菱形证明专题训练
初中几何证明题库菱形
8.如图,已知E 是菱形ABCD 的边BC 上一点,且∠DAE=∠B=80°,那么∠CDE 的度数为( )A . 20°B . 25°C . 30°D . 35°考点: 菱形的性质. 分析: 依题意得出AE=AB=AD ,∠ADE=50°,又因为∠B=80°故可推出∠ADC=80°,∠CDE=∠ADC ﹣∠ADE ,从而求解. 解答: 解:∵AD ∥BC , ∴∠AEB=∠DAE=∠B=80°, ∴AE=AB=AD ,在三角形AED 中,AE=AD ,∠DAE=80°, ∴∠ADE=50°, 又∵∠B=80°, ∴∠ADC=80°,∴∠CDE=∠ADC ﹣∠ADE=30°. 故选C . 点评: 本题是简单的推理证明题,主要考查菱形的边的性质,同时综合利用三角形的内角和及等腰三角形的性质.已知菱形ABCD 的边长是8,点E 在直线AD 上,若DE =3,连接BE 与对角线AC 相交于点M ,则MCAM的值是 .6.如图,两条笔直的公路l 1、l 2相交于点O ,村庄C 的村民在公路的旁边建三个加工厂 A 、B 、D ,已知AB=BC=CD=DA=5公里,村庄C 到公路l 1的距离为4公里,则村庄C 到公路l 2的距离是【 】A 、3公里B 、4公里C 、5公里D 、6公里图1MEDBC A图2MEDBCA7.如图,已知菱形ABCD的边长为2,∠BAD=60°,若DE⊥AB,垂足为点E,则DE的长为▲ .2.如图,已知菱形ABCD的边长为2,∠BAD=60°,若DE⊥AB,垂足为点E,则DE的长为▲ .例5.如图,在四边形ABCD中,AD∥BC,对角线AC的中点为O,过点O作AC的垂直平分线分别与AD、BC相交于点E、F,连接AF。
求证:AE=AF。
菱形的性质和判定经典试题综合训练(含解析)
菱形的性质和判定经典试题综合训练(含解析)一.选择题(共15小题)1.如图,△ABC中,DE∥BC,EF∥AB,要判定四边形DBFE是菱形,还需要添加的条件是()A.AB=AC B.AD=BD C.BE⊥AC D.BE平分∠ABC2.求证:菱形的两条对角线互相垂直.已知:如图,四边形ABCD是菱形,对角线AC,BD交于点O.求证:AC⊥BD.以下是排乱的证明过程:①又BO=DO;②∴AO⊥BD,即AC⊥BD;③∵四边形ABCD是菱形;④∴AB=AD.证明步骤正确的顺序是()A.③→②→①→④B.③→④→①→②C.①→②→④→③D.①→④→③→②3.下列性质中菱形不一定具有的性质是()A.对角线互相平分B.对角线互相垂直C.对角线相等D.既是轴对称图形又是中心对称图形4.如图,菱形ABCD的对角线AC、BD的长分别是6cm、8cm,AE⊥BC于点E,则AE的长是()A.cm B.cm C.cm D.5cm5.如图,四边形ABCD中,对角线相交于点O,E、F、G、H分别是AD、BD、BC、AC的中点,要使四边形EFGH是菱形,则四边形ABCD需满足的条件是()A.AB=AD B.AC=BD C.AD=BC D.AB=CD6.如图,菱形ABCD的周长为16,面积为12,P是对角线BD上一点,分别作P点到直线AB、AD的垂线段PE、PF,则PE+PF等于()A.6 B.3 C.1.5 D.0.757.若菱形的周长为52cm,面积为120cm2,则它的对角线之和为()A.14cm B.17cm C.28cm D.34cm8.如图,作菱形ABCD的高AE,E为CD的中点.AE=cm,则菱形ABCD的周长是()A.4cm B.4cm C.4cm D.8cm9.如图,菱形ABCD中,过A作BD的平行线交CD的延长线于点E,下列结论:(1)∠EAC=90°,(2)DA=DE,(3)∠ABC=2∠E,其中正确的有()A.0个B.1个C.2个D.3个10.如图,以△ABC的三边为边在BC的同侧分别作三个等边三角形,即△ABD、△BCE、△ACF,当△ABC 满足什么条件时,四边形ADEF是菱形?()A.AB=AC B.∠BAC=90°C.∠BAC=120°D.∠BAC=150°11.已知菱形的周长为4,两条对角线的和为6,则菱形的面积为()A.2 B.C.3 D.412.四个点A,B,C,D在同一平面内,从①AB∥CD;②AB=CD;③AC⊥BD;④AD=BC;⑤AD∥BC,这五个条件中任选三个,能使四边形ABCD是菱形的选法有()A.1种B.2种C.3种D.4种13.已知:如图,在菱形ABCD中,F为边AB的中点,DF与对角线AC交于点G,过G作GE⊥AD于点E,若AB=2,且∠1=∠2,则下列结论不正确的是()A.DF⊥AB B.CG=2GA C.CG=DF+GE D.S四边形BFGC=﹣114.如图,O是菱形ABCD的对角线AC、BD的交点,E、F分别是OA、OC的中点.下列结论:①S△ADE=S;②四边形BFDE也是菱形;③四边形ABCD的面积为EF×BD;④∠ADE=∠EDO;⑤△DEF是轴对称△EOD图形.其中正确的结论有()A.5个B.4个C.3个D.2个15.如图,在Rt△ABC中,∠ACB=90°,AC=BC=6cm,动点P从点A出发,沿AB方向以每秒cm的速度向终点B运动;同时,动点Q从点B出发沿BC方向以每秒1cm的速度向终点C运动,将△PQC沿BC 翻折,点P的对应点为点P′.设Q点运动的时间为t秒,若四边形QP′CP为菱形,则t的值为()A.B.2 C. D.3二.填空题(共9小题)16.如图,在∠MON的两边上分别截取OA、OB,使OA=OB;分别以点A、B为圆心,OA长为半径作弧,两弧交于点C;连接AC、BC、AB、OC.若AB=2cm,四边形OACB的面积为4cm2.则OC的长为cm.17.如图,四边形ABCD是轴对称图形,且直线AC是对称轴,AB∥CD,则下列结论:①AC⊥BD;②AD ∥BC;③四边形ABCD是菱形;④△ABD≌△CDB.其中正确的是(只填写序号)18.如图,四边形ABCD中,E,F,G,H分别是边AB、BC、CD、DA的中点.若四边形EFGH为菱形,则对角线AC、BD应满足条件.19.如图,在△ABC中,点D是BC的中点,点E,F分别在线段AD及其延长线上,且DE=DF.给出下列条件:①BE⊥EC;②BF∥CE;③AB=AC;从中选择一个条件使四边形BECF是菱形,你认为这个条件是(只填写序号).20.如图,菱形ABCD的周长为40,面积为25,P是对角线BD上一点,分别作P点到直线AB、AD的垂线段PE、PF,则PE+PF等于.21.如图,菱形纸片ABCD,∠A=60°,P为AB中点,折叠菱形纸片ABCD,使点C落在DP所在的直线上,得到经过点D的折痕DE,则∠DEC等于度.22.如图,菱形ABCD和菱形ECGF的边长分别为3和4,∠A=120°,则图中阴影部分的面积.23.如图,点E、F、G、H分别是任意四边形ABCD中AD、BD、BC、CA的中点,当四边形ABCD的边至少满足条件时,四边形EFGH是菱形.24.如图,在Rt△ABC中,∠C=90°,AC=BC=6cm,点P从点B出发,沿BA方向以每秒cm的速度向终点A运动;同时,动点Q从点C出发沿CB方向以每秒1cm的速度向终点B运动,将△BPQ沿BC翻折,点P的对应点为点P′.设Q点运动的时间t秒,若四边形QPBP′为正方形,则t的值为.三.解答题(共9小题)25.如图,AD是△ABC的角平分线,过点D分别作AC和AB的平行线,交AB于E,交AC于F,求证:四边形AEDF是菱形.26.如图所示,已知四边形ABCD,ADEF都是菱形,∠BAD=∠FAD,∠BAD为锐角.(1)求证:AD⊥BF;(2)若BF=BC,求∠ADC的度数.27.如图,△ABC中,AB=AC,∠BAC=40°,将△ABC绕点A按逆时针方向旋转100°.得到△ADE,连接BD,CE交于点F.(1)求证:△ABD≌△ACE;(2)求证:四边形ABFE是菱形.28.如图,AE∥BF,AC平分∠BAE,且交BF于点C,BD平分∠ABF,且交AE于点D,连接CD.(2)若∠ADB=30°,BD=6,求AD的长.29.如图,△ABC是以BC为底的等腰三角形,AD是边BC上的高,点E、F分别是AB、AC的中点.(1)求证:四边形AEDF是菱形;(2)如果四边形AEDF的周长为12,两条对角线的和等于7,求四边形AEDF的面积S.30.如图,在四边形ABCD中,AB=AD,CB=CD,E是CD上一点,BE交AC于F,连接DF.(1)证明:∠BAC=∠DAC,∠AFD=∠CFE;(2)若AB∥CD,试证明四边形ABCD是菱形;(3)在(2)的条件下,若BE⊥CD,试证明∠EFD=∠BCD.31.如图,在△ABC中,∠ACB=90°,点D,E分别是边BC,AB上的中点,连接DE并延长至点F,使EF=2DE,连接CE、AF.(1)证明:AF=CE;(2)当∠B=30°时,试判断四边形ACEF的形状并说明理由.32.如图,在△ABC中,∠ABC=90°,BD为AC的中线,过点C作CE⊥BD于点E,过点A作BD的平行线,交CE的延长线于点F,在AF的延长线上截取FG=BD,连接BG、DF.(2)若AF=8,CF=6,求四边形BDFG的面积.33.如图所示,在菱形ABCD中,AB=4,∠BAD=120°,△AEF为正三角形,点E、F分别在菱形的边BC、CD上滑动,且E、F不与B、C、D重合.(1)证明不论E、F在BC、CD上如何滑动,总有BE=CF;(2)当点E、F在BC、CD上滑动时,分别探讨四边形AECF和△CEF的面积是否发生变化?如果不变,求出这个定值;如果变化,求出最大(或最小)值.菱形的性质和判定经典试题综合训练参考答案与试题解析一.选择题(共15小题)1.如图,△ABC中,DE∥BC,EF∥AB,要判定四边形DBFE是菱形,还需要添加的条件是()A.AB=AC B.AD=BD C.BE⊥AC D.BE平分∠ABC【分析】当BE平分∠ABC时,四边形DBFE是菱形,可知先证明四边形BDEF是平行四边形,再证明BD=DE 即可解决问题.【解答】解:当BE平分∠ABC时,四边形DBFE是菱形,理由:∵DE∥BC,∴∠DEB=∠EBC,∵∠EBC=∠EBD,∴∠EBD=∠DEB,∴BD=DE,∵DE∥BC,EF∥AB,∴四边形DBEF是平行四边形,∵BD=DE,∴四边形DBEF是菱形.其余选项均无法判断四边形DBEF是菱形,故选D.2.求证:菱形的两条对角线互相垂直.已知:如图,四边形ABCD是菱形,对角线AC,BD交于点O.求证:AC⊥BD.以下是排乱的证明过程:①又BO=DO;②∴AO⊥BD,即AC⊥BD;③∵四边形ABCD是菱形;④∴AB=AD.证明步骤正确的顺序是()A.③→②→①→④B.③→④→①→②C.①→②→④→③D.①→④→③→②【分析】根据菱形是特殊的平行四边形以及等腰三角形的性质证明即可.【解答】证明:∵四边形ABCD是菱形,∴AB=AD,∵对角线AC,BD交于点O,∴BO=DO,∴AO⊥BD,即AC⊥BD,∴证明步骤正确的顺序是③→④→①→②,故选B.3.下列性质中菱形不一定具有的性质是()A.对角线互相平分B.对角线互相垂直C.对角线相等D.既是轴对称图形又是中心对称图形【分析】根据菱形的性质解答即可得.【解答】解:A、菱形的对角线互相平分,此选项正确;B、菱形的对角线互相垂直,此选项正确;C、菱形的对角线不一定相等,此选项错误;D、菱形既是轴对称图形又是中心对称图形,此选项正确;故选:C.4.如图,菱形ABCD的对角线AC、BD的长分别是6cm、8cm,AE⊥BC于点E,则AE的长是()A.cm B.cm C.cm D.5cm【分析】根据菱形的性质得出BO、CO的长,在RT△BOC中求出BC,利用菱形面积等于对角线乘积的一半,也等于BC×AE,可得出AE的长度.【解答】解:∵四边形ABCD是菱形,∴CO=AC=3cm,BO=BD=4cm,AO⊥BO,∴BC==5cm,∴S菱形ABCD==×6×8=24cm2,∵S菱形ABCD=BC×AE,∴BC×AE=24,∴AE=cm.故选:B.5.如图,四边形ABCD中,对角线相交于点O,E、F、G、H分别是AD、BD、BC、AC的中点,要使四边形EFGH是菱形,则四边形ABCD需满足的条件是()A.AB=AD B.AC=BD C.AD=BC D.AB=CD【分析】由点E、F、G、H分别是任意四边形ABCD中AD、BD、BC、CA的中点,根据三角形中位线的性质,可得EF=GH=AB,EH=FG=CD,又由当EF=FG=GH=EH时,四边形EFGH是菱形,即可求得答案.【解答】解:∵点E、F、G、H分别是任意四边形ABCD中AD、BD、BC、CA的中点,∴EF=GH=AB,EH=FG=CD,∵当EF=FG=GH=EH时,四边形EFGH是菱形,∴当AB=CD时,四边形EFGH是菱形.故选:D.6.如图,菱形ABCD的周长为16,面积为12,P是对角线BD上一点,分别作P点到直线AB、AD的垂线段PE、PF,则PE+PF等于()A.6 B.3 C.1.5 D.0.75【分析】连AP,由菱形ABCD的周长为16,根据了菱形的性质得AB=AD=4,并且S菱形ABCD=2S△ABD,则S△=×12=6,由于S△ABD=S△APB+S△APD,再根据三角形的面积公式得到•PE•AB+•PF•AD=6,即可得到ABDPE+PF的值.【解答】解:连AP,如图,∵菱形ABCD的周长为16,∴AB=AD=4,∴S菱形ABCD=2S△ABD,∴S△ABD=×12=6,而S△ABD=S△APB+S△APD,PE⊥AB,PF⊥AD,∴•PE•AB+•PF•AD=6,∴2PE+2PF=6,∴PE+PF=3.故选B.7.若菱形的周长为52cm,面积为120cm2,则它的对角线之和为()A.14cm B.17cm C.28cm D.34cm【分析】作出图形,根据菱形的对角线互相垂直平分可得AC⊥BD,AO=CO=AC,BO=DO=BD,然后根据菱形的面积等于对角线乘积的一半列式整理可得AO•BO=60,根据菱形的周长求出AB=13,再利用勾股定理可得AO2+BO2=169,然后利用完全平方公式整理并求出AO+BO,再求解即可.【解答】解:如图,∵四边形ABCD是菱形,∴AC⊥BD,AO=CO=AC,BO=DO=BD,∵菱形的面积为120cm2,∴AC•BD=120,即×2AO•2BO=120,所以,AO•BO=60,∵菱形的周长为52cm,∴AB=13cm,在Rt△AOB中,由勾股定理得,AO2+BO2=AB2=132=169,所以,(AO+BO)2=AO2+2AO•BO+BO2=169+60×2=289,所以,AO+BO=17,所以,AC+BD=2(AO+BO)=2×17=34cm.故选D.8.如图,作菱形ABCD的高AE,E为CD的中点.AE=cm,则菱形ABCD的周长是()A.4cm B.4cm C.4cm D.8cm【分析】通过解直角三角形ADE得到边AD的长度,然后由菱形的周长公式进行解答.【解答】解:在菱形ABCD中,AD=CD.∵E为CD的中点,AE⊥CD,∴ED=CD=AD,∴∠DAE=30°,∵AE=cm,∴AD===2(cm),∴菱形ABCD的周长=4AD=8cm.故选:D.9.如图,菱形ABCD中,过A作BD的平行线交CD的延长线于点E,下列结论:(1)∠EAC=90°,(2)DA=DE,(3)∠ABC=2∠E,其中正确的有()A.0个B.1个C.2个D.3个【分析】根据菱形的性质、平行线的性质、平行四边形的判定和性质等知识一一判断即可.【解答】解:∵四边形ABCD是菱形,∴AC⊥BD,AB∥CD,AB=AD,∠ABC=2∠ABD,∵AE∥BD,∴AE⊥AC,∴∠EAC=90°,故①正确,∵AB∥DE,AE∥BD,∴四边形ABDE是平行四边形,∴AB=DE,∠E=∠ABD,∴AD=DE,故②正确,∴∠ABC=2∠E,故③正确,故选D.10.如图,以△ABC的三边为边在BC的同侧分别作三个等边三角形,即△ABD、△BCE、△ACF,当△ABC 满足什么条件时,四边形ADEF是菱形?()A.AB=AC B.∠BAC=90°C.∠BAC=120°D.∠BAC=150°【分析】根据等边三角形性质得出BD=AB,BE=BC,∠DBA=∠EBC=60°,求出∠DBE,证△DBE≌△ABC,推出DE=AC=AF,同理AD=EF得出平行四边形ADEF,根据菱形的判定判断即可.【解答】解:∵△ABD和△BCE是等边三角形,∴BD=AB,BE=BC,∠DBA=∠EBC=60°,∴∠DBE=∠CBA=60°﹣∠EBA,在△DBE和△ABC中,,∴△DBE≌△ABC(SAS),∴DE=AC,∵△AFC是等边三角形,∴AF=AC,∴AF=DE,同理AD=EF,∴四边形ADEF是平行四边形,当AB=AC时,∵AD=AB,AC=AF,∴AD=AF,∴四边形ADEF是菱形,故选A.11.已知菱形的周长为4,两条对角线的和为6,则菱形的面积为()A.2 B.C.3 D.4【分析】由菱形的性质和勾股定理得出AO+BO=3,AO2+BO2=AB2,(AO+BO)2=9,求出2AO•BO=4,即可得出答案.【解答】解:如图四边形ABCD是菱形,AC+BD=6,∴AB=,AC⊥BD,AO=AC,BO=BD,∴AO+BO=3,∴AO2+BO2=AB2,(AO+BO)2=9,即AO2+BO2=5,AO2+2AO•BO+BO2=9,∴2AO•BO=4,∴菱形的面积=AC•BD=2AO•BO=4;故选:D.12.四个点A,B,C,D在同一平面内,从①AB∥CD;②AB=CD;③AC⊥BD;④AD=BC;⑤AD∥BC,这五个条件中任选三个,能使四边形ABCD是菱形的选法有()A.1种B.2种C.3种D.4种【分析】由平行四边形的判定方法和菱形的判定方法得出能使四边形ABCD是菱形的选法有4种,即可得出结论.【解答】解:∵AB∥CD,AB=CD,∴四边形ABCD是平行四边形,∵AC⊥BD,∴四边形ABCD是菱形;∴①②③能使四边形ABCD是菱形;∵AB∥CD,AD∥BC,∴四边形ABCD是平行四边形,∵AC⊥BD,∴四边形ABCD是菱形;∴①③⑤能使四边形ABCD是菱形;∵AD=BC,AD∥BC,∴四边形ABCD是平行四边形,∵AC⊥BD,∴四边形ABCD是菱形;∴③④⑤能使四边形ABCD是菱形;∵AB=CD,AD=BC,∴四边形ABCD是平行四边形,∵AC⊥BD,∴四边形ABCD是菱形;∴②③④能使四边形ABCD是菱形;∴能使四边形ABCD是菱形的选法有4种.故选:D.13.已知:如图,在菱形ABCD中,F为边AB的中点,DF与对角线AC交于点G,过G作GE⊥AD于点E,若AB=2,且∠1=∠2,则下列结论不正确的是()A.DF⊥AB B.CG=2GA C.CG=DF+GE D.S四边形BFGC=﹣1【分析】A、由四边形ABCD是菱形,得出对角线平分对角,求得∠GAD=∠2,得出AG=GD,AE=ED,由SAS证得△AFG≌△AEG,得出∠AFG=∠AEG=90°,即可得出A正确;B、由DF⊥AB,F为边AB的中点,证得AD=BD,证出△ABD为等边三角形,得出∠BAC=∠1=∠2=30°,由AC=2AB•cos∠BAC,AG=,求出AC,AG,即可得出B正确;C、由勾股定理求出DF=,由GE=tan∠2•ED求出GE,即可得出C正确;D、由S四边形BFGC=S△ABC﹣S△AGF求出数值,即可得出D不正确.【解答】解:∵四边形ABCD是菱形,∴∠FAG=∠EAG,∠1=∠GAD,AB=AD,∵∠1=∠2,∴∠GAD=∠2,∴AG=GD,∵GE⊥AD,∴GE垂直平分AD,∴AE=ED,∵F为边AB的中点,∴AF=AE,在△AFG和△AEG中,,∴△AFG≌△AEG(SAS),∴∠AFG=∠AEG=90°,∴DF⊥AB,∴A正确;∵DF⊥AB,F为边AB的中点,∴AF=AB=1,AD=BD,∵AB=AD,∴AD=BD=AB,∴△ABD为等边三角形,∴∠BAD=∠BCD=60°,∴∠BAC=∠1=∠2=30°,∴AC=2AB•cos∠BAC=2×2×=2,AG===,∴CG=AC﹣AG=2﹣=,∴CG=2GA,∴B正确;∵GE垂直平分AD,∴ED=AD=1,由勾股定理得:DF===,GE=tan∠2•ED=tan30°×1=,∴DF+GE=+==CG,∴C正确;∵∠BAC=∠1=30°,∴△ABC的边AC上的高等于AB的一半,即为1,FG=AG=,S四边形BFGC=S△ABC﹣S△AGF=×2×1﹣×1×=﹣=,∴D不正确;故选:D.14.如图,O是菱形ABCD的对角线AC、BD的交点,E、F分别是OA、OC的中点.下列结论:①S△ADE=S;②四边形BFDE也是菱形;③四边形ABCD的面积为EF×BD;④∠ADE=∠EDO;⑤△DEF是轴对称△EOD图形.其中正确的结论有()A.5个B.4个C.3个D.2个【分析】①正确,根据三角形的面积公式可得到结论.②根据已知条件利用菱形的判定定理可证得其正确.③正确,根据菱形的面积等于对角线乘积的一半即可求得.④不正确,根据已知可求得∠FDO=∠EDO,而无法求得∠ADE=∠EDO.⑤正确,由已知可证得△DEO≌△DFO,从而可推出结论正确.【解答】解:①正确∵E、F分别是OA、OC的中点.∴AE=OE.∵S△ADE=×AE×OD=×OE×OD=S△EOD∴S△ADE=S△EOD.②正确∵四边形ABCD是菱形,E,F分别是OA,OC的中点.∴EF⊥OD,OE=OF.∵OD=OD.∴DE=DF.同理:BE=BF∴四边形BFDE是菱形.③正确∵菱形ABCD的面积=AC×BD.E、F分别是OA、OC的中点.∴EF=AC.∴菱形ABCD的面积=EF×BD.④不正确,由已知可求得∠FDO=∠EDO,而无法求得∠ADE=∠EDO.⑤正确∵EF⊥OD,OE=OF,OD=OD.∴△DEO≌△DFO.∴△DEF是轴对称图形.∴正确的结论有四个,分别是①②③⑤,故选B.15.如图,在Rt△ABC中,∠ACB=90°,AC=BC=6cm,动点P从点A出发,沿AB方向以每秒cm的速度向终点B运动;同时,动点Q从点B出发沿BC方向以每秒1cm的速度向终点C运动,将△PQC沿BC 翻折,点P的对应点为点P′.设Q点运动的时间为t秒,若四边形QP′CP为菱形,则t的值为()A.B.2 C. D.3【分析】首先连接PP′交BC于O,根据菱形的性质可得PP′⊥CQ,可证出PO∥AC,根据平行线分线段成比例可得=,再表示出AP、AB、CO的长,代入比例式可以算出t的值.【解答】解:连接PP′交BC于O,∵若四边形QPCP′为菱形,∴PP′⊥QC,∴∠POQ=90°,∵∠ACB=90°,∴PO∥AC,∴=,∵设点Q运动的时间为t秒,∴AP=t,QB=t,∴QC=6﹣t,∴CO=3﹣,∵AC=CB=6,∠ACB=90°,∴AB=6,∴=,解得:t=2,故选:B.二.填空题(共9小题)16.如图,在∠MON的两边上分别截取OA、OB,使OA=OB;分别以点A、B为圆心,OA长为半径作弧,两弧交于点C;连接AC、BC、AB、OC.若AB=2cm,四边形OACB的面积为4cm2.则OC的长为4cm.【分析】根据作法判定出四边形OACB是菱形,再根据菱形的面积等于对角线乘积的一半列式计算即可得解.【解答】解:根据作图,AC=BC=OA,∵OA=OB,∴OA=OB=BC=AC,∴四边形OACB是菱形,∵AB=2cm,四边形OACB的面积为4cm2,∴AB•OC=×2×OC=4,解得OC=4cm.故答案为:4.17.如图,四边形ABCD是轴对称图形,且直线AC是对称轴,AB∥CD,则下列结论:①AC⊥BD;②AD ∥BC;③四边形ABCD是菱形;④△ABD≌△CDB.其中正确的是①②③④(只填写序号)【分析】根据轴对称图形的性质,结合菱形的判定方法以及全等三角形的判定方法分析得出答案.【解答】解:因为l是四边形ABCD的对称轴,AB∥CD,则AD=AB,∠1=∠2,∠1=∠4,则∠2=∠4,∴AD=DC,同理可得:AB=AD=BC=DC,所以四边形ABCD是菱形.根据菱形的性质,可以得出以下结论:所以①AC⊥BD,正确;②AD∥BC,正确;③四边形ABCD是菱形,正确;④在△ABD和△CDB中∵∴△ABD≌△CDB(SSS),正确.故答案为:①②③④.18.如图,四边形ABCD中,E,F,G,H分别是边AB、BC、CD、DA的中点.若四边形EFGH为菱形,则对角线AC、BD应满足条件AC=BD.【分析】添加的条件应为:AC=BD,把AC=BD作为已知条件,根据三角形的中位线定理可得,HG平行且等于AC的一半,EF平行且等于AC的一半,根据等量代换和平行于同一条直线的两直线平行,得到HG 和EF平行且相等,所以EFGH为平行四边形,又EH等于BD的一半且AC=BD,所以得到所证四边形的邻边EH与HG相等,所以四边形EFGH为菱形.【解答】解:添加的条件应为:AC=BD.证明:∵E,F,G,H分别是边AB、BC、CD、DA的中点,∴在△ADC中,HG为△ADC的中位线,所以HG∥AC且HG=AC;同理EF∥AC且EF=AC,同理可得EH=BD,则HG∥EF且HG=EF,∴四边形EFGH为平行四边形,又AC=BD,所以EF=EH,∴四边形EFGH为菱形.故答案为:AC=BD19.如图,在△ABC中,点D是BC的中点,点E,F分别在线段AD及其延长线上,且DE=DF.给出下列条件:①BE⊥EC;②BF∥CE;③AB=AC;从中选择一个条件使四边形BECF是菱形,你认为这个条件是③(只填写序号).【分析】首先利用对角线互相平分的四边形是平行四边形判定该四边形为平行四边形,然后结合菱形的判定得到答案即可.【解答】解:由题意得:BD=CD,ED=FD,∴四边形EBFC是平行四边形,①BE⊥EC,根据这个条件只能得出四边形EBFC是矩形,②BF∥CE,根据EBFC是平行四边形已可以得出BF∥CE,因此不能根据此条件得出菱形,③AB=AC,∵,∴△ADB≌△ADC,∴∠BAD=∠CAD∴△AEB≌△AEC(SAS),∴BE=CE,∴四边形BECF是菱形.故答案为:③.20.如图,菱形ABCD的周长为40,面积为25,P是对角线BD上一点,分别作P点到直线AB、AD的垂线段PE、PF,则PE+PF等于 2.5.【分析】直接利用菱形的性质得出AB=AD=10,S△ABD=12.5,进而利用三角形面积求法得出答案.【解答】解:∵菱形ABCD的周长为40,面积为25,∴AB=AD=10,S△ABD=12.5,∵分别作P点到直线AB、AD的垂线段PE、PF,∴×AB×PE+×PF×AD=12.5,∴×10(PE+PF)=12.5,∴PE+PF=2.5.故答案为:2.5.21.如图,菱形纸片ABCD,∠A=60°,P为AB中点,折叠菱形纸片ABCD,使点C落在DP所在的直线上,得到经过点D的折痕DE,则∠DEC等于75度.【分析】连接BD,由菱形的性质及∠A=60°,得到三角形ABD为等边三角形,P为AB的中点,利用三线合一得到DP为角平分线,得到∠ADP=30°,∠ADC=120°,∠C=60°,进而求出∠PDC=90°,由折叠的性质得到∠CDE=∠PDE=45°,利用三角形的内角和定理即可求出所求角的度数.