医学遗传学考试重点整理

合集下载

医学遗传学重点

医学遗传学重点

1.人类染色体根据着丝粒的位置分:中着丝粒染色体、亚中着丝粒染色体、近端着丝粒染色体三类。

2.符号3q22.1的含义是第3号染色体长臂2区2带1亚带。

3.正常女性有 2 条X染色质,正常男性有 1 条X染色质。

4.染色体数目异常可分为整倍体、非整倍体和嵌合体三类。

5.染色体结构畸变通常有缺失、倒位、异位、环状染色体、等臂染色体和双着丝粒染色体。

6.在正常人类核型分析中 13 、 15 、 15 、 21 、 22 号染色体为近端着丝粒染色体。

7.在染色体的数目异常中,47,XXY的个体称嵌合体;其间期细胞核中X染色质的数目为 2 ,Y染色质的数目为 1 。

8.根据染色体的大小、形态和特征,将一个体细胞中的全部染色体按一定的方式分组、编号,即为Denver体制。

10.人体细胞23对染色体中,22对为男女所共有称为常染色体,共分 11 组;另一对随男女性别而异,称为性染色体。

11.红绿色盲是 X连锁隐性遗传病遗传,抗维生素D佝偻病是X连锁现性遗传病遗传。

12.在血型遗传中,已知父亲是A型血,儿子是O型血,女儿是B型血,母亲的血型是B型,他们再生育一个儿子的血型可能是A、B、AB、O。

13.父亲正常,母亲是色盲基因的携带者,他们的儿子患病的可能性是1/2;女儿患病的可能性是0。

14.苯丙酮尿症(AR)是一种遗传病,假如有这种遗传病的家系,婚配关系是半表兄妹(同父异母兄妹)、舅甥女和列表兄妹,他们的近婚系数分别为0.125、0.125、0.125。

15.单基因遗传病是指主要受一对主基因(致病基因)影响而发生的疾病,它的遗传符合孟德尔规律。

16.多基因遗传的主要特点是:1、家族聚集现象;2、与患者亲缘系数相同的家属有相同的发病风险;3、随着亲缘系数的变小,患者亲属的发病风险迅速降低,群体发病率越低的疾病,这种趋势越明显;17.根据显性性状的表现特点,显性遗传分完全显性、不完全显性、共显性、不规则显性、延迟显性、从性显性六种类型。

医学遗传学_考试重点整理

医学遗传学_考试重点整理

单基因遗传病:简称单基因病,指由一对等位基因控制而发生的遗传性疾病,这对等位基因称为主基因。

上下代传递遵循孟德尔遗传定律。

分为核基因遗传和线粒体基因遗传。

常染色体显性(AD)遗传病:遗传病致病基因位于1-22号常染色体上,与正常基因组成杂合子导致个体发病,即致病基因决定的是显性性状。

常染色体完全显性遗传的特征⑴由于致病基因位于常染色体上,因而致病基因的遗传与性别无关即男女患病的机会均等⑵患者的双亲中必有一个为患者,致病基因由患病的亲代传来;双亲无病时,子女一般不会患病(除非发生新的基因突变)⑶患者的同胞和后代有1/2的发病可能⑷系谱中通常连续几代都可以看到患者,即存在连续传递的现象一种遗传病的致病基因位于1~22号常染色体上,其遗传方式是隐性的,只有隐性致病基因的纯合子才会发病,称为常染色体隐性(AR)遗传病。

带有隐性致病基因的杂合子本身不发病,但可将隐性致病基因遗传给后代,称为携带者。

常染色体隐性遗传的遗传特征⑴由于致病基因位于常染色体上,因而致病基因的遗传与性别无关,即男女患病的机会均等⑵患者的双亲表型往往正常,但都是致病基因的携带者⑶患者的同胞有1/4的发病风险,患者表型正常的同胞中有2/3的可能为携带者;患者的子女一般不发病,但肯定都是携带者⑷系谱中患者的分布往往是散发的,通常看不到连续传递现象,有时在整个系谱中甚至只有先证者一个患者⑸近亲婚配时,后代的发病风险比随机婚配明显增高。

这是由于他们有共同的祖先,可能会携带某种共同的基因由性染色体的基因所决定的性状在群体分布上存在着明显的性别差异。

如果决定一种遗传病的致病基因位于X染色体上,带有致病基因的女性杂合子即可发病,称为X连锁显性(XD)遗传病男性只有一条X染色体,其X染色体上的基因不是成对存在的,在Y染色体上缺少相对应的等位基因,故称为半合子,其X染色体上的基因都可表现出相应的性状或疾病。

