度)、旁瓣电平等。
2.天线效率3.极化特性4.频带宽度5.输入阻抗天线增益是在波阵面某一给定方向天线辐射强度的量度。
它是被研究天线在最大辐射方向的辐射强度与被研究天线具有同等输入功率的各向同性天线在同一点所产生的最大辐射强度之比。
天线方向性GD与天线增益G类似但与天线增益定义略有不同。
因为天线总有损耗,天线辐射功率比馈入功率总要小一些,所以天线增益总要比天线方向性小一些。
理想天线能把全部馈入天线的功率限制在某一立体角ΩB内辐射出去,且在ΩB立体角内均匀分布。
这种情况下天线增益与天线方向性相等。
理想的天线辐射波束立体角ΩB及波束宽度θB实际天线的辐射功率有时并不限制在一个波束中,在一个波束内也非均匀分布。
在波束中心辐射强度最大,偏离波束中心,辐射强度减小。
辐射强度减小到3db时的立体角即定义为ΩB。
波束宽度θB与立体角ΩB关系为旁瓣电平旁瓣电平是指主瓣最近且电平最高的。
第一旁瓣电平,一般以分贝表示。
方向图的旁瓣区一般是不需要辐射的区域,其电平应尽可能的低。
微带天线设计实验报告hsff
微带天线设计实验报告hsff1. 引言微带天线是指一种在非导体衬底上,厚度远小于工作波长的金属片片状天线。
由于其结构简单、易于实现和与尺寸成正比的频率调谐特性,微带天线在无线通信系统、雷达系统、卫星通信系统等领域都有广泛应用。
本实验旨在设计一种基于微带天线的无线通信系统。
2. 设计原理微带天线的设计基于微带线的传输线理论和天线理论,通过调整微带天线的几何结构,可以实现对特定频率信号的发送和接收。
在本实验中,我们需要设计一种工作频率为2.4 GHz的微带天线。
微带天线主要由导体衬底、金属贴片和喇叭线组成。
导体衬底可以是介电材料,如玻璃纤维板、陶瓷板等,也可以是金属材料。
金属贴片是微带天线的辐射元件,其几何形状和尺寸决定了天线的频率特性。
喇叭线用于连接导体衬底和金属贴片,起到提供电信号的功能。
3. 设计步骤根据微带天线的设计原理和工作频率要求,我们可以按照以下步骤来设计微带天线:步骤一:确定导体衬底材料和尺寸根据设计要求选择合适的导体衬底材料,一般可选用介电常数在2到12之间的材料。
确定导体衬底的尺寸,以便适应工作频率。
步骤二:计算金属贴片的尺寸根据所选导体衬底的材料和尺寸,计算金属贴片的尺寸。
一般来说,金属贴片的长度和宽度与工作波长有关,且与导体衬底的介电常数相关。
步骤三:确定喇叭线的结构根据所选导体衬底的材料和尺寸,设计合适的喇叭线结构。
喇叭线的长度、宽度和厚度都会影响微带天线的频率调谐特性。
步骤四:制作微带天线样品根据设计得到的尺寸参数,使用相应的工艺方法制作微带天线样品。
常用的制作方法包括化学腐蚀、电镀等。
步骤五:测试天线性能通过天线测试仪器对微带天线进行性能测试,包括频率响应、增益、辐射图形等参数的测量。
4. 实验结果与分析经过设计和制作,在实验中成功制作了一种工作频率为2.4 GHz的微带天线样品。
经测试,该微带天线样品的频率响应符合设计要求,在工作频率范围内具有良好的增益和辐射特性。
为了进一步优化微带天线的性能,我们对设计参数进行了微调,得到了更好的工作频率和辐射特性。
基于HFSS矩形微带天线仿真与设计
基于HFSS矩形微带天线仿真与设计HFSS(高频结构模拟软件)是一种专业的电磁场仿真软件,可以用于电磁场分析和天线设计。
在通信领域,天线设计是非常重要的工作,而微带天线是一种常用的天线结构之一。
本文将基于HFSS软件对矩形微带天线进行仿真与设计,以探讨其性能和特点。
矩形微带天线是一种常见的微带天线结构,其结构简单、制作方便,并且在通信系统中有着广泛的应用。
矩形微带天线的主要结构是由金属贴片和衬底组成,金属贴片通常被设计成矩形或正方形,可以直接在PCB(Printed Circuit Board)板上加工制作。
由于其结构简单并且性能良好,所以矩形微带天线备受研究者的关注。
在HFSS软件中进行微带天线的仿真与设计,需要按照以下步骤进行:1. 建立仿真模型:首先需要建立微带天线的三维模型,包括金属贴片和衬底。
在HFSS软件中,可以通过绘制结构、设置材料参数、定义边界条件等步骤来完成模型的建立。
2. 定义仿真参数:在建立好仿真模型后,需要定义仿真的频率范围、激励方式、网格密度等参数,以确保仿真的准确性和有效性。
3. 进行仿真分析:在设置好仿真参数后,可以进行频域分析或时域分析,得到微带天线的S参数、辐射场分布等重要信息,从而评估微带天线的性能。
4. 优化设计:根据仿真结果,可以对微带天线的结构参数进行调整和优化,以获得更好的性能指标,比如增益、带宽、驻波比等。
通过以上步骤,可以在HFSS软件中对矩形微带天线进行全面的仿真与设计,为微带天线的工程应用提供良好的设计基础和技术支持。