【解答】解:连接BD,∵四边形ABCD为菱形,∠A=60°,∴△ABD为等边三角形,∠ADC=120°,∠C=60°,∵P为AB的中点,∴DP为∠ADB的平分线,即∠ADP=∠BDP=30°,∴∠PDC=90°,∴由折叠的性质得到∠CDE=∠PDE=45°,在△DEC中,∠DEC=180°﹣(∠CDE+∠C)=75°.故答案为:75.22.如图,菱形ABCD和菱形ECGF的边长分别为3和4,∠A=120°,则图中阴影部分的面积.【分析】作BM⊥FG于M,交EC于N,如图,根据菱形的性质得BC=CD=3,CG=GF=4,AB∥CE∥GF,∠ABC=∠BCD=∠CGF=120°,则∠BCN=∠BGM=60°,再根据含30度的直角三角形三边的关系,在Rt△BCN中可计算出BN=CN=,在Rt△BMG中可计算出BM=GM=,则MN=BM﹣BN=﹣=2,然后根据三角形面积公式和梯形面积公式,利用S阴影部分=S△BCD+S梯形CDFG﹣S△BGF进行计算即可.另一种解法为把阴影部分的面积转化为△BCD的面积进行计算.【解答】解:连接CF,如图,∵四边形ABCD和四边形CGFE为菱形,∠A=120°,∴∠DBC=∠FCG=30°,∴BD∥CF,∴S△FDB=S△CDB=S菱形ABCD=•2••32=.故答案为.23.如图,点E、F、G、H分别是任意四边形ABCD中AD、BD、BC、CA的中点,当四边形ABCD的边至少满足AB=CD条件时,四边形EFGH是菱形.【分析】首先利用三角形的中位线定理证出EF∥AB,EF=AB,HG∥AB,HG=AB,可得四边形EFGH是平行四边形,再根据邻边相等的平行四边形是菱形,添加条件AB=CD后,证明EF=EH即可.【解答】解:需添加条件AB=CD.∵E,F是AD,DB中点,∴EF∥AB,EF=AB,∵H,G是AC,BC中点,∴HG∥AB,HG=AB,∴EF∥HG,EF=HG,∴四边形EFGH是平行四边形,∵E,H是AD,AC中点,∴EH=CD,∵AB=CD,∴EF=EH,∴四边形EFGH是菱形.故答案为:AB=CD.24.如图,在Rt△ABC中,∠C=90°,AC=BC=6cm,点P从点B出发,沿BA方向以每秒cm的速度向终点A运动;同时,动点Q从点C出发沿CB方向以每秒1cm的速度向终点B运动,将△BPQ沿BC翻折,点P的对应点为点P′.设Q点运动的时间t秒,若四边形QPBP′为正方形,则t的值为2.【分析】根据正方形的判定定理得到BQ=BP时,四边形QPBP′为正方形进行解答即可.【解答】解:由题意得,当△BPQ为等腰直角三角形时,四边形QPBP′为正方形,则BQ=BP,即6﹣t=×t,解得t=2.故答案为:2.三.解答题(共9小题)25.如图,AD是△ABC的角平分线,过点D分别作AC和AB的平行线,交AB于E,交AC于F,求证:四边形AEDF是菱形.【分析】由已知易得四边形AEDF是平行四边形,由角平分线和平行线的定义可得∠FAD=∠FDA,∴AF=DF,∴四边形AEDF是菱形;【解答】证明:∵AD是△ABC的角平分线,∴∠EAD=∠FAD,∵DE∥AC,DF∥AB,∴四边形AEDF是平行四边形,∠EAD=∠ADF,∴∠FAD=∠FDA∴AF=DF,∴四边形AEDF是菱形.26.如图所示,已知四边形ABCD,ADEF都是菱形,∠BAD=∠FAD,∠BAD为锐角.(1)求证:AD⊥BF;(2)若BF=BC,求∠ADC的度数.【分析】(1)连结DB 、DF .根据菱形四边相等得出AB=AD=FA ,再利用SAS 证明△BAD ≌△FAD ,得出DB=DF ,那么D 在线段BF 的垂直平分线上,又AB=AF ,即A 在线段BF 的垂直平分线上,进而证明AD ⊥BF ;(2)设AD ⊥BF 于H ,作DG ⊥BC 于G ,证明DG=CD .在直角△CDG 中得出∠C=30°,再根据平行线的性质即可求出∠ADC=180°﹣∠C=150°.【解答】(1)证明:如图,连结DB 、DF .∵四边形ABCD ,ADEF 都是菱形,∴AB=BC=CD=DA ,AD=DE=EF=FA .在△BAD 与△FAD 中,,∴△BAD ≌△FAD ,∴DB=DF ,∴D 在线段BF 的垂直平分线上, ∵AB=AF ,∴A 在线段BF 的垂直平分线上,∴AD 是线段BF 的垂直平分线,∴AD ⊥BF ;(2)如图,设AD ⊥BF 于H ,作DG ⊥BC 于G ,则四边形BGDH 是矩形,∴DG=BH=BF .∵BF=BC ,BC=CD ,∴DG=CD .在直角△CDG 中,∵∠CGD=90°,DG=CD ,∴∠C=30°,∵BC ∥AD ,∴∠ADC=180°﹣∠C=150°.27.如图,△ABC 中,AB=AC ,∠BAC=40°,将△ABC 绕点A 按逆时针方向旋转100°.得到△ADE ,连接BD ,CE 交于点F .(1)求证:△ABD ≌△ACE ;(2)求证:四边形ABFE 是菱形.【分析】(1)根据旋转角求出∠BAD=∠CAE ,然后利用“边角边”证明△ABD 和△ACE 全等.(2)根据对角相等的四边形是平行四边形,可证得四边形ABFE 是平行四边形,然后依据邻边相等的平行四边形是菱形,即可证得.【解答】(1)证明:∵ABC绕点A按逆时针方向旋转100°,∴∠BAC=∠DAE=40°,∴∠BAD=∠CAE=100°,又∵AB=AC,∴AB=AC=AD=AE,在△ABD与△ACE中,,∴△ABD≌△ACE(SAS).(2)证明:∵∠BAD=∠CAE=100°AB=AC=AD=AE,∴∠ABD=∠ADB=∠ACE=∠AEC=40°.∵∠BAE=∠BAD+∠DAE=140°,∴∠BFE=360°﹣∠BAE﹣∠ABD﹣∠AEC=140°,∴∠BAE=∠BFE,∴四边形ABFE是平行四边形,∵AB=AE,∴平行四边形ABFE是菱形.28.如图,AE∥BF,AC平分∠BAE,且交BF于点C,BD平分∠ABF,且交AE于点D,连接CD.(1)求证:四边形ABCD是菱形;(2)若∠ADB=30°,BD=6,求AD的长.【分析】(1)由平行线的性质和角平分线定义得出∠ABD=∠ADB,证出AB=AD,同理:AB=BC,得出AD=BC,证出四边形ABCD是平行四边形,即可得出结论;(2)由菱形的性质得出AC⊥BD,OD=OB=BD=3,再由三角函数即可得出AD的长.【解答】(1)证明:∵AE∥BF,∴∠ADB=∠CBD,又∵BD平分∠ABF,∴∠ABD=∠CBD,∴∠ABD=∠ADB,∴AB=AD,同理:AB=BC,∴AD=BC,∴四边形ABCD是平行四边形,又∵AB=AD,∴四边形ABCD是菱形;(2)解:∵四边形ABCD是菱形,BD=6,∴AC⊥BD,OD=OB=BD=3,∵∠ADB=30°,∴cos∠ADB==,∴AD==2.29.如图,△ABC是以BC为底的等腰三角形,AD是边BC上的高,点E、F分别是AB、AC的中点.(1)求证:四边形AEDF是菱形;(2)如果四边形AEDF的周长为12,两条对角线的和等于7,求四边形AEDF的面积S.【分析】(1)先根据直角三角形斜边上中线的性质,得出DE=AB=AE,DF=AC=AF,再根据AB=AC,点E、F分别是AB、AC的中点,即可得到AE=AF=DE=DF,进而判定四边形AEDF是菱形;(2)设EF=x,AD=y,则x+y=7,进而得到x2+2xy+y2=49,再根据Rt△AOE中,AO2+EO2=AE2,得到x2+y2=36,据此可得xy=,进而得到菱形AEDF的面积S.【解答】解:(1)∵AD⊥BC,点E、F分别是AB、AC的中点,∴Rt△ABD中,DE=AB=AE,Rt△ACD中,DF=AC=AF,又∵AB=AC,点E、F分别是AB、AC的中点,∴AE=AF,∴AE=AF=DE=DF,∴四边形AEDF是菱形;(2)如图,∵菱形AEDF的周长为12,∴AE=3,设EF=x,AD=y,则x+y=7,∴x2+2xy+y2=49,①∵AD⊥EF于O,∴Rt△AOE中,AO2+EO2=AE2,∴(y)2+(x)2=32,即x2+y2=36,②把②代入①,可得2xy=13,∴xy=,∴菱形AEDF的面积S=xy=.30.如图,在四边形ABCD中,AB=AD,CB=CD,E是CD上一点,BE交AC于F,连接DF.(1)证明:∠BAC=∠DAC,∠AFD=∠CFE;(2)若AB∥CD,试证明四边形ABCD是菱形;(3)在(2)的条件下,若BE⊥CD,试证明∠EFD=∠BCD.【分析】(1)先判断出△ABC≌△ADC得到∠BAC=∠DAC,再判断出△ABF≌△ADF得出∠AFB=∠AFD,最后进行简单的推算即可;(2)先由平行得到角相等,用等量代换得出∠DAC=∠ACD,最后判断出四边相等;(3)由(2)得到判断出△BCF≌△DCF,结合BE⊥CD即可.【解答】证明:(1)在△ABC和△ADC中.∴△ABC≌△ADC,∴∠BAC=∠DAC,在△ABF和△ADF中,∴△ABF≌△ADF,∴∠AFB=∠AFD,∵∠CFE=∠AFB,∴∠AFD=∠CFE,∴∠BAC=∠DAC,∠AFD=∠CFE;(2)∵AB∥CD,∴∠BAC=∠ACD,∵∠BAC=∠DAC,∴∠BAC=∠ACD,∴∠DAC=∠ACD,∴AD=CD,∵AB=AD,CB=CD,∴AB=CB=CD=AD,∴四边形ABCD是菱形;(3)∵四边形ABCD是菱形,∴BC=CD,∠BCF=∠DCF,∵CF=CF,∴△BCF≌△DCF,∴∠CBF=∠CDF,∵BE⊥CD,∴∠BEC=∠DEF=90°,∴∠EFD=∠BCD.31.如图,在△ABC中,∠ACB=90°,点D,E分别是边BC,AB上的中点,连接DE并延长至点F,使EF=2DE,连接CE、AF.(1)证明:AF=CE;(2)当∠B=30°时,试判断四边形ACEF的形状并说明理由.【分析】(1)由三角形中位线定理得出DE∥AC,AC=2DE,求出EF∥AC,EF=AC,得出四边形ACEF是平行四边形,即可得出AF=CE;(2)由直角三角形的性质得出∠BAC=60°,AC=AB=AE,证出△AEC是等边三角形,得出AC=CE,即可得出结论.【解答】(1)证明:∵点D,E分别是边BC,AB上的中点,∴DE∥AC,AC=2DE,∵EF=2DE,∴EF∥AC,EF=AC,∴四边形ACEF是平行四边形,∴AF=CE;(2)解:当∠B=30°时,四边形ACEF是菱形;理由如下:∵∠ACB=90°,∠B=30°,∴∠BAC=60°,AC=AB=AE,∴△AEC是等边三角形,∴AC=CE,又∵四边形ACEF是平行四边形,∴四边形ACEF是菱形.32.如图,在△ABC中,∠ABC=90°,BD为AC的中线,过点C作CE⊥BD于点E,过点A作BD的平行线,交CE的延长线于点F,在AF的延长线上截取FG=BD,连接BG、DF.(1)求证:四边形BDFG是菱形;(2)若AF=8,CF=6,求四边形BDFG的面积.【分析】(1)首先可判断四边形BDFG是平行四边形,再由直角三角形斜边中线等于斜边一半,可得BD=FD,则可证明四边形BDFG是菱形;(2)首先过点B作BH⊥AG于点H,由AF=8,CF=6,可利用勾股定理求得AC的长,即可求得DF的长,然后由菱形的性质求得BG=GF=DF=5,再求出EF的长即可解决问题.【解答】证明:(1)∵AG∥BD,BD=FG,∴四边形BGFD是平行四边形,∵CE⊥BD,∴CE⊥AG,又∵BD为AC的中线,∴BD=DF=AC,∴四边形BDFG是菱形,(2)∵AF=8,CF=6,CF⊥AG,∴AC==10,∴DF=AC=5,∵四边形BDFG是菱形,∴BD=GF=DF=5,∵DE∥AG,CD=AD,∴CE=EF=3∴S菱形BDFG=GF•EF=15.33.如图所示,在菱形ABCD中,AB=4,∠BAD=120°,△AEF为正三角形,点E、F分别在菱形的边BC、CD上滑动,且E、F不与B、C、D重合.(1)证明不论E、F在BC、CD上如何滑动,总有BE=CF;(2)当点E、F在BC、CD上滑动时,分别探讨四边形AECF和△CEF的面积是否发生变化?如果不变,求出这个定值;如果变化,求出最大(或最小)值.【分析】(1)先求证AB=AC,进而求证△ABC、△ACD为等边三角形,得∠4=60°,AC=AB进而求证△ABE ≌△ACF,即可求得BE=CF;(2)根据△ABE≌△ACF可得S△ABE=S△ACF,故根据S四边形AECF=S△AEC+S△ACF=S△AEC+S△ABE=S△ABC即可解题;当正三角形AEF的边AE与BC垂直时,边AE最短.△AEF的面积会随着AE的变化而变化,且当AE最短时,正三角形AEF的面积会最小,又根据S△CEF=S四边形AECF﹣S△AEF,则△CEF的面积就会最大.【解答】(1)证明:连接AC,如下图所示,∵四边形ABCD为菱形,∠BAD=120°,∠1+∠EAC=60°,∠3+∠EAC=60°,∴∠1=∠3,∵∠BAD=120°,∴∠ABC=60°,∴△ABC和△ACD为等边三角形,∴∠4=60°,AC=AB,∴在△ABE和△ACF中,,∴△ABE≌△ACF(ASA).∴BE=CF;(2)解:四边形AECF的面积不变,△CEF的面积发生变化.理由:由(1)得△ABE≌△ACF,则S△ABE=S△ACF,故S四边形AECF=S△AEC+S△ACF=S△AEC+S△ABE=S△ABC,是定值,作AH⊥BC于H点,则BH=2,S四边形AECF=S△ABC=BC•AH=BC•=4,由“垂线段最短”可知:当正三角形AEF的边AE与BC垂直时,边AE最短.故△AEF的面积会随着AE的变化而变化,且当AE最短时,正三角形AEF的面积会最小,又S△CEF=S四边形AECF﹣S△AEF,则此时△CEF的面积就会最大.∴S△CEF=S四边形AECF﹣S△AEF=4﹣×2×=.答:最大值是.。
中考数学菱形专题练习
AC图5中考菱形专题 附参考答案1、(2012•泸州)如图,菱形 ABCD 的两条对角线相交于 O ,若 AC=6,BD=4,则菱 形 ABCD 的周长是( ) A .24 B .16 C .4 D .2DGO HB3 题图2、(2013 凉山州)如图,菱形 ABCD 中,∠B=60°,AB=4,则以 AC 为边长的正 方形 ACEF 的周长为( ) A .14 B .15 C .16 D .173、(2013•绵阳)如图,四边形 ABCD 是菱形,对角线 AC =8cm ,BD =6cm ,DH ⊥AB 于点 H ,且 DH 与 AC 交于 G ,则 GH =()A . 28 cm B . 21 cm C . 28 cm D . 25 cm252015214、(2013•内江)已知菱形 ABCD 的两条对角线分别为 6 和 8,M 、N 分别是边 BC 、 CD 的中点,P 是对角线 BD 上一点,则 PM+PN 的最小值= .DCAB DAPC (5 题)BE E FC5、(2013• 淄博)如图,菱形纸片 ABCD 中,∠ A =60 °,折叠菱形纸片 ABCD ,使点 C 落在 DP (P 为 AB 中点)所在的直线上,得到经过点 D 的折痕 DE .则∠DEC的大小为(A )78°(B )75°(C )60°(D )45° 6、(2013•黔西南州)如图 5 所示,菱形 ABCD 的边长为 4,且 AE ⊥ BC 于 E , AF ⊥ CD 于 F ,∠B=60°,则菱形的面积为_________。
7、(2013,河北).如图 4,菱形 ABCD 中,点 M ,N 在 AC 上,ME ⊥AD , NF ⊥AB . 若 NF = NM = 2,ME = 3,则 AN =8、(2013•安徽)如图,菱形 ABCD 的两条对角线分别长 6 和 8,点 P 是对角线AC 上的一个动点,点 M 、N 分别是边 AB 、BC 的中点,则 PM + PN 的最小值是___________.9、(2013•临沂)如图,菱形ABCD中,AB=4,∠B=60°,AE⊥BC,AF⊥CD,垂足分别为E,F,连接△E F,则AEF的面积是.DAPCMBN第8题图10、(2013•黄冈)如图,四边形ABCD是菱形,对角线AC、BD相交于点O,DH⊥AB于H,连接OH,求证:∠DHO=∠DCO.10题图11、(2013•遂宁)如图,已知四边形A BCD是平行四边形,DE⊥AB,DF⊥BC,垂足分别是E、F,并且DE=DF.求证:(△1)ADE≌△CDF;(2)四边形ABCD是菱形.12、(2013•恩施州)如图所示,在梯形ABCD中,AD∥BC,AB=CD,E、F、G、H 分别为边AB、BC、CD、DA的中点,求证:四边形EFGH为菱形.13、(2013•常州)如图,在△ABC中,AB=AC,∠B=60°,∠FAC、∠ECA是△ABC 的两个外角,AD平分∠FAC,CD平分∠ECA.求证:四边形ABCD是菱形.14、(2013•南宁)如图,在菱形ABCD中,AC为对角线,点E、F分别是边BC、AD的中点.(△1)求证:ABE≌△CDF;(2)若∠B=60°,AB=4,求线段AE的长.15、(2013泰安)如图,在四边形ABCD中,AB=AD,CB=CD,E是CD上一点,BE交AC于F,连接DF.(1)证明:∠BAC=∠DAC,∠AFD=∠CFE.(2)若AB∥CD,试证明四边形ABCD是菱形;(3)在(2)的条件下,试确定E点的位置,∠EFD=∠BCD,并说明理由.16、(2013•乌鲁木齐)如图.在△ABC中,∠ACB=90°,CD⊥AB于D,AE平分∠BAC,分别于BC、CD交于E、F,EH⊥AB于H.连接FH,求证:四边形CFHE是菱形.17、(2013•临沂)如图,在△ABC中,AD是BC边上的中线,E是AD的中点,过点A作BC的平行线交BE的延长线于点F,连接CF.(1)求证:AF=DC;(2)若AB⊥AC,试判断四边形ADCF的形状,并证明你的结论.18、(2013•龙岩)如图,四边形ABCD是菱形,对角线AC与BD交于点O,且AC=80,BD=60.动点M、N分别以每秒1个单位的速度从点A、D同时出发,分别沿A O D和D A运动,当点N到达点A时,M、N同时停止运动.设运动时间为t秒.(1)求菱形ABCD的周长;(2)记D D MN的面积为S,求S关于t的解析式,并求S的最大值;(3)当t=30秒时,在线段OD的垂直平分线上是否存在点P,使得∠DPO=∠DON?若存在,这样的点P有几个?并求出点P到线段OD的距离;若不存在,请说明理由.(第18题图)cm B . cm C . cmD . cmAC答案考点:菱形的性质;等边三角形的判定与性质;正方形的性质.分析:根据菱形得出 AB=BC ,得出等边三角形 ABC ,求出 AC ,长,根据正方形的性质得出 AF=EF=EC=AC=4,求出即可. 解答:解:∵四边形 ABCD 是菱形, ∴AB=BC , ∵∠B=60°,∴△ABC 是等边三角形, ∴AC=AB=4,∴正方形 ACEF 的周长是 AC+CE+EF+AF=4×4=16, 故选 C .(2013•绵阳)如图,四边形 ABCD 是菱形,对角线 AC =8cm ,BD =6cm ,DH ⊥AB 于点 H ,且DH 与 AC 交于 G ,则 GH =()A . 28 21 28 2525 20 15 21DGOH(2013•内江)已知菱形 ABCD 的两条对角线分别为 6 和 8,M 、N 分别是边 BC 、CD 的中点,BP 是对角线 BD 上一点,则 PM+PN 的最小值= 5 .10 题图考点:轴对称-最短路线问题;菱形的性质.分析:作 M 关于 BD 的对称点 Q ,连接 NQ ,交 BD 于 P ,连接 MP ,此时 MP+NP 的值最小,连接 AC ,求出 OC 、OB ,根据勾股定理求出 BC 长,证出 MP+NP=QN=BC ,即可得出答案.解答:解:作 M 关于 BD 的对称点 Q ,连接 NQ ,交 BD 于 P ,连接 MP ,此时 MP+NP 的值最小,连 接 AC ,∵四边形 ABCD 是菱形, ∴AC ⊥BD ,∠QBP=∠MBP , 即 Q 在 AB 上,∵MQ⊥BD,∴AC∥MQ,∵M为BC中点,∴Q为AB中点,∵N为CD中点,四边形ABCD是菱形,∴BQ∥CD,BQ=CN,∴四边形BQNC是平行四边形,∴NQ=BC,∵四边形ABCD是菱形,∴CO=AC=3,BO=BD=4,在△Rt BOC中,由勾股定理得:BC=5,即NQ=5,∴MP+NP=QP+NP=QN=5,故答案为:5.点评:本题考查了轴对称﹣最短路线问题,平行四边形的性质和判定,菱形的性质,勾股定理的应用,解此题的关键是能根据轴对称找出P的位置.(2013•遂宁)如图,已知四边形ABCD是平行四边形,DE⊥AB,DF⊥BC,垂足分别是E、F,并且DE=DF.求证:(1△)ADE≌△CDF;(2)四边形ABCD是菱形.(2013•恩施州)如图所示,在梯形ABCD中,AD∥BC,AB=CD,E、F、G、H分别为边AB、BC、CD、DA的中点,求证:四边形EFGH为菱形.(2013•黄冈)如图,四边形ABCD是菱形,对角线AC、BD相交于点O,DH⊥AB于H,连接OH,求证:∠DHO=∠DCO.N A Dt∴MP=t=3∵Sin∠ADO==∴MP=(70-t)17题图(2013龙岩)如图,四边形ABCD是菱形,对角线AC与BD交于点O,且AC=80,BD=60.动点M、分别以每秒1个单位的速度从点、同时出发,分别沿A O D 和D A运动,当点N到达点A时,M、N同时停止运动.设运动时间为秒.(1)求菱形ABCD的周长;(2)记D D MN的面积为S,求S关于t的解析式,并求S的最大值;(3)当t=30秒时,在线段OD的垂直平分线上是否存在点P,使得∠DPO=∠DON?若存在,这样的点P有几个?并求出点P到线段OD的距离;若不存在,请说明理由.(第25题图).(1)在菱形ABCD中,∵AC⊥BD∴AD=302+402=50.∴菱形ABCD的周长为200.·····························4分(2)过点M作MP⊥AD,垂足为点P.①当0<t≤40∵Sin∠OAD=MP OD3==AM AD5351∴S=⨯DN•MP210t2························································································································6分②当40<t≤50时,∴MD=80-tMP AOMD AD452= - t 2 + 28t = - (t - 35)2 + 490 ··························································································8 分⎪⎪10 t ,0 < t ≤ 40则NF = ND • Sin ∠ODA = 30 ⨯ = = 24DF = ND • Cos ∠ODA = 30 ⨯ 30 = = 2 ····································································11 分 ∴FG = OF+ ON 12 + 12 5 1 + 5 tan ∠GOF == 1 +5 =∴ ∠DPK = ∠DPO = ∠DON = ∠FOG ··································································12 分∴PK = ···········································································································13 分∴存在两个点 P 到 OD 的距离都是 15( 5 + 1)∴ S ∆DMN = 1DN • MP2 25 5⎧ 3 2 ∴ S =⎨⎪- 2(t - 35)2 + 490,40 < t ≤ 50 ⎪⎩ 5当 0<t ≤40 时,S 随 t 的增大而增大,当 t =40 时,最大值为 480.当 40<t ≤50 时,S 随 t 的增大而减小,当 t =40 时,最大值为 480.综上所述,S 的最大值为 480. ····························································································· 9 分 (3)存在 2 个点 P ,使得∠DPO =∠DON .········································································ 10 分 方法一:过点 N 作 NF ⊥OD 于点 F ,40 12050 5,90= = 18.50 5∴OF =12,∴ tan ∠NOD =NF 24 OF 12作 ∠NOD 的平分线交 NF 于点 G ,过点 G 作 GH ⊥ON 于点 H . ∴ S ∆ONF 1= OF • NF = S2∆OGN + S ∆OFG 1 1 1 = OF • FG + ON • GH = (OF + ON ) • FG 2 2 2OF • NF 12 + 24 24= =24∴ GF 2 OF 12 1 + 5设 OD 中垂线与 OD 的交点为 K ,由对称性可知:1 12 2 ∴ DK 15 2tan ∠DPK == = PK PK 1 + 515( 5 + 1)2根据菱形的对称性可知,在线段 OD 的下方存在与点 P 关于 OD 轴对称的点 P ' .2.··························································14 分方法二:如图,作 ON 的垂直平分线,交 EF 于点 I ,连结 OI ,IN.过点 N 作 NG ⊥OD ,NH ⊥EF ,垂足分别为 G ,H. 当 t =30 时,DN =OD =30,易知△DNG ∽△DAO ,∴即DN NG DG= = . DA AO OD 30 NG DG= = . 50 40 30⎪⎪∴PE=PI+IE=15+155.····························································································13分∴存在两个点P,到OD的距离都是.∴NG=24,DG=18.·······································································································10分∵EF垂直平分OD,∴OE=ED=15,EG=NH=3.······················································································11分设OI=R,EI=x,则在△Rt OEI中,有R2=152+x2①在△Rt NIH中,有R2=32+(24-x)2②⎧15x=2由①、②可得:⎨⎪R=155⎪⎩22根据对称性可得,在BD下方还存在一个点P'也满足条件.15(5+1)2(2013△?常州)如图,在ABC中,AB=AC,∠B=60°,∠FAC、∠ECA是△ABC的两个外角,AD平分∠FAC,CD平分∠ECA.求证:四边形ABCD是菱形.(2013•南京)如图,将菱形纸片ABCD折迭,使点A恰好落在菱形的对称中心O处,折痕为EF。