男性的X染色体及其连锁的基因只能从母亲传来,又只能传递给女儿,不存在男性→男性的传递,这种传递方式称为交叉遗传。

医学遗传学考点

医学遗传学考点

医学遗传学考点(25分)一、概述A.医学遗传学概念:是研究人类疾病与遗传关系的一门学科B.遗传病A.概念:经典遗传学认为,人体生殖细胞(精子或卵子)或受精卵细胞,起遗传物质发生异常改变后所导致的疾病叫做遗传病B.特性:遗传性、终生性、先天性、家族性、发生在生殖细胞或受精卵细胞中C.分类:基因病、染色体病单基因病:常染色体显性遗传病(AD)、常染色体隐性病(AR)、X连锁隐形遗传病(XD)、X连锁显性遗传(XR)、Y连锁遗传病多基因病:常染色体病:性染色体病:X染色体病、Y染色体病二、单基因遗传病临床上判断单基因遗传病的传递方式常用系谱分析法(判断遗传方式和预测发病风险)分类及依据:上述5类;致病基因的位置(常染色体/性染色体)和性质(显性/隐性)1、常染色体显性遗传病(AD):例如:多指(趾)(1)分类依据:杂合子的表现型(2)分类:①完全显性遗传,即Aa表现型与AA完全一样,例如:家族性多发性结肠息肉②不完全显性遗传,即Aa表现型介于AA与aa之间,例如:先天软骨发育不全③共显性遗传,人类血型AB型④条件显性遗传,前提(Aa)+条件(加强基因/减弱基因)→结果Aa→加强基因→发病Aa→减弱基因→不发病⑤延迟显性遗传,例如:遗传性舞蹈病⑥从(伴)性显性遗传,例如:遗传性斑秃*不完全显性(A)不完全外显(B)的区别(1)A是表型介于AA与aa之间的遗传方式,B是条件显性遗传的遗传现象(2)外显率:A发病率100%,B发病率小语100%(3)表现度:A的病情均比显性纯和轻,B的病情可轻可重(3)系谱特点:(系谱分析的依据)代代相传→男女相等→ADA、患者双亲之一为患者,且多为AaB、子带1/2发病,男女发病机会相等C、代代相传D、双亲无病时,子女一般不会患病(除非发生基因突变)2、常染色体隐性遗传病(AR)例如:先天性聋哑(1)AR病的特点:A、患者多是Aa婚配所出生的子女,患者的正常同胞2/3为携带者B、AR病发病率不高,携带者数量较大(P:显性基因频率q:隐性基因频率)C、近亲婚配,子女发病风险会增高(2)为何近亲婚配子女发病风险会增高(简答)在近亲结婚的情况下,双方从共同祖先那里继承同一致病基因的机会就会大大增加,双方很可能都是同一种致病基因的携带者,这样,他们所生的子女拥有的遗传病的机会就大大增加,往往要比非近亲结婚这高尚几倍几十倍,甚至上百倍。

医学遗传学重点

医学遗传学重点

医学遗传学一、概念1.母系遗传人类受精卵的线粒体几乎全部来自卵母细胞,即来自母系,精子很少提供线粒体给受精卵。

线粒体的这种传递方式为母系遗传。

2.Ph染色体(费城染色体)大部分CML(慢性粒细胞白血病)病人都发生特异的染色体易位t(9;22)(q34;q11),9q34→qter和22q11→qter相互易位产生9q+和22q-两条易位染色体,22q-就是CML的标记染色体(第22号染色体长臂缺失而形成的畸变染色体,其断裂段易位于9号染色体长臂末端,有CML早期诊断价值),因首先由美国费城研究小组发现、鉴别,故称为费城染色体,简称Ph染色体。

3.HLA单倍型一条6号染色体上HLA的基因组成。

4.转位因子在人的基因组中,存在多种可转移的DNA成分,被称为转位因子。

5.RFLP(限制性片段长度多态性)根据人群中DNA存在的多态性,用同一种限制性内切酶切割不同的DNA时,可出现不同大小的DNA片段为RFLP。

6.癌家族在一个家系中,恶性肿瘤的发病率很高,且发病年龄都较早,但肿瘤发生的部位并不局限于同一种组织或器官,在家族中肿瘤呈常染色体显性遗传,这样的家系称为癌家族。

7.动态突变(一种串联重复序列的重复次数在一代一代传递过程中出现明显的增加。

)动态突变是导致遗传病的一种新的突变类型,它主要表现为突变速率与重复顺序的拷贝数有关,突变体与其长辈的突变速率不同,拷贝数随着世代传递而不断增加。

8.遗传背景两个基因组中除决定某一性状的一对等位基因(主基因)以外的所有其他基因,对主基因的表达起修饰作用。

9.遗传早现与亲代印迹(强直性肌营养不良(AD),Huntington舞蹈病,脊髓小脑性共济失调,多发性神经纤维瘤病Ⅱ型)A.遗传早现:有些遗传病在传递过程中,有发病年龄逐代超前,病情逐渐加重的现象。

B.亲代印迹(遗传印迹):指来自双亲的基因存在功能上的差异,因而子女来自父方或母方的基因表达可以不同。

10.基因与基因组A.基因:指储存有功能的蛋白质多肽链或RNA序列信息及基因表达所必需的全部核苷酸序列。

医学遗传学 重点总结

医学遗传学  重点总结

医学遗传学第一章绪论本章节重点:遗传病的概念、遗传病的类型一、医学遗传学的定义1、医学遗传学(medical genetics):是遗传学与医学相结合的一门学科,研究对象是与人类遗传有关的疾病,即遗传病(genetic disease)。

2、研究内容:遗传病的发生机理(Etiology)、传递方式(Passage)、诊断(Diagnosis)、治疗(Therapy)、预后(Prognosis)、再发风险(Recurrence)、预防方法(Preventive medicine),从而控制遗传病在一个家庭中的再发,降低在人群中的危害,增进人类的健康水平。

3、什么是遗传?Genetics is the study of genes, heredity, and variation in living organisms.二、遗传病的定义1、关于遗传病的一些误解:家族性疾病(familial disease)就是遗传病、先天性疾病(congenital disease)就是遗传病2、遗传病(genetic disease):遗传物质改变所导致的疾病。

包括单基因病、多基因病、染色体病、体细胞遗传病。

三、遗传病的类型1、单基因病(single gene disorder):如果一种遗传病的发病仅仅涉及一对基因,这个基因称为主基因(major gene),其导致的疾病称为单基因病。

常染色体显性(AD)遗传病、常染色体隐性(AR)遗传病、X 连锁显性(XD)遗传病、X连锁隐性(XR)遗传病、Y连锁遗传病、线粒体病2、多基因病(polygenic disease):一些常见的疾病或畸形有复杂的病因,既涉及遗传基础,又需要环境因素的作用才发病,也称为多因子病(multifactorial disease,MF)。

