高中物理万有引力定律的应用题20套(带答案)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中物理万有引力定律的应用题20套(带答案)
一、高中物理精讲专题测试万有引力定律的应用
1.一名宇航员到达半径为R 、密度均匀的某星球表面,做如下实验:用不可伸长的轻绳拴一个质量为m 的小球,上端固定在O 点,如图甲所示,在最低点给小球某一初速度,使其绕O 点在竖直面内做圆周运动,测得绳的拉力大小F 随时间t 的变化规律如图乙所示.F 1、F 2已知,引力常量为G ,忽略各种阻力.求:
(1)星球表面的重力加速度; (2)卫星绕该星的第一宇宙速度; (3)星球的密度. 【答案】(1)126F F g m -=(212()6F F R
m
-(3) 128F F GmR ρπ-= 【解析】 【分析】 【详解】
(1)由图知:小球做圆周运动在最高点拉力为F 2,在最低点拉力为F 1 设最高点速度为2v ,最低点速度为1v ,绳长为l
在最高点:2
22mv F mg l += ① 在最低点:2
11mv F mg l
-= ② 由机械能守恒定律,得
221211222
mv mg l mv =⋅+ ③ 由①②③,解得1
2
6F F g m
-= (2)
2
GMm
mg R
= 2GMm R =2
mv R
两式联立得:12()6F F R
m
-
(3)在星球表面:2
GMm
mg R = ④ 星球密度:M
V
ρ=
⑤ 由④⑤,解得12
8F F GmR
ρπ-=
点睛:小球在竖直平面内做圆周运动,在最高点与最低点绳子的拉力与重力的合力提供向心力,由牛顿第二定律可以求出重力加速度;万有引力等于重力,等于在星球表面飞行的卫星的向心力,求出星球的第一宇宙速度;然后由密度公式求出星球的密度.
2.已知地球的自转周期和半径分别为T 和R ,地球同步卫星A 的圆轨道半径为h .卫星B 沿半径为r (r (1)卫星B 做圆周运动的周期; (2)卫星A 和B 连续地不能直接通讯的最长时间间隔(信号传输时间可忽略). 【答案】(1)3/2()r T h (2) 3/23/23/2π()r h r -(arcsin R h +arcsin R r )T 【解析】 试题分析:(1)设卫星B 绕地心转动的周期为T′,地球质量为M ,卫星A 、B 的质量分别为m 、m′,根据万有引力定律和圆周运动的规律有: 2Mm G h =mh 2 24T π① 2Mm G r '=m′r 2 24T π' ② 联立①②两式解得:T′=3/2 () r T h ③ (2)设卫星A 和B 连续地不能直接通讯的最长时间间隔t ,在时间间隔t 内,卫星A 和B 绕地心转过的角度分别为α和β,则:α= t T ×2π,β=t T ' ×2π ④ 若不考虑卫星A 的公转,两卫星不能直接通讯时,卫星B 的位置应在下图中B 点和B′点之间,图中内圆表示地球的赤道. 由图中几何关系得:∠BOB′=2(arcsin R h +arcsin R r ) ⑤ 由③式知,当r <h 时,卫星B 比卫星A 转得快,考虑卫星A 的公转后应有:β-α=∠BOB′ ⑥ 由③④⑤⑥式联立解得:t =3/23/23/2 ()r h r π-(arcsin R h +arcsin R r )T 考点:本题主要考查了万有引力定律的应用和空间想象能力问题,属于中档偏高题. 3.某航天飞机在地球赤道上空飞行,轨道半径为r ,飞行方向与地球的自转方向相同,设地球的自转角速度为ω0,地球半径为R ,地球表面重力加速度为g ,在某时刻航天飞机通过赤道上某建筑物的上方,求它下次通过该建筑物上方所需的时间. 【答案】 2 03 t gR r ω= - 或者202 t gR r ω= - 【解析】 【分析】 【详解】 试题分析:根据人造卫星的万有引力等于向心力,列式求出角速度的表达式,卫星再次经过某建筑物的上空,比地球多转动一圈. 解:用ω表示航天飞机的角速度,用m 、M 分别表示航天飞机及地球的质量,则有 2 2Mm G mr r ω= 航天飞机在地面上,有2 mM G R mg = 联立解得22gR r ω= 若ω>ω0,即飞机高度低于同步卫星高度,用t 表示所需时间,则ωt -ω0t =2π 所以 2 02 t gR r ω= - 若ω<ω0,即飞机高度高于同步卫星高度,用t 表示所需时间,则ω0t -ωt =2π 所以 202 t gR r ω= - . 点晴:本题关键:(1)根据万有引力提供向心力求解出角速度;(2)根据地球表面重力等于万有引力得到重力加速度表达式;(3)根据多转动一圈后再次到达某建筑物上空列式. 4.一宇航员登上某星球表面,在高为2m 处,以水平初速度5m/s 抛出一物体,物体水平射程为5m ,且物体只受该星球引力作用求: (1)该星球表面重力加速度 (2)已知该星球的半径为为地球半径的一半,那么该星球质量为地球质量的多少倍. 【答案】(1)4m/s 2;(2)1 10 ; 【解析】 (1)根据平抛运动的规律:x = v 0t 得05 15 x t s s v = == 由h = 12 gt 2 得:2222222 /4/1 h g m s m s t ⨯= == (2)根据星球表面物体重力等于万有引力:2 G M m mg R 星星 = 地球表面物体重力等于万有引力:2 G M m mg R '地地 = 则2 22411 =()10210 M gR M g R '⨯=星星地地= 点睛:此题是平抛运动与万有引力定律的综合题,重力加速度是联系这两个问题的桥梁;知道平抛运动的研究方法和星球表面的物体的重力等于万有引力. 5.宇航员在某星球表面以初速度2.0m/s 水平抛出一小球,通过传感器得到如图所示的运动轨迹,图中O 为抛出点。若该星球半径为4000km ,引力常量G =6.67×10﹣11N•m 2•kg ﹣ 2 .试求: (1)该行星表面处的重力加速度的大小g 行; (2)该行星的第一宇宙速度的大小v ; (3)该行星的质量M 的大小(保留1位有效数字)。 【答案】(1)4m/s 2(2)4km/s(3)1×1024kg 【解析】 【详解】 (1)由平抛运动的分位移公式,有: x =v 0t