【精编版】中考数学专题训练——菱形的判定和性质
中考专题训练——菱形的判定和性质1.如图,在△ABC中,BA=BC,BD平分∠ABC交AC于点D,点E在线段BD上,点F 在BD的延长线上,且DE=DF,连接AE,CE,AF,CF.(1)求证:四边形AECF是菱形;(2)若BA⊥AF,AD=4,BC=4,求BD和AE的长.2.如图,△ABC中,∠ACB的平分线交AB于点D,作CD的垂直平分线,分别交AC、DC、BC于点E、G、F,连接DE、DF.(1)求证:四边形DFCE是菱形;(2)若∠ABC=60°,∠ACB=45°,BD=2,试求BF的长.3.在Rt△ABC中,∠BAC=90°,D是BC的中点,E是AD的中点,过点A作AF∥BC 交BE的延长线于点F.(1)证明四边形ADCF是菱形;(2)若AC=4,AB=5,求菱形ADCF的面积.4.在Rt△ABC中,∠BAC=90°,D是BC的中点,E是AD的中点,过点A作AF∥BC 交BE的延长线于点F.(1)证明四边形ADCF是菱形;(2)若AC=4,AB=5,求菱形ADCF的面积.5.如图,△ABC中,∠BCA=90°,CD是边AB上的中线,分别过点C,D作BA和BC 的平行线,两线交于点E,且DE交AC于点O,连接AE.(1)求证:四边形ADCE是菱形;(2)若∠B=60°,BC=6,求四边形ADCE的面积.6.在四边形ABCD中,AD∥BC,AC平分∠BAD,BD平分∠ABC.(1)如图1,求证:四边形ABCD是菱形;(2)如图2,过点D作DE⊥BD交BC延长线于点E,在不添加任何辅助线的情况下,请直接写出图中所有与△CDE面积相等的三角形(△CDE除外)7.已知:如图,在△ABC中,直线PQ垂直平分AC,与边AB交于点E,连接CE,过点C 作CF∥BA交PQ于点F,连接AF.(1)求证:四边形AECF是菱形;(2)若AD=3,AE=5,则求菱形AECF的面积.8.如图,在△ABC中,D、E分别是AB、AC的中点,BE=2DE,延长DE到点F,使得EF=BE,连接CF.(1)求证:四边形BCFE是菱形;(2)若CE=2,∠BCF=120°,求菱形BCFE的面积.9.如图,在▱ABCD中,AE⊥BC,AF⊥CD,垂足分别为E,F,且BE=DF.(1)求证:▱ABCD是菱形;(2)若AB=5,AC=6,求▱ABCD的面积.10.如图,在△ABC中,AB=AC,E,D,F分别是边AB,BC,CA的中点.(1)求证:四边形AEDF是菱形;(2)若∠B=30°,AB=12,求四边形AEDF的面积.11.如图,在四边形ABCD中,AB∥DC,过对角线AC的中点O作EF⊥AC分别交边AB,CD于点E,F,连接CE,AF.(1)求证:四边形AECF是菱形;(2)若EF=6,AE=5,求四边形AECF的面积.12.如图,△ABC中,∠BCA=90°,CD是边AB上的中线,分别过点C,D作BA和BC 的平行线,两线交于点E,且DE交AC于点O,连接AE.(1)求证:四边形ADCE是菱形;(2)若∠B=60°,BC=6,求四边形ADCE的面积.13.如图,在▱ABCD中,CE平分∠BCD,交AD于点E,DF平分∠ADC,交BC于点F,CE与DF交于点P,连接EF,BP.(1)求证:四边形CDEF是菱形;(2)若AB=2,BC=3,∠A=120°,求BP的值.14.如图,△ABC是以BC为底的等腰三角形,AD是边BC上的高,点E、F分别是AB、AC的中点.(1)求证:四边形AEDF是菱形;(2)如果四边形AEDF的周长为12,两条对角线的和等于7,求四边形AEDF的面积S.15.如图,△ABC中,∠ACB=90°,∠A=30°,CD为△ABC的中线,作CO⊥AB于O,点E在CO延长线上,DE=AD,连接BE、DE.(1)求证:四边形BCDE为菱形;(2)把△ABC分割成三个全等的三角形,需要两条分割线段,若AC=6,求两条分割线段长度的和.16.如图,△ABC中,AD是边BC上的中线,过点A作AE∥BC,过点D作DE∥AB,DE 与AC、AE分别交于点O、点E,联结EC.(1)求证:AD=EC;(2)若BC=2AD,AB=AO=m,求证:S四边形ADCE=m2.(其中S表示四边形ADCE 的面积)17.如图,在△ABC中,∠C=90°,BD平分∠ABC交AC于点D,过D作DE∥BC交AB 于点E,DF∥AB交BC于点F,连接EF.(1)求证:四边形BFDE是菱形;(2)若AB=8,AD=4,求BF的长.18.如图,等腰三角形ABC中,AB=AC,AD平分∠BAC交BC于点D,在线段AD上任取一点P(点A除外),过点P作EF∥AB,分别交AC,BC于点E和点F,作PQ∥AC,交AB于点Q,连接QE.(1)求证:四边形AEPQ为菱形;(2)当点P在何处时,菱形AEPQ的面积为四边形EFBQ面积的一半?19.已知:如图,四边形ABCD是平行四边形,分别以AB、AD为腰作等腰三角形△ABF 和等腰三角形△ADE,且顶角∠BAF=∠DAE,连结BD、EF相交于点G,BD与AF相交于点H.(1)求证:BD=EF;(2)若∠GHF=∠BFG,求证:四边形ABCD是菱形;(3)在(2)的条件下,当∠BAF=∠DAE=90°时,连结BE,若BF=4,求△BEF的面积.20.如图,在四边形ABCD中,AB=AD,CB=CD,E是CD上的点,BE交AC于点F,连接DF.(1)求证:∠BAF=∠DAF,∠AFD=∠CFE;(2)若AB∥CD,试证明:四边形ABCD是菱形;(3)在(2)的条件下,试确定点E的位置,使得∠EFD=∠BCD,并说理由.参考答案:1.如图,在△ABC中,BA=BC,BD平分∠ABC交AC于点D,点E在线段BD上,点F 在BD的延长线上,且DE=DF,连接AE,CE,AF,CF.(1)求证:四边形AECF是菱形;(2)若BA⊥AF,AD=4,BC=4,求BD和AE的长.【分析】(1)根据对角线互相平分且垂直即可证明四边形AECF是菱形;(2)根据等腰三角形的性质和勾股定理可得BD=8,设DE=x,则DF=x,所以AF2=AD2+DF2=16+x2,BF=BD+DF=8+x,然后利用勾股定理即可解决问题.【解答】(1)证明:∵BA=BC,BD平分∠ABC,∴BD⊥AC,AD=CD,∵DE=DF,∴四边形AECF是菱形;(2)解:AD⊥BD,AD=4,BA=BC=4,∴BD===8,设DE=x,则DF=x,∴AF2=AD2+DF2=16+x2,∵BF=BD+DF=8+x,∴AB2+AF2=BF2,∴(4)2+16+x2=(8+x)2,∴x=2,∴DE=DF=2,∴AE===2.∴BD和AE的长分别为8和2.2.如图,△ABC中,∠ACB的平分线交AB于点D,作CD的垂直平分线,分别交AC、DC、BC于点E、G、F,连接DE、DF.(1)求证:四边形DFCE是菱形;(2)若∠ABC=60°,∠ACB=45°,BD=2,试求BF的长.【分析】(1)先根据垂直平分线的性质得:DE=CE,DF=FC,证明△CGE≌△CGF (ASA),根据对角线互相平分的四边形是平行四边形得:四边形DFCE是平行四边形,再由一组邻边相等的平行四边是菱形可得结论;(2)作辅助线,构建直角三角形,根据直角三角形30°的性质可得BH=1,由勾股定理得:DH=,根据△DHF是等腰直角三角形,可得DH=FH=,从而得结论.【解答】(1)证明:∵EF是DC的垂直平分线,∴DE=EC,DF=CF,∠EGC=∠FGC=90°,DG=CG∵CD平分∠ACB,∴∠ECG=∠FCG,∵CG=CG,∴△CGE≌△CGF(ASA),∴GE=GF,∴四边形DFCE是平行四边形,∵DE=CE,∴四边形DFCE是菱形;(2)解:过D作DH⊥BC于H,则∠DHF=∠DHB=90°,∵∠ABC=60°,∴∠BDH=30°,∴BH=BD=1,在Rt△DHB中,DH==,∵四边形DFCE是菱形,∴DF∥AC,∴∠DFB=∠ACB=45°,∴△DHF是等腰直角三角形,∴DH=FH=,∴BF=BH+FH=1+.3.在Rt△ABC中,∠BAC=90°,D是BC的中点,E是AD的中点,过点A作AF∥BC 交BE的延长线于点F.(1)证明四边形ADCF是菱形;(2)若AC=4,AB=5,求菱形ADCF的面积.【分析】(1)首先根据题意画出图形,由E是AD的中点,AF∥BC,易证得△AFE≌△DBE,即可得AF=BD,又由在Rt△ABC中,∠BAC=90°,D是BC的中点,可得AD=BD=CD=AF,证得四边形ADCF是平行四边形,继而判定四边形ADCF是菱形;(2)首先连接DF,易得四边形ABDF是平行四边形,即可求得DF的长,然后由菱形的面积等于其对角线积的一半,求得答案.【解答】(1)证明:如图,∵AF∥BC,∴∠AFE=∠DBE,∵E是AD的中点,AD是BC边上的中线,∴AE=DE,BD=CD,在△AFE和△DBE中,,∴△AFE≌△DBE(AAS);∴AF=DB.∵DB=DC,∴AF=CD,∴四边形ADCF是平行四边形,∵∠BAC=90°,D是BC的中点,∴AD=DC=BC,∴四边形ADCF是菱形;(2)解:连接DF,∵AF∥BC,AF=BD,∴四边形ABDF是平行四边形,∴DF=AB=5,∵四边形ADCF是菱形,∴S=AC•DF=10.4.在Rt△ABC中,∠BAC=90°,D是BC的中点,E是AD的中点,过点A作AF∥BC 交BE的延长线于点F.(1)证明四边形ADCF是菱形;(2)若AC=4,AB=5,求菱形ADCF的面积.【分析】(1)首先根据题意画出图形,由E是AD的中点,AF∥BC,易证得△AFE≌△DBE,即可得AF=BD,又由在Rt△ABC中,∠BAC=90°,D是BC的中点,可得AD =BD=CD=AF,证得四边形ADCF是平行四边形,继而判定四边形ADCF是菱形;(2)首先连接DF,易得四边形ABDF是平行四边形,即可求得DF的长,然后由菱形的面积等于其对角线积的一半,求得答案.【解答】(1)证明:如图,∵AF∥BC,∴∠AFE=∠DBE,∵E是AD的中点,AD是BC边上的中线,∴AE=DE,BD=CD,在△AFE和△DBE中,,∴△AFE≌△DBE(AAS);∴AF=DB.∵DB=DC,∴AF=CD,∴四边形ADCF是平行四边形,∵∠BAC=90°,D是BC的中点,∴AD=DC=BC,∴四边形ADCF是菱形;(2)解:连接DF,∵AF∥BC,AF=BD,∴四边形ABDF是平行四边形,∴DF=AB=5,∵四边形ADCF是菱形,∴S=AC•DF=10.5.如图,△ABC中,∠BCA=90°,CD是边AB上的中线,分别过点C,D作BA和BC 的平行线,两线交于点E,且DE交AC于点O,连接AE.(1)求证:四边形ADCE是菱形;(2)若∠B=60°,BC=6,求四边形ADCE的面积.【分析】(1)欲证明四边形ADCE是菱形,需先证明四边形ADCE为平行四边形,然后再证明其对角线相互垂直;(2)根据勾股定理得到AC的长度,由含30度角的直角三角形的性质求得DE的长度,然后由菱形的面积公式:S=AC•DE进行解答.【解答】(1)证明:∵DE∥BC,EC∥AB,∴四边形DBCE是平行四边形.∴EC∥DB,且EC=DB.在Rt△ABC中,CD为AB边上的中线,∴AD=DB=CD.∴EC=AD.∴四边形ADCE是平行四边形.∴ED∥BC.∴∠AOD=∠ACB.∵∠ACB=90°,∴∠AOD=∠ACB=90°.∴平行四边形ADCE是菱形;(2)解:Rt△ABC中,CD为AB边上的中线,∠B=60°,BC=6,∴AD=DB=CD=6.∴AB=12,由勾股定理得.∵四边形DBCE是平行四边形,∴DE=BC=6.∴.6.在四边形ABCD中,AD∥BC,AC平分∠BAD,BD平分∠ABC.(1)如图1,求证:四边形ABCD是菱形;(2)如图2,过点D作DE⊥BD交BC延长线于点E,在不添加任何辅助线的情况下,请直接写出图中所有与△CDE面积相等的三角形(△CDE除外)【分析】(1)根据角平分线的定义可得∠ABD=∠CBD,据两直线平行,内错角相等可得∠ADB=∠CBD,然后求出∠ABD=∠ADB=∠CBD,再根据等角对等边可得AB=AD,再根据等腰三角形三线合一可得BO=DO,然后利用“角边角”证明△AOD和△COB全等,根据全等三角形对应边相等可得AD=BC,再根据对边平行且相等的四边形是平行四边形证明四边形ABCD是平行四边形,然后根据邻边相等的平行四边形是菱形证明即可;(2)根据等底等高的三角形的面积相等即可得到结论.【解答】(1)证明:∵BD平分∠ABC,∴∠ABD=∠CBD,∵AD∥BC,∴∠ADB=∠CBD,∴∠ABD=∠ADB=∠CBD,∴AB=AD,设AC、BD相交于点O,又∵AC平分∠BAD,∴BO=DO,AC⊥BD,在△AOD和△COB中,,∴△AOD≌△COB(ASA),∴AD=BC,∵AD∥BC,∴四边形ABCD是平行四边形,又∵AB=AD,∴四边形ABCD是菱形;(2)∵DE⊥BD,AC⊥BD,∴AC∥DE,∵AD∥CE,∴四边形ACED是平行四边形,∴BC=AD=CE,∴图中所有与△CDE面积相等的三角形有△BCD,△ABD,△ACD,△ABC.7.已知:如图,在△ABC中,直线PQ垂直平分AC,与边AB交于点E,连接CE,过点C 作CF∥BA交PQ于点F,连接AF.(1)求证:四边形AECF是菱形;(2)若AD=3,AE=5,则求菱形AECF的面积.【分析】(1)首先利用AAS证明△CDF≌△AED,进而得到AE=CF,于是得到四边形AECF是平行四边形,再根据对角线互相垂直的平行四边形是菱形即可得到结论;(2)首先利用勾股定理求出DE的长,再利用对角线乘积的一半求出菱形的面积.【解答】证明:(1)∵CF∥AB,∴∠DCF=∠DAE,∵PQ垂直平分AC,∴CD=AD,在△CDF和△AED中∵,∴△CDF≌△AED,∴AE=CF,∴四边形AECF是平行四边形,∵PQ垂平分AC,∴AE=CE,∴四边形AECF是菱形;(2)∵四边形AECF是菱形,∴△ADE是直角三角形,∵AD=3,AE=5,∴DE=4,∴AC=2AD=6,EF=2DE=8,∴菱形AECF的面积为AC•EF=24.8.如图,在△ABC中,D、E分别是AB、AC的中点,BE=2DE,延长DE到点F,使得EF=BE,连接CF.(1)求证:四边形BCFE是菱形;(2)若CE=2,∠BCF=120°,求菱形BCFE的面积.【分析】(1)根据邻边相等的平行四边形是菱形即可证明;(2)只要证明△ECF,△ECB都是等边三角形,可得S菱形BCFE=2•S△ECF;【解答】解:(1)∵D、E分别是AB、AC的中点,∴DE∥BC,BC=2DE,∵EF=BEBE=2DE,∴EF=BC=BE,EF∥BC,∴四边形BCFE是平行四边形,∵BE=BC,∴四边形BCFE是菱形.(2)∵EF∥BC,∴∠F+∠BCF=180°,∵∠BCF=120°,∴∠F=60°,∵FE=FC=CB=EF,∴△ECF,△ECB都是等边三角形,∴S菱形BCFE=2•S△ECF=2××22=2.9.如图,在▱ABCD中,AE⊥BC,AF⊥CD,垂足分别为E,F,且BE=DF.(1)求证:▱ABCD是菱形;(2)若AB=5,AC=6,求▱ABCD的面积.【分析】(1)利用全等三角形的性质证明AB=AD即可解决问题;(2)连接BD交AC于O,利用勾股定理求出对角线的长即可解决问题;【解答】(1)证明:∵四边形ABCD是平行四边形,∴∠B=∠D,∵AE⊥BC,AF⊥CD,∴∠AEB=∠AFD=90°,∵BE=DF,∴△AEB≌△AFD∴AB=AD,∴四边形ABCD是菱形.(2)连接BD交AC于O.∵四边形ABCD是菱形,AC=6,∴AC⊥BD,AO=OC=AC=×6=3,∵AB=5,AO=3,∴BO===4,∴BD=2BO=8,∴S平行四边形ABCD=×AC×BD=24.10.如图,在△ABC中,AB=AC,E,D,F分别是边AB,BC,CA的中点.(1)求证:四边形AEDF是菱形;(2)若∠B=30°,AB=12,求四边形AEDF的面积.【分析】(1)首先根据三角形中位线定理可得DE∥AC,DF∥AB,ED=AC,DF=AB,进而可判定四边形AEDF是平行四边形,然后证明ED=DF即可;(2)连接AD、EF,利用直角三角形的性质和菱形面积公式解答即可.【解答】(1)证明:∵E,D,F分别是边AB,BC,AC的中点,∴DE∥AC,DF∥AB,ED=AC,DF=AB,∴四边形AEDF是平行四边形,∵AB=AC,∴ED=DF,∴四边形AEDF是菱形;(2)连接AD、EF,在△ABC中,AB=AC,∴BD=CD,AD⊥BC,在Rt△ABD中,∠B=30°,AB=12,∴AD=6,EF=BC=BD=,菱形AEDF的面积=.11.如图,在四边形ABCD中,AB∥DC,过对角线AC的中点O作EF⊥AC分别交边AB,CD于点E,F,连接CE,AF.(1)求证:四边形AECF是菱形;(2)若EF=6,AE=5,求四边形AECF的面积.【分析】(1)运用“对角线互相垂直平分的四边形是菱形”判定,已知EF⊥AC,AO=OC,只需要证明OE=OF即可,用全等三角形得出;(2)菱形的面积可以用对角线积的一半来表示,由已知条件,解直角三角形AOE可求AC、EF的长度.【解答】解:(1)证明:∵AB∥DC,∴∠1=∠2.在△CFO和△AEO中,,∴△CFO≌△AEO(ASA).∴OF=OE,又∵OA=OC,∴四边形AECF是平行四边形.∵EF⊥AC,∴四边形AECF是菱形;(2)解:∵四边形AECF是菱形,EF=6,∴OE=EF=4.在Rt△AEO中,∵tan∠OAE==,∴OA=5,∴AC=2AO=8,∴S菱形AECF=EF•AC=×6×8=24.12.如图,△ABC中,∠BCA=90°,CD是边AB上的中线,分别过点C,D作BA和BC 的平行线,两线交于点E,且DE交AC于点O,连接AE.(1)求证:四边形ADCE是菱形;(2)若∠B=60°,BC=6,求四边形ADCE的面积.【分析】(1)欲证明四边形ADCE是菱形,需先证明四边形ADCE为平行四边形,然后再证明其对角线相互垂直;(2)根据勾股定理得到AC的长度,由含30度角的直角三角形的性质求得DE的长度,然后由菱形的面积公式:S=AC•DE进行解答.【解答】(1)证明:∵DE∥BC,EC∥AB,∴四边形DBCE是平行四边形.∴EC∥DB,且EC=DB.在Rt△ABC中,CD为AB边上的中线,∴AD=DB=CD.∴EC=AD.∴四边形ADCE是平行四边形.∴ED∥BC.∴∠AOD=∠ACB.∵∠ACB=90°,∴∠AOD=∠ACB=90°.∴平行四边形ADCE是菱形;(2)解:Rt△ABC中,CD为AB边上的中线,∠B=60°,BC=6,∴AD=DB=CD=6.∴AB=12,由勾股定理得AC=6.∵四边形DBCE是平行四边形,∴DE=BC=6.∴S菱形ADCE===18.13.如图,在▱ABCD中,CE平分∠BCD,交AD于点E,DF平分∠ADC,交BC于点F,CE与DF交于点P,连接EF,BP.(1)求证:四边形CDEF是菱形;(2)若AB=2,BC=3,∠A=120°,求BP的值.【分析】(1)利用平行四边形的性质和角平分线的定义可求得CF=CD=DE,可证得结论;(2)过P作PG⊥BC于G,在Rt△PGC中可求得PG和CG的长,则可求得BG的长,在Rt△BPG中,由勾股定理可求得BP的长.【解答】(1)证明:∵四边形ABCD为平行四边形,∴AD∥BC,∴∠EDF=∠DFC,∵DF平分∠ADC,∴∠EDF=∠CDF,∴∠DFC=∠CDF,∴CD=CF,同理可得CD=DE,∴CF=DE,且CF∥DE,∴四边形CDEF为菱形;(2)解:如图,过P作PG⊥BC于G,∵AB=2,BC=3,∠A=120°,且四边形CDEF为菱形,∴CF=EF=CD=AB=2,∠ECF=∠BCD=∠A=60°,∴△CEF为等边三角形,∴CE=CF=2,∴PC=CE=1,∴CG=PC=,PG=PC=,∴BG=BC﹣CG=3﹣=,在Rt△BPG中,由勾股定理可得BP===,即BP的值为.14.如图,△ABC是以BC为底的等腰三角形,AD是边BC上的高,点E、F分别是AB、AC的中点.(1)求证:四边形AEDF是菱形;(2)如果四边形AEDF的周长为12,两条对角线的和等于7,求四边形AEDF的面积S.【分析】(1)先根据直角三角形斜边上中线的性质,得出DE=AB=AE,DF=AC =AF,再根据AB=AC,点E、F分别是AB、AC的中点,即可得到AE=AF=DE=DF,进而判定四边形AEDF是菱形;(2)设EF=x,AD=y,则x+y=7,进而得到x2+2xy+y2=49,再根据Rt△AOE中,AO2+EO2=AE2,得到x2+y2=36,据此可得xy=,进而得到菱形AEDF的面积S.【解答】解:(1)∵AD⊥BC,点E、F分别是AB、AC的中点,∴Rt△ABD中,DE=AB=AE,Rt△ACD中,DF=AC=AF,又∵AB=AC,点E、F分别是AB、AC的中点,∴AE=AF,∴AE=AF=DE=DF,∴四边形AEDF是菱形;(2)如图,∵菱形AEDF的周长为12,∴AE=3,设EF=x,AD=y,则x+y=7,∴x2+2xy+y2=49,①∵AD⊥EF于O,∴Rt△AOE中,AO2+EO2=AE2,∴(y)2+(x)2=32,即x2+y2=36,②把②代入①,可得2xy=13,∴xy=,∴菱形AEDF的面积S=xy=.15.如图,△ABC中,∠ACB=90°,∠A=30°,CD为△ABC的中线,作CO⊥AB于O,点E在CO延长线上,DE=AD,连接BE、DE.(1)求证:四边形BCDE为菱形;(2)把△ABC分割成三个全等的三角形,需要两条分割线段,若AC=6,求两条分割线段长度的和.【分析】(1)容易证三角形BCD为等边三角形,又DE=AD=BD,再证三角形DBE为等边三角形四边相等的四边形BCDE为菱形.(2)画出图形,证出BM+MN=AM+MC=AC=6即可.【解答】(1)证明:∵∠ACB=90°,∠A=30°,CD为△ABC的中线,∴BC=AB,CD=AB=AD,∴∠ACD=∠A=30°,∴∠BDC=30°+30°=60°,∴△BCD是等边三角形,∵CO⊥AB,∴OD=OB,∴DE=BE,∵DE=AD,∴CD=BC=DE=BE,∴四边形BCDE为菱形;(2)解:作∠ABC的平分线交AC于N,再作MN⊥AB于N,如图所示:则MN=MC=BM,∠ABM=∠A=30°,∴AM=BM,∵AC=6,∴BM+MN=AM+MC=AC=6;即两条分割线段长度的和为6.16.如图,△ABC中,AD是边BC上的中线,过点A作AE∥BC,过点D作DE∥AB,DE 与AC、AE分别交于点O、点E,联结EC.(1)求证:AD=EC;(2)若BC=2AD,AB=AO=m,求证:S四边形ADCE=m2.(其中S表示四边形ADCE 的面积)【分析】(1)由AE∥BC,DE∥AB,可证得四边形ABDE为平行四边形,又由AD是边BC上的中线,可得AE=CD,即可证得四边形ADCE是平行四边形,继而证得结论;(2)由BC=2AD,易得四边形ADCE是菱形,继而求得S四边形ADCE=m2.【解答】证明:(1)∵AE∥BC,DE∥AB,∴四边形ABDE为平行四边形,∴AE=BD,∵BD=CD,∴AE=CD,∴四边形ADCE是平行四边形,∴AD=CE;(2)∵BC=2AD,BC=2CD,∴AD=CD,∵四边形ADCE是平行四边形,∴四边形ADCE是菱形,∵DE=AB=m,AC=2AO=2m,∴S四边形ADCE=AC•DE=m2.17.如图,在△ABC中,∠C=90°,BD平分∠ABC交AC于点D,过D作DE∥BC交AB 于点E,DF∥AB交BC于点F,连接EF.(1)求证:四边形BFDE是菱形;(2)若AB=8,AD=4,求BF的长.【分析】(1)易证四边形BFDE是平行四边形,再结合已知条件证明邻边EB=ED即可得到平行四边形BFDE是菱形;(2)设BF=x,所以可得DE=BE=x,AE=8﹣x,在Rt△ADE中,由勾股定理可得AE2=DE2+AD2,求出x的值即可.【解答】(1)证明:∵DE∥BC,DF∥AB,∴四边形BFDE是平行四边形.∵BD平分∠ABC,∴∠ABD=∠CBD.∵DE∥BC,∴∠CBD=∠EDB.∴∠ABD=∠EDB.∴EB=ED.∴平行四边形BFDE是菱形;(2)解:∵ED∥BF,∠C=90°,∴∠ADE=90°.设BF=x,∴DE=BE=x.∴AE=8﹣x.在Rt△ADE中,AE2=DE2+AD2∴(8﹣x)2=x2+42解得x=3,∴BF=3.18.如图,等腰三角形ABC中,AB=AC,AD平分∠BAC交BC于点D,在线段AD上任取一点P(点A除外),过点P作EF∥AB,分别交AC,BC于点E和点F,作PQ∥AC,交AB于点Q,连接QE.(1)求证:四边形AEPQ为菱形;(2)当点P在何处时,菱形AEPQ的面积为四边形EFBQ面积的一半?【分析】(1)先证出四边形AEPQ为平行四边形,关键是找一组邻边相等,由AD平分∠BAC和PE∥AQ可证∠EAP=∠EP A,得出AE=EP,即可得出结论;(2)S菱形AEPQ=EP•h,S平行四边形EFBQ=EF•h,若菱形AEPQ的面积为四边形EFBQ面积的一半,则EP=EF,因此P为EF中点时,S菱形AEPQ=S四边形EFBQ.【解答】(1)证明:∵EF∥AB,PQ∥AC,∴四边形AEPQ为平行四边形,∴∠BAD=∠EP A,∵AB=AC,AD平分∠CAB,∴∠CAD=∠BAD,∴∠CAD=∠EP A,∴EA=EP,∴四边形AEPQ为菱形.(2)解:P为EF中点,即AP=AD时,S菱形AEPQ=S四边形EFBQ∵四边形AEPQ为菱形,∴AD⊥EQ,∵AB=AC,AD平分∠BAC,∴AD⊥BC,∴EQ∥BC,又∵EF∥AB,∴四边形EFBQ为平行四边形.作EN⊥AB于N,如图所示:则S菱形AEPQ=EP•EN=EF•EN=S四边形EFBQ.19.已知:如图,四边形ABCD是平行四边形,分别以AB、AD为腰作等腰三角形△ABF 和等腰三角形△ADE,且顶角∠BAF=∠DAE,连结BD、EF相交于点G,BD与AF相交于点H.(1)求证:BD=EF;(2)若∠GHF=∠BFG,求证:四边形ABCD是菱形;(3)在(2)的条件下,当∠BAF=∠DAE=90°时,连结BE,若BF=4,求△BEF的面积.【分析】(1)证明∠BAD=∠F AE,根据全等三角形的判定推出△BAD≌△F AE,即可得出答案;(2)求出∠ABD=∠GBF,证明AB=AD,即可证出四边形ABCD是菱形;(3)延长EA交BC于M,得EM⊥AD,求出EM=AE+AM=2+2,再根据面积公式即可求出.【解答】(1)证明:∵∠BAF=∠DAE,∴∠BAF+∠F AD=∠DAE+∠F AD,即∠BAD=∠F AE,∵AB=AF,AD=AE,∴△BAD≌△F AE(SAS),∴BD=EF.(2)∵∠GHF=∠BFG,∴∠GFH=∠GBF,由(1)可知∠GFH=∠ABD,∴∠ABD=∠GBF,∵AD∥BC,∴∠ADB=∠GBF,∴∠ABD=∠ADB,∴AB=AD,∴四边形ABCD是菱形;(3)延长EA交BC于M,∵∠DAE=90°.∴EM⊥AD,∵四边形ABCD是菱形,∴AD∥BC,∴EM⊥BF,∵AB=AF,BF=4,∴BM=FM=2,∵∠BAF=90°,∴,∴,∴,∴EM=AE+AM=2+2,∴==4.20.如图,在四边形ABCD中,AB=AD,CB=CD,E是CD上的点,BE交AC于点F,连接DF.(1)求证:∠BAF=∠DAF,∠AFD=∠CFE;(2)若AB∥CD,试证明:四边形ABCD是菱形;(3)在(2)的条件下,试确定点E的位置,使得∠EFD=∠BCD,并说理由.【分析】(1)先判断出△ABC≌△ADC得到∠BAF=∠DAC,再判断出△ABF≌△ADF 得出∠AFB=∠AFD,最后进行简单的推算即可;(2)先由平行得到角相等,用等量代换得出∠DAC=∠ACD,最后判断出四边相等;(3)由(2)得到判断出△BCF≌△DCF,结合BE⊥CD即可.【解答】证明:(1)在△ABC和△ADC中,,∴△ABC≌△ADC,∴∠BAC=∠DAC,在△ABF和△ADF中,∴△ABF≌△ADF,∴∠AFB=∠AFD,∵∠CFE=∠AFB,∴∠AFD=∠CFE,∴∠BAF=∠DAC,∠AFD=∠CFE;(2)∵AB∥CD,∴∠BAC=∠ACD,∵∠BAC=∠DAC,∴∠BAC=∠ACD,∴∠DAC=∠ACD,∴AD=CD,∵AB=AD,CB=CD,∴AB=CB=CD=AD,∴四边形ABCD是菱形;(3)当BE⊥CD时,∠EFD=∠BCD,理由:∵四边形ABCD是菱形,∴BC=CD,∠BCF=∠DCF,∵CF=CF,∴△BCF≌△DCF,∴∠CBF=∠CDF,∵BE⊥CD,∴∠BEC=∠DEF=90°,∴∠EFD=∠BCD.。