遗传基础不是一对基因,而是涉及到许多对基因,这些基因称为微效基因(minor gene)。

3、染色体病(chromosome disease):由于染色体数目或结构的改变而导致的疾病称为染色体病。

医学遗传学考试复习重点知识总结

医学遗传学考试复习重点知识总结

·了解医学遗传学的发展简史·掌握遗传病的概念、特征以及分类1.遗传学:研究遗传和变异的科学。

是揭示生命本质和遗传规律的科学遗传:是指生物亲代繁殖与其相似的后代的现象。

变异:是指同种个体之间的差异。

(遗传和变异的表现与环境不可分割)遗传学的研究范围包括遗传物质的本质、遗传物质的传递和遗传信息的实现三个方面。

2.医学遗传学:应用遗传学的理论和方法研究人类遗传性疾病和人类疾病发生的遗传学问题的一门综合性学科。

主要任务:研究遗传病的发生机制、传递方式、诊断、治疗、预后。

(尤其是预防方法)3.遗传病:遗传物质发生改变(基因突变或染色体畸变)所引起的疾病。

(1)遗传病特征:①垂直传递②基因突变或染色体畸变是其发病原因③生殖细胞或受精卵发生的遗传物质改变才能遗传,体细胞中遗传物的改变不能向后代传递④常有家族性聚集现象⑤常有先天性相关概念区分:遗传病:遗传物质改变所引起的疾病先天性疾病:婴儿出生时即显示症状的疾病家族性疾病:是指某些表现出家族性聚集现象的疾病(大多数遗传病,特别是显性遗传病,常看到连续传递的家族性聚集。

但也有不少遗传病,特别是隐性遗传病,常常散发,无家族发病史。

一些传染病(如肝炎、结核病)和某些维生素缺乏症(如夜盲)可有家族性聚集现象,但这类疾病并不是遗传病。

)(2)遗传病的类型:①单基因病:染色体上某一等位基因发生突变所导致的疾病a.常染色体显性遗传病:软骨发育不全等b.常染色体隐形遗传病:白化症、苯丙酮尿症等c.X连锁显性遗传病:抗维生素D佝偻病d.X连锁隐形遗传病:红绿色盲e.Y连锁遗传病:人类外耳道多毛症、SRY(Y染色体上的性别决定基因)f.线粒体遗传病:mtDNA,线粒体心肌病②多基因病:两对以上等位基因和环境因素共同作用所致的疾病原发性高血压、冠心病等③染色体病:染色体数目或结构的改变所致的疾病Down综合征等④体细胞遗传病:体细胞中遗传物质改变所致的疾病一般不向后代遗传,各种肿瘤的发病中都涉及特定组织中的染色质和癌基因或抑癌基因的变化,是体细胞遗传病;一些先天畸形和免疫缺陷属于体细胞遗传病。

医学遗传学重点整理

医学遗传学重点整理

医学遗传学重点整理老师划的考试重点整理1、遗传病:遗传因素作为唯一或主要病因的疾病。

2、黑尿症:第一个发现的先天性代谢病,遵循孟德尔遗传规律。

3、遗传病的特点:垂直传递(上下代之间)、数量分布(患者在亲祖代和子孙中是以一定数量比例出现的)、先天性(生来就有的特性)、家族性(家族聚集性)、传染性(一般遗传病没有传染性)。

4、单基因遗传病:由一对等位基因控制而发生的遗传性疾病,这对等位基因为主基因。

6、常染色体完全显性遗传(AD)的特点:男女患病机会均等;双亲无病时,子女无病,除非基因突变;患者的同胞和后代有1/2的发病可能;连续传递;患者双亲必有一患。

7、常染色体隐性遗传(AR)的遗传特征:男女患病机会均等;患者双亲为表型正常的致病基因携带者;患者同胞有1/4的发病风险,患者有2/3的表型正常的同胞可能为携带者,患者的子女一般不发病,但都是携带者;散发分布,通常无连续传递现象;近亲婚配发病率增加。