接下来,将从两个方面对基于HFSS的矩形微带天线仿真与设计进行详细介绍。
第一、HFSS仿真分析在HFSS软件中对矩形微带天线进行仿真分析,主要是评估其性能指标和辐射特性。
常见的性能指标包括带宽、增益、辐射方向图、驻波比等。
对于微带天线的带宽来说,是一个很重要的性能指标。
带宽的宽窄直接关系到天线的频率覆盖范围,在通信系统中有着重要的应用。
实验五-微带天线设计
(-33.4,39.5)
(-52.9,19.895) (-52.9,20.845)
w1=0.29mm w2=2.19mm
(-33.4,19.895) (-33.4,19.605)
(-52.9,18.655)
l1=19.5mm (-52.9,19.605) (-33.4,05) L=33.4mm
(0,39.5) W=39.5mm (0,0)
W / h 0.264 W / h 0.8
2W 2
Y in
2G
90 2W
2 0
2
120
2 0
W≤λ0 W>λ0
f0 2
c
e (L2L)
W
c 2 f0
r211/2
01.08.2020
MW & Opti. Commu. Lab, XJTU
14
矩形天线实例:
w2
w1
W
l1 L
01.08.2020
• 在数据显示窗口,执行菜单命令【Tool]->【Data File Tool】,弹出 “dttool/main Window”,利用此工具导出Momentum仿真后的S1P文件。
实验五 微带天线设计、仿 真、制作与测试
一、天线的基本知识
1.1 天线的概念
天线:向空间发射或从空间接收电磁波的装置
天线功能: (1)能量转换功能:进行导 行波(或高频电流)和自由空 间波之间的能量转换; (2)定向作用:向空间发射 或从空间接收电磁波具有一 定的方向性。对于发射天线, 是指将电磁波能量向一定方 向集中辐射; 对于接收天线, 是只接收特定方向来的电磁 波.
w1=0.40mm w2=2.31mm
(-33.4,19.95) (-33.4,19.55)
微带天线设计
同轴线馈电
10
各种同轴激励示于图3-。 在所有的情况中,同 轴插座安装在印制电 路板的背面,而同轴 线内导体接在天线导 体上。对指定的模, 同轴插座的位置可由 经验去找,以便产生 最好的匹配。使用N型 同轴插座的典型微带 天线示于图3-中。
图3-8 同轴馈电的微带天线
同轴馈电模拟
根据惠更斯原理,同轴馈电可以用一个由底面 流向顶面的电流圆柱带来模拟。这个电流在地 板上被环状磁流带圈起来,同轴线在地板上的 开口则用电壁闭合。如果忽略磁流的贡献,并 假定电流在圆柱上是均匀的,则可进一步简化。 简化到最理想的情况是,取出电流圆柱,用一 电流带代替,类似微带馈电的情况。该带可认 为是圆柱的中心轴,沿宽度方向铺开并具有等 效宽度的均匀电流带,对于给定的馈电点和场 模式,等效宽度可以根据计算与测量所得的阻 抗轨迹一致性经验地确定。一旦这个参数确定 了,它就可以用在除馈电点在贴片边缘上以外 的任何馈电位置和任何频率。当馈电点在贴片 边缘上时,可以认为,在贴片边缘上的边缘场 使等效馈电宽度不同于它在天线内部时的值。 在矩形天线中,等效宽度为同轴馈线内径的五 倍时,可给出良好的结果。
微带天线结构
微带贴片天线
4
微微带天线可以分为三种基本类型:微带贴片天线、微带行波天线和微带缝 隙天线。 微带贴片天线(MPA)是由介质基片、在基片一面上有任意平面几何形状的 导电贴片和基片另一面上的地板所构成。实际上,能计算其辐射特性的贴片 图形是有限的。
正方形
圆形
矩形
椭圆形
五角形 圆环形 直角等腰 三角形
16
Z cos L1 jZ w sin L1 Z 0 cos L2 jZ w sin L2 Y1 Y0 0 (3-7) Z w cos L1 jZ 0 sin L1 Z w cos L2 jZ 0 sin L2
微带天线的设计
微带天线设计天线大体可分为线天线和口径天线两类。
移动通信用的VHF 、UHF 天线,大多是以对称振子为基础而发展的各种型式的线天线,卫星地面站接收卫星信号大多用抛物面天线(口径天线)。
天线的特征与天线的形状、大小及构成材料有关。
天线的大小一般以天线发射或接收电磁波的波长l 来计量。
因为工作于波长l = 2m 的长为1m 的偶极子天线的辐射特性与工作于波长l = 2cm 的长为1cm 的偶极子天线是相同的。
与天线方向性有关参数:方向性函数或方向图 离开天线一定距离处,描述天线辐射的电磁场强度在空间的相对分布的数学表达式,称为天线的方向性函数; 把方向性函数用图形表示出来,就是方向图。
最大辐射波束通常称为方向图的主瓣。