菱形证明专题训练
绝密★启用前乐学教育菱形证明专题训练1. 已知:如图,在四边形ABCD中,AB∥CD,E,F为对角线AC上两点,且AE=CF,DF∥BE,AC平分∠BAD.求证:四边形ABCD为菱形.【答案】∵AB∥CD,∴∠BAE=∠DCF.∵DF∥BE,∴∠BEF=∠DFE,∴∠AEB=∠CFD.又∵AE=CF,∴△AEB≌∠CFD,∴AB=CD.∵AB∥CD,∴四边形ABCD是平行四边形.∵AC平分∠BAD,∴∠BAE=∠DAF.又∠BAE=∠DCF,∴∠DAF=∠DCF,∴AD=CD,∴四边形ABCD是菱形.2. 如图,矩形ABCD中,点O为AC的中点,过点O的直线分别与AB,CD交于点E,F,连接BF交AC于点M,连接DE,BO.若∠COB=60°,FO=FC.1第1页共25页求证:(1)四边形EBFD是菱形;【答案】连接OD.∵点O为矩形ABCD的对角线AC的中点,∴B,D,O三点共线且BD=DO=CO=AO.在矩形ABCD中,AB∥DC,AB=DC,∴∠FCO=∠EAO.在△CFO和△AEO中,∴△CFO≌△AEO,∴FO=EO.又∵BO=DO,∴四边形BEFD是平行四边形.∵BO=CO,∠COB=60°,∴△COB是等边三角形.∴∠OCB=60°.∴∠FCO=∠DCB-∠OCB=30°.∵FO=FC,∴∠FOC=∠FCO=30°.∴∠FOB=∠FOC+∠COB=90°.∴EF⊥BD.∴平行四边形EBFD是菱形.(2)MB∶OE=3∶2.【答案】∵BO=BC,∴点B在线段OC的垂直平分线上.∵FO=FC,∴点F在线段OC的垂直平分线上.∴BF是线段OC的垂直平分线.∴∠FMO=∠OMB=90°.∴∠OBM=30°.∴OF=BF.∵∠FOC=30°,∴FM=OF.2第2页共25页∴BM=BF-MF=2OF-OF=OF.即FO=EO,∴BM∶OE=3∶2.3. 如图,在△ABC中,∠ABC=90°,BD为AC边上的中线,过点C作CE⊥BD于点E,过点A作BD 的平行线,交CE的延长线于点F,在AF 的延长线上截取FG=BD,连接BG,DF.求证:四边形BGFD 是菱形.【答案】∵FG∥BD,BD=FG,∴四边形BGFD是平行四边形.∵CF⊥BD,AG∥BD,∴CF⊥AG.又∵∠ABC=90°,点D是AC的中点,∴BD=DF=AC,∴平行四边形BGFD是菱形.4. 如图,点O是菱形ABCD对角线的交点,DE∥AC,CE∥BD,连接OE.求证:OE=BC.【答案】∵DE∥AC,CE∥BD,∴四边形OCED是平行四边形.∵四边形ABCD是菱形,∴AC⊥BD,OB=OD,∴∠BOC=∠COD=90°,∴四边形OCED是矩形,∴∠ODE=90°,∵OB=OD,∠BOC=∠ODE=90°,∴BC=,OE=,3第3页共25页∵DE=OC.∴OE=BC.5. [2015·兰州中考,25] (9分)如图,四边形ABCD中,AB∥CD,AB≠CD,BD=AC.(1)求证:AD=BC;【答案】作BM∥AC,BM交DC的延长线于点M,则∠ACD=∠BMD.1分∵AB∥CD,BM∥AC,∴四边形ABMC为平行四边形.2分∴AC=BM.∵BD=AC,∴BM=BD.∴∠BDM=∠BMD.∴∠BDC=∠ACD.在△BDC和△ACD中,∴△BDC≌△ACD.4分∴BC=AD.5分(2)若E,F,G,H分别是AB,CD,AC,BD的中点.求证:线段EF与线段GH互相垂直平分.【答案】连接EG,GF,FH,HE.6分∵E,H为AB,BD的中点,∴EH=AD.4第4页共25页同理FG=AD,EG=BC,FH=BC.∵BC=AD,∴EG=FG=FH=EH.8分∴四边形EGFH为菱形,∴EF与GH互相垂直平分.9分6. [2015·长春中考,18] (7分)如图,CE是△ABC外角∠ACD的平分线,AF∥CD 交CE于点F,FG∥AC交CD于点G,求证:四边形ACGF是菱形.【答案】因为AF∥CD,FG∥AC,所以四边形ACGF是平行四边形①,又因为∠ACE=∠ECG,∠ECG=∠AFC,所以∠ACE=∠AFC,所以AC=AF②,由①②得四边形ACGF是菱形.7. [2010·上海中考,23]已知梯形ABCD中,AD∥BC,AB=AD(如图所示),∠BAD的平分线AE交BC于点E,连结DE.(1)在图中,用尺规作∠BAD的平分线AE(保留作图痕迹,不写作法),并证明四边形ABED是菱形;5第5页共25页【答案】∵∠BAE=∠DAE,∠DAE=∠BEA,∴∠BAE=∠BEA,AB=BE=AD,AD∥BE,∴四边形ABED的平行四边形,又AB=AD,∴四边形ABED为菱形(2)∠ABC=60°,EC=2BE,求证:ED⊥DC.【答案】过D作DF∥AE,则DF=CF=1,∴∠C=30°,而∠DEC=60°,∴∠EDC=90°,∴ED⊥DC.8. [2010·沈阳中考,19]如图,菱形ABCD的对角线AC与BD相交于O,点E,F分别为边AB,AD的中点,连接EF,OE,OF,求证:四边形AEOF是菱形.6第6页共25页【答案】∵点E,F分别为AB,AD的中点∴AE=AB,AF=AD(2分)又∵四边形ABCD是菱形∴AB=AD∴AE=AF(4分)又∵菱形ABCD的对角线AC与BD相交于点O∴O为BD的中点∴OE,OF是△ABD的中位线(6分)∴OE∥AD,OF∥AB∴四边形AEOF是平行四边形(8分)∵AE=AF∴四边形AEOF是菱形(10分)9. [2010·安徽中考,20]如图,AD∥FE,点B,C在AD上,∠1=∠2,BF=BC.(1)求证:四边形BCEF是菱形;7第7页共25页【答案】∵AD∥FE,∴∠FEB=∠2.∵∠1=∠2,∴∠FEB=∠1.∴BF=EF∵BF=BC,∴BC=EF.∴四边形BCEF是平行四边形∵BF=BC,∴四边形BCEF是菱形(5分)(2)若AB=BC=CD,求证:△ACF≌△BDE.【答案】∵EF=BC,AB=BC=CD,AD∥FE,∴四边形ABEF、四边形CDEF均为平行四边形,∴AF=BE,FC=ED.(8分)又∵AC=2BC=BD,(9分)∴△ACF≌△BDE.(10分)10. [2013·长沙中考,24]如图,在▱ABCD中,M,N分别是AD,BC的中点,∠AND=90°,连接CM交DN于点O.(1)求证:△ABN≌△CDM;【答案】∵∠ABN=∠CDM,AB=CD,BN=BC=AD=DM,∴△ABN≌△CDM(SAS).8第8页共25页(2)过点C作CE⊥MN于点E,交DN于点P,若PE=1,∠1=∠2,求AN的长.【答案】∵M,O分别为AD,ND的中点,∴AN∥MO且AN=2MO,∴∠MOD=∠AND=90°,即平行四边形CDMN是菱形,在Rt△MOD与Rt△NEC中,∵∠1=∠2,MD=NC,∴Rt△MOD≌Rt△NEC,∴MO=NE.根据菱形的性质可知,∠MND=∠CND,∠1=∠CND,所以∠MND=∠CND=∠2=30°,所以在Rt△ENP中NE=PE÷tan30°=,即AN=2.11. 如图,在△ABC中,∠A=90°,AH⊥BC于点H,∠B的平分线交AC于点D,交AH于点E,DF⊥BC于点F,求证:四边形AEFD是菱形.【答案】∵∠ABD=∠FBD,BD=BD,∠BAD=∠DFB=90°,∴△ABD≌△FBD,∴AD=DF,AB=FB.又∠ABE=∠FBE,BE=BE,∴△ABE≌△FBE.∴∠BAE=∠BFE.又∠BAE=90°-∠ABC=∠C,∴∠BFE=∠C,∴EF∥AD.∵DF⊥BC,AH⊥BC,∴AE∥DF.∴四边形AEFD是平行四边形.又AD=DF,∴四边形AEFD是菱形.9第9页共25页12. [2012·南宁中考,25]如图,已知矩形纸片ABCD,AD=2,AB=4,将纸片折叠,使顶点A与边CD上的点E重合,折痕FG分别与AB,CD交于点G,F,AE与FG交于点O.图1图2(1)如图1,求证:A,G,E,F四点围成的四边形是菱形;【答案】证法一:证明:在矩形ABCD中,CD∥AB∴∠1=∠3(1分)由折叠可知:AG=EG,∠1=∠2∴∠2=∠3∴EF=EG(2分)∴EF=AG∴四边形AGEF是菱形(3分)证法二:证明:连接AF,由折叠可知OA=OE,AG=EG(1分)在矩形ABCD中,AB∥CD∴∠AEF=∠EAG∵∠AOG=∠EOF∴△AOG≌△EOF(ASA)(2分)10第10页共25页∴AG=EF∴四边形AGEF是菱形(3分)(2)如图2,当△AED的外接圆与BC相切于点N时,求证,点N是线段BC的中点;【答案】证明:连接ON,O是Rt△ADE外接圆圆心.∵⊙O与BC相切于点N∴ON⊥BC(4分)在矩形ABCD中,DC⊥BC,AB⊥BC∴CD∥ON ∥AB∴=(5分)∵OA=OE∴CN=NB即N为BC的中点(6分)(3)如图2,在第2问的条件下,求折痕FG的长.【答案】解法一:过点O作OM⊥AB于点M,则四边形OMBN是矩形设⊙O半径为x,则OA=OE=ON=x(7分)∵AB=4,AD=2 ∴AM=4-x由第2问得,NB=OM=1在Rt△AOM中,OA2=AM2+OM2∴x2=(4-x)2+12∴x=(8分)11第11页共25页AM=4-=∵∠FEO=∠OAM又∵∠FOE=∠OMA=90°∴Rt△EFO∽Rt△AOM∴=∴=(9分)∴OF=∴FG=2OF=(10分)解法二:延长NO交AD于点M∴四边形ABNM是矩形∴AM=BN=AD=1∵O为Rt△ADE外接圆圆心∴OA=OE=ON设ON为x,则OM=4-x(7分)在Rt△AMO中,AM2+OM2=OA2即12+(4-x)2=x2x=(8分)∴OM=4-=∵FG⊥AE,MN∥DC∴∠FEO=∠MOA∠AMO=∠EOF=90°12第12页共25页∴△EOF∽△OMA∴=∴=(9分)∴OF=FG=2OF=(10分)13. [2013·葫芦岛中考,20] (本小题满分8分)如图,四边形ABCD中,AD∥BC,BA⊥AD,BC=DC,BE⊥CD于点E.(1)求证:△ABD≌△EBD;【答案】如图,∵AD∥BC,∴∠1=∠DBC.∵BC=DC,∠2=∠DBC.∴∠1=∠2.2分又∵∠BAD=∠BED=90°,BD=BD,∴△ABD≌△EBD.4分(2)过点E作EF∥DA,交BD于点F,连接AF.求证:四边形AFED是菱形.【答案】由第1问得,AD=ED,∠1=∠2.∵EF∥DA,∴∠1=∠3,∴∠2=∠3.∴EF=ED.5分∴EF=AD.6分∴四边形AFED是平行四边形.13第13页共25页又∵AD=ED.∴四边形AFED是菱形.8分14. [2013·贵阳中考,20]已知:如图,在菱形ABCD中,F为BC上的任意一点,连接AF交对角线BD于点E,连接EC.(1)求证:AE=EC;【答案】14第14页共25页证明:连接AC.∵BD是菱形ABCD的对角线,∴BD垂直平分AC.∴AE=EC.(2)当∠ABC=60°,∠CEF=60°时,点F在线段BC上的什么位置说明理由.【答案】点F是线段BC的中点.理由:∵菱形ABCD中,AB=BC,又∵∠ABC=60°.∴△ABC是等边三角形,∠BAC=60°.∵AE=EC,∠CEF=60°,∴∠EAC=30°.∴AF是△ABC的角平分线.∵AF交BC于点F,∴AF是△ABC的BC边上的中线.∴点F是线段BC的中点.15. [2012·上海中考,23]已知:如图,在菱形ABCD中,点E,F分别在边BC,CD上,∠BAF=∠DAE,AE与BD交于点G.(1)求证:BE=DF;【答案】∵四边形ABCD为菱形,∴AB=AD=BC=CD,∠ABD=∠ADB=∠CBD=∠CDB,∠ABE=∠ADF15第15页共25页∵∠BAF=∠DAE,且∠BAF=∠BAE+∠EAF,∠DAE=∠DAF+∠EAF∴∠BAE=∠DAF.∴△ABE≌△ADF(ASA).∴BE=DF.(2)当=时,求证:四边形BEFG是平行四边形.【答案】在菱形ABCD中,ADBC,∴∠DAE=∠BEA,∠ADB=∠EBD.∴△AGD∽△EGB.∴=.又∵=,BE=DF,∴===∴GF∥BE.∴∠DGF=∠DBC.∵∠DBC=∠CDB,∴∠DGF=∠GDF,∴GF=DF,∴BE=GF.∴BEGF,∴四边形BEFG是平行四边形.16第16页共25页16. [2013·乌鲁木齐中考,19]如图,在△ABC中,∠ACB=90°,CD⊥AB于D,AE平分∠BAC,分别与BC,CD交于E,F,EH⊥AB于H,连接FH.求证:四边形CFHE是菱形.【答案】∵AE平分∠BAC,∴∠CAE=∠EAH,而∠ACB=90°,CD⊥AB,∴∠CEA+∠CAE=∠AFD+∠EAH=90°,又∠APD=∠CFE,∴∠CFE=∠CEF,∴CF=CE.又∵AE平分∠BAC,∠ACB=90°.EH⊥AB,∴CE=EH,∴CF=EH=CE,∵CD⊥AB,EH⊥AB,∴CF∥EH,∴四边形CFHE是菱形.17. 如图所示,在菱形ABCD中,CE⊥AB于点E,CF⊥AD于点F,求证:AE=AF.【答案】证法1:如图所示,连接AC,∵四边形ABCD是菱形,∴AC平分∠BAD,即∠BAC=∠DAC.在△ACE和△ACF中,∠AEC=∠AFC=90°,∠BAC=∠DAC,AC=AC,∴△ACE≌△ACF(AAS),∴AE=AF.17第17页共25页证法2:∵四边形ABCD是菱形,∴BC=DC=AD=AB,∠B=∠D.又∵在△BCE和△DCF中,∠BEC=∠DFC=90°,∴△BCE≌△DCF(AAS),∴BE=DF,∴AE=AF.18. [2013·南宁中考,23]如图,在菱形ABCD中,AC是对角线,点E,F分别是边BC,AD 的中点.(1)求证:△ABE≌△CDF;【答案】在菱形ABCD中,AB=BC=CD=DA(或AB=CD,BC=DA).∠B=∠D.∵点E,F分别是边BC,AD的中点,∴BE=DF.∴△ABE≌△CDF.(2)若∠B=60°,AB=4,求线段AE的长.【答案】解法一:∵AB=BC,∠B=60°,∴△ABC是等边三角形.∵点E是BC边的中点.∴AE⊥BC.在Rt△ABE中,sin B=.∴AE=AB·sin B=4×=.18第18页共25页解法二:∵AB=BC,∠B=60°,∴△ABC是等边三角形.∵点E是BC边的中点,∴AE⊥BC.∴∠BAE=30°.在Rt△ABE中,BE=AB=2.∴AE===.19. [2012·温州中考,19](本题8分)如图,△ABC中,∠B=90°,AB=6cm,BC=8cm,将△ABC沿射线BC方向平移10cm,得到△DEF,A,B,C的对应点分别是D,E,F,连接AD.求证:四边形ACFD是菱形.【答案】法一:∵∠B=90°,AB=6cm,BC=8cm.∴AC=10cm.由平移变换的性质得CF=AD=10cm,DF=AC,∴AD=CF=AC=DF,∴四边形ACFD是菱形.法二:由平移变换的性质得AD∥CF,AD=CF=10cm,∴四边形ACFD是平行四边形,∵∠B=90°,AB=6cm,BC=8cm,19第19页共25页∴AC =10cm,∴AC=CF,∴▱ACFD是菱形.20. [2011•兰州中考,27](本小题满分12分)已知:如图17所示的一张矩形纸片ABCD(AD>AB),将纸片折叠一次,使点A与点C重合,再展开,折痕EF交AD边于点E,交BC边于点F.分别连接AF和CE.(1)求证:四边形AFCE是菱形;【答案】由题意可知OA=OC,EF⊥AO.∵AD∥BC,∴∠AEO=∠CFO,∠EAO=∠FCO,∴△AOE≌△COF,∴AE=CF,又AE∥CF,∴四边形AECF是平行四边形(2分)∵AC⊥EF,∴四边形AECF是菱形.(4分)(2)若AE=10 cm,△ABF的面积为24 cm2,求△ABF的周长;20第20页共25页v1.0 可编辑可修改【答案】∵四边形AECF是菱形,∴AF=AE=10 cm.设AB=a,BF=b,∵△ABF的面积为24 cm2, a2+b2=100,ab=48(6分)(a+b)2=196,a+b=14或a+b=-14(不合题意,舍去)(7分)△ABF的周长为a+b+10=24 cm(8分)(3)在线段AC上是否存在一点P,使得2AE2=AC AP若存在,请说明点P的位置,并予以证明;若不存在,请说明理由.【答案】存在,过点E作AD的垂线,交AC于点P,点P就是符合条件的点(9分) 证明:∵∠AEP=∠AOE=90°,∠EAO=∠EAP,∴△AOE∽△AEP,∴=,∴AE2=AO AP(11分)∵四边形AECF是菱形,∴AO=AC,∴AE2=AC AP,∴2AE2=AC AP.(12分)21. [2013·营口中考,19]如图,△ABC中,AB=AC,AD是△ABC一个外角的平分线,且∠BAC=∠ACD.(1)求证:△ABC≌△CDA;【答案】∵AB=AC,∴∠B=∠ACB又∵∠FAC是△ABC的一个外角,21第21页共25页∴∠FAC=∠B+∠ACB∴∠FAC=2∠ACB2分又∵AD是∠FAC的角平分线,∴∠FAC=2∠CAD,∴∠ACB=∠CAD3分又∵AC=CA,∠BAC=∠DCA∴△ABC≌△CDA4分(2)若∠ACB=60°,求证:四边形ABCD是菱形.【答案】∵∠BAC=∠ACD∴AB∥CD5分又∵∠ACB=∠CAD,∴AD∥BC.∴四边形ABCD是平行四边形.6分∵AB=AC,∠ACB=60°,∴等腰三角形ABC是等边三角形.7分∴AB=BC.∴四边形ABCD是菱形.8分22. [2011•宁波中考,23](本小题满分8分)如图13,在ABCD中,E,F分别为边AB,CD的中点,BD是对角线,过A点作AG∥DB交CB的延长线于点G.22第22页共25页v1.0 可编辑可修改(1)求证:DE∥BF;【答案】在ABCD中,AB∥CD,AB=CD∵E,F分别为边AB,CD的中点∴DF=DC,BE=AB∴DF∥BE,DF=BE(2分)∴四边形DEBF为平行四边形(3分)∴DE∥BF(4分)(2)若∠G=90°,求证:四边形DEBF是菱形.【答案】∵AG∥BD∴∠G=∠DBC=90°∴△DBC为直角三角形(5分)又∵F为边CD的中点∴BF=DC=DF.(7分)23第23页共25页v1.0 可编辑可修改又∵四边形DEBF为平行四边形∴四边形DEBF是菱形(8分)23. [2013·黄冈中考,17]如图,四边形ABCD是菱形,对角线AC,BD相交于点O,DH⊥AB 于H,连接OH,求证:∠DHO=∠DCO.【答案】四边形ABCD是菱形,∴OD=OB,∠COD=90°,∵DH⊥AB于H,∴∠DHB=90°,∴∠OHB=∠OBH,又∵AB∥CD.∴∠OBH=∠ODC,∴∠OHB=∠ODC.在Rt△COD中,∠ODC+∠OCD=90°,在Rt△DHB中,∠DHO+∠OHB=90°,∴∠DHO=∠DCO.24. [2013·锦州中考,20]如图,点O是菱形ABCD对角线的交点,DE∥AC,CE∥BD,连接OE.求证:OE=BC.【答案】∵DE∥AC,CE∥BD∴四边形OCED是平行四边形2分又∵AC,BD是菱形ABCD的对角线24第24页共25页∴AC⊥BD,即∠COD=90°4分∴平行四边形OCED是矩形6分∴OE=CD8分又∵BC=CD9分∴OE=BC10分(学生用其他方法证明,请参照评分标准酌情给分)25第25页共25页。
菱形的性质与判定之八大考点(原卷版)--初中数学专题训练
菱形的性质与判定之八大考点【考点导航】目录【典型例题】【考点一利用菱形的性质求角度】【考点二利用菱形的性质求线段长】【考点三利用菱形的性质求面积】【考点四利用菱形的性质证明】【考点五添一个条件使四边形是菱形】【考点六证明四边形是菱形】【考点七根据菱形的性质与判定求角度、线段长】【考点八根据菱形的性质与判定求面积】【过关检测】【典型例题】【考点一利用菱形的性质求角度】1(2023秋·陕西汉中·九年级统考期末)如图,在菱形ABCD中,对角线AC、BD相交于点O,若∠BAD =110°,则∠OBC的度数为________.【变式训练】1(2023春·重庆渝中·八年级重庆巴蜀中学校考阶段练习)如图,菱形ABCD的对角线AC、BD相交于点O,过点D作DH⊥AB于点H,连接OH,若∠BCD=50°,则∠DHO的度数为.2(2023春·八年级单元测试)如图,在菱形ABCD中,∠ABC=40°,点E为对角线BD上一点,F为AD边上一点,连接AE、CE、FE,若AE=FE,∠BEC=58°,则∠AFE的度数为.【考点二利用菱形的性质求线段长】1例题:(2023·辽宁鞍山·统考一模)如图,在菱形ABCD中,对角线AC,BD分别为8和6,DE⊥AB,垂足为E,则DE的长为______.【变式训练】1(2023·广东东莞·东莞市东莞中学初中部校考一模)如图,菱形ABCD对角线AC、BD相交于点O,AC=8,BD=6,则菱形的边长为.2(2022秋·陕西榆林·九年级校考期末)如图,已知四边形ABCD是菱形,且AE⊥BC于点E,AF⊥CD于点F.(1)求证:AE=AF;(2)若AB=10,CE=4,求菱形ABCD的面积.【考点三利用菱形的性质求面积】1(2023春·广东韶关·八年级校考期中)如图,在菱形ABCD中,对角线AC与BD相交于点O,AC=7,BD=4,则菱形ABCD的面积为_______.【变式训练】1(2023春·广东惠州·八年级校考阶段练习)菱形的两条对角线长为6和8,则菱形的边长为,面积为.2(2023春·浙江·八年级专题练习)如图,菱形ABCD中,对角线AC与BD相交于点O,若AB= 25cm,AC=4cm,则BD的长为__cm,菱形ABCD的面积为cm2.【考点四利用菱形的性质证明】1(2023春·湖北襄阳·八年级统考阶段练习)如图,四边形ABCD是菱形,点E,F分别在边AB,AD的延长线上,且BE=DF,连接CE,CF.求证:CE=CF.【变式训练】1(2023·浙江嘉兴·统考中考真题)如图,在菱形ABCD中,AE⊥BC于点E,AF⊥CD于点F,连接EF(1)求证:AE=AF;(2)若∠B=60°,求∠AEF的度数.2(2023春·广东肇庆·八年级校考期中)如图,在菱形ABCD中,AB的垂直平分线交对角线AC于点F,交AB于点E,连接DF.(1)求证:AF=DF;(2)若∠BAD=70°,求∠FDC的度数.【考点五添一个条件使四边形是菱形】1(2023·黑龙江牡丹江·统考二模)如图,四边形ABCD是平行四边形.请添加一个条件_______,使平行四边形ABCD为菱形.(只填一种情况即可)【变式训练】1(2023·安徽·校联考一模)如图,四边形ABCD的对角线AC,BD相交于点O,若AB∥CD,AO= CO,想要判断四边形ABCD是菱形,则可以添加一个条件是.2(2023春·湖南永州·八年级统考期中)如图,在四边形ABCD中,E,F,G,H分别是AB,BD,CD,AC 的中点,要使四边形EFGH是菱形,四边形ABCD还应满足的一个条件是.【考点六证明四边形是菱形】1(2023·吉林长春·统考一模)如图,在四边形ABCD中,AB∥CD,AD∥BC.过点D分别作DE⊥AB 于点E,DF⊥BC于点F,且DE=DF.求证:四边形ABCD是菱形.【变式训练】1(2023春·广东惠州·八年级校考期中)▱ABCD的对角线AC的垂直平分线与边AD、BC分别交于E,F,求证:四边形AFCE是菱形?2(2023·吉林长春·统考二模)如图,AC为▱ABCD的对角线,点E、F分别在边AB、AD上,AE= AF,连接EF交AC于点G.若AC⊥EF,求证.四边形ABCD是菱形.【考点七根据菱形的性质与判定求角度、线段长】1(2023春·全国·八年级专题练习)如图,BD是△ABC的角平分线,过点D作DE⎳BC交AB于点E,DF⎳AB交BC于点F.(1)求证:四边形BEDF是菱形;(2)如果∠A=80°,∠C=30°,求∠BDE的度数.【变式训练】1(2023春·广东惠州·九年级校考开学考试)如图,△ABC中,∠ACB的平分线交AB于点D,作CD 的垂直平分线,分别交AC、DC、BC于点E、G、F,连接DE、DF.(1)求证:四边形DFCE是菱形;(2)若∠ABC=60°,∠ACB=45°,BD=2,试求BF的长.2(2023·广东广州·校考二模)如图,在平行四边形ABCD中,对角线AC、BD交于点O,AC平分∠BAD,过点C作CE⊥AB交AB的延长线于点E,连接OE.(1)求证:四边形ABCD是菱形;(2)若AB=10,BD=2,求OE的长度.3(2023春·全国·八年级专题练习)如图,平行四边形ABCD中,AD=BD,过点C作CE∥BD,交AD的延长线于点E.(1)求证:四边形BDEC是菱形;(2)连接BE,若AB=6,AD=9,则BE的长为.