8、某连锁隐性遗传(某R)的遗传特征:患者多为男性;双亲无病,女儿不发病,儿子患病率1/2,致病基因都是从母亲获得;交叉遗传;女性患者,父必患,母携带。

9、表现度:不同遗传背景和环境因素的影响下,相同基因型的个体在性状或疾病的表现程度上产生的差异。

10、基因的多效性:一个基因可以决定或影响多个性状。

11、遗传异质性:一种遗传性状可以由多个不同的遗传改变所引起。

12、限性遗传:位于常染色体上的基因,由于基因表达的性别限制,只在一种性别表现,而在另一种性别完全不能表现。

13、拟表型:由于环境因素的作用使个体产生的表型恰好与某一特定基因所产生的表型相同或相似。

14、质量性状:指单基因遗传的性状变异在群体中分布不连续,多峰。

数量性状:指多基因遗传性状变异的分布连续,呈现单峰分布,临近两个个体间差异很小。

如身高、血压。

主要取决于两点:多基因性状中多对微效基因累加效应、基因随机组合、等位基因共显性。

15、易感性:由遗传基础决定一个个体患病的风险。

医学遗传学重点

医学遗传学重点

医学遗传学重点第一章1. 医学遗传学:医学与遗传学结合,研究与遗传相关的疾病2.医学遗传学的分支学科有哪些?3.遗传性疾病的类型?单基因病、多基因病、染色体病、体细胞遗传病第二章1.染色质的化学组成:DNA、组蛋白、非组蛋白、RNA2.染色质的基本结构单位是核小体3.常染色质、异染色质(结构性异染色质、兼性异染色质)4.染色质的四级结构模型5.名解:X染色质6.Lyon假说(重点,因为我们实验做过)了解内容7.Y染色质第三章1.单一序列2.重复序列:高度重复序列(了解其内容、重点方向重复序列存在哪些基因中3.侧翼序列4名解:.基因突变5.基因突变的分子机制:考察方式给考生一定的基因,要求判断出是什么类型的突变)第四章:要求细看1.遗传异质性、等位基因异质性、基因座异质性2.遗传印记3.了解各种遗传方式的系谱图特点4.典型疾病的遗传方式第五章1.线粒体DNA的特点:双链闭合环状分子、无内含子2.名解:遗传瓶颈、阈值效应3.线粒体基因突变类型4.常见线粒体遗传病:考察方式例如:下列哪些疾病不能用染色体检查来诊断,其中是线粒体的疾病不能用染色体的检查,所以了解常见线粒体的遗传病第六章1.名解:多基因遗传病,多基因遗传2.多基因遗传病的特点3.多基因遗传病的特征4.名解:阈值、易感型5.患者一级亲属的发病率等于群体发病率的平方根6.加性效应、发病风险、发病率的性别差异第七章细看,会细考1.名解:染色体病、核型、核型分析2.正常核型的描述:染色体总数逗号性染色体组成3.表 7-14.名解:染色体畸变5.染色体畸变的类型,代表性的疾病,如何产生的6.染色体病常见疾病,其核型的书写第八章1.名解:癌家族综合征、癌家族2.标记染色体是什么、意义3.名解:病毒癌基因、细胞癌基因4.原癌基因的分类5.重要的抑癌基因,特别是P53和RB基因的染色体定位6.肿瘤发生的遗传学说有哪些?7.哪些肿瘤是遗传性的,其病因,遗传方式,简单的症状(感受:都是可以以后再临床工作中应用到的,所以我们大家不要死记,也不要讨厌,以后都是可能遇到的,考试也重在考我们的应用!大家加油吧!)第九章:1.名解:群体、基因频率、基因型频率、遗传平衡定律2.影响群体遗传平衡的因素3.简单的计算,如:给定基因型求基因频率第十章:1.名解:分子病2.典型的疾病,遗传方式,基因改变的类型3.酶蛋白病:遗传方式、缺少了什么酶,典型症状(有利于大家情景记忆)第十三章:1. 名解:人类基因组计划2. 参加的国家,中国的任务是什么3. 那四张图:遗传图、物理图、序列图、基因图4. 功能基因组学包括:人类基因组多样性计划、比较基因组学、环境基因组学、疾病基因组学、药物基因组学、蛋白质组学第十六章1. 名解:遗传学的诊断的概念、系谱分析、遗传印记、动态突变第十七章1. 咨询者2. 咨询医生团队包括:临床遗传学医生、遗传诊断学医生、心理医生3. 产前诊断的对象4. 产前诊断的方法:羊膜穿刺、绒毛取样、B超、X线检查、孕妇外周血分离胎儿细胞5. 基因筛查第十八章1. 遗传病的治疗方式2. 名解:基因治疗。

医学遗传学知识点重点复习

医学遗传学知识点重点复习

医学遗传学遗传的物质基础、单基因遗传病、多基因遗传病、染色体病、肿瘤遗传学第一章遗传的物质基础掌握:基因,多基因家族的概念;基因的结构与表达;基因突变的类型和遗传效应熟悉:单一序列和重复序列,假基因;基因突变的特性;基因突变的诱因了解:基因表达的调控第一章遗传的物质基础第一节基因的概念基因是在染色体上呈线性排列的遗传单位,它不仅是决定性状的功能单位,也是一个突变单位和交换单位。

1、基因的化学本质是什么?基因的化学本质是核酸而不是蛋白质2、基因的结构是什么?1953年沃森和克里克提出著名的DNA双螺旋分子结构模型。

3、孟德尔提出:生物的遗传性状是通过“遗传因子”进行传递的;遗传因子是一些独立的遗传单位。

4、基因的概念基因:是合成有功能的蛋白质多肽链及RNA所需的全部核苷酸序列。

一个基因不仅包括编码蛋白质多肽链或RNA的核酸序列,而且包括为保证转录所必需的调控序列,5′非编码序列、内含子及3′非翻译序列等所有核苷酸序列。

5、基因的种类(1)结构基因与调节基因(2)核糖体RNA基因(rRNA基因)与转运RNA基因(tRNA基因)(3)启动子和操纵基因第一章遗传的物质基础第二节人类基因组一、背景(一)基因组是指人类细胞的DNA分子所包含的储藏有人类全部遗传信息的一整套基因。

包括核基因组和线粒体基因组。

(二)人类基因组计划(human genome project, HGP)是由美国科学家Renato Dulbecco于1985年率先提出,于1990年正式启动的。