主瓣旁边的几个小的波束叫旁瓣。
为了方便对各种天线的方向图进行比较,就需要规定一些表示方向图特性的参数,这些参数有:1.天线增益G (或方向性GD )、波束宽度(或主瓣宽度)、旁瓣电平等。
2.天线效率3.极化特性4.频带宽度5.输入阻抗天线增益是在波阵面某一给定方向天线辐射强度的量度。
它是被研究天线在最大辐射方向的辐射强度与被研究天线具有同等输入功率的各向同性天线在同一点所产生的最大辐射强度之比。
天线方向性GD与天线增益G类似但与天线增益定义略有不同。
因为天线总有损耗,天线辐射功率比馈入功率总要小一些,所以天线增益总要比天线方向性小一些。
理想天线能把全部馈入天线的功率限制在某一立体角ΩB内辐射出去,且在ΩB立体角内均匀分布。
这种情况下天线增益与天线方向性相等。
理想的天线辐射波束立体角ΩB及波束宽度θB实际天线的辐射功率有时并不限制在一个波束中,在一个波束内也非均匀分布。
在波束中心辐射强度最大,偏离波束中心,辐射强度减小。
辐射强度减小到3db时的立体角即定义为ΩB。
波束宽度θB与立体角ΩB关系为旁瓣电平旁瓣电平是指主瓣最近且电平最高的。
第一旁瓣电平,一般以分贝表示。
方向图的旁瓣区一般是不需要辐射的区域,其电平应尽可能的低。
Ka波段微带天线设计
1、选择合适的介质基板:考虑到 Ka波段的频率较高,我们选择相对介电常 数较高(约为2.2)的介质基板。同时,考虑到易于制造和使用,我们选择了常 见的厚度为0.5mm的基板。
2、设计辐射元的形状和尺寸:使用计算机辅助设计软件进行优化设计,我 们选择了一个矩形金属片作为辐射元。通过调整其长宽比和边缘轮廓,我们可以 实现良好的频率响应和辐射性能。
一、微带天线的基本原理
微带天线是一种利用微带线或带状线作为辐射元件的天线。它主要由一个辐 射元和一个馈线两部分组成。辐射元通常由一层薄的金属导体片嵌入到介质基板 中形成。当电流在馈线和辐射元间流过时,会在导体片上产生辐射,从而形成电 磁波。
二、Ka波段微带天线的特点
Ka波段通常指18-40GHz的无线频段,具有较高的频段和较窄的带宽。因此, Ka波段微带天线的设计需要特别注意以下几个方面的因素:
3、设计馈线:为了与 Ka波段的前端设备连接,我们选择了一条特性阻抗为 50欧姆的微带线作为馈线。在设计中,我们确保了馈线与辐射元之间的阻抗匹配, 以减少信号反射和损失。
4、设计高效率馈电网络:为了实现宽角度的扫描或接收,我们设计了一个 威尔金森功分器作为馈电网络。该馈电网络可以将信号分成两个相同的部分,分 别激励辐射元的两个不同部分,从而实现宽角度的辐射。
三、Ka波段微带天线的关键设计 技术
1、选择合适的介质基板:介质基板的性质对微带天线的性能有着重要影响。 在选择介质基板时,需要考虑其介电常数、损耗角正切、厚度等因素。
2、设计精确的辐射元:辐射元的形状和尺寸对天线的频率响应和辐射性能 有着决定性的影响。通常采用计算机辅助设计软件进行优化设计。
一、背景
随着航天技术的飞速发展,低轨道卫星通信系统在许多领域的应用越来越广 泛。这种系统可以提供高速、高效的无线通信服务,用于军事、民用和商业领域。 为了实现这种通信系统的稳定运行和提供更高的数据传输速率,需要研究和发展 更先进的卫星天线技术。
双频圆极化微带天线的设计
双频圆极化微带天线的设计本文将探讨双频圆极化微带天线的关键设计因素,包括工作原理、尺寸和性能优化等方面。
我们将确定文章的类型为技术论文,主要面向无线通信领域的工程师和技术人员。
关键词:双频,圆极化,微带天线,设计,工作原理,尺寸,性能优化在无线通信系统中,天线是至关重要的组件之一。
随着通信技术的发展,多频段和圆极化技术已成为现代天线设计的趋势。
其中,双频圆极化微带天线由于其体积小、易共形、低成本等特点而备受。
双频圆极化微带天线的工作原理主要基于微带天线的基本原理。
微带天线由介质基板、辐射贴片和接地板组成。
当电流流过辐射贴片时,就会在贴片周围产生电磁场,从而向外辐射电磁波。
对于双频圆极化微带天线,通常采用多个辐射贴片、缝隙或者耦合器等结构来实现双频段工作。
在尺寸方面,双频圆极化微带天线的设计主要取决于所需的工作频率和天线的性能要求。
一般来说,天线的尺寸会随着工作频率的降低而增大。
因此,在满足性能指标的前提下,应尽量减小天线的尺寸以适应各种应用场景。
在性能优化方面,主要考虑因素包括增益、带宽、轴比、交叉极化等。
通过优化辐射贴片、接地板和介质基板的设计,可以有效地提高天线的性能。
例如,通过采用高介电常数的介质基板可以有效减小天线的尺寸;通过优化辐射贴片的形状和大小可以改善天线的带宽和轴比性能。
双频圆极化微带天线的设计需要综合考虑工作原理、尺寸和性能优化等多个方面。