【考点八根据菱形的性质与判定求面积】1(2023春·北京海淀·八年级校考期中)如图,在平行四边形ABCD中,过点A作AE⊥BC于点E,AF ⊥DC于点F,且BE=DF.(1)求证:平行四边形ABCD是菱形(2)若∠EAF=60°,CF=2,求菱形ABCD的面积.【变式训练】1(2023·四川南充·四川省南充高级中学校考三模)如图,在△ABC中,AC=BC,点D、E、F分别是AB、AC、BC的中点,连接DE、DF.(1)求证:四边形DFCE是菱形;(2)若∠A=75°,AC=8,求菱形DFCE的面积.2(2023春·广东珠海·八年级珠海市紫荆中学校考期中)如图,在平行四边形ABCD中,两条对角线相交于点O,EF经过O且垂直于AC,分别与边AD、BC交于点F、E.(1)求证:四边形AECF为菱形;(2)若AD=3,CD=2,且∠ADC=60°,求菱形AECF的面积.3(2023·黑龙江哈尔滨·哈尔滨市萧红中学校考模拟预测)如图,矩形ABCD的对角线AC的垂直平分线EF与AD、AC、BC分别交于点E、O、F.(1)求证:四边形AFCE是菱形;(2)若AB=5,BC=12,EF=6,求:①BO的长;②菱形AFCE的面积.【过关检测】一、选择题1(2023春·江西上饶·八年级统考阶段练习)如图,BD 为菱形ABCD 的对角线,已知∠A =50°,则∠BDC 的度数为()A.130°B.50°C.55°D.65°2(2023·浙江·统考中考真题)如图,在菱形ABCD 中,AB =1,∠DAB =60°,则AC 的长为()A.12B.1C.32D.33(2023春·湖北武汉·八年级校考阶段练习)如图,在菨形ABCD 中,过顶点C 作CE ⊥BC 交对角线BD 于E 点,已知∠A =134°,则∠BEC 的大小为()A.67°B.57°C.33°D.23°4(2023春·黑龙江哈尔滨·八年级校考期中)如图,在菱形ABCD 中,对角线BD =43,∠BAD =120°,则菱形ABCD 的面积是()A.83B.8C.163D.435(2023春·黑龙江哈尔滨·八年级校考期中)如图,菱形ABCD中,∠A=60°,E,F分别是边AB,AD的中点,DE,BF相交于G,连接CG,以下结论正确的有( )个①∠BGD=120°;②SΔADE:SΔGBC=2:3;③BG+DG=CG;④S菱形ABCD=32AB2A.1B.2C.3D.4二、填空题6(2023春·天津滨海新·八年级校考期中)如图,已知菱形ABCD,AC=6,面积等于24,则菱形ABCD的周长等于.7(2023春·北京海淀·八年级校考期中)如图,菱形ABCD中,AB=10,AC,BD交于点O,若E是边AD的中点,∠ABO=32°,则OE的长等于,∠ADO的度数为.8(2023·全国·八年级假期作业)如图,已知菱形ABCD的顶点A和B的坐标分别为-2,0、3,0,点C在y轴的正半轴上.则点D的坐标是.9(2023·河南新乡·统考三模)如图,菱形ABCD中,∠ABC=120°,AB=2,点E是AB的中点,点F 在AC上.若∠BEF=45°,则线段FG的长为.10(2023·浙江绍兴·统考中考真题)如图,在菱形ABCD中,∠DAB=40°,连接AC,以点A为圆心,AC长为半径作弧,交直线AD于点E,连接CE,则∠AEC的度数是.三、解答题11(2023春·湖南郴州·八年级校考期中)如图,在菱形ABCD中,对角线AC,BD相交于点O,∠BAC=30°,BD=6,求菱形的边长和对角线AC的长.12(2023·福建泉州·统考二模)如图,在菱形ABCD中,AC与BD相交于点O,CE⊥AB,已知OC =2,BE=7.(1)求菱形ABCD的面积.(2)求BD的长.13(2023·江苏镇江·统考二模)如图,在平行四边形ABCD中,点F是CD的中点,连接BF并延长,交AD的延长线于点E,连接CE.(1)求证:△DFE≌△CFB;(2)当BD、BC满足关系时,四边形BCED是菱形.14(2023春·江西上饶·八年级统考阶段练习)如图,在四边形ABCD中,对角线AC和BD交于点O,且OA=OC,OB=OD,过点C作CE⊥AD于点E,过点A作AF⊥CD于点F,且AF=CE.(1)求证:四边形ABCD为菱形.(2)若OB=8,OC=6,求AF的长.15(2023·浙江温州·校考三模)如图,在▱ABCD中,点E是对角线BD上的一点,过点C作CF∥BD,且CF=BE,连接AE,DF,EF,ED平分∠AEF.(1)求证:四边形AEFD是菱形.(2)若∠BDC=45°,DE=2CF,AB=102,求▱ABCD的面积.16(2023春·浙江·八年级专题练习)已知:如图,在平行四边形ABCD中,∠ABC的平分线交AD于点E,过点A作BE的垂线交BE于点F,交BC于点G,连接EG,CF.(1)求证:四边形ABGE是菱形;(2)若∠ABC=60°,AB=4,AD=5,求CF的长.17(2023春·浙江·八年级专题练习)如图,在△ABC中,D,E分别是AB,AC的中点.BE=2DE,延长DE到点F,使得EF=BE,连接CF.(1)求证:四边形BCFE是菱形;(2)若CE=4,∠BCF=120°,求菱形BCFE的面积.18(2023·全国·模拟预测)如图,在△ABC中,AB=AC,D是BC的中点,点E,F在直线AD上,且DE=DF.(1)求证:四边形BECF是菱形;(2)若DF=BC=8,AB=AF,求AB的长.。
2023年中考九年级数学高频考点拔高训练--菱形的证明
2023年中考九年级数学高频考点拔高训练--菱形的证明1.如图,在Rt△ABC中,∠ACB=90°,D为AB的中点,AE∥CD,CE∥AB.(1)证明:四边形ADCE为菱形;(2)若BC=6,tanB=43,求四边形ADCE的周长.2.已知:如图,四边形ABCD是平行四边形,AE△CF,且分别交对角线BD于点E,F.(1)求证:△AEB△△CFD;(2)连接AF,CE,若△AFE=△CFE,求证:四边形AFCE是菱形.3.如图,在△ABC中,△ACB=90°,BC的垂直平分线DE交BC于D,交AB于E,点F在DE的延长线上,且AF=CE=AE.(1)求证:四边形ACEF是平行四边形;(2)当△B=30°时,试猜想四边形ACEF是什么图形,并说明理由.4.如图,在ΔABC中,BD平分∠ABC交AC于D,作DE//BC交AB于点E,作DF//AB交BC于点F.(1)求证:四边形BEDF是菱形;(2)若∠BED=150°,∠C=45°,CD=3√2,求菱形BEDF的周长.5.如图,在平行四边形ABCD中,AB=4cm,BC=6cm,∠B=60°,G是CD的中点,E 是边AD上的动点,EG的延长线与BC的延长线交于点F,连接CE,DF.(1)求证:四边形CEDF是平行四边形;(2)①AE=cm时,四边形CEDF是矩形.②AE=cm时,四边形CEDF是菱形.6.如图,在△ABC中,D、E分别是AB、AC的中点,过点E作EF△AB,交BC于点F.(1)求证:四边形DBFE是平行四边形;(2)当△ABC满足什么条件时,四边形DBFE是菱形?为什么?7.在Rt△ABC中,△BAC=90°,D是BC的中点,E是AD的中点,过点A作AF△BC交BE的延长线于点F.(1)证明:四边形ADCF是菱形;(2)若AC=3,AB=4,求菱形ADCF的面积.8.如图,将矩形ABCD沿对角线AC对折,点B的对应点为B′,B′C交AD于E点.AF//CB′交BC于F.(1)求证:四边形AFCE是菱形;(2)若AB=4,BC=8,求EC的长.9.如图,矩形ABCO中,点C在x轴上,点A在y轴上,点B的坐标是(−6,8).矩形ABCO沿直线BD折叠,使得点A落在对角线OB上的点E处,折痕与OA、x轴分别交于点D、F.(1)求点D的坐标;(2)若点N是平面内任一点,在x轴上是否存在点M,使M、N、E、O为顶点的四边形是菱形?若存在,请直接写出满足条件的点M的坐标;若不存在,请说明理由.10.如图1,在矩形ABCD 中,AB=8,AD=10,E 是CD 边上一点,连接AE,将矩形ABCD 沿AE 折叠,顶点D 恰好落在BC 边上点 F 处,延长AE 交BC 的延长线于点G.(1)求线段CE的长;(2)如图2,M,N 分别是线段AG,DG 上的动点(与端点不重合),且△DMN=△DAM,设DN=x.①求证四边形AFGD 为菱形;②是否存在这样的点N,使△DMN 是直角三角形?若存在,请求出x 的值;若不存在,请说明理由.11.如图,将矩形ABCD沿直线EF折叠,使点C与点A重合,折痕交AD于点E,交BC于点F,连接AF、CE,(1)求证:四边形AFCE为菱形;(2)设AE=a,ED=b,DC=c.请写出一个a、b、c三者之间的数量关系式.12.综合与探究如图,抛物线y=x2+bx+c的图象经过坐标原点O,且与x轴的另一交点为( −√33,0).(1)求抛物线的解析式;(2)若直线y=√33x+43与抛物线相交于点A和点B(点A在第二象限),设点A′是点A关于原点O的对称点,连接A′B,试判断ΔAA′B的形状,并说明理由;(3)在问题(2)的基础上,探究:平面内是否存在点P,使得以点A,B,A′,P为顶点的四边形是菱形?若存在直接写出点P的坐标;若不存在,请说明理由.13.在平面直角坐标系中,直线y=−3x−52交x轴于点A,交y轴于点B,直线y=−34x+3交x轴于点C,交y轴于点D.(1)如图1,连接BC,求△BCD的面积;(2)如图2,在直线y=−34x+3上存在点E,使得∠ABE=45°,求点E的坐标;(3)如图3,在(2)的条件下,连接OE,过点E作CD的垂线交y轴于点F,点P在直线EF上,在平面中存在一点Q,使得以OE为一边,O,E,P,Q为顶点的四边形为菱形,请直接写出点Q的坐标.14.定义:如图(1),E,F,G,H四点分别在四边形ABCD的四条边上,若四边形EFGH为菱形,我们称菱形EFGH为四边形ABCD的内接菱形.(1)动手操作:如图2,网格中的每个小四边形都为正方形,每个小四边形的顶点叫做格点,由36个小正方形组成一个大正方形ABCD,点E、F在格点上,请在图(2)中画出四边形ABCD的内接菱形EFGH;(2)特例探索:如图3,矩形ABCD,AB=5,点E在线段AB上且EB=2,四边形EFGH是矩形ABCD的内接菱形,求GC的长度;(3)拓展应用:如图4,平行四边形ABCD,AB=5,∠B=60°,点E在线段AB上且EB=2,①请你在图4中画出平行四边形ABCD的内接菱形EFGH,点F在边BC上;②在①的条件下,当BF的长最短时,BC的长为.15.如图,在△ABC中,AB=AC,以AB为直径的△O交BC于D,交AC于E,连接OE,过点D 作DF△AC于F.(1)求证:DF与△O相切;(2)填空:①若△CDF的面积为3,则△CDE的面积为.②当△CDF的度数为时,OE∥BC,此时四边形ODCE的形状是:.16.如图,四边形ABCD的四个顶点分别在反比例函数y=mx与y=nx(x>0,0<m<n)的图象上,对角线BD△y轴,且BD△AC于点P.已知点B的横坐标为4.(1)当m=4,n=20时.①若点P的纵坐标为2,求直线AB的函数表达式.②若点P是BD的中点,试判断四边形ABCD的形状,并说明理由.(2)四边形ABCD能否成为正方形?若能,求此时m,n之间的数量关系;若不能,试说明理由.答案解析部分1.【答案】(1)证明:∵AE∥CD,CE∥AB,∴四边形ADCE是平行四边形,∵∠ACB=90°,D为AB的中点,∴CD=12AB=AD,∴四边形ADCE为菱形;(2)解:在RtΔABC中,BC=6,tanB=ACBC=43,∴AC=43BC=43×6=8,∴AB=√AC2+BC2=√82+62=10,∴CD=12AB=5,∵四边形ADCE为菱形,∴CD=DA=AE=EC=5,∴菱形ADCE的周长为:5×4=20.2.【答案】(1)证明:如图:∵四边形ABCD是平行四边形,∴AB△DC,AB=DC,∴△1=△2,∵AE△CF,∴△3=△4,在△AEB和△CFD中,{∠3=∠4∠1=∠2 AB=CD,∴△AEB△△CFD(AAS)(2)证明:∵△AEB△△CFD,∴AE=CF,∵AE△CF,∴四边形AFCE是平行四边形.∵△5=△4,△3=△4,∴△5=△3.∴AF=AE.∴四边形AFCE是菱形3.【答案】(1)证明:∵DE垂直平分BC,∴D为BC的中点,ED△BC,又∵AC△BC,∴ED△AC,∴E为AB中点,∴ED是△ABC的中位线.∴BE=AE,FD△AC.∴CE是是△ABC斜边上的中线∴CE=12AB,∵CE=AE=AF.∴△F=△5=△1=△2.∴△FAE=△AEC.∴AF△EC.又∵AF=EC,∴四边形ACEF是平行四边形(2)解:当△B=30°时,四边形ACEF为菱形;理由:∵△ACB=90°,△B=30°,∴AC=12AB,由(1)知CE=12AB,∴AC=CE又∵四边形ACEF为平行四边形∴四边形ACEF为菱形.4.【答案】(1)证明:∵DE//BC,DF//AB,∴四边形BEDF是平行四边形,∠EDB=∠DBC,∵BD平分∠ABC,∴∠ABD=∠DBC,∴∠ABD=∠EDB,∴BE=DE,∴平行四边形BEDF是菱形;(2)解:如图,过点D作DH⊥BC于点H,∵四边形BEDF是菱形,∴BF=DF=DE=BE,∴∠DFB=∠BED=150°,∴∠DFH=180°−∠DFB=30°,∵DH⊥BC,∴∠DHF=∠DHC=90°,∴DH=12DF,∵∠C=45°,∴ΔCDH是等腰直角三角形,∴DH=CH=√22CD=√22×3√2=3,∴DF=2DH=6,∴菱形BEDF的周长=4DF=24.5.【答案】(1)证明:∵四边形ABCD是平行四边形,∴AD//BF,∴∠DEF=∠CFE,∠EDC=∠FCD,∵G是CD的中点,∴GD=GC,∴△GED△ △GFC,∴DE=CF,而DE//CF,∴四边形CEDF是平行四边形(2)4;26.【答案】(1)证明:∵D、E分别是AB、AC的中点,∴DE是△ABC的中位线.∴DE△BC.又∵EF△AB,∴四边形DBFE是平行四边形(2)解:当AB=BC时,四边形DBEF是菱形.理由如下:∵D是AB的中点,∴BD= 12AB.∵DE是△ABC的中位线,∴DE= 12BC.∵AB=BC,∴BD=DE.又∵四边形DBFE是平行四边形,∴四边形DBFE是菱形7.【答案】(1)证明:∵E是AD的中点,∴AE=DE,∵AF△BC,∴△AFE=△DBE,在△AEF和△DEB中,{∠AFE=∠DBE ∠AEF=∠DEBAE=DE,∴△AEF△△DEB(AAS),∴AF=DB,又∵AF△BC,∴四边形ADCF是平行四边形,∵△BAC=90°,D是BC的中点,∴AD=12BC=CD,∴平行四边形ADCF是菱形.(2)解:∵D是BC的中点,∴S△ACD=S△ABD=12S△ABC,∵四边形ADCF是菱形,∴S菱形ADCF=2S△ACD=S△ABC=12AC·AB=12×3×4=6.8.【答案】(1)证明:在矩形ABCD中,∠ADC=90°,AD//BC ∴∠DAC=∠BCA.由题意得:∠BCA=∠B′CA∴∠DAC=∠B′CA,∴EA=EC∵AD//BC,AF//CE,∴四边形AFCE为平行四边形∵EA=EC∴四边形AFCE是菱形.(2)解:如图所示,在矩形ABCD中,∠ADC=∠AB′C′=90°,AD=BC=B′C=8,AB=AB′=4设AE=CE=x,则EB′=(8−x).在Rt△AB′E中,∠AB′E=90°,AB′=4,由勾股定理得:AB′2+B′E2=AE2,即42+(8−x)2=x2,∴x=5.∴EC=5.9.【答案】(1)解:∵四边形ABCO是矩形,点B的坐标是(−6,8).∴∠BAD=∠OCB=90°,AB=OC=6,OA=BC=8,∴BO=√OC2+BC2=10;由折叠的性质得:BE=AB=6,∠BED=∠BAD=90°,DE=AD,∴OE=BO−BE=10−6=4,∠OED=90°,设D(0,a),则OD=a,DE=AD=OA−OD=8−a,在Rt△EOD中,由勾股定理得:DE2+OE2=OD2,即(8−a)2+42=a2,解得:a=5,∴D(0,5);(2)解:存在,①OM,OE都为边时,OM=OE=4,∴M的坐标为(4,0),(-4,0)②OM为边OE为对角线时,MN垂直平分OE,垂足为G,如图1则OG= 12OE=2,∵B(−6,8),∴OB的解析式为:y=−43x,设E(x,−43x),M(a,0),∴x2+(43x)2=16, ∴x =−125,x =125 (舍去), ∴E(−125,165),由 OM =EM 可得: (a +125)2+(165)2=a 2,解得: a =−103∴M ( −103,0) ③OM 为对角线,OE 为边,如图2由②得:M ( −245,0) 综上所述:点M 的坐标为 (4,0) 或 (−4,0) 或 (−103,0) 或 (−245,0) ; 10.【答案】(1)解:∵四边形ABCD 是矩形,∴AD =BC =10,AB =CD =8, ∴△B =△BCD =90°,由翻折可知:AD =AF =10.DE =EF ,设CE =x ,则DE =EF =8−x . 在Rt△ABF 中,BF = √AF 2−AB 2=6 , ∴CF =BC−BF =10−6=4,在Rt△EFC 中,则有:(8−x)2=x 2+42, ∴x =3, ∴CE =3.(2)解:①证明:∵四边形ABCD 是矩形, ∴AD△BC ∴△ADE△△GCE ,∴ADGC=DECE,∵AD=10,CE=3,DE=5,∴10GC=53,∴GC=6,由(1)可得:CF=4,∴GF=6+4=10,∴四边形AFGD是平行四边形,又∵AD=AF,∴平行四边形AFGD是菱形.②∵△DMN=△DAM,∴若△DMN 是直角三角形,则有两种情况,当△MDN=90°时,∵AD=GD,∴△DAG=△DGA又∵△ADE=△GDM=90°,∴△ADE△△GDM(ASA)∴DM=DE=5,又∵△DMN=△DAM,△ADE=△MDN=90°,∴△ADE△△MDN∴ADMD=DEDN,即105=5x,∴x=5 2;当△DNM=90°时,则△MDN+△DMN=90°,又∵△DMN=△DAM,△DAG=△DGA,∴△DMN=△DGA,∴△MDN+△DGA=90°,∴△DMG=90°,∵sin△DAE= DEAE=DMAD,∵AE=√AD2+DE2=5√5,∴5√5=DM10,∴DM= 2√5,∵△DMN=△DAM∴sin△DMN=sin△DAM∴DEAE=DNDM,即5√5=2√5解得:x=2,综上所述:x=52或2.11.【答案】(1)证明:∵四边形ABCD是矩形,∴AD△BC,∴△AEF=△EFC,由折叠的性质,可得:△AEF=△CEF,AE=CE,AF=CF,∴△EFC=△CEF,∴CF=CE,∴AF=CF=CE=AE,∴四边形AFCE为菱形(2)a、b、c三者之间的数量关系式为:a2=b2+c2.理由:由折叠的性质,得:CE=AE,∵四边形ABCD是矩形,∴△D=90°,∵AE=a,ED=b,DC=c,∴CE=AE=a,在Rt△DCE中,CE2=CD2+DE2,∴a、b、c三者之间的数量关系式为:a2=b2+c212.【答案】(1)解:∵抛物线y=x2+bx+c的图象经过点(0,0)和( −√33,0),∴{c=01 3−√33b+c=0,解得:{b=√3 3c=0;∴y=x2+√33x.(2)解:ΔAA′B是等边三角形;∵{y=x2+√33xy=√33x+43,解得:{x1=2√33y1=2,{x2=−2√33y2=23,∴A( −2√33,23),B( 2√33,2),过点A分别作AC△ x轴,AD△A′B,垂足分别为C,D,∴AC= 23,OC=2√33,在RtΔAOC中OA= √AC2+OC2=43,∵点A′与点A关于原点对称,∴A′( 2√33,−23),AA′= 83,∵B( 2√33,2),∴A′B=2-(- 23)=83,又∵A( −2√33,23),B( 2√33,2),∴AD= 4√33,BD= 43,在RtΔABD中AB= √AD2+BD2=83,∴AA′=A′B=AB,∴ΔAA′B是等边三角形(3)解:存在正确的点P ,且以点A 、B 、A′、P 为顶点的菱形分三种情况; 设点P 的坐标为:(x ,y ).①当A′B 为对角线时,有 {x −2√33=2√33×2y =23, 解得: {x =2√3y =23, ∴点P 为: (2√3,23) ;②当AB 为对角线时,有 {x =−2√33y −23=23+2, 解得: {x =−2√33y =103, ∴点P 为: (−2√33,103) ;③当AA′为对角线时,有 {x =−2√33y +2=23−23 , 解得: {x =−2√33y =−2, ∴点P 为: (−2√33,−2) ;综合上述, P 1(−2√33,103) , P 2(−2√33,−2) , P 3(2√3,23)13.【答案】解:对于直线 y =−3x −52 ,令 x =0 ,则 y =−52 ,故点 B(0,−52) ;对于 y =−34x +3 ,令 x =0 ,则 y =3 ,令 y =0 ,即 −34x +3=0 ,解得: x =4 ,故点 D(0,3) 、 (4,0) ,则 BD =3+52=112,CC =4 , ΔBCD 的面积 =12×BD ×OC =12×112×4=11 ; (2) 如图2,在直线 y =−34x +3 上存在点E ,使得 ∠ABE =45° ,求点E 的坐标;解:过点E 作 BE 的垂线交 AB 于点R ,过点E 作y 轴的平行线交过点R 与x 轴的平行线于点G ,交过点B 与x 轴的平行线于点H ,设点 E(m,−34m +3) ,点 R(n,−3n −52) ,∵∠ABE =45° ,故 ER =EB ,∵∠REG +∠BEH =90° , ∠BEH +∠EBH =90° , ∴∠REG =∠EBH ,∵∠EHB =∠RGE =90° , EB =ER , ∴ΔEHB ≅ΔRGE(AAS) , ∴RG =EH , BH =GE ,即 m =−3n −52+34m −3 , −34m +3+52=m −n ,解得 {m =2n =−2,故点 E(2,32) ;(3) 如图3,在 (2) 的条件下,连接 OE ,过点 E 作 CD 的垂线交y 轴于点F ,点P 在直线 EF 上,在平面中存在一点Q ,使得以 OE 为一边, O ,E ,P ,Q 为顶点的四边形为菱形,请直接写出点Q 的坐标.(6,173) 或 (625 , −15175) 或 (32 , 2) 或(−32 , −2) (1)解:对于直线 y =−3x −52 ,令 x =0 ,则 y =−52 ,故点 B(0,−52) ;对于 y =−34x +3 ,令 x =0 ,则 y =3 ,令 y =0 ,即 −34x +3=0 ,解得: x =4 ,故点D(0,3)、(4,0),则BD=3+52=112,CC=4,ΔBCD的面积=12×BD×OC=12×112×4=11;(2)解:过点E作BE的垂线交AB于点R,过点E作y轴的平行线交过点R与x轴的平行线于点G,交过点B与x轴的平行线于点H,设点E(m,−34m+3),点R(n,−3n−52),∵∠ABE=45°,故ER=EB,∵∠REG+∠BEH=90°,∠BEH+∠EBH=90°,∴∠REG=∠EBH,∵∠EHB=∠RGE=90°,EB=ER,∴ΔEHB≅ΔRGE(AAS),∴RG=EH,BH=GE,即m=−3n−52+34m−3,−34m+3+52=m−n,解得{m=2n=−2,故点E(2,3 2);(3)(6,173)或(625,−15175)或(32,2)或(−32,−2)14.【答案】(1)解:如图2所示,菱形EFGH即为所求;(2)解:如图3,连接HF,∵四边形ABCD是矩形,∴∠D=∠B=90°,AD//BC,AB=CD=5,∴∠DHF=∠HFB,∵四边形EFGH是菱形,∴GH=EF,GH//EF,∴∠GHF=∠HFE,∴∠DHF−∠GHF=∠BFH−∠HFE,即∠DHG=∠BFE,∴ΔDHG≅ΔBFE(AAS)∴DG=BE=2,∴CG=CD−DG=5−2=3;(3)解:①如图4所示,由(2)知:ΔDHG≅ΔBFE,∴DG=BE=2,作法:作DG= 2,连接EG,再作EG的垂直平分线,交AD、BC于H、F,得四边形EFGH即为所求作的内接菱形EFGH;②1+√615.【答案】(1)证明:∵AB=AC,∴△ABC=△C,连接OD,∵OB =OD ,∴△ABC =△ODB ,∴△ODB =△C ,∴OD ∥AC ,∵DF△AC ,∴OD△DF ,∴DF 与△O 相切;(2)6;30;菱形16.【答案】(1)①当x=4时, y =4x=1 ∴点B 的坐标是(4,1)当y=2时,由得 y =4x得x=2 ∴点A 的坐标是(2,2)设直线AB 的函数表达式为 y =kx +b∴{2k +b =24k +b =1 解得 {k =−12b =3∴直线AB 的函数表达式为 y =−12x +3 ②四边形ABCD 为菱形,理由如下:如图,由①得点B (4,1),点D (4,5)∵点P 为线段BD 的中点∴点P 的坐标为(4,3)当y=3时,由 y =4x 得 x =43 ,由 y =20x 得 x =203, ∴PA= 4−43=83,PC= 203−4=83 ∴PA=PC而PB=PD ∴四边形ABCD 为平行四边形又∵BD△AC∴四边形ABCD 是菱形(2)四边形ABCD 能成为正方形当四边形ABCD 时正方形时,PA=PB=PC=PD (设为t ,t≠0),当x=4时, y =m x =m 4∴点B 的坐标是(4, m 4 )则点A 的坐标是(4-t , m 4+t )∴(4−t)(m 4+t)=m ,化简得t= 4−m 4∴点D 的纵坐标为 m 4+2t =m 4+2(4−m 4)=8−m 4则点D 的坐标为(4, 8−m 4 )所以 4×(8−m 4)=n ,整理得m+n=32。
题目: 中考菱形证明与计算(含答案)
题目: 中考菱形证明与计算(含答案) **1. 初步认识菱形**菱形是一种四边形,它的特点是四边长度相等并且对角线相互垂直。
菱形的性质有:- 所有边长相等,即AB = BC = CD = DA- 对角线相等,即AC = BD- 对角线垂直,即∠CAB = ∠ABC = ∠BCD = ∠CDA = 90°**2. 菱形的计算问题****2.1 计算菱形的面积**菱形的面积可以通过以下公式来计算:菱形面积 = 对角线1长度 ×对角线2长度的一半**2.2 计算菱形的周长**菱形的周长可以通过以下公式来计算:菱形周长 = 边长 × 4**3. 菱形的证明问题****3.1 证明"对角线相互垂直"**要证明"对角线相互垂直",可以使用以下方法:- 通过数学几何运算,证明菱形的内角∠CAB = ∠ABC =∠BCD = ∠CDA = 90°,并且∠CAB + ∠ABC + ∠BCD + ∠CDA = 360°- 利用面积公式证明ABCD为菱形,即AB = BC = CD = DA**3.2 证明"菱形的对角线相等"**要证明"菱形的对角线相等",可以使用以下方法:- 利用勾股定理证明对角线AC和BD的长度相等,即AC =BD- 通过数学几何运算证明∠CAD = ∠ACD,从而证明三角形ACD与三角形ABC为全等三角形**4. 练题答案****4.1 练题1**已知菱形ABCD,AB = 6cm,AC = 8cm,求菱形面积和周长。