1、“人类基因组计划”与“曼哈顿原子弹计划”、“阿波罗登月计划”一起,并称为人类自然科学史上的“三大计划”,是人类文明史上最伟大的科学创举之一。

40年代第一颗原子弹爆炸、60年代人类首次登上月球、90年代人类基因组计划2、该计划首先由国际人类基因组测序协作组(IHGSC)组织实施。

我国科学家参加了这项计划,完成了3p末端的测序工作,31.4cM,30万bp,占人类基因组的1%。

医学遗传学知识考点整理

医学遗传学知识考点整理

医学遗传学知识考点整理●突变(mutation)●一切生物细胞内的基因都能保持其相对稳定性,但在一定内外因素的影响下,遗传物质就可能发生变化,这种遗传物质的变化及其所引起的表型改变称为突变●类型广义上●染色体畸变●发生在细胞水平上,染色体数目组成及结构的异常●⭐基因突变狭义●它主要指在分子水平上DNA碱基对组成与序列结构的变化●它通常只涉及到某一基因的部分变化●第一节基因突变的本质及其特性●一般特性●多向性●任何基因座(locus)上的基因,都有可能独立地发生多次不同的突变而形成其新的等位基因,这就是基因突变的多向性●比如●在不同条件下,位于染色体某一基因座上的基因A,可以突变为它的等位基因a1,也可以突变为a2或a3、a4、an等等其他等位基因形式,突变的多向性可以形成复等位基因●复等位基因( multiple alleles )●遗传学上把群体中存在于同一基因座上,决定同一类相对性状经由突变而来,且具有3种或3种以上不同形式的等位基因互称为复等位基因●重复性●已经发生突变的基因,在一定的条件下,还可能再次独立地发生突变而形成其另外一种新的等位基因形式●对于任何一个基因位点来说,其突变并非仅囿(you,4)于某一次或某几次的发生,而是会以一定的频率反复发生●比如●以A为例,它可以突变为其等位基因a,a又可以独立的发生突变形成其新的等位基因a1,a1也可能再次形成突变而形成其另外的等位基因a2、a3等,在这个过程中,后续突变当然也可以重新突变为原先的形式,即回复突变,从而掩盖突变的存在●突变的重复性也可以形成复等位基因●随机性●基因突变是一种随机的概率事件,也是生物界普遍存在的一种遗传事件●对于任何一种生物任何一个个体,任何一个细胞乃至任何一个基因来说,突变的发生也都是随机的●只是不同的物种、不同的个体、不同的细胞或者基因,其各自发生基因突变的频率可能并不完全相同而已●突变率 (mutation rate)衡量●基因的一种等位形式在某一世代突变成其另外等位形式的概率●一般用每个世代每个生殖配子中的每个基因座的突变数目来表示●稀有性●尽管基因突变是生物界普遍存在的一种遗传事件,但却也是一种非频发的稀有事件●在自然状况下,各种生物的突变率都是很低的●但考虑到人类群体中能够进行遗传信息传递的有效个体数和生殖细胞个数是巨大的,其实人群中存在的突变负荷还是非常大的●可逆性●基因的突变是可逆的●任何一种野生型基因,都能够通过突变而形成其等位的突变型基因;反过来,突变型基因也可以突变为其相应的野生型基因●前者为正向突变(forward mutation),后者为回复突变(reverse mutation)●一般情况下,正向突变率总是远远高于回复突变率●有害性●生物遗传性状的形成,是在长期的进化过程中与其赖以生存的自然环境相互作用、相互适应的结果,是自然选择的产物●对性状具有决定性意义的基因一旦发生突变,通常都会对生物的生存带来消极或不利的影响,即有害性●基因突变的有害性往往只是相对的,有条件的;并非所有的基因突变都会对生物的生存及其种群繁衍带来不利或者有害的影响●木村资生的“中性学说”中大多数突变,往往只引起非功能性DNA序列组成的改变,并不造成核酸和蛋白质正常功能的损害●第二节基因突变的诱发因素●发生的原因●自发突变●在自然条件下,没有人为干涉,未经任何人工处理而发生的突变●诱发突变●在人为的干涉下,经过特殊的人工处理所产生的突变●⭐诱变剂(mutagen)致突变因素●凡是能够诱发基因突变的各种内外环境因素●体内●DNA修复机制的缺陷●体外(主要类型)就其性质和对遗传物质的作用方式而言●物理因素●紫外线●是我们生活当中相对常见的物理诱变剂●到达地球的紫外线主要包括●UVA●UVB●UVC●在过量紫外线照射下,尤其是UVB的照射下,可以诱发我们的胸腺嘧啶形成二聚体,破坏了DNA结构和稳定性●我们平时用的防晒霜呢主要就是针对UVA和UVB的,大家要认准针对UVA的PA指数和针对UVB的SPF指数,户外时间长要及时补涂,预防皮肤损伤以及皮肤癌等。

医学遗传学重点

医学遗传学重点

医学遗传学一、概念1.母系遗传人类受精卵的线粒体几乎全部来自卵母细胞,即来自母系,精子很少提供线粒体给受精卵。

线粒体的这种传递方式为母系遗传。

2.Ph染色体(费城染色体)大部分CML(慢性粒细胞白血病)病人都发生特异的染色体易位t(9;22)(q34;q11),9q34→qter和22q11→qter相互易位产生9q+和22q-两条易位染色体,22q-就是CML的标记染色体(第22号染色体长臂缺失而形成的畸变染色体,其断裂段易位于9号染色体长臂末端,有CML早期诊断价值),因首先由美国费城研究小组发现、鉴别,故称为费城染色体,简称Ph染色体。

3.HLA单倍型一条6号染色体上HLA的基因组成。

4.转位因子在人的基因组中,存在多种可转移的DNA成分,被称为转位因子。

5.RFLP(限制性片段长度多态性)根据人群中DNA存在的多态性,用同一种限制性内切酶切割不同的DNA时,可出现不同大小的DNA片段为RFLP。

6.癌家族在一个家系中,恶性肿瘤的发病率很高,且发病年龄都较早,但肿瘤发生的部位并不局限于同一种组织或器官,在家族中肿瘤呈常染色体显性遗传,这样的家系称为癌家族。

7.动态突变(一种串联重复序列的重复次数在一代一代传递过程中出现明显的增加。

)动态突变是导致遗传病的一种新的突变类型,它主要表现为突变速率与重复顺序的拷贝数有关,突变体与其长辈的突变速率不同,拷贝数随着世代传递而不断增加。

8.遗传背景两个基因组中除决定某一性状的一对等位基因(主基因)以外的所有其他基因,对主基因的表达起修饰作用。

9.遗传早现与亲代印迹(强直性肌营养不良(AD),Huntington舞蹈病,脊髓小脑性共济失调,多发性神经纤维瘤病Ⅱ型)A.遗传早现:有些遗传病在传递过程中,有发病年龄逐代超前,病情逐渐加重的现象。

B.亲代印迹(遗传印迹):指来自双亲的基因存在功能上的差异,因而子女来自父方或母方的基因表达可以不同。

10.基因与基因组A.基因:指储存有功能的蛋白质多肽链或RNA序列信息及基因表达所必需的全部核苷酸序列。

医学遗传学重点(可编辑)

医学遗传学重点(可编辑)

医学遗传学重点总结第1章绪论1.医学遗传学(medical genetics):是应用遗传学的理论和方法研究人类遗传性疾病和人类疾病发生的遗传学问题的一门综合性学科。