随着5G、物联网和卫星通信等技术的快速发展,双频圆极化微带天线的应用前景将更加广阔。
未来,可以进一步研究多频段、高性能和更小尺寸的双频圆极化微带天线设计方法,以满足不断发展的通信需求。
可以利用新兴的材料和工艺技术提升天线的性能和集成度,拓展其应用领域。
另外,针对双频圆极化微带天线的测试技术也需要不断完善,以确保天线的性能和质量。
双频圆极化微带天线作为一种先进的通信技术,具有广泛的应用前景。
未来,我们需要在设计方法、材料选择、制造工艺和应用场景等方面进行深入研究,以满足不断增长的通信需求,推动无线通信技术的发展。
天线原理与设计-第九章微带天线
机遇在于随着新材料、新工艺的不断 涌现,为微带天线的发展提供了更多 可能性。
感谢观看
THANKS
04
微带天线优缺点
优点
低剖面
微带天线的高度通常在毫米级,非常适合于 空间受限的应用场景。
多频段工作
通过改变贴片的形状和尺寸,微带天线可以 在多个频段上工作。
易于集成
微带天线可以方便地与微波集成电路集成在 一起,形成统一的微波系统。
易于实现圆极化
微带天线可以方便地实现圆极化,从而扩大 其应用范围。
先进的工艺技术
采用先进的工艺技术,如光刻、刻蚀等,以实现精确的贴片形状和 尺寸。
设计实例
矩形微带天线
设计一个矩形微带天线, 工作在2.4GHz频段,增 益为5dBi,波束宽度为 60度。
圆形微带天线
设计一个圆形微带天线, 工作在5GHz频段,增 益为8dBi,波束宽度为 45度。
多频带微带天线
设计一个多频带微带天 线,覆盖2.4GHz和 5GHz频段,增益为 7dBi,波束宽度为60度。
历史与发展
起源
微带天线由马可尼公司于1970年 代初研制成功,最初用于卫星通
信。
发展历程
随着微波集成电路技术的发展,微 带天线在材料、工艺和理论等方面 不断取得突破,逐渐成为天线领域 的重要分支。
未来展望
随着5G、物联网等技术的发展,微 带天线将面临更多机遇和挑战,未 来将朝着高性能、多功能、小型化、 集成化等方向发展。
极化方式决定了微带天线 信号的极化状态和稳定性。
方向性决定了微带天线信 号传输的方向和范围。
效率决定了微带天线能量 转换的效率和信号传输的 质量。
03
微带天线设计
设计流程
实现小型化微带天线的几种设计方法
实现小型化微带天线的几种设计方法
小型微带天线是近年来不断发展的新技术,它广泛应用于手机终端、导航和定位系统和模块,特别用于智能家居设备,以及医疗仪器、工业应用和战术无线网络。
它具有小尺寸、低功耗和灵活多变的特点,有助于改善用户体验,扩大无线设备的应用场景。
为了实现小型化微带天线的设计,目前已经有多种不同的方法,这取决于嵌入物理环境、天线结构与公共网络中要求的功能,下面我就给出实现小型化微带天线的几种设计方法:
1、增加磁性位移开关(MEMS):在基础上增加磁性位移开关,其可以将多根天线收发电路连接在一起,实现单个机构的小型化,从而大大减小了天线的尺寸。
2、采用可调谐天线:将可调谐天线的平均尺寸缩小到比传统的微带天线小一些,可以通过控制控制变压器来改变振荡频率,从而满足不同的频率。
3、采用多普勒缩小型化天线:利用多普勒缩小型化天线可以实现多个带宽模块的小型化,此外还可以进一步利用多普勒技术增加天线的中心频率,从而提高小型化天线的频率范围,缩小其尺寸。
4、采用超长电缆波导:把超长电缆波导与普通电缆波导相结合,可以实现微带天线的微型化,同时利用超长电缆波导的周围增,采用相对较低的损耗,实现同样的功能。
5、利用可折叠的天线:设计可折叠的微带天线,它可以使天线更加小型化,且可以满足不同的频带要求。
总之,现有的技术可为实现小型化微带天线提供了很多可能性,也为我们提供了设计的灵活性和自由性。
微带天线的设计和阻抗匹配
微带天线的设计和阻抗匹配微带天线是一种广泛应用于无线通信领域的新型天线。
它具有体积小、重量轻、易于集成等优点,因此特别适合于现代通信系统的应用。
本文将详细介绍微带天线的原理、设计思路、阻抗匹配方法以及实验验证等方面的内容。
微带天线是在介质基板上制作的一种天线。
它主要由辐射元和传输线组成,通过在介质基板上印制金属导带,形成辐射元和传输线,利用电磁波的辐射和传播特性实现天线的功能。
由于辐射元和传输线都印制在介质基板上,因此微带天线具有体积小、重量轻、易于集成等优点。
选择合适的介质基板,根据需要选择介电常数、厚度、稳定性等参数;在介质基板上印制金属导带,形成辐射元和传输线;根据设计要求,对金属导带进行形状和尺寸的调整;为提高天线的性能,需要进行阻抗匹配等调试;选取合适的材料:根据应用场景和设计要求,选择合适的介质基板和金属材料;设计形状和尺寸:根据天线设计的原理,设计合适的辐射元和传输线形状,以及其尺寸大小;考虑天线的抗干扰能力:为提高天线的性能,需要采取措施提高天线的抗干扰能力,如设置保护区、采用滤波器等。