答案:菱形面积 = 6cm × 8cm / 2 = 24cm²菱形周长 = 6cm + 6cm + 6cm + 6cm = 24cm**4.2 练题2**证明在菱形ABCD中,对角线AC和BD相互垂直。
答案:通过数学几何运算可证明∠CAB = ∠ABC = ∠BCD = ∠CDA = 90°,即对角线AC和BD相互垂直。
菱形的性质与判定经典例题练习
1、叫菱形2、菱形的性质1)边2)角3)对角线4)对称性5)菱形的面积计算方法:练一练:、1菱形具有而矩形不一定具有的性质是().A.对边相等 B.对角相等 C.对角线互相垂直 D.对角线相等2、能够找到一点使该点到各边距离相等的图形为().A.平行四边形 B.菱形 C.矩形 D.不存在3、如图所示,在菱形ABCD中,∠BAD=80°,AB的垂直平分线交对角线AC于点F,E为垂足,连结DF,则∠CDF等于()A.80°B.70°C.65°D.60°3.如在菱形ABCD中,∠A=60°,E、F分别是AB,AD的中点,DE、BF相交于点G,连接BD,CG.有下列结论:①∠BGD=120°;②BG+DG=CG;③△BDF≌△CGB;④S△ABD=AB2其中正确的结论有()A.1个B.2个C.3个D.4个4、菱形的周长为12 cm,相邻两角之比为5∶1,那么菱形对边间的距离是()A.6 cmB.1.5 cmC.3 cmD.0.75 cm5.在菱形ABCD中,AE⊥BC于点E,AF⊥CD于点F,且E、F分别为BC、CD的中点,则∠EAF等于()A.75° B.60° C.45° D.30°6、菱形的边长是2 cm,一条对角线的长是23 cm,则另一条对角线的长是()A.4 cmB.3 cmC.2 cmD.23 cm例1、如图,菱形ABCD的对角线AC、BD交于点O,且AC=16 cm,BD=12 cm,求菱形ABCD的高DH.2、如图,菱形ABCD的对角线AC、BD交于点O,且AC=8,BD=6,过点O作OH丄AB,垂足为H,则点0到边AB的距离为_______.3、如图,菱形ABCD的边长是2cm,E是AB的中点,且DE丄AB,则菱形ABCD的面积为cm2.12. 如图,菱形OABC 在直角坐标系中,点A 的坐标为(5,0),对角线OB =45,反比 例函数xky(k ≠0,x >0)经过点C .则k 的值等于( ) A .12 B .8 C .15 D .94变式:菱形ABCD 的周长为20 cm ,两条对角线的比为3∶4,求菱形的面积.5如图,在菱形ABCD 中,∠BAD=60°,BD=4,则菱形ABCD 的周长是_________.6、如图,菱形ABCD 中,E 是AB 中点,DE ⊥AB ,AB=4.求(1)∠ABC 的度数; (2)AC 的长; (3)菱形ABCD 的面积.例7:如图,在菱形ABCD 中,AB=4,E 在BC 上,BE=2,角ABC=120度,P 点在AC 上,求PE+PC 的最小值。
菱形的判定证明题 经典
菱形的判定经典习题 1.如图,梯形ABCD 中,AB ∥CD ,AC 平分∠BAD ,CE ∥AD 交AB 于点E .求证:四边形AECD 是菱形.2.已知:在□ABCD 中,AE 是BC 边上的高,将ABE △沿BC 方向平移,使点E 与点C 重合,得GFC △.(1)求证:BE DG =;(2)若60B ∠=°,当AB 与BC 满足什么数量关系时,四边形ABFG 是菱形?证明你的结论.3.如图,在四边形ABCD 中,点E ,F 分别是AD BC ,的中点,G H ,分别是BD AC ,的中点,AB CD ,满足什么条件时,四边形EGFH 是菱形?请证明你的结论.4.如图,在□ABCD 中,EF ∥BD ,分别交BC 、CD 于点P 、Q ,分别交AB 、AD 的延长线于点E 、F .已知BE=BP .求证:(1)∠E=∠F .(2)□ABCD 是菱形.5. 如图,在平行四边形ABCD 中,BE 平分ABC ∠交AD 于点E ,DF 平分∠ADC 交BC 于点F .求证:(1)ABE CDF △≌;(2)若BD EF ⊥,则判断四边形EBFD 是什么特殊四边形,请证明你的结论.6. 如图,在△ABC 中,D 是BC 边的中点,E 、F 分别在AD 及其延长线上,CE ∥BF ,连接BE 、CF .(1)求证:△BDF ≌△CDE ;(2)若AB =AC ,求证:四边形BFCE 是菱形.7. 已知:如图,在梯形ABCD 中,AB CD ∥,BC CD =,AD BD ⊥,E 为AB 中点. 求证:四边形BCDE 是菱形.8. 如图,在△ABC 中,∠ACB =90°,BC 的垂直平分线DE 交BC 于D ,交AB 于E ,F 在DE 上,且AF =CE =AE . A B C D E A D G C B F E A B C D E F G H F D E C A B(1)说明四边形ACEF 是平行四边形;(2)当∠B 满足什么条件时,四边形ACEF 是菱形,并说明理由.9. 如图,在平行四边形ABCD 中,E F 、分别为边AB CD 、的中点,BD 是对角线,过A 点作AG DB ∥交CB 的延长线于点.G(1)求证:DE BF ∥;(2)若90G ∠=°,求证:四边形DEBF 是菱形.10.如图,在平行四边形ABCD 中,点P 是对角线AC 上一点,PE ⊥AB ,PF ⊥AD ,垂足分别为点E 、F ,且PE =PF ,平行四边形ABCD 是菱形吗?为什么?11. (济宁) 如图,在平行四边形ABCD 中,对角线AC 、BD 相交于点O ,过点O 作直线EF BD ⊥,分别交AD 、BC 于点E 和F .求证:四边形BEDF 是菱形.12. (临沂) 如图,ABC △中,AB AC =,AD 、CD 分别是ABC △两个外角的平分线.(1)求证:AC AD =;(2)若60B ∠=°,求证:四边形ABCD 是菱形.13. (青岛) 已知:□ABCD 中,E 、F 分别是AB 、CD 的中点,连接AF 、CE .(1)求证:△BEC ≌△DF A ;(2)连接AC ,当CA =CB 时,判断四边形AECF 是什么特殊四边形?并证明你的结论. F D EA CP B A E D C F B O A F E C BA EBC F D。
2020年中考 菱形性质和证明 专练(含答案)
2020年中考菱形性质及证明专练(含答案)一、单选题(共有10道小题)1.在菱形ABCD中,不一定成立的是()A.四边形ABCD是平行四边形B.AC⊥BDC.∠CAB=∠CADD.△ABC是等边三角形2.边长为3 cm的菱形的周长是( )A.6 cmB.9 cmC.12 cmD.15 cm3.如图,在菱形ABCD中,AC=6,BD=8,∠ABD=β,则下列结论正确的是()A.4 sin5β= B.5cos4β= C.3cos5β= D.3tan4β=4.下列命题中,真命题是()A. 两对角线相等的四边形是矩形B. 两对角线互相平分的四边形是平行四边形C. 两对角线互相垂直的四边形是菱形D. 两对角线相等的四边形是等腰梯形5.如图,将等边△ABC沿射线BC向右平移到△DCE的位置,连接AD、BD,则下列结论中正确的个数是()①AD=BC;②BD、AC互相平分;③四边形ACED是菱形A.0 B.1 C.2 D.36.如图,四边形ABCD的对角线AC与BD互相平分,则下列能判定四边形ABCD为菱形的条件是()A.AB=CDB.AC=BDC.AB=ADD.AB⊥ADCB DAβDFAB C7.如图,四边形ABCD 的四边相等,且面积为120cm 2,对角线AC =24cm ,则四边形ABCD 的周长为( )A.52 cmB.40 cmC.39 cmD.26 cm8.如图,|BD 是菱形ABCD 的对侥幸,CE ⊥AB 于点E ,交BD 于点F ,且点E 是AB 中点,则tan BFE ∠的值是( )A.12B.2C.3D.3 9.如图,用直尺和圆规作四边形ABCD ,能判定该四边形是菱形的依据是( )A.一组邻边相等的平行四边形是菱形B.四边相等的四边形是菱形C.对角线互相垂直的平行四边形是菱形D.每条对角线分别平分一组对角的平行四边形是菱形10.如图,四边形ABCD 是菱形,8=AC ,6=DB ,AB DH ⊥于H ,则DH 等于()A .524 B .512 C .5 D .4 二、填空题(共有7道小题)11.若菱形的周长20cm,则它的边长是 cm12.如图所示,平行四边形ABCD 的对角线AC 、BD 相交于点O ,试添加一个条件: ,使得平行四边形ABCD 为菱形.13.在菱形ABCD 中,O 是两条对角线的交点,AB=5,AO=4,则对角线AC 的长为 ,BD 的长为 。
中考数学二轮专项训练——菱形的判定与性质
中考二轮专项训练——菱形的判定与性质一、单选题1.如图,在ABCD 中, AC 平分 DAB ∠ , 2AB = ,则ABCD 的周长为( )A .4B .6C .8D .122.已知四边形ABCD 中, AB BC CD DA === ,对角线AC ,BD 相交于点O.下列结论一定成立的是( )A .AC BD ⊥B .AC BD = C .90ABC ∠=︒ D .ABC BAC ∠=∠3.如图,四边形ABCD 的对角线相交于点O ,且点O 是BD 的中点,若AB =AD =5,BD =8,∠ABD =∠CDB ,则四边形ABCD 的面积为( )A .40B .24C .20D .154.在学习菱形时,几名同学对同一问题,给出了如下几种解题思路,其中正确的是( )已知:如图,四边形ABCD 是菱形,E 、F 是直线AC 上两点,AF =CE . 求证;四边形FBED 是菱形.甲:利用全等,证明四边形FBED 四条边相等,进而说明该四边形是菱形;乙:连接BD ,利用对角线互相垂直的平行四边形是菱形,判定四边形FBED 是菱形; 丙:该题目错误,根据已知条件不能够证明该四边形是菱形. A .甲、乙对,丙错 B .乙、丙对,甲错 C .三个人都对D .甲、丙对,乙错5.如图,CE 是□ABCD 的边AB 的垂直平分线,垂足为点O ,CE 与DA 的延长线交于点E 、连接AC ,BE ,DO ,DO 与AC 交于点F ,则下列结论:①四边形ACBE 是菱形;②∠ACD =∠BAE ;③AF :BE =2:3;④S 四边形AFOE :S ∠COD =2:3.其中正确的结论有( )个.A .1B .2C .3D .46.如图,已知∠ABC ,∠ACB =90°,BC =3,AC =4,小红按如下步骤作图:①分别以A 、C 为圆心,以大于 12AC 的长为半径在AC 两边作弧,交于两点M 、N ;②连接MN ,分别交AB 、AC 于点D 、O ;③过C 作CE∠AB 交MN 于点E ,连接AE 、CD .则四边形ADCE 的周长为( )A .10B .20C .12D .247.如图,在平面直角坐标系中,已知点 (20)31)A B ,,, ,若平移点 A 到点 C ,使以点 O A C B ,,, 为顶点的四边形是菱形,则正确的平移方法是( )A .向左平移( 43 )个单位,再向上平移1个单位B .向左平移 3 个单位,再向下平移1个单位C .向右平移3 个单位,再向上平移1个单位D .向右平移2个单位,再向上平移1个单位8.如图,在矩形ABCD 中,对角线AC ,BD 相交于点E ,BF∠AC ,CF∠BD .若四边形BECF 的面积为2,则矩形ABCD 的面积为( )A .4B .6C .8D .169.如图,点A,B在方格纸的格点上,将线段AB先向右平移3格,再向下平移2个单位,得线段DC,点A的对应点为D,连接AD,BC,则关于四边形ABCD的对称性,下列说法正确的是().A.既是轴对称图形,又是中心对称图形B.是中心对称图形,但不是轴对称图形C.是轴对称图形,但不是中心对称图形D.既不是轴对称图形,也不是中心对称图形10.如图,两张等宽的纸条交叉叠放在一起,若重合部分构成的四边形ABCD中,AB=3,AC=2,则四边形ABCD的面积为()A.42B.62C.2D.5二、填空题11.如图,要使平行四边形ABCD为菱形,还需添加的一个条件是.(写出一个即可).12.如图,两条宽都为4cm的纸条交叉成45°角重叠在一起,则重叠四边形的面积为cm2.13.如图,两个长宽分别为7cm、3cm的矩形如图叠放在一起,则图中阴影部分的面积是.14.如图,四边形ABCD 是菱形,O 是两条对角线的交点,过O 点的三条直线将菱形分成阴影和空白部分,当菱形的两条对角线的长分别为12和8时,则阴影部分的面积为 .15.如图,CD 与BE 互相垂直平分,AD∠DB ,∠DBE=70°,则∠ADE= .16.在数学课上,老师提出如下问题:尺规作图:过直线外一点作已知直线的平行线. 已知:直线l 及其外一点A . 求作:l 的平行线,使它经过点A .小云的作法如下:(1)在直线l 上任取一点B ;(2)以B 为圆心,BA 长为半径作弧,交直线l 于点C ;(3)分别以A 、C 为圆心,BA 长为半径作弧,两弧相交于点D ;(4)作直线AD .直线AD 即为所求.小云作图的依据是 .17.如图,两张等宽的纸条交叉叠放在一起,若重合部分构成的四边形 ABCD 中, 3AB = , 2AC = ,则 BD 的长为 .三、解答题18.如图,在菱形 ABCD 中,将对角线 AC 分别向两端延长到点 E 和 F ,使得 AE CF = .连接 ,,,DE DF BE BF .求证:四边形 BEDF 是菱形.19.如图,矩形 ABCD 的对角线 AC , BD 交于点 O ,且 //DE AC , //AE BD ,连接 OE .求证: OE AD ⊥ .20.如图,在菱形ABCD 中,E 、F 是AC 上两点,AE =CF.求证:四边形BFDE 是菱形.21.如图,四边形 ABCD 是菱形,E 、F 是直线 AC 上两点, AF CE = .求证:四边形 FBED 是菱形.22.如图,四边形ABCD中,AD∠BC,AB∠AC,点E是BC的中点,AE与BD交于点F,且F是AE的中点.(∠)求证:四边形AECD是菱形;(∠)若AC=4,AB=5,求四边形ABCD的面积.答案解析部分1.【答案】C【解析】【解答】解:∵在ABCD中,AC平分DAB∠,∴四边形ABCD为菱形,∴四边形ABCD的周长=4×2=8.故答案为:C.【分析】首先根据一条对角线平分一组对角的平行四边形是菱形证出四边形ABCD为菱形,根据菱形的性质求周长. 2.【答案】A【解析】【解答】解:在四边形ABCD中,AB BC CD DA===,∴四边形ABCD是菱形,∴AC BD⊥;故答案为:A.【分析】根据菱形的判定和性质,即可得到答案.3.【答案】B【解析】【解答】∵AB=AD,点O是BD的中点,∴AC∠BD,∠BAO=∠DAO,∵∠ABD=∠CDB,∴AB∠CD,∴∠BAC=∠ACD,∴∠DAC=∠ACD,∴AD=CD,∴AB=CD,∴四边形ABCD是菱形,∵AB=5,BO12=BD=4,∴AO=3,∴AC=2AO=6,∴四边形ABCD的面积12=⨯6×8=24,故答案为:B.【分析】根据等腰三角形的性质,可得AC∠BD,∠BAO=∠DAO,根据平行线的判定与性质可得∠BAC=∠ACD,从而得出∠DAC=∠ACD,由等角对等边可得AD=CD,从而可得AB=CD,从而可证四边形ABCD是菱形,根据菱形的性质可求出AO的长,从而得出AC,利用菱形的面积等于对角线乘积的一半计算即可.【解析】【解答】解:菱形 ,ABCD,,,,AB BC CD AD AC BD OA OC OB OD ∴===⊥== 90,FOB FOD ∴∠==∠=︒,FO FO = ,FOB FOD ∴≌ ,FB FD ∴=同理可得: ,,FD ED ED EB ==,FB FD DE BE ∴===∴四边形FBED 是菱形.故甲符合题意; 连接BD 交AC 于O ,∵四边形ABCD 是菱形, ∴AC ∠BD ,AO =CO ,BO =DO , ∵AF =CE , ∴OF =OE ,∴四边形FBED 是菱形.故乙正确; 由甲,乙正确,可得丙的说法错误; 故答案为:A.【分析】先利用菱形的性质证明,FOB FOD ≌ 可得,FB FD = 同理可得FD=ED ,ED=EB ,即得,FB FD DE BE ===据此判断甲;连接BD 交AC 于O ,由菱形的性质可得AC∠BD ,AO=CO ,BO=DO ,再证明OF=OE ,可证四边形FBED 是菱形,据此判断乙正确,丙错误.5.【答案】C【解析】【解答】解:∵四边形ABCD 是平行四边形,∴AB∠CD ,AB =CD , ∵EC 垂直平分AB , ∴OA =OB =12 AB = 12DC ,CD∠CE ,∴EAED=EOEC=OACD=12,∴AE=AD,OE=OC,∵OA=OB,OE=OC,∴四边形ACBE是平行四边形,∵AB∠EC,∴四边形ACBE是菱形,故①符合题意,∵∠DCE=90°,DA=AE,∴AC=AD=AE,∴∠ACD=∠ADC=∠BAE,故②符合题意,∵OA∠CD,∴AFCF=OACF=12,∴AFAC=AFBE=13,故③不符合题意,设∠AOF的面积为a,则∠OFC的面积为2a,∠CDF的面积为4a,∠AOC的面积=∠AOE的面积=3a,∴四边形AFOE的面积为4a,∠ODC的面积为6a∴S四边形AFOE:S∠COD=2:3.故④符合题意,故答案为:C.【分析】利用平行四边形的性质和线段垂直平分线的性质和定义先证得四边形ACBE是菱形;再由菱形的性质和平行线的性质可得∠ACD=∠BAE;根据三角形中位线定理和相似三角形的判定与性质可证得AF:AC=AF:BE=1:3;设∠AOF的面积为a,利用相似三角形的性质和两个同底三角形的面积比等于底的比可得S四边形AFOE=4a:S∠COD=6a.6.【答案】A【解析】【解答】∵分别以A、C为圆心,以大于12AC的长为半径在AC两边作弧,交于两点M、N,∴MN是AC的垂直平分线,∴AD=CD,AE=CE,∴∠CAD=∠ACD,∠CAE=∠ACE,∵CE∠AB,∴∠CAD=∠ACE,∴∠ACD=∠CAE,∴CD∠AE,∴四边形ADCE是平行四边形,∴四边形ADCE是菱形;∴OA=OC= 12AC=2,OD=OE,AC∠DE,∵∠ACB=90°,∴DE∠BC,∴OD是∠ABC的中位线,∴OD= 12BC=12×3=1.5,∴AD= 22OA OD+=2.5,∴菱形ADCE的周长=4AD=10.故答案为:A.【分析】根据题意得:MN是AC的垂直平分线,即可得AD=CD,AE=CE,然后由CE∠AB,可证得CD∠AE,继而证得四边形ADCE是菱形,再根据勾股定理求出AD,进而求出菱形ADCE的周长.7.【答案】C【解析】【解答】解:过B作射线BC∠OA,在BC上截取BC=OA,则四边形OACB是平行四边形,过B作BH∠x轴于H,∵B(3,1),∴OB= ()22312+=,∵A(2,0),∴C(3,1)∴OA=OB,∴则四边形OACB是菱形,∴平移点A到点C,向右平3个单位,再向上平移1个单位而得到,故答案为:C.【分析】过B作射线BC∠OA,在BC上截取BC=OA,过B作BH∠x轴于H,根据一组对边平行且相等的四边形是平行四边形可得四边形OACB是平行四边形,用勾股定理可求得OB的长,由计算可求得OA=OB,根据一组邻边相等的平行四边形是菱形可得四边形OACB是菱形,根据菱形的性质即可得平移的方向和距离。
(完整版)菱形性质经典练习题(详细答案)
菱形性质经典练习题一.选择题(共4小题)1.(2011•衡阳)如图所示,在平面直角坐标系中,菱形MNPO的顶点P的坐标是(3,4),则顶点M、N的坐标分别是( )A.M(5,0),N(8,4)B.M(4,0),N(8,4)C.M(5,0),N(7,4)D.M(4,0),N(7,4)2.(2010•肇庆)菱形的周长为4,一个内角为60°,则较短的对角线长为()A.2 B.C.1 D.3.(2010•襄阳)菱形的周长为8cm,高为1cm,则该菱形两邻角度数比为( )A.3:1 B.4:1 C.5:1 D.6:14.(2010•宜昌)如图,菱形ABCD中,AB=15,∠ADC=120°,则B、D两点之间的距离为()A.15 B.C.7。
5 D.二.填空题(共15小题)5.(2011•铜仁地区)已知菱形的两条对角线长分别为2cm,3cm,则它的面积是_________ cm2.6.(2011•綦江县)如图,菱形ABCD的对角线AC、BD相交于点O,且AC=8,BD=6,过点O作OH丄AB,垂足为H,则点0到边AB的距离OH= _________ .7.(2011•南京)如图,菱形ABCD的边长是2cm,E是AB的中点,且DE丄AB,则菱形ABCD的面积为cm2.6题图 7题图 8题图 9题图8.(2011•鞍山)如图,在菱形ABCD中,对角线AC与BD相交于点O,AB=13,AC=10,过点D作DE∥AC交BC的延长线于点E,则△BDE的周长为_________ .9.(2010•嘉兴)如图,已知菱形ABCD的一个内角∠BAD=80°,对角线AC、BD相交于点O,点E在AB上且BE=BO,则∠BEO=_________ 度.10.(2009•江西)如图,一活动菱形衣架中,菱形的边长均为16cm,若墙上钉子间的距离AB=BC=16cm,则∠1=_________ 度.10题图12题 13题图 14题图11.(2009•朝阳)已知菱形的一个内角为60°,一条对角线的长为,则另一条对角线的长为_________ .12.(2009•安顺)如图所示,两个全等菱形的边长为1米,一个微型机器人由A点开始按A﹣>B﹣>C﹣>D ﹣>E﹣>F﹣>C﹣>G﹣>A的顺序沿菱形的边循环运动,行走2009米停下,则这个微型机器人停在_________ 点.13.(2008•长沙)如图,P为菱形ABCD的对角线上一点,PE⊥AB于点E,PF⊥AD于点F,PF=3cm,则P点到AB的距离是_________ cm.14.(2006•云南)已知:如图,菱形ABCD中,∠B=60°,AB=4,则以AC为边长的正方形ACEF的周长为_________ .15.(2005•黄石)已知菱形的周长为40cm,两条对角线之比为3:4,则菱形的面积为_________ cm2.16.(2005•新疆)已知菱形的周长是52cm,一条对角线长是24cm,则它的面积是_________ cm2.17.(2004•贵阳)如图,菱形ABCD的对角线的长分别为2和5,P是对角线AC上任一点(点P不与点A、C 重合),且PE∥BC交AB于E,PF∥CD交AD于F,则阴影部分的面积是_________ .17题图18题图19题图18.(2003•温州)如图:菱形ABCD中,AB=2,∠B=120°,E是AB的中点,P是对角线AC上的一个动点,则PE+PB的最小值是_________ .19.如图:点E、F分别是菱形ABCD的边BC、CD上的点,且∠EAF=∠D=60°,∠FAD=45°,则∠CFE=_________ 度.三.解答题(共7小题)20.(2011•南昌)如图,四边形ABCD为菱形,已知A(0,4),B(﹣3,0).(1)求点D的坐标;(2)求经过点C的反比例函数解析式.21.(2011•广安)如图所示,在菱形ABCD中,∠ABC=60°,DE∥AC交BC的延长线于点E.求证:DE=BE.22.(2010•益阳)如图,在菱形ABCD中,∠A=60°,AB=4,O为对角线BD的中点,过O点作OE⊥AB,垂足为E.(1)求∠ABD的度数;(2)求线段BE的长.23.(2010•宁洱县)如图,四边形ABCD是菱形,BE⊥AD、BF⊥CD,垂足分别为E、F.(1)求证:BE=BF;(2)当菱形ABCD的对角线AC=8,BD=6时,求BE的长.24.(2009•贵阳)如图,在菱形ABCD中,P是AB上的一个动点(不与A、B重合),连接DP交对角线AC于E连接BE.(1)证明:∠APD=∠CBE;(2)若∠DAB=60°,试问P点运动到什么位置时,△ADP的面积等于菱形ABCD面积的,为什么?25.(2006•大连)已知:如图,四边形ABCD是菱形,E是BD延长线上一点,F是DB延长线上一点,且DE=BF.请你以F为一个端点,和图中已标明字母的某一点连成一条新的线段,猜想并证明它和图中已有的某一条线段相等(只须证明一组线段相等即可).(1)连接_________ ;(2)猜想:_________ = _________ ;(3)证明:(说明:写出证明过程的重要依据)26.如图所示,在矩形ABCD中,AB=4cm,BC=8cm、点P从点D出发向点A运动,同时点Q从点B出发向点C 运动,点P、Q的速度都是1cm/s.(1)在运动过程中,四边形AQCP可能是菱形吗?如果可能,那么经过多少秒后,四边形AQCP是菱形?(2)分别求出菱形AQCP的周长、面积.答案与评分标准一.选择题(共4小题)1.(2011•衡阳)如图所示,在平面直角坐标系中,菱形MNPO的顶点P的坐标是(3,4),则顶点M、N的坐标分别是()A.M(5,0),N(8,4) B.M(4,0),N(8,4)C.M(5,0),N(7,4)D.M(4,0),N(7,4)考点:菱形的性质;坐标与图形性质.专题:数形结合。
专题19.5菱形的性质与判定(举一反三)(沪科版)(原卷版)