2.什么是遗传病?包括哪些类型?各自的特点是什么?答:遗传性疾病(简称遗传病)是指遗传物质改变(基因突变或染色体畸变)所引起的疾病。

㈠单基因病。

根据致病基因所在染色体及其遗传方式的不同可分为:a.常染色体显性遗传病:致病基因位于1~22号常染色体上,此基因为显性,杂合体即可发病,如软骨发育不全等。

b.常染色体隐性遗传病:致病基因位于1~22号常染色体上,但此基因为隐性,具有纯合隐性基因的个体才会发病,如白化症、苯丙酮尿症等。

c.X连锁隐性遗传病:致病基因位于X染色体上,此基因为隐性。

由于男性细胞中只有一条X染色体,Y染色体上一般没有相应的等位基因,故为半合子。

所以,男性只要有致病基因就可发病,则女性具有纯合隐性基因时才发病,如红绿色盲等。

d.X连锁显性遗传病:致病基因位于X染色体上,此基因为显性。

杂合子或半合子均可发病。

如抗维生素D性佝偻病。

e.Y连锁遗传病:致病基因位于Y染色体上,有致病基因即发病,只有男性才有Y染色体,所以这类病呈全男性遗传,如Y染色体上的性别决定基因(SRY)。

f.线粒体遗传病:细胞线粒体中也含有DNA,称mtDNA。

mtDNA也编码一些基因,这些基因突变也可导致某些疾病,称为线粒体遗传病,也称为线粒体基因病。

这类病通过母亲传递。

如线粒体心肌病等。

㈡多基因病:由两对以上等位基因和环境因素共同作用所致的疾病,称为多基因病。

多基因病尽管仅有100余种,但每种病的发生率均较高。

一些常见病(如冠心病﹑高血压等)多为多基因病。

㈢染色体病:染色体数目或结构的改变所致的疾病称为染色体病。

由于染色体病涉及许多基因,所以常表现复杂的综合征。

㈣体细胞遗传病:体细胞中遗传物质改变所致的疾病称为体细胞遗传病。

因为它是体细胞中遗传物质的改变,所以一般不向后代传递。

医学遗传学复习重点必考

医学遗传学复习重点必考

临床药学医学遗传学复习提纲1、多基因家族、假基因、同义突变、错义突变、无义突变、移码突变、动态突变、核型。

多基因家族:指由某一共同祖先基因经过重复和变异所产生的一组基因。

假基因:具有与功能基因相似的序列,但由于有许多突变以致失去了原有的功能,所以假基因是不能编码蛋白。

同义突变:因于编码氨基酸的密码子所具有的兼并性,碱基替换后组成的密码子仍是编码同一氨基酸的密码子,成为同义突变。

错义突变:是编码某种氨基酸的密码子经碱基替换以后,变成编码另一种氨基酸的密码子。

无义突变:是指由于某个碱基的改变使代表某种氨基酸的密码子突变为终止密码子UAA,UGA,UAG中的一种,从而使肽链合成提前终止,肽链缩短,成为没有活性的多肽链片段。

移码突变:在DNA分子的碱基组成中插入或者缺失一个或者几个碱基对,使在插入或者缺失点以下的DNA编码全部发生改变,这种基因突变成为移码突变。

动态突变:组成DNA分子中的核苷酸序列拷贝数发生不同倍数的扩增。

核型:指一个体细胞全部染色体所构成的图像。

2、DNA修复系统的种类。

光修复,切除修复,复制后修复。

3、染色体和染色质的相同点(化学组成)、不同点(不同存在形式)。

相同点(化学组成):DNA,组蛋白,非组蛋白,RNA。

不同点(不同存在形式):同一物质不同时期的不同存在形式。

4、常染色质和异染色质的相同点、不同点。

相同点:都是遗传物质,染色质,化学组成都是DNA,组蛋白,非组蛋白,RNA;不同点:①常染色质染色较浅且着色均匀,异染色质染色深。

②常染色质多分布于核中央,异染色质多分布于核周缘,紧靠核内膜。

③常染色质呈高度分散状态,异染色质螺旋化程度高。

④常染色质在一定条件下具有转录活性,异染色质很少转录,功能上处于静止状态。

5、异染色质的分类。

结构异染色质(组成性异染色质)和兼性异染色质(功能性异染色质)6、常染色体显性遗传中完全显性、不完全显性、不规则显性、共显性、复等位基因、延迟显性、从性显性。

医学遗传学考试重点

医学遗传学考试重点

有括号的是名词解释。

名字在后面。

26单体型(haplotype)
27倒位(inversion)
28易位(translocation)
29重复(duplication)
30核型分析(laryotype analysis)
31性染色体病(sex chromsome disease)
32线粒体遗传病(mitochondrial diseases)11Down综合征的一般特点:
第一章周
1医学遗传病()
2遗传病的特点有哪些:
3人类遗传病的分类:
4疾病的发生与遗传因素和环境因素的关系:5在发风险率()
第二章熊
1基因()
2DNA分子结构
3基因的分类
4遗传密码的特性
第三章张
1基因的一般特性
2自发突变()
3诱发突变()
4诱变剂()
5DNA损伤的修复机制
第七章熊
1近亲婚配()
2亲缘系数()
3基因流()
4遗传负荷()
第十六章裴
1出生缺陷的类型九点
第十七章裴
1旁系()
2干系()
3标志染色体()
4癌基因()
5细胞癌基因按照功能分类:第二十章张
1遗传咨询()
2遗传咨询主要步骤。

《医学遗传学》重点整理

《医学遗传学》重点整理

医学遗传学重点整理第一章绪论1.遗传病的概念:遗传病是遗传物质改变所导致的疾病。

2.遗传病的分类:单基因病,多基因病,染色体病,体细胞遗传病。

第二章第三章遗传的细胞和分子基础1.核小体:5种组蛋白(H2A, H2B,H3,H4,H1)和200个碱基对的DNA分子组成,包括核心颗粒和连接部两部分。

组蛋白中的H2A, H2B,H3,H4各两分子组成八聚体,约140个碱基对的DNA分子在八聚体外缠绕1.75圈,构成核小体的核心颗粒。

约60个碱基对的DNA分子构成核心颗粒的连接部。

2.常染色质和异染色质的区别常染色质:细胞间期核内纤维折叠盘曲程度小,分散度大,染色较浅且具有转录活性的染色质。

异染色质:细胞间期核内纤维折叠盘曲紧密,呈凝集状态,染色较深且没有转录活性的染色质。

(分为结构异染色质和兼性异染色质)3.Lyon假说(1961)——X染色体失活假说及剂量补偿效应①雌性哺乳动物体内仅有一条X染色体有活性,另一条在遗传上是失活的,在间期细胞核中异固缩为X染色质。