微带天线的阻抗匹配是实现天线高效辐射的关键环节。
通常情况下,微带天线的阻抗不是纯电阻,而是具有一定的电抗分量。
为了使天线与馈线之间实现良好的阻抗匹配,通常采用以下方法:改变馈线的特性阻抗:通过调整馈线的几何形状、材料等参数,改变馈线的特性阻抗,使其与天线的阻抗相匹配;添加电阻、电容等元件:在馈线与天线之间添加适当的电阻、电容等元件,以调整天线的阻抗,实现阻抗匹配;采用分步匹配:通过在馈线与天线之间设置适当的阶梯状阻抗,逐渐接近天线的阻抗,从而实现良好的阻抗匹配。
为了验证微带天线的性能和阻抗匹配的效果,通常需要进行实验测试。
实验测试主要包括以下步骤:搭建测试平台:根据需要搭建测试平台,包括信号源、功率放大器、接收机等;连接测试平台:将微带天线与测试平台连接,确保稳定的信号传输;调整阻抗匹配:根据实验结果,对天线的阻抗匹配进行微调,以获得最佳的性能;进行测试:在不同的频率、距离等条件下进行测试,收集数据并进行分析;结果分析与讨论:根据实验数据进行分析和讨论,评估微带天线的性能和阻抗匹配的效果。
设计1:侧馈矩形微带天线
此外,侧馈矩形微带天线与其他天线的集成和共形设计也将成为未来 研究的热点,为无线通信技术的发展提供更多可能性。
THANKS
感谢观看
当微波信号通过侧馈网络传输到 辐射贴片上时,在辐射贴片上形 成电磁波,通过与接地板的相互 作用,形成定向的电磁波辐射。
侧馈矩形微带天线的优缺点
优点
侧馈矩形微带天线具有体积小、重量 轻、易于集成等优点,同时其结构简 单、易于加工和制作,成本较低。
缺点
侧馈矩形微带天线的带宽较窄,且其 辐射效率受介质基片的影响较大,因 此在一些需要宽频带和高效辐射的应 用中受到限制。
设计1:侧馈矩形微带天 线
• 引言 • 侧馈矩形微带天线的基本原理 • 侧馈矩形微带天线的仿真与优化 • 侧馈矩形微带天线的实际制作与测试 • 侧馈矩形微带天线的应用案例 • 总结与展望
01
引言
微带天线简介
微带天线是一种由微带线或带状线构 成的平面天线,具有体积小、重量轻 、易于集成等优点。
它利用微波传输线原理,将辐射元件 和传输线集成在同一平面上,通过电 磁辐射实现信号的传输。
03
稳定性
材料稳定性对侧馈矩形微带天线的长期性能和使用寿命至关重要。选择
具有良好热稳定性、化学稳定性和机械强度的材料,可以确保天线在各
种环境条件下稳定工作。
侧馈矩形微带天线的制作工艺
工艺流程
制作侧馈矩形微带天线需要遵循一定的工艺流程。首先,在选定的基材上均匀涂覆一层导 电层,然后通过光刻、腐蚀等工艺形成天线结构。接下来,进行必要的金属化处理和连接 器安装,最后进行测试和调整。
侧馈矩形微带天线的现状与成果总结
侧馈矩形微带天线是一种广泛应用于无线通信领域的天线类型,具有低剖面、易于 集成和易于制造等优点。
C波段微带天线设计
C波段微带天线(题目4)1.设计要求中心频点5GHz;增益优于4dB;阻抗带宽为100MHz (S11<-20dB);在工作频点范围内满足:3dB波瓣宽度>80°;3dB轴比波瓣宽度>80°;轴比带宽为200MHz (AR<3dB, at θ=0 and φ=0);2.天线原理微带天线是在一个薄介质基片上,一面附上金属薄层作为接地板,另一面用光刻腐蚀方法制成一定形状的金属贴片,利用微带线或同轴探针对贴片馈电构成的天线。
微带天线分 2 种:①贴片形状是一细长带条,则为微带振子天线。
②贴片是一个面积单元时,则为微带天线。
如果把接地板刻出缝隙,而在介质基片的另一面印制出微带线时,缝隙馈电,则构成微带缝隙天线。
以矩形微带天线为例,用传输线模型分析法介绍它的辐射原理。
设辐射元的长为L,宽为W,介质基片的厚度为h,现将辐射元、介质基片和接地板视为一段长为L的微带传输线,在传输线的两端断开形成开路。
根据微带传输线理论,由于基片厚度h<<λ,场沿h方向均匀分布。
在最简单的情况下,场沿宽度w方向也没有变化,而仅在长度方向(l≈λ/2)有变化。
在两开路端的电场均可以分解为相对于接地板的垂直分量和水平分量,两垂直分量方向相反,水平分量方向相同,因而在垂直于接地板的方向,两水平分量电场所产生的远区场同相叠加,而两垂直分量所产生的场反相相消。
因此,两开路端的水平分量可以等效为无限大平面上同相激励的两个缝隙。
缝的电场方向与长边垂直,并沿长边w均匀分布。
缝的宽度为△l≈h,长度为w,两缝间距为l≈λ/2。
这就是说,微带天线的辐射可以等效为由两个缝隙所组成的二元阵列。