专题19.5 菱形的性质与判定【八大题型】【沪科版】【题型1 由菱形的性质求线段的长度】 (1)【题型2 由菱形的性质求角的度数】 (2)【题型3 由菱形的性质求面积】 (3)【题型4 由菱形的性质求点的坐标】 (4)【题型5 菱形判定的条件】 (5)【题型6 证明四边形是菱形】 (6)【题型7 菱形中多结论问题】 (8)【题型8 菱形的判定与性质综合】 (9)【题型1 由菱形的性质求线段的长度】【例1】(2022•青县二模)如图,在菱形ABCD 中,AB =BD =10,点F 为AD 的中点,FE ⊥BD 于E ,则EF 的长为( )A .2√3B .52C .5√32D .5√3【变式11】(2022春•北碚区校级期中)如图,菱形ABCD 的对角线交于点O ,过点A 作AE ⊥CD 于点E ,连接OE .若AB =3,OE =√2,则DE 的长度为( )A .53B .32C .43D .√142【变式12】(2022春•江汉区期中)如图,菱形ABCD 的对角线AC .BD 相交于点O ,过点D 作DH ⊥AB 于点H ,连接CH ,若AB =2,AC =2√3,则CH 的长是( )A .√5B .3C .√7D .4【变式13】(2022春•沙坪坝区校级期中)如图,在菱形ABCD 中,对角线AC 、BD 相交于点O ,点E 、F 分别是AB 、AO 的中点,连接EF 、BF .若AF =1,AE =√3,则FB 的长为( )A .3√2B .2√2C .√7D .3【题型2 由菱形的性质求角的度数】【例2】(2022春•延津县期中)如图,在菱形ABCD 中,直线MN 分别交AB 、CD 、AC 于点M 、N 和O ,且AM =CN ,连接BO .若∠OBC =65°,则∠DAC 为( )A .65°B .30°C .25°D .20°【变式21】(2022•道里区二模)如图,四边形ABCD 是菱形,对角线AC ,BD 相交于点O ,DH ⊥AB 于点H,连接OH,∠CAD=20°,则∠DHO的度数是()A.20°B.25°C.30°D.40°【变式22】(2021秋•泰和县期末)如图,在菱形ABCD中,点E是CD上一点,连接AE交对角线BD于点F,连接CF,若∠AED=50°,则∠BCF=度.【变式23】(2022•玄武区二模)如图,菱形ABCD和正五边形AEFGH,F,G分别在BC,CD上,则∠1﹣∠2=°.【题型3 由菱形的性质求面积】【例3】(2022•焦作模拟)如图,在菱形ABCD中,点E,F分别是边BC,CD的中点,连接AE,AF,EE若菱形ABCD的面积为16,则△AEF的面积为()A.4B.6C.8D.10【变式31】(2022春•禹州市期中)如图,已知菱形ABCD的对角线AC、BD相交于点O,点E,P,F分别是线段OB,CD,OD的中点,连接EP,PF,若AC=8,PE=2√10,则菱形ABCD的面积为()A.64B.48C.24D.16【变式32】(2022•阿荣旗二模)两张菱形贺卡如图所示叠放,其中菱形ABCD的边长为6cm,∠BAD=60°,菱形A'B'C'D'可以看作是由菱形ABCD沿CA方向平移2√3cm得到,AD交C'D'于点E,则重叠部分的面积为()cm2.A.8√3B.9√3C.10√3D.11√3【变式33】(2022•蓝田县二模)如图,在菱形ABCD中,∠A=120°,点P为边AB上一点(点P不与端点重合),连接CP,点E、F分别为AP、CP的中点,连接EF,若EF=2,则菱形ABCD的面积为()A.8B.8√3C.9D.9√3【题型4 由菱形的性质求点的坐标】【例4】(2022•东丽区一模)如图,四边形ABCD为菱形,A,B两点的坐标分别是(−2√3,2),(﹣1,−√3),对角线相交于点O,则点C的坐标为()A.(−2√3,−2)B.(2√3,−2)C.(1,−√3)D.(﹣1,√3)【变式41】(2022•太湖县校级一模)如图,在平面直角坐标系中、四边形OABC为菱形,O为原点,A点坐标为(8,0),∠AOC=60°,则对角线交点E的坐标为()A.(4,2√3)B.(2√3,4)C.(2√3,6)D.(6,2√3)【变式42】(2022•西平县模拟)如图,在平面直角坐标系xOy中,菱形OABC的顶点B在x轴上,且OB =8cm,∠AOB=60°.点D从点O出发,沿O→A→B→C→O以2cm/s的速度做环绕运动,则第85秒时,点D的坐标为()A.(3√3,5)B.(3,3√3)C.(5,3√3)D.(3√3,3)【变式43】(2022•巧家县二模)如图,菱形ABCD的四个顶点位于坐标轴上,对角线AC,BD交于原点O,线段AD的中点E的坐标为(−√3,1),P是菱形ABCD边上的点,若△PDE是等腰三角形,则点P的坐标可能是.【题型5 菱形判定的条件】【例5】(2022春•房山区期中)在四边形ABCD中,对角线AC,BD交于点O.现存在以下四个条件:①AB∥CD;②AO=OC;③AB=AD;④AC平分∠DAB.从中选取三个条件,可以判定四边形ABCD为菱形.则可以选择的条件序号是(写出所有可能的情况).【变式51】(2022•海淀区二模)如图,在平行四边形ABCD中,过AC中点O的直线分别交边BC,AD 于点E,F,连接AE,CF.只需添加一个条件即可证明四边形AECF是菱形,这个条件可以是(写出一个即可).【变式52】(2022春•无锡期中)如图,已知点E、F分别是四边形ABCD的边AD、BC的中点,G、H分别是对角线BD、AC的中点,要使四边形EGFH是菱形,则四边形ABCD需满足的条件是()A.AB=CD B.AC=BD C.AC⊥BD D.AD=BC【变式53】(2022•上海模拟)如图,在Rt△ABC中,∠ACB=90°,平行四边形BCDE的顶点E在边AB 上,联结CE、AD.添加一个条件,可以使四边形ADCE成为菱形的是()A.CE⊥AB B.CD⊥AD C.CD=CE D.AC=DE【题型6 证明四边形是菱形】【例6】(2022春•泗洪县期中)如图,点D、E、F分别是△ABC各边的中点,连接DE,EF,AE.(1)求证:四边形ADEF为平行四边形;(2)从下列条件①∠BAC=90°,②AE平分∠BAC,③AB=AC中选择一个添加到题干中,使得四边形ADEF为菱形.我选的是(写序号),并证明.【变式61】(2022•南京一模)如图,在▱ABCD中,E、F分别是AB、CD的中点,AF与DE相交于点G,CE与BF相交于点H.(1)证明:四边形EHFG是平行四边形;(2)当▱ABCD具备怎样的条件时,四边形EHFG是菱形?请直接写出条件,无需说明理由.【变式62】(2022•盐城二模)如图,在平行四边形ABCD中,点O是BC的中点,连接DO并延长,交AB延长线于点E,连接BD,EC.(1)求证:四边形BECD是平行四边形;(2)若∠A=50°,则当∠ADE=°时,四边形BECD是菱形.【变式63】(2022•静安区二模)已知:如图,在四边形ABCD中,点E、F分别是边BC、DC的中点,AE、AF分别交BD于点M、N,且BM=MN=ND,联结CM、CN.(1)求证:四边形AMCN是平行四边形;(2)如果AE=AF,求证:四边形ABCD是菱形.【题型7 菱形中多结论问题】【例7】(2022春•番禺区校级期中)如图,菱形ABCD中,∠BAD=60°,AC与BD交于点O,E为CD 延长线上的一点,且CD=DE,连接BE分别交AC,AD于点F、G,连接OG,则下列结论:()①OG=12 AB;②与△EGD全等的三角形共有2个;③S四边形ODEG=S四边形ABOG;④由点A、B、D、E构成的四边形是菱形;A.①③④B.①④C.①②③D.②③④【变式71】(2022春•下城区校级月考)如图,平行四边形ABCD中,对角线AC,BD交于点O,BD=2AD,E,F,G分别是OC,OD,AB的中点.下列结论正确的是()①EG=EF;②△EFG≌△GBE;③FB平分∠EFG;④EA平分∠GEF;⑤四边形BEFG是菱形.A.③⑤B.①②④C.①②③④D.①②③④⑤【变式72】(2022•泰安一模)如图,在菱形ABCD中,AB=BD,E,F分别是AB,AD上的点(不与端点重合),且AE=DF,连接BF,DE相交于点G,连接CG与BD相交于点H.下列结论:①DE=BF;②∠BGE=60°;③CG⊥BD;④若AF=2DF,则BG=6GF.其中正确结论的序号是()A.①②B.①②④C.②③④D.①③④【变式73】(2022•天桥区一模)如图,△ABC是边长为1的等边三角形,D,E为线段AC上两动点,且∠DBE=30°,过点D,E分别作AB,BC的平行线相交于点F,分别交BC,AB于点H,G.现有以下结论:①S△ABC=√34;②当点D与点C重合时,FH=12;③AE+CD=√3DE;④当AE=CD时,四边形BHFG为菱形.则其中正确的结论的序号是.【题型8 菱形的判定与性质综合】【例8】(2022•巴彦县二模)如图,AB=BD,AC=CD,AD平分∠BAC,AD交BC于点O.(1)如图1,求证:四边形ABDC是菱形;(2)如图2,点E为BD边的中点,连接AE交BC于点F,若2∠F AO=∠ACD,在不添加任何辅助线和字母的条件下,请直接写出图2中所有面积是△ABF面积的整数倍的三角形.【变式81】(2022•南岗区模拟)已知:BD是△ABC的角平分线,点E在AB边上,BE=BC,过点E作EF∥AC,交BD于点F,连接CF,DE.(1)如图1,求证:四边形CDEF是菱形;(2)如图2,当∠DEF=90°,AC=BC时,在不添加任何辅助线的情况下,请直接写出图2中度数为∠ABD的度数2倍的角.【变式82】(2022春•东莞市期中)如图,在平行四边形ABCD中,CE平分∠BCD,交AB边于点E,EF ∥BC,交CD于点F,点G是BC边的中点,连接GF,且∠1=∠2,CE与GF交于点M,过点M作MH⊥CD于点H.(1)求证:四边形BCFE是菱形;(2)若CH=1,求BC的长;(3)求证:EM=FG+MH.【变式83】(2022春•洪泽区期中)如图,在平行四边形ABCD中,∠BAD的平分线交BC于点E,交DC 的延长线于F,以EC、CF为邻边作平行四边形ECFG,如图1所示.(1)证明平行四边形ECFG是菱形;(2)若∠ABC=120°,连接BG、CG、DG,如图2所示,①求证:△DGC≌△BGE;②求∠BDG的度数.(3)若∠ABC=90°,AB=8,AD=14,M是EF的中点,如图3所示,求DM的长.。
菱形的证明与计算训练题
菱形的证明与计算训练题1.在▱ABCD中,AE平分∠BAD,交BC于点E,BF平分∠ABC,交AD于点F,AE与BF 交于点O,连接EF、OC.(1)求证:四边形ABEF是菱形;(2)若点E为BC的中点,且BC=8,∠ABC=60°,求OC的长.2.如图,在△ABC中,AB=AC,D是BC边的中点,点E,F分别在AD及其延长线上,且CE∥BF,连接BE,CF.(1)求证:四边形EBFC是菱形;(2)若BD=4,BE=5,求四边形EBFC的面积.3.如图:在平行四边形ABCD中,用直尺和圆规作∠BAD的平分线交BC于点E(尺规作图的痕迹保留在图中了),连接EF.(1)求证:四边形ABEF为菱形;(2)AE,BF相交于点O,若BF=6,AB=5,求AE的长.4.如图,四边形ABCD中,BD垂直平分AC,垂足为点F,E为四边形ABCD外一点,且∠ADE=∠BAD,AE⊥AC(1)求证:四边形ABDE是平行四边形;(2)如果DA平分∠BDE,AB=5,AD=6,求AC的长.5.如图,四边形ABCD中,AB∥CD,AC平分∠BAD,CE∥AD交AB于E.(1)求证:四边形AECD是菱形;(2)若点E是AB的中点,试判断△ABC的形状,并说明理由.6.如图,BD是△ABC的角平分线,过点D作DE∥BC交AB于点E,DF∥AB交BC于点F.(1)求证:四边形BEDF为菱形;(2)如果∠A=90°,∠C=30°,BD=12,求菱形BEDF的面积.7.如图,菱形ABCD的对角线AC,BD相交于点O,∠ABC=60°,过点B作AC的平行线交DC的延长线于点E.(1)求证:四边形ABEC为菱形;(2)若AB=6,连接OE,求OE的值.8.如图,△ABC中,∠BCA=90°,CD是边AB上的中线,分别过点C,D作BA和BC 的平行线,两线交于点E,且DE交AC于点O,连接AE.(1)求证:四边形ADCE是菱形;(2)若∠B=60°,BC=6,求四边形ADCE的面积.9.如图1,▱ABCD的对角线AC,BD相交于点O,且AE∥BD,BE∥AC,OE=CD.(1)求证:四边形ABCD是菱形;(2)如图2,若∠ADC=60°,AD=4,求AE的长.10.如图,BD是△ABC的角平分线,它的垂直平分线分别交AB、BD、BC于点E、F、G,连接ED、DG.(1)请判断四边形EBGD的形状,并说明理由;(2)若∠ABC=30°,∠C=45°,ED=2,求GC的长.11.如图,Rt△ABC中,∠ABC=90°,点D,F分别是AC,AB的中点,CE∥DB,BE∥DC.(1)求证:四边形DBEC是菱形;(2)若AD=3,DF=1,求四边形DBEC面积.12.如图,在△ABC中,∠BAC=90°,线段AC的垂直平分线交AC于D点,交BC于E 点,过点A作BC的平行线交直线ED于F点,连接AE,CF.(1)求证:四边形AECF是菱形;(2)若AB=10,∠ACB=30°,求菱形AECF的面积.13.如图,在▱ABCD中,BC=2AB,E,F分别是BC,AD的中点,AE,BF交于点O,连接EF,OC.(1)求证:四边形ABEF是菱形;(2)若BC=8,∠ABC=60°,求OC的长.14.如图,在平行四边形ABCD中,AE平分∠BAD,交BC于点E,BF平分∠ABC,交AD 于点F,AE与BF交于点P,连接EF,PD.(1)求证:四边形ABEF是菱形;(2)若AB=4,AD=6,∠ABC=60°,求PD.15.如图,四边形ABCD中,AD∥BC,∠A=90°,BD=BC,点E为CD的中点,射线BE交AD的延长线于点F,连接CF.(1)求证:四边形BCFD是菱形;(2)若AD=1,BC=2,求BF的长.16.如图,平行四边形ABCD,点F在AC上,FE∥AB,BE∥AC,∠ABF=∠FBC+∠FCB.(1)求证:四边形ABEF是菱形;(2)若BE=5,AD=8,∠CBE=30°,求AC的长.17.已知:如图,四边形ABCD中,AD∥BC,对角线BD平分∠ABC,且BD⊥DC,E为BC中点,AB=DE.(1)求证:四边形ABED是菱形;(2)若∠C=60°,CD=4,求四边形ABCD的面积.∥DC,CE∥AB,两线交于点E.(1)求证:四边形AECD是菱形;(2)如果∠B=60°,BC=2,求四边形AECD的面积.19.如图,在四边形ABCD中,AB∥DC,AB=AD,对角线AC,BD交于点O,AC平分∠BAD,过点C作CE⊥AB交AB的延长线于点E,连接OE.(1)求证:四边形ABCD是菱形;(2)若AB=,BD=2,求OE的长.20.已知:如图,四边形ABCD中,AD∥BC,AD=CD,E是对角线BD上一点,且EA=EC.(1)求证:四边形ABCD是菱形;(2)如果∠BDC=30°,DE=2,EC=3,求CD的长.和AB的平行线,交于点D.(1)求证:四边形ADCE是菱形;(2)若CE=4,且∠DAE=60°,求△ACB的面积.22.如图,▱ABCD的对角线AC,BD相交于点O,且AE∥BD,BE∥AC,OE=CD.(1)求证:四边形ABCD是菱形;(2)若AD=2,则当四边形ABCD的形状是时,四边形AOBE的面积取得最大值是.23.如图,在▱ABCD中,BF平分∠ABC交AD于点F,AE⊥BF于点O,交BC于点E,连接EF.(1)求证:四边形ABEF是菱形;(2)连接CF,若∠ABC=60°,AB=4,AF=2DF,求CF的长.24.如图,在▱ABCD中,对角线BD平分∠ABC,过点A作AE∥BD,交CD的延长线于点E,过点E作EF⊥BC,交BC延长线于点F.(1)求证:四边形ABCD是菱形;(2)若∠ABC=45°,BC=2,求EF的长.25.如图,在▱ABCD中,对角线BD平分∠ABC,过点D作DE⊥BC,交BC延长线于点E.(1)求证:四边形ABCD是菱形;(2)若∠ABC=45°,AD=2,求DE的长.26.如图,在平行四边形ABCD中,E为BC边上的一点,连接AE、BD交于点F,AE=AB.(1)若∠AEB=2∠ADB,求证:四边形ABCD是菱形;(2)若AB=15,BE=2EC,求EF的长.27.如图,在四边形ABCD中,AB∥CD,AC平分∠BAD,CE∥AD交AB于E.如果点E 是AB的中点,AC=4,EC=2.5,写出求四边形ABCD的面积的思路.28.如图,在△ABC中,∠ACB=90°,点D是AB的中点,过点D作DE⊥AC于点E,延长DE到点F,使得EF=DE,连接AF,CF.(1)根据题意,补全图形;(2)求证:四边形ADCF是菱形;(3)若AB=8,∠BAC=30°,求菱形ADCF的面积.29.如图,在四边形ABCD中,BD为一条对角线,AD∥BC,AD=2BC,∠ABD=90°,E 为AD的中点,连接BE.(1)求证:四边形BCDE为菱形;(2)连接AC,若AC平分∠BAD,BC=1,求AC的长.30.如图,在△ABC中,BD平分∠ABC交AC于D,EF垂直平分BD,分别交AB,BC,BD于E,F,G,连接DE,DF.(1)求证:DE=DF;(2)若∠ABC=30°,∠C=45°,DE=4,求CF的长.31.如图,在▱ABCD中,过点A作AE⊥BC于点E,AF⊥DC于点F,AE=AF.(1)求证:四边形ABCD是菱形;(2)若∠EAF=60°,CF=2,求AF的长.32.如图,已知点E,F分别是▱ABCD的边BC,AD上的中点,且∠BAC=90°.(1)求证:四边形AECF是菱形;(2)若∠B=30°,BC=10,求菱形AECF面积.33.如图,在△ABC中,∠C=90°,BD平分∠ABC交AC于点D,过D作DE∥BC交AB 于点E,DF∥AB交BC于点F,连接EF.(1)求证:四边形BFDE是菱形;(2)若AB=8,AD=4,求BF的长.34.如图,Rt△ABC中,∠ACB=90°,CD是斜边AB上的中线,分别过点A,C作AE∥DC,CE∥AB,两线交于点E.(1)求证:四边形AECD是菱形;(2)若∠B=60°,BC=2,求四边形AECD的面积.35.如图,在△ABC中,∠BAC=90°,AD是BC边上的中线,E是AD的中点,过点A 作BC的平行线交BE的延长线于点F,BF交AC于点M,连接CF.(1)求证:四边形ADCF是菱形;(2)若∠FCD=120°,且FC=6,求∠CBF的正切值.36.如图,在△ABC中,D、E分别是AB、AC的中点,BE=2DE,过点C作CF∥BE交DE的延长线于F.(1)求证:四边形BCFE是菱形;(2)若CE=4,∠BCF=120°,求菱形BCFE的面积.37.在四边形ABCD中,AB=CD,P、Q分别是AD、BC的中点,M、N分别是对角线AC、BD的中点,证明:PQ⊥MN.38.如图,在△ABC中,D、E分别是AB、AC的中点,BE=2DE,延长DE到点F,使得EF=BE,连接CF.(1)求证:四边形BCFE是菱形;(2)若CE=4,∠BCF=120°,求菱形BCFE的面积.39.如图,在四边形ABCD中,BD为一条对角线,AD∥BC,AD=2BC,∠ABD=90°,E 为AD的中点,连接BE.(1)求证:四边形BCDE为菱形;(2)连接AC,若AC平分∠BAD,AB=2,求菱形BCDE的面积.40.如图,在△ABC中,∠BAC=90°,点D是BC中点,AE∥BC,CE∥AD.(1)求证:四边形ADCE是菱形;(2)过点D作DF⊥CE于点F,∠B=60°,AB=6,求EF的长.41.如图,在▱ABCD中,BC=2AB,点E、F分别是BC、AD的中点,AE、BF交于点O,连接EF,OC.(1)求证:四边形ABEF是菱形;(2)若AB=4,∠ABC=60°,求OC的长.42.如图,在△ABC中,∠ACB=90°,CD为AB边上的中线,过点D作DE⊥BC于E,过点C作AB的平行线与DE的延长线交于点F,连接BF.(1)求证:四边形BDCF为菱形;(2)若CE=4,AC=6,求四边形BDCF的面积.43.如图,在Rt△ABC中,∠ABC=90°,D、E分别是边BC,AC的中点,连接ED并延长到点F,使DF=ED,连接BE、BF、CF.(1)求证:四边形BFCE是菱形;(2)若BC=4,EF=2,求AD的长.44.如图,在△ABC中,CD平分∠ACB,CD的垂直平分线分别交AC、DC、BC于点E、F、G,连接DE、DG.(1)求证:四边形DGCE是菱形;(2)若∠ACB=30°,∠B=45°,ED=6,求BG的长.45.如图,在四边形ABCD中,AB∥CD,AB=BC=2CD,E为对角线AC的中点,F为边BC的中点,连接DE、EF.(1)求证:四边形CDEF为菱形;(2)连接DF交AC于点G,若DF=2,CD=,求AD的长.46.如图,在Rt△ACB的斜边AB上取一点E,使得CE=AE,连结CE;分别过点C作AB 的平行线,过点B作CE的平行线,交于点D.(1)求证:四边形CEBD是菱形;(2)若AC=6,EC=5,求四边形ABDC的面积.47.如图,△ABC中,AB=BC,过A点作BC的平行线与∠ABC的平分线交于点D,连接OE,CD.(1)求证四边形ABCD是菱形;(2)连接AC与BD交于点O,过点D作DE⊥BC与BC的延长线交于E点,连接EO,若CE=3,DE=4,求OE的长.48.如图,在▱ABCD中,BD=AD,延长CB到点E,使BE=BD,连接AE.(1)求证:四边形AEBD是菱形;(2)连接DE交AB于点F,若DC=,DC:DE=1:3,求AD的长.49.如图,▱ABCD中,∠BAC=90°,E,F分别是BC,AD的中点(1)求证:四边形AECF是菱形;(2)如果AB=2,BC=4,求四边形AECF的面积.50.已知:如图,在▱ABCD中,AE平分∠BAD,交BC于点E,BF平分∠ABC,交AD于点F,过点F作FG⊥BF交BC的延长线于点G.(1)求证:四边形ABEF是菱形;(2)如果AB=2,∠BAD=60°,求FG的长.51.如图,在△ABC中,D、F分别是BC、AC边的中点,连接DA、DF,且AD=2DF,过点B作AD的平行线交FD的延长线于点E.(1)求证:四边形ABED为菱形;(2)若BD=6,∠E=60°,求四边形ABEF的面积.52.在四边形ABCD中,AB∥DC,AB=AD,对角线AC,BD交于点O,AC平分∠BAD,过点C作CE∥DB交AB的延长线于点E,连接OE.(1)求证:四边形ABCD是菱形;(2)若∠DAB=60°,且AB=4,求OE的长.53.如图,在△ABC中,AC=BC,点D,E,F分别是AB,AC,BC的中点,连接DE,DF.(1)求证:四边形DFCE是菱形;(2)若∠A=75°,AC=4,求菱形DFCE的面积.54.如图,▱ABCD中,E,F分别是边BC,AD的中点,∠BAC=90°.(1)求证:四边形AECF是菱形;(2)若BC=4,∠B=60°,求四边形AECF的面积.55.如图,在▱ABCD中,对角线BD平分∠ABC,过点D作DE⊥BC,交BC延长线于点E.(1)求证:四边形ABCD是菱形;(2)若∠ABC=45°,DE=2,求AD的长.56.如图,在▱ABCD中,对角线AC,BD交于点O,E是AD上一点,连接EO并延长,交BC于点F.连接AF,CE,EF平分∠AEC.(1)求证:四边形AFCE是菱形;(2)若∠DAC=60°,AC=2,求四边形AFCE的面积.57.如图,在▱ABCD中,∠ABC=60°,BC=2AB,点E、F分别是BC、DA的中点.(1)求证:四边形AECF是菱形;(2)若AB=2,求BD的长.58.如图,在四边形ABCD中,BD为一条对角线,AD∥BC,AD=2BC,∠ABD=90°,E 为AD的中点,连接BE.(1)求证:四边形BCDE为菱形;(2)连接AC,若AC平分∠BAD,BC=2,求AC的长.59.如图,在△ABC中,CD平分∠ACB,CD的垂直平分线分别交AC,DC,BC于点E,F,G,连接DE,DG.(1)求证:四边形DGCE是菱形;(2)若∠ACB=30°,∠B=45°,ED=2,求BG的长.60.如图,四边形ABCD是平行四边形,AD=BD,过点C作CE∥BD,交AD的延长线于点E.(1)求证:四边形BDEC是菱形;(2)连接BE,若AB=2,AD=4,求BE的长.。
初二数学菱形证明练习题
初二数学菱形证明练习题在初二的数学学习中,菱形是一个非常重要的几何图形。
它具有四个相等的边和四个相等的角,这使得它成为了许多数学证明题的基础。
本文将介绍一些关于菱形的证明练习题,希望能够帮助同学们进一步理解和应用菱形的属性。
练习题一:证明菱形的对角线互相垂直菱形的对角线是指连接菱形相对顶点的线段。
我们需要证明菱形的对角线互相垂直。
首先,让我们先回顾一下垂直的定义:如果两条线段的斜率的乘积为-1,那么它们是垂直的。
假设菱形的四个顶点依次为A、B、C和D。
我们可以计算出对角线AC的斜率为k1,对角线BD的斜率为k2。
由于菱形的边是相等的,我们可以得知边AB与边BC的斜率相等,假设它们的斜率为k。
同样地,边CD与边DA的斜率也相等,并且等于-k。
可以利用斜率的定义计算得到:k1 = (yC - yA) / (xC - xA)k2 = (yD - yB) / (xD - xB)k = (yC - yB) / (xC - xB) (由于边AB和边BC的斜率相等)我们可以将k1和k2的值代入到斜率的乘积公式中,得到:k1 * k2 = [(yC - yA) / (xC - xA)] * [(yD - yB) / (xD - xB)]接下来,我们计算边BC和边CD的斜率差,即:k - k2 = [(yC - yB) / (xC - xB)] - [(yD - yB) / (xD - xB)]= [(yC - yD) / (xC - xB)]由于菱形的定义,我们知道边BC平行于边CD,因此斜率差为0,即:[(yC - yD) / (xC - xB)] = 0得到上述等式后,我们可以推导出菱形的对角线互相垂直,即:k1 * k2 = [(yC - yA) / (xC - xA)] * [(yD - yB) / (xD - xB)] = 0通过上述证明,我们可以得出结论:菱形的对角线互相垂直。
练习题二:证明菱形的对角线相等菱形的对角线相等也是菱形的一个重要属性。
菱形的证明(简单)
1. 如图,梯形ABCD 中,AB ∥CD ,AC 平分∠BAD ,CE ∥AD 交AB 于点E . 求证:四边形AECD 是菱形.
2. 如图,在□ABCD 中,EF ∥BD ,分别交BC 、CD 于点P 、Q ,分别交AB 、AD 的延长线于点E 、F .已知BE=BP . 求证:(1)∠E=∠F . (2)□ABCD 是菱形.
3.已知:如图,在梯形ABCD 中,AB CD ∥,BC CD ,AD BD ⊥,E 为AB 中点. 求证:四边形BCDE 是菱形.
4. .菱形ABCD 的对角线AC 与BD 相交于点O ,点E 、F 分别为边AB 、AD 的中点,连接EF 、OE 、OF .求证:四边形AEOF 是菱形.
5. 如图,已知过平行四边形ABCD 的对角线交点O 作互相垂直的两条直线EG 、FH 与
A
B
C
D
E
A
F D
B
E
O
平行四边形ABCD各边分别相交于点E、F、G、H.求证:四边形EFGH是菱形。
6.如图,已知平行四边形ABCD的对角线AC的垂直平分线与边AD、BC分别相交于
E、F. 求证:四边形AFCE是菱形
.
7. 如图,在平行四边形ABCD中,点P是对角线AC上一点,PE⊥AB,PF⊥AD,垂足分别为点E、F,且PE=PF,平行四边形ABCD是菱形吗?为什么?8.如图,在平行四边形ABCD中,对角线AC、BD相交于点O,过点O作直线EF BD
,分别交AD、BC于点E和F.求证:四边形BEDF是菱形.