②失活发生在胚胎早期(人胚第16天),此前2条X染色体都有活性。

③X染色体的失活是随机的,但是是恒定的。

剂量补偿:由于雌性细胞中的两条X染色体中的一条发生异固缩,失去转录活性,这样保证了雌雄两性细胞中都只有一条X染色体保持转录活性,使两性X连锁基因产物的量保持在相同水平上,这种效应称为X染色体的剂量补偿4.多基因家族:由一个祖先基因经过重复和变异形成的一组来源相同、结构相似、功能相关的基因。

5.拟基因:也称假基因,指在多基因家族中,某些成员不产生有功能的基因产物,这些基因称为拟基因,常用ψ表示。

6.遗传印记:不同性别的亲体传给子代的同一染色体或基因,当发生改变时可引起不同表型的现象,也称为基因组印记。

父母双方的某些同源染色体或等位基因存在着功能上的差异。

母系印记:母源基因失活,父源基因表达父系印记:父源基因失活,母源基因表达7.点突变(碱基替换)引起几类不同的生物学效应:①同义突变②错义突变③无义突变④终止密码突变8.动态突变:又称不稳定三核苷酸重复序列突变,其突变是由于基因组中脱氧三核苷酸串联重复拷贝数增加,拷贝数的增加随着世代的传递而不断增加,因而称之为动态突变。

医学遗传学考试重点(精华版)

医学遗传学考试重点(精华版)

第一章遗传病的概念: 把遗传因素作为唯一或者主要病因的疾病遗传病的特点:1、如果遗传,则以垂直方式2、有特定的数量关系3、有先天性;(并非所有的遗传病都是先天的)4、家族性;(遗传病都表现为家族性;不是所有的家族性疾病都是遗传的)5、传染性(垂直)遗传病的分类:1、单基因病2、多基因病3染色体病4、体细胞遗传病5、线粒体遗传病遗传病的预防分三个阶段(孕前、产前、新生儿筛查)第二章基因的概念:基因是细胞内遗传物质的结构和功能单位,它以DNA的化学形式存在于染色体上人类的两个相对独立而关联的基因组:核基因组,线粒体基因组假基因的概念:是一种畸变基因,核苷酸序列和有功能的正常基因有很大同源,但突变,缺失或插入以致不能表达,因而没有功能侧翼序列、每个割裂基因中第一个外显子的上游和最末一个外显子的下游,都有一段不能被转录的非编码区GT-AG法则、5`端起始的两个碱基是GT,3`端最后的两个碱基是AG,这种接头形式叫做GT-AGAlu家族、是人类基因组含量最丰富的散在重复序列Kpn1家族、遗传密码、4种碱基以三联体形式组合成64种遗传密码,其中61个分别为20种氨基酸,其余三个为终止密码子遗传密码的特性、1、遗传密码的通用性2、遗传密码的简并性3、起始密码和终止密码DNA复制的特点、1、互补性2、半保留性3、反向平行性4、不对称性5、不连续性转录产物加工和修饰的过程、1、加帽(5·加上7-甲基鸟嘌呤核苷酸)2、加尾(3·加上多聚腺苷酸)3·剪辑RNA编辑、导致形成的mRna分子在编码区的核苷酸序列不同于它的DNA模板相应序列的过程真核生物基因表达调控多阶段水平(五个水平)、转录前,转录水平,转录后,翻译,翻译后人类基因组计划的基本任务是建立4张图(遗传图、物理图、转录图、序列图)第三章紫外线常见的DNA结构的损伤是形成胸腺嘧啶二聚体、基因突变的一般特性、多向性,重复性随机性可逆性稀有性有害性点突变、DNA多核甘酸链中耽搁碱基或碱基对的改变转换、同类碱基间的替换颠换、嘌呤置换嘧啶同义突变、由于存在遗传密码子的兼并现象,替换的发生,尽管改变了原有的密码子的碱基组成,但是新旧密码所编码的氨基酸种类不变无义突变、碱基替换为终止密码子(UAA UAG UGA)错意突变、碱基替换后变成另外一种氨基酸的密码子,从而在翻译上改变了多肽链中氨基酸的种类的序列组成移码突变、基因组DAN多核甘酸链中碱基对的插入或缺失,以致自插入或缺失点之后部分的,或所有的密码子组合发生改变的基因突变形式动态突变的概念、三核苷酸的重复次数可随着时代交替的传递而呈现逐代递增的累加突变效应紫外线引起DNA损伤的修复途径(三个)、光修复切除修复重组修复第五章人类单基因遗传病分为三种主要的遗传方式、(核基因遗传线粒体基因遗传)系谱、先证者或索引病例开始,追溯调查其家庭成员的亲缘关系和某种遗传病的发病情况等资料,用特定的系谱符号按一定方式绘制而成的图解先证者概念、家族中第一个就诊或被发现的患者成员几种不同遗传方式的遗传特征及婚配类型和子代发病风险、1、常显——男女患病机会相同;夫妇一人患病子女1/2 都为患者子女3/42、常隐——男女机会相等;患者同胞1/4的风险患者表型正常的同胞中2/3的可能为携带者患者子女一般不发病但为携带者3、X显——女患病数目约为男的2倍男患者女儿都为患者儿子正常女患者子女有50%风险4、X隐——男多余女5、伴Y遗传半合子、男性的X染色体在Y上缺少相对应的等位基因称半合子交叉遗传、男性的X染色体及连锁基因只能从母亲传来,又只能传给女儿,不存在男性——男性的传递外显率、在一定的条件下,群体中某一基因型个体表现出相应表型的百分率表现度、在不同遗传背景和环境因素的影响下,相同基因型的个体在性状或疾病的表现程度上产生的差异拟表型、环境因素的作用使个体产生的表型恰好与某一特定基因所产生的表型相同或相似,这种由环境因素引起的表型称为拟表型遗传的异质性、一种遗传性状可以由多个不用的遗传改变所引起的基因的多效性、一个基因可以决定或影响多个性状遗传早现、一种遗传病在连续几代的遗传过程中,发病年龄逐代提前,程度逐代加重从性遗传、位于常染色体的基因,由于受到性别的影响而显示出男女表型分布比例差异或基因表达程度的差异限性遗传、位于常染色体,由于基因表达的性别限制,只在一种性别表现,而在另一种性别则完全不能表现遗传印记、一个个体来自双亲的某些同源染色体或等位基因存在功能上的差异,不同性别的亲代传给子代的同一染色体或等位基因发生改变时,可以引起不同的表型形成半显性遗传的概念、杂合子的表型介于显性纯合子和隐形纯合子表型的一种遗传方式Lyon假说、女性两条X染色体在胚胎发育早期就有一天随机失活。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