最初模型,采用切角微扰的形式实现圆极化,同轴线探针馈电,如下所示天线厚度和介电常数的计算式中,c 是真空中的光速;n=1,3,5,…(TEn 模),或n = 2,4,6…(TMn 模)。
贴片宽度的计算贴片长度的计算 式中:211212121-⎪⎭⎫ ⎝⎛+-++=w h r r e εεε ()()()()8.0/258.0264.0/3.0412.0+-++=∆h w h w hL e e εε 3.天线设计 初始参数设置1/2122r r c W f ε-+⎛⎫= ⎪⎝⎭22r ecL lf ε=-∆w 为方形贴片的长度(宽度=长度),初值13.5mm 。
实验10-微带贴片天线设计
实验十:综合设计-微带贴片天线设计
(自我认为这个做的非常好)
一、设计要求
设计一个矩形微带贴片天线,要求与50Ω馈线匹配连接,匹配结构采用短路单枝节形式。
基板参数:FR4基板,介电系数4.5,基板厚度3 mm,双面覆铜,金属厚度0.018 mm.过孔壁金属厚度0.05 mm.
设计指标:中心频率800 MHz,带宽10 MHz,反射系数小于-10 dB,驻波比小于2,增益大于6 dB。
二、实验仪器
硬件:PC
软件:AWR软件
三、设计步骤
1、贴片天线设计
2、匹配电路设计
3、总体电路设合计
四、数据记录及分析
1、贴片天线设计
(1)尺寸计算:
参数εre
辐射单元馈线
宽度/mm 长度/mm 宽度/mm 长度/mm
计算值 3.4 113 102 5.6 50.7 优化结果—138.1615906405 86.5 ——(2)贴片天线模型:
(3)参数化设置:
(4)Patch参数化模型:(5)分析及优化:
(6)注释分析:
2、匹配电路设计
天线阻抗/Ω参数 d l Z0圆图计算结果0.1930987λ0.109773λ50
电长度/deg 69.515532 39.51828 W/mm
实际值/mm 0.072412 0.041165 5.61906
调节结果/mm —
3、总体电路设合计
(1)建立电路原理图:
(2)版图验证:
(3)分析与调节:调节前:
调节后:
(4)AXIEM电磁提取分析:AXIEM提取后比没有提取的效果差!。
微带天线设计
及 εr >> 1电力线主要分布在介质中。这时边缘效应使微带传输线的电尺寸比其实际尺寸要
大。当部分波在介质中传播、部分在空气中传播时,这时就需引入有效介电常数 εre 来说明
边缘效应和波在传输线中的传播。 大多数情况下,有效介电常数可表示为
由于贴片长度 b = λ 2 ,故两开路端的垂直电场分量反相,该分量在空间产生的场互相抵消
(或很弱),而水平分量的电场是同相的。因此,远区的辐射场主要由水平分量场产生,最 大辐射方向在垂直于贴片的方向。
由此分析可见,矩形微带天线,可用两个相距 λ 2 、同相激励的缝隙天线来等效。缝
的长度为辐射片的宽度 W ≈ λ0 2 ,缝宽 ∆l ≈ h ,两缝隙在空间产生辐射作用。这是微带天线
为适应现代通信设备的需求,天线的研发方向主要往几个方面进行,即减小天线的尺寸、 宽带和多波段工作、智能方向图控制。随着电子设备集成度的提高,通信设备的体积也变得 越来越小,这时天线尺寸就需要越来越小了。然而,在减小天线的尺寸的同时又不明显影响 天线的增益和效率是一项艰巨的工作。电子设备集成度提高,经常需要一个天线在较宽的频 率范围内来支持两个或更多的无线服务,宽带和多波段天线能满足这样的需要。微带天线由 于重量轻、体积小、成本低、制作工艺简单、易与有源器件和电路集成等诸多优点,所以得 到广泛的应用和重视。
3 微带天线的多频化技术
3.1 概述
随着移动通信的发展,对移动终端上的天线大多要求能够工作在双频段甚至多 频段,同时,无线局域网(WLAN)、无线宽带接入等无线通信系统的迅速发展也推动了微带 天线多频化的发展,针对这些通信系统,许多研究者设计出多种可双频段或多频段工作的微 带天线。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
5.创建信号传输端口面
同轴馈线需要穿过参考地面,传输信号能量。因此,需要在参考地面GND上开一个圆孔允许能量传输。圆孔的半径为,圆心坐标为(,0,0),并将其命名为Port。
(1)从主菜单栏选择【Draw】→【Circle】命令,或者单击工具栏的按钮,进入创建圆面模型的状态,在三维模型窗口任一位置单击鼠标左键确定一个点;然后在xy面上移动鼠标光标,在绘制出一个圆形后单击鼠标左键确定第二个点,此时弹出圆面“属性”对话框。
图矩形面“属性”对话框
(3)在操作历史树中,单击选中新建的微带贴片Patch,选中后的模型会高亮显示。