F
D
E
A
C
P
B
A E D
C
F
B
O。
(完整版)菱形性质经典练习题(详细答案)
菱形性质经典练习题一.选择题(共4小题)1.(2011•衡阳)如图所示,在平面直角坐标系中,菱形MNPO的顶点P的坐标是(3,4),则顶点M、N的坐标分别是()A.M(5,0),N(8,4) B.M(4,0),N(8,4) C.M(5,0),N(7,4)D.M(4,0),N(7,4)2.(2010•肇庆)菱形的周长为4,一个内角为60°,则较短的对角线长为()A.2 B.C.1 D.3.(2010•襄阳)菱形的周长为8cm,高为1cm,则该菱形两邻角度数比为()A.3:1 B.4:1 C.5:1 D.6:14.(2010•宜昌)如图,菱形ABCD中,AB=15,∠ADC=120°,则B、D两点之间的距离为()A.15 B.C.7.5 D.二.填空题(共15小题)5.(2011•铜仁地区)已知菱形的两条对角线长分别为2cm,3cm,则它的面积是_________cm2.6.(2011•綦江县)如图,菱形ABCD的对角线AC、BD相交于点O,且AC=8,BD=6,过点O作OH丄AB,垂足为H,则点0到边AB的距离OH=_________.7.(2011•南京)如图,菱形ABCD的边长是2cm,E是AB的中点,且DE丄AB,则菱形ABCD的面积为cm2.6题图7题图8题图9题图8.(2011•鞍山)如图,在菱形ABCD中,对角线AC与BD相交于点O,AB=13,AC=10,过点D作DE∥AC交BC的延长线于点E,则△BDE的周长为_________.9.(2010•嘉兴)如图,已知菱形ABCD的一个内角∠BAD=80°,对角线AC、BD相交于点O,点E在AB上且BE=BO,则∠BEO=_________度.10.(2009•江西)如图,一活动菱形衣架中,菱形的边长均为16cm,若墙上钉子间的距离AB=BC=16cm,则∠1= _________度.10题图12题13题图14题图11.(2009•朝阳)已知菱形的一个内角为60°,一条对角线的长为,则另一条对角线的长为_________.12.(2009•安顺)如图所示,两个全等菱形的边长为1米,一个微型机器人由A点开始按A﹣>B﹣>C﹣>D﹣>E﹣>F﹣>C﹣>G﹣>A的顺序沿菱形的边循环运动,行走2009米停下,则这个微型机器人停在_________点.13.(2008•长沙)如图,P为菱形ABCD的对角线上一点,PE⊥AB于点E,PF⊥AD于点F,PF=3cm,则P点到AB的距离是_________cm.14.(2006•云南)已知:如图,菱形ABCD中,∠B=60°,AB=4,则以AC为边长的正方形ACEF的周长为_________.15.(2005•黄石)已知菱形的周长为40cm,两条对角线之比为3:4,则菱形的面积为_________cm2.16.(2005•新疆)已知菱形的周长是52cm,一条对角线长是24cm,则它的面积是_________cm2.17.(2004•贵阳)如图,菱形ABCD的对角线的长分别为2和5,P是对角线AC上任一点(点P不与点A、C重合),且PE∥BC交AB于E,PF∥CD交AD于F,则阴影部分的面积是_________.17题图18题图19题图18.(2003•温州)如图:菱形ABCD中,AB=2,∠B=120°,E是AB的中点,P是对角线AC上的一个动点,则PE+PB的最小值是_________.19.如图:点E、F分别是菱形ABCD的边BC、CD上的点,且∠EAF=∠D=60°,∠FAD=45°,则∠CFE=_________度.三.解答题(共7小题)20.(2011•南昌)如图,四边形ABCD为菱形,已知A(0,4),B(﹣3,0).(1)求点D的坐标;(2)求经过点C的反比例函数解析式.21.(2011•广安)如图所示,在菱形ABCD中,∠ABC=60°,DE∥AC交BC的延长线于点E.求证:DE=BE.22.(2010•益阳)如图,在菱形ABCD中,∠A=60°,AB=4,O为对角线BD的中点,过O点作OE⊥AB,垂足为E.(1)求∠ABD的度数;(2)求线段BE的长.23.(2010•宁洱县)如图,四边形ABCD是菱形,BE⊥AD、BF⊥CD,垂足分别为E、F.(1)求证:BE=BF;(2)当菱形ABCD的对角线AC=8,BD=6时,求BE的长.24.(2009•贵阳)如图,在菱形ABCD中,P是AB上的一个动点(不与A、B重合),连接DP交对角线AC于E 连接BE.(1)证明:∠APD=∠CBE;(2)若∠DAB=60°,试问P点运动到什么位置时,△ADP的面积等于菱形ABCD面积的,为什么?25.(2006•大连)已知:如图,四边形ABCD是菱形,E是BD延长线上一点,F是DB延长线上一点,且DE=BF.请你以F为一个端点,和图中已标明字母的某一点连成一条新的线段,猜想并证明它和图中已有的某一条线段相等(只须证明一组线段相等即可).(1)连接_________;(2)猜想:_________=_________;(3)证明:(说明:写出证明过程的重要依据)26.如图所示,在矩形ABCD中,AB=4cm,BC=8cm、点P从点D出发向点A运动,同时点Q从点B出发向点C 运动,点P、Q的速度都是1cm/s.(1)在运动过程中,四边形AQCP可能是菱形吗?如果可能,那么经过多少秒后,四边形AQCP是菱形?(2)分别求出菱形AQCP的周长、面积.答案与评分标准一.选择题(共4小题)1.(2011•衡阳)如图所示,在平面直角坐标系中,菱形MNPO的顶点P的坐标是(3,4),则顶点M、N的坐标分别是()A.M(5,0),N(8,4) B.M(4,0),N(8,4) C.M(5,0),N(7,4) D.M(4,0),N(7,4)考点:菱形的性质;坐标与图形性质。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
菱形证明专题训练————————————————————————————————作者: ————————————————————————————————日期:绝密★启用前乐学教育菱形证明专题训练1.已知:如图,在四边形ABCD中,AB∥CD,E,F为对角线AC上两点,且AE=CF,DF∥BE,AC平分∠BAD.求证:四边形ABCD为菱形.ﻫ【答案】∵AB∥CD,∴∠BAE=∠DCF.ﻫ∵DF∥BE,∴∠BEF=∠DFE,ﻫ∴∠AEB=∠CFD.又∵AE=CF,ﻫ∴△AEB≌∠CFD,∴AB=CD.ﻫ∵AB∥CD,ﻫ∴四边形ABCD是平行四边形.∵AC平分∠BAD,∴∠BAE=∠DAF.ﻫ又∠BAE=∠DCF,∴∠DAF=∠DCF,ﻫ∴AD=CD,∴四边形ABCD是菱形.2.如图,矩形ABCD中,点O为AC的中点,过点O的直线分别与AB,CD交于点E,F,连接BF交AC于点M,连接DE,BO.若∠COB=60°,FO=FC.求证:(1)四边形EBFD是菱形;【答案】连接OD.∵点O为矩形ABCD的对角线AC的中点,∴B,D, O三点共线且BD=DO=CO=AO.在矩形ABCD中,AB∥DC,AB=DC,∴∠FCO=∠EAO.在△CFO和△AEO中,ﻫ∴△CFO≌△AEO,∴FO=EO.ﻫ又∵BO=DO,∴四边形BEFD是平行四边形.∵BO=CO,∠COB=60°,ﻫ∴△COB是等边三角形.∴∠OCB=60°.ﻫ∴∠FCO=∠DCB-∠OCB=30°.ﻫ∵FO=FC,∴∠FOC=∠FCO=30°.ﻫ∴∠FOB=∠FOC+∠COB=90°.∴EF⊥BD.∴平行四边形EBFD是菱形.(2)MB∶OE=3∶2.【答案】∵BO=BC,∴点B在线段OC的垂直平分线上.∵FO=FC,∴点F在线段OC的垂直平分线上.∴BF是线段OC的垂直平分线.ﻫ∴∠FMO=∠OMB=90°.ﻫ∴∠OBM=30°.∴OF=BF.ﻫ∵∠FOC=30°,∴FM=OF.ﻫﻫﻫ∴BM=BF-MF=2OF-OF=OF.ﻫﻫ即FO=EO,∴BM∶OE=3∶2.3.如图,在△ABC中,∠ABC=90°,BD为AC边上的中线,过点C作CE⊥BD于点E,过点A作BD的平行线,交CE的延长线于点F,在AF的延长线上截取FG=BD,连接BG,DF.求证:四边形BGFD是菱形.ﻫ【答案】∵FG∥BD,BD=FG,∴四边形BGFD是平行四边形.∵CF⊥BD,AG∥BD,∴CF⊥AG.又∵∠ABC=90°,点D是AC的中点,∴BD=DF=AC,ﻫﻫﻫ∴平行四边形BGFD是菱形.4. 如图,点O是菱形ABCD对角线的交点,DE∥AC,CE∥BD,连接OE.ﻫ求证:OE=BC.【答案】∵DE∥AC,CE∥BD,ﻫ∴四边形OCED是平行四边形.∵四边形ABCD是菱形,∴AC⊥BD,OB=OD,∴∠BOC=∠COD=90°,∴四边形OCED是矩形,∴∠ODE=90°,∵OB=OD,∠BOC=∠ODE=90°,ﻫ∴BC=,OE=,ﻫﻫ∵DE=OC.ﻫ∴OE=BC.5.[2015·兰州中考,25] (9分)如图,四边形ABCD中,AB∥CD,AB≠CD,BD=AC.(1)求证:AD=BC;【答案】作BM∥AC,BM交DC的延长线于点M,则∠ACD=∠BMD.1分ﻫ∵AB∥CD,BM∥AC,ﻫ∴四边形ABMC为平行四边形.2分ﻫ∴AC=BM.ﻫ∵BD=AC,∴BM=BD.ﻫ∴∠BDM=∠BMD.∴∠BDC=∠ACD.在△BDC和△ACD中,ﻫ∴△BDC≌△ACD.4分∴BC=AD.5分(2)若E,F,G,H分别是AB,CD,AC,BD的中点.求证:线段EF与线段GH互相垂直平分.【答案】连接EG,GF,FH,HE.6分∵E,H为AB,BD的中点,∴EH=AD.同理FG=AD,EG=BC,FH=BC.ﻫ∵BC=AD,∴EG=FG=FH=EH.8分ﻫ∴四边形EGFH为菱形,ﻫ∴EF与GH互相垂直平分.9分6.[2015·长春中考,18] (7分)如图,CE是△ABC外角∠ACD的平分线,AF∥CD交CE于点F,FG∥AC交CD于点G,求证:四边形ACGF是菱形.ﻫ【答案】因为AF∥CD,FG∥AC,所以四边形ACGF是平行四边形①,ﻫ又因为∠ACE=∠ECG,∠ECG=∠AFC,ﻫ所以∠ACE=∠AFC,所以AC=AF②,由①②得四边形ACGF是菱形.7.[2010·上海中考,23]已知梯形ABCD中,AD∥BC,AB=AD(如图所示),∠BAD的平分线AE交BC于点E,连结DE.ﻫ(1)在图中,用尺规作∠BAD的平分线AE(保留作图痕迹,不写作法),并证明四边形ABED是菱形;【答案】ﻫ∵∠BAE=∠DAE,∠DAE=∠BEA,ﻫ∴∠BAE=∠BEA,AB=BE=AD,AD∥BE,∴四边形ABED的平行四边形,又AB=AD,∴四边形ABED为菱形(2)∠ABC=60°,EC=2BE,求证:ED⊥DC.【答案】过D作DF∥AE,则DF=CF=1,ﻫ∴∠C=30°,而∠DEC=60°,∴∠EDC=90°,∴ED⊥DC.8.[2010·沈阳中考,19]如图,菱形ABCD的对角线AC与BD相交于O,点E,F分别为边AB,AD的中点,连接EF,OE,OF,求证:四边形AEOF是菱形.【答案】∵点E,F分别为AB,AD的中点∴AE=AB,AF=AD(2分)ﻫﻫﻫ又∵四边形ABCD是菱形∴AB=AD∴AE=AF(4分)又∵菱形ABCD的对角线AC与BD相交于点Oﻫ∴O为BD的中点∴OE,OF是△ABD的中位线(6分)ﻫ∴OE∥AD,OF∥AB∴四边形AEOF是平行四边形(8分)∵AE=AF∴四边形AEOF是菱形(10分)9. [2010·安徽中考,20]如图,AD∥FE,点B,C在AD上,∠1=∠2,BF=BC.ﻫ(1)求证:四边形BCEF是菱形;【答案】∵AD∥FE,∴∠FEB=∠2.ﻫ2,∴∠FEB=∠1.=∠1∵∠∴BF=EF∵BF=BC,∴BC=EF.∴四边形BCEF是平行四边形ﻫ∵BF=BC,ﻫ∴四边形BCEF是菱形(5分)(2)若AB=BC=CD,求证:△ACF≌△BDE.【答案】∵EF=BC,AB=BC=CD,AD∥FE,∴四边形ABEF、四边形CDEF均为平行四边形,∴AF=BE,FC=ED.(8分)又∵AC=2BC=BD,(9分)ﻫ∴△ACF≌△BDE.(10分)10.[2013·长沙中考,24]如图,在▱ABCD中,M,N分别是AD,BC的中点,∠AND=90°,连接CM交DN于点O.(1)求证:△ABN≌△CDM;【答案】∵∠ABN=∠CDM,AB=CD,BN=BC=AD=DM,ﻫ∴△ABN≌△CDM(SAS).(2)过点C作CE⊥MN于点E,交DN于点P,若PE=1,∠1=∠2,求AN的长.【答案】∵M,O分别为AD,ND的中点,∴AN∥MO且AN=2MO,ﻫ∴∠MOD=∠AND=90°,即平行四边形CDMN是菱形,ﻫ在Rt△MOD与Rt△NEC中,∵∠1=∠2,MD=NC,∴Rt△MOD≌Rt△NEC,∴MO=NE.ﻫ根据菱形的性质可知,∠MND=∠CND,∠1=∠CND,所以∠MND=∠CND=∠2=30°,所以在Rt△ENP中NE=PE÷tan30°=,ﻫ即AN=2.11.如图,在△ABC中,∠A=90°,AH⊥BC于点H,∠B的平分线交AC于点D,交AH于点E,DF⊥BC于点F,求证:四边形AEFD是菱形.ﻫ【答案】∵∠ABD=∠FBD,BD=BD,∠BAD=∠DFB=90°,∴△ABD≌△FBD,∴AD=DF,AB=FB.ﻫ又∠ABE=∠FBE,BE=BE,∴△ABE≌△FBE.∴∠BAE=∠BFE.ﻫ又∠BAE=90°-∠ABC=∠C,∴∠BFE=∠C,∴EF∥AD.ﻫ∵DF⊥BC,AH⊥BC,∴AE∥DF.∴四边形AEFD是平行四边形.ﻫ又AD=DF,∴四边形AEFD是菱形.12. [2012·南宁中考,25]如图,已知矩形纸片ABCD,AD=2,AB=4,将纸片折叠,使顶点A 与边CD上的点E重合,折痕FG分别与AB,CD交于点G,F,AE与FG交于点O.图1图2(1)如图1,求证:A,G,E,F四点围成的四边形是菱形;【答案】证法一:ﻫﻫ证明:在矩形ABCD中,CD∥AB∴∠1=∠3(1分)ﻫ由折叠可知:AG=EG,∠1=∠2∴∠2=∠3ﻫ∴EF=EG(2分)ﻫ∴EF=AG∴四边形AGEF是菱形(3分)证法二:ﻫ证明:连接AF,由折叠可知OA=OE,AG=EG(1分)ﻫ在矩形ABCD中,AB∥CD∴∠AEF=∠EAG∵∠AOG=∠EOFﻫ∴△AOG≌△EOF(ASA)(2分)∴AG=EF∴四边形AGEF是菱形(3分)(2)如图2,当△AED的外接圆与BC相切于点N时,求证,点N是线段BC的中点;【答案】证明:连接ON,O是Rt△ADE外接圆圆心.ﻫﻫ∵⊙O与BC相切于点N∴ON⊥BC(4分)ﻫ在矩形ABCD中,DC⊥BC,AB⊥BC∴CD∥ON∥AB∴=(5分)ﻫ∵OA=OE∴CN=NBﻫ即N为BC的中点(6分)(3)如图2,在第2问的条件下,求折痕FG的长.【答案】解法一:ﻫ过点O作OM⊥AB于点M,则四边形OMBN是矩形ﻫﻫ设⊙O半径为x,则OA=OE=ON=x(7分)ﻫ∵AB=4,AD=2∴AM=4-xﻫ由第2问得,NB=OM=1在Rt△AOM中,OA2=AM2+OM2ﻫ∴x2=(4-x)2+12∴x=(8分)ﻫAM=4-=∵∠FEO=∠OAMﻫ又∵∠FOE=∠OMA=90°∴Rt△EFO∽Rt△AOMﻫ∴=∴=(9分)ﻫﻫﻫ∴OF= ∴FG=2OF=(10分)ﻫﻫ解法二:延长NO交AD于点Mﻫ∴四边形ABNM是矩形ﻫ∴AM=BN=AD=1ﻫﻫ∵O为Rt△ADE外接圆圆心ﻫ∴OA=OE=ON设ON为x,则OM=4-x(7分)ﻫ在Rt△AMO中,AM2+OM2=OA2ﻫ即12+(4-x)2=x2ﻫx=(8分)ﻫ∴OM=4-=∵FG⊥AE,MN∥DC∴∠FEO=∠MOA∠AMO=∠EOF=90°∴△EOF∽△OMA∴= ∴=(9分)ﻫﻫ∴OF=FG=2OF=(10分)13.[2013·葫芦岛中考,20] (本小题满分8分)如图,四边形ABCD中,AD∥BC,BA⊥AD,BC=DC,BE⊥CD于点E.ﻫ(1)求证:△ABD≌△EBD;【答案】如图,ﻫﻫ∵AD∥BC,ﻫ∴∠1=∠DBC.ﻫ∵BC=DC,∠2=∠DBC.∴∠1=∠2.2分又∵∠BAD=∠BED=90°,BD=BD,∴△ABD≌△EBD. 4分(2)过点E作EF∥DA,交BD于点F,连接AF.求证:四边形AFED是菱形.【答案】由第1问得,AD=ED,∠1=∠2.ﻫ∵EF∥DA,∴∠1=∠3,∴∠2=∠3.∴EF=ED.5分ﻫ∴EF=AD. 6分∴四边形AFED是平行四边形.又∵AD=ED.∴四边形AFED是菱形.8分14. [2013·贵阳中考,20]ﻫ已知:如图,在菱形ABCD中,F为BC上的任意一点,连接AF交对角线BD于点E,连接EC.(1)求证:AE=EC;【答案】ﻫ证明:连接AC.ﻫ∵BD是菱形ABCD的对角线,∴BD垂直平分AC.ﻫ∴AE=EC.(2)当∠ABC=60°,∠CEF=60°时,点F在线段BC上的什么位置?说明理由.【答案】点F是线段BC的中点.理由:∵菱形ABCD中,AB=BC,又∵∠ABC=60°.ﻫ∴△ABC是等边三角形,∠BAC=60°.ﻫ∵AE=EC,∠CEF=60°,∴∠EAC=30°.∴AF是△ABC的角平分线.∵AF交BC于点F,ﻫ∴AF是△ABC的BC边上的中线.∴点F是线段BC的中点.15. [2012·上海中考,23]已知:如图,在菱形ABCD中,点E,F分别在边BC,CD上,∠BAF=∠DAE,AE与BD交于点G.(1)求证:BE=DF;【答案】∵四边形ABCD为菱形,ﻫ∴AB=AD=BC=CD,ﻫ∠ABD=∠ADB=∠CBD=∠CDB, ∠ABE=∠ADF∵∠BAF=∠DAE,且∠BAF=∠BAE+∠EAF,ﻫ∠DAE=∠DAF+∠EAF∴∠BAE=∠DAF.∴△ABE≌△ADF(ASA).∴BE=DF.(2)当=时,求证:四边形BEFG是平行四边形.【答案】在菱形ABCD中,ADBC,∴∠DAE=∠BEA,∠ADB=∠EBD.ﻫ∴△AGD∽△EGB.∴=.ﻫ又∵=,BE=DF,ﻫ∴===ﻫ∴GF∥BE.∴∠DGF=∠DBC.∵∠DBC=∠CDB,ﻫ∴∠DGF=∠GDF,ﻫ∴GF=DF,ﻫ∴BE=GF.ﻫ∴BEGF,ﻫ∴四边形BEFG是平行四边形.16.[2013·乌鲁木齐中考,19]如图,在△ABC中,∠ACB=90°,CD⊥AB于D,AE平分∠BAC,分别与BC,CD交于E,F,EH⊥AB于H,连接FH.求证:四边形CFHE是菱形.ﻫ【答案】∵AE平分∠BAC,∴∠CAE=∠EAH,而∠ACB=90°,CD⊥AB,ﻫ∴∠CEA+∠CAE=∠AFD+∠EAH=90°,又∠APD=∠CFE,ﻫ∴∠CFE=∠CEF,∴CF=CE.又∵AE平分∠BAC,∠ACB=90°.EH⊥AB,∴CE=EH,ﻫ∴CF=EH=CE,∵CD⊥AB,EH⊥AB,∴CF∥EH,∴四边形CFHE是菱形.17.如图所示,在菱形ABCD中,CE⊥AB于点E,CF⊥AD于点F,求证:AE=AF.ﻫ【答案】证法1:如图所示,连接AC,ﻫﻫ∵四边形ABCD是菱形,ﻫ∴AC平分∠BAD,即∠BAC=∠DAC.ﻫ在△ACE和△ACF中,∠AEC=∠AFC=90°,∠BAC=∠DAC,AC=AC,∴△ACE≌△ACF(AAS),∴AE=AF.ﻫ证法2:∵四边形ABCD是菱形,ﻫ∴BC=DC=AD=AB,∠B=∠D.又∵在△BCE和△DCF中,∠BEC=∠DFC=90°,∴△BCE≌△DCF(AAS),∴BE=DF,∴AE=AF.18.[2013·南宁中考,23]如图,在菱形ABCD中,AC是对角线,点E,F分别是边BC,AD的中点.ﻫ(1)求证:△ABE≌△CDF;【答案】在菱形ABCD中,AB=BC=CD=DA(或AB=CD,BC=DA).ﻫ∠B=∠D.ﻫ∵点E,F分别是边BC,AD的中点,∴BE=DF.∴△ABE≌△CDF.(2)若∠B=60°,AB=4,求线段AE的长.【答案】解法一:∵AB=BC,∠B=60°,∴△ABC是等边三角形.ﻫ∵点E是BC边的中点.ﻫ∴AE⊥BC.在Rt△ABE中,sinB=.ﻫﻫﻫ∴AE=AB·sin B=4×=.ﻫﻫ解法二:∵AB=BC,∠B=60°,∴△ABC是等边三角形.ﻫ∵点E是BC边的中点,∴AE⊥BC.∴∠BAE=30°.在Rt△ABE中,BE=AB=2.ﻫﻫ∴AE===.19.[2012·温州中考,19](本题8分)ﻫ如图,△ABC中,∠B=90°,AB=6cm,BC=8cm,将△ABC沿射线BC方向平移10cm,得到△DEF,A,B,C的对应点分别是D,E,F,连接AD.求证:四边形ACFD是菱形.ﻫ【答案】法一:∵∠B=90°,AB=6cm,BC=8cm.∴AC=10cm.ﻫ由平移变换的性质得CF=AD=10cm,DF=AC,∴AD=CF=AC=DF,∴四边形ACFD是菱形.法二:由平移变换的性质得AD∥CF,AD=CF=10cm,∴四边形ACFD是平行四边形,ﻫ∵∠B=90°,AB=6cm,BC=8cm,ﻫ∴AC=10cm,ﻫ∴AC=CF,ﻫ∴▱ACFD是菱形.20.[2011•兰州中考,27](本小题满分12分)已知:如图17所示的一张矩形纸片ABCD(AD>AB),将纸片折叠一次,使点A与点C重合,再展开,折痕EF交AD边于点E,交BC边于点F.分别连接AF和CE.ﻫ(1)求证:四边形AFCE是菱形;【答案】由题意可知OA=OC,EF⊥AO.∵AD∥BC,∴∠AEO=∠CFO,∠EAO=∠FCO,ﻫ∴△AOE≌△COF,∴AE=CF,又AE∥CF,∴四边形AECF是平行四边形(2分)ﻫ∵AC⊥EF,∴四边形AECF是菱形.(4分)(2)若AE=10 cm,△ABF的面积为24 cm2,求△ABF的周长;【答案】∵四边形AECF是菱形,ﻫ∴AF=AE=10cm.设AB=a,BF=b,∵△ABF的面积为24 cm2, a2+b2=100,ab=48(6分)(a+b)2=196,a+b=14或a+b=-14(不合题意,舍去)(7分)ﻫ△ABF的周长为a+b+10=24 cm(8分)(3)在线段AC上是否存在一点P,使得2AE2=AC AP?若存在,请说明点P的位置,并予以证明;若不存在,请说明理由.【答案】存在,过点E作AD的垂线,交AC于点P,点P就是符合条件的点(9分) 证明:∵∠AEP=∠AOE=90°,∠EAO=∠EAP,∴△AOE∽△AEP,∴=,∴AE2=AOAP(11分)∵四边形AECF是菱形,∴AO=AC,∴AE2=AC AP,ﻫﻫ∴2AE2=AC AP.(12分)21. [2013·营口中考,19]如图 ,△ABC中,AB=AC,AD是△ABC一个外角的平分线,且∠BAC=∠ACD.(1)求证:△ABC≌△CDA;【答案】∵AB=AC,∴∠B=∠ACBﻫ又∵∠FAC是△ABC的一个外角,ﻫ∴∠FAC=∠B+∠ACBﻫ∴∠FAC=2∠ACB2分又∵AD是∠FAC的角平分线,∴∠FAC=2∠CAD,ﻫ∴∠ACB=∠CAD3分又∵AC=CA,∠BAC=∠DCA∴△ABC≌△CDA4分(2)若∠ACB=60°,求证:四边形ABCD是菱形.【答案】∵∠BAC=∠ACD∴AB∥CD5分又∵∠ACB=∠CAD,∴AD∥BC.ﻫ∴四边形ABCD是平行四边形. 6分∵AB=AC,∠ACB=60°,ﻫ∴等腰三角形ABC是等边三角形. 7分∴AB=BC.ﻫ∴四边形ABCD是菱形.8分22. [2011•宁波中考,23](本小题满分8分)如图13,在ABCD中,E,F分别为边AB,CD的中点,BD是对角线,过A点作AG∥DB交CB的延长线于点G.ﻫﻫ(1)求证:DE∥BF;【答案】在ABCD中,AB∥CD,AB=CDﻫ∵E,F分别为边AB,CD的中点ﻫ∴DF=DC,BE=ABﻫ∴DF∥BE,DF=BE(2分)∴四边形DEBF为平行四边形(3分)∴DE∥BF(4分)(2)若∠G=90°,求证:四边形DEBF是菱形.【答案】∵AG∥BD∴∠G=∠DBC=90°ﻫ∴△DBC为直角三角形(5分)又∵F为边CD的中点ﻫ∴BF=DC=DF.(7分)ﻫ又∵四边形DEBF为平行四边形ﻫ∴四边形DEBF是菱形(8分)23. [2013·黄冈中考,17]如图,四边形ABCD是菱形,对角线AC,BD相交于点O,DH⊥AB于H,连接OH,求证:∠DHO=∠DCO.ﻫ【答案】四边形ABCD是菱形,ﻫ∴OD=OB,∠COD=90°,∵DH⊥AB于H,∴∠DHB=90°,∴∠OHB=∠OBH,又∵AB∥CD.∴∠OBH=∠ODC,∴∠OHB=∠ODC.ﻫ在Rt△COD中,∠ODC+∠OCD=90°,在Rt△DHB中,∠DHO+∠OHB=90°,ﻫ∴∠DHO=∠DCO.24.[2013·锦州中考,20]如图,点O是菱形ABCD对角线的交点,DE∥AC,CE∥BD,连接OE.ﻫ求证:OE=BC.ﻫ【答案】∵DE∥AC,CE∥BD∴四边形OCED是平行四边形2分又∵AC,BD是菱形ABCD的对角线ﻫ∴AC⊥BD,即∠COD=90°4分∴平行四边形OCED是矩形 6分ﻫ∴OE=CD 8分ﻫ又∵BC=CD9分ﻫ∴OE=BC 10分ﻫ (学生用其他方法证明,请参照评分标准酌情给分)。