(4)在三维模型窗口单击右键,从弹出菜单中选择【Assign Boundary】→【Perfect E】,打开如图所示的Perfect E Boundary对话框,给微带贴片Patch分配理想导体边界条件,并将理想导体边界命名为PerfE_Patch,然后单击按钮ok结束。
创建微带天线模型
新建HFSS工程
1.运行HFSS并新建工程
启动HFSS软件。HFSS运行后,会自动新建一个工程文件,选择主菜单【File】→【Save As】命令,把工程文件另存为;然后右键单击工程树下的设计文件名称HFSSDesign1,从弹出菜单中选择【Rename】命令项,把设计文件重新命名为Patch。
从主菜单栏选择【Modeler】→【Units】命令,打开“模型长度单位设置”对话框。在该对话框中,Select units项选择毫米单位(mm),然后单击按钮,退出对话框,完成设置。
4.建模相关选项设置
从主菜单栏选择【Tools】→【Options】→【Modeler Options】命令,打开3D Modeler Options对话框,单击对话框Drawing选项卡,选中Drawing选项卡界面的Edit propertiesof newprimitive复选框,然后单击“确定”按钮,退出对话框,完成设置。
话框。
(2)单击该对话框的Command选项卡,在Position项对应的Value值处输入矩形面起始点坐标(,,5),在XSize和YSize项对应的Value值处输入矩形面的长度和宽度。然后单击对话框的Attribute选项卡,在Name项对应的Value值处输入矩形面的名称Patch;单击Color项对应的Edit按钮,将模型的颜色设置为黄褐色;单击Transparent项对应的Value值按钮,设置模型透明度为;如图所示。最后,单击按钮“确定”结束。
图 E Boundary 设置对话框
2.创建介质板层
创建一个长×宽×高为80mm×80mm×5mm的长方体作为介质板层,介质板层的底部位于参考地上(即z=0的xOy面上),其顶点坐标为(40,40,0),介质板的材料为R04003,介质板层命名为Substrate。
(1)从主菜单栏选择【Draw】→【Box】命令,进入创建长方体模型的状态,在三维模型窗口任一位置单击鼠标左键确定一个点;然后在xy面上移动鼠标光标,在绘制出一个矩形后单击鼠标左键确定第二个点;最后沿着z轴方向移动鼠标光标,在绘制出一个长方体后单击鼠标左键确定第三个点。此时,弹出长方体的“属性”对话框。
2.设置求解类型
设置当前设计为模式驱动求解类型。从主菜单栏选择【HFSS】→【Solution Type】,打开如图所示的Solution Type对话框,选中Driven Modal单选按钮,然后单击OK按钮,退出对话框,完成设置。
图设置求解类型
3.设置默认的长度单位
设置当前设计在创建模型时使用的默认长度单位为毫米。
图1.1微带天线的结构
设计要求
设计一个矩形微带天线,工作频率为,天线使用同轴线馈电。天线的中心频率为,因此设置HFSS的求解频率(即自适应网格剖分频率)为,同时添加~的扫频设置,分析天线在~频段内的回波损耗或者电压驻波比。如果天线的回波损耗或者电压驻波比扫频结果显示谐振频率没有落在上,还需要添加参数扫描分析,并进行优化设计,改变微带贴片的尺寸和同轴线馈点的位置,以达到良好的天线性能。
(2)单击该对话框的Command选项卡,在Center Position项对应的Value值处输入圆柱体的底面圆心坐标(,0,0),在Radius项对应的Value值处输入圆柱体的半径,在Height项对应的Value值处输入圆柱体的高度5。
(3)单击对话框的Attribute选项卡,在Name项对应的Value值处输入圆柱体的名称Feed;单击Material项对应的Value值按钮,设置长方体的材料为pec。最后单击“属性”对话框的按钮,完成设置,退出对话框。创建后的模型如图所示。
(2)单击该对话框的Command选项卡,在Center Position项对应的Value值处输入圆面的圆心坐标(,0,0),在Radius项对应的Value值处输入圆面的半径;然后单击对话框的Attribute选项卡,在Name项对应的Value值处输入圆面的名称Port;最后,单击按钮,生成一个圆面Port,迭加在参考地面GND上。
图创建好的介质板层
3.创建微带贴片
在z=5的xOy面上创建一个顶点坐标为(,,5mm),大小为×的矩形面作为微带贴片,命名为Patch,并为其分配理想导体边界条件。
(1)从主菜单栏选择【Draw】→【Rectangle】命令,或者单击工具栏按钮,进入创建矩形面模型的状态;在三维模型窗口任一位置单击鼠标左键确定一个点;然后在xy面上移动鼠标光标,绘制出一个矩形后单击鼠标左键确定第二个点。此时,弹出矩形面“属性”对
图Perfect E Boundary
4.创建同轴馈线的内芯
创建一个圆柱体作为同轴馈线的内芯,圆柱体的半径为,长度为5mm,圆柱体底部圆心坐标为(,0,0),材质为理想导体,同轴馈线命名为Feed。
(1)从主菜单栏选择【Draw】→【Cylinder】命令,或者单击工具栏按钮,进入
创建圆柱体模型的状态。在三维模型窗口的任一位置单击鼠标左键确定一个点;然后在xy面上移动鼠标光标,绘制出一个圆形后单击鼠标左键确定第二个点;最后沿着z轴方向移动鼠标光标,绘制出一个圆柱体后单击鼠标左键确定第三个点。此时,弹出圆柱体“属性”对话框。
微带天线设计
仿真技术综合设计
班 级:
通信13-3班
姓 名:
王亚飞
学 号:
指导教师:
徐维
成 绩:
1微带天线设计
微带天线简介
微带天线是近30年来逐渐发展起来的一类新型天线。早在1953年就提出了微带天线的概念,但并未引起工程界的重视。在50年代和60年代只有一些零星的研究,真正的发展和使用是在70年代。常用的一类微带天线是在一个薄介质基(如聚四氟乙烯玻璃纤维压层)上,一面附上金属薄层作为接地板,另一面用光刻腐蚀等方法作出一定形状的金属贴片,利用微带线和轴线探针对贴片馈电,这就构成了微带天线。当贴片是一面积单元时,称它为微带天线;若贴片是一细长带条则称其为微带振子天线。
(2)单击对话框的Command选项卡,在Position项对应的Value值处输入长方体的顶点坐标(40,40,0),在XSize、YSize和ZXize项对应的Value值处分别输入长方体的长、宽和高80、80和5。
(3)单击对话框的Attribute选项卡,在Name项对应的Value值处输入长方体的名称Substrate;单击Material项对应的Value值按钮,通过对话框左上方的Search By Name项搜索并选中介质材料Rogers R04003,然后单击ok按钮,设置长方体的材料为Rogers 04003;单击Color项对应的Edit按钮,将模型的颜色设置为绿色;单击Transparent项对应的Value值按钮,设置模型透明度为;最后单击“属性”对话框的按钮,完成设置,退出对话框。
(3)按住Ctrl键,同时从操作历史树中按先后顺序单击选择面GND和Port;然后从主菜单栏选择【Modeler】→【Boolean】→【Substrate】命令,或者单击工具栏的按钮,打开如图所示的Subtract对话框;确认对话框的Blank Parts栏显示的是GND,Tool Parts栏显示的是Port,表明使用参考地模型GND减去圆面Port;为了保留圆面Port本身,请选中对话框的Clone tool objects before subtracting复选框。然后单击按钮,执行相减操作。执行相减操作后,即从GND模型中挖去了一块与圆面Port一样大小的圆孔,同时保留了圆面Port本身。
1.矩形贴片的宽度W
根据公式
把c=×108m/s,f0=,εr=代入,可以计算出微带天线矩形贴片的宽度,即W = =
2.有效介电常数εe
根据公式
把h=5mm,W=,εr=代入,可以计算出有效介电常数,即εe=
3.辐射缝隙的长度ΔL
根据公式
把h=5mm,W=,εeff=代入,可以计算出微带天线辐射缝隙的长度,即ΔL =
移动鼠标光标,在绘制出一个矩形后单击鼠标左键确定第二个点,此时弹出矩形面“属性”对话框。
(2)单击该对话框的Command选项卡,在Position项对应的Value值处输入矩形面起始点坐标(45,45,0),在XSize项对应的Value值处输入矩形面的长度90,YSize项对应的Value值输入矩形面的宽度90;然后单击对话框的Attribute选项卡,在Name项对应的Value值处输入矩形面的名称GND,单击Transparent项对应的Value值按钮,设置模型透明度为
;如图所示。最后,单击按钮结束。
图创建的参考地
(3)在三维模型窗口,单击选中新建的矩形面模型,选中后的模型会高亮显示。
(4)在三维模型窗口单击右键,从弹出菜单中选择【Assign Boundary】→【Perfect E】,打开如图所示的Perfect E Boundary对话框,为选中的矩形面GND分配理想导体边界条件。在打开的对话框中,Name项对应的文本框处输入PerfE_GND,将理想导体边界命名为PerfE_GND,然后单击对话框按钮结束。此时理想导体边界条件的名称PerfE_GND添加到工程树的Boundaries节点下。