单基因遗传病:简称单基因病,指由一对等位基因控制而发生的遗传性疾病,这对等位基因称为主基因。

上下代传递遵循孟德尔遗传定律。

分为核基因遗传和线粒体基因遗传。

常染色体显性(AD )遗传病:遗传病致病基因位于1-22号常染色体上,与正常基因组成杂合子导致个体发病,即致病基因决定的是显性性状。

常染色体完全显性遗传的特征⑴ 由于致病基因位于常染色体上,因而致病基因的遗传与性别无关即男女患病的机会均等⑵ 患者的双亲中必有一个为患者,致病基因由患病的亲代传来;双亲无病时,子女一般不会患病(除非发生新的基因突变)⑶ 患者的同胞和后代有1/2 的发病可能⑷ 系谱中通常连续几代都可以看到患者,即存在连续传递的现象一种遗传病的致病基因位于1〜22号常染色体上,其遗传方式是隐性的,只有隐性致病基因的纯合子才会发病,称为常染色体隐性(AR)遗传病。

带有隐性致病基因的杂合子本身不发病,但可将隐性致病基因遗传给后代,称为携带者。

常染色体隐性遗传的遗传特征⑴ 由于致病基因位于常染色体上,因而致病基因的遗传与性别无关,即男女患病的机会均等⑵ 患者的双亲表型往往正常,但都是致病基因的携带者⑶ 患者的同胞有1/4 的发病风险,患者表型正常的同胞中有2/3 的可能为携带者;患者的子女一般不发病,但肯定都是携带者⑷ 系谱中患者的分布往往是散发的,通常看不到连续传递现象,有时在整个系谱中甚至只有先证者一个患者⑸ 近亲婚配时,后代的发病风险比随机婚配明显增高。

这是由于他们有共同的祖先,可能会携带某种共同的基因由性染色体的基因所决定的性状在群体分布上存在着明显的性别差异。

如果决定一种遗传病的致病基因位于X 染色体上,带有致病基因的女性杂合子即可发病,称为X 连锁显性(XD )遗传病男性只有一条X 染色体,其X 染色体上的基因不是成对存在的,在Y 染色体上缺少相对应的等位基因,故称为半合子,其X 染色体上的基因都可表现出相应的性状或疾病。

男性的X 染色体及其连锁的基因只能从母亲传来,又只能传递给女儿,不存在男性—男性的传递,这种传递方式称为交叉遗传。

X 连锁显性遗传的遗传特征⑴人群中女性患者数目约为男性患者的2倍,前者病情通常较轻⑵ 患者双亲中一方患病;如果双亲无病,则来源于新生突变⑶ 由于交叉遗传,男性患者的女儿全部都为患者,儿子全部正常;女性杂合子患者的子女中各有50%的可能性发病⑷ 系谱中常可看到连续传递现象,这点与常染色体显性遗传一致如果决定一种遗传病的致病基因位于X 染色体上,且为隐性基因,即带有致病基因的女性杂合子不发病,称为X连锁隐性(XR )遗传病。

(血友病A)X 连锁隐性遗传的遗传特征⑴ 人群中男性患者远较女性患者多,在一些罕见的XR 遗传病中,往往只看到男性患者⑵ 双亲无病时,儿子有1/2 的可能发病,女儿则不会发病,表明致病基因是从母亲传来的;如果母亲不是携带者,则来源于新生突变⑶ 由于交叉遗传,男性患者的兄弟、舅父、姨表兄弟、外甥、外孙等也有可能是患者;患者的外祖父也可能是患者,这种情况下,患者的舅父一般不发病⑷ 系谱中常看到几代经过女性携带者传递、男性发病的现象;如果存在女性患者,其父亲一定是患者,母亲一定是携带者不完全显性也称为半显性遗传,它是杂合子Aa 的表型介于显性纯合子AA 和隐性纯合子aa表型之间的一种遗传方式,即在杂合子Aa中显性基因A和隐性基因a的作用均得到一定程度的表现。

共显性是一对等位基因之间,没有显性和隐性的区别,在杂合子个体中两种基因的作用都完全表现出来。

例如人类的ABO 血型系统、MN 血型系统和组织相容性抗原等都属于这种遗传方式。

带有显性致病基因的杂合子(Aa)在生命的早期,因致病基因并不表达或表达尚不足以引起明显的临床表现,只在达到一定的年龄后才表现出疾病,称为延迟显性。

表现度是在不同遗传背景和环境因素的影响下,相同基因型的个体在性状或疾病的表现程度上产生的差异。

例如常染色体显性遗传的成骨不全I型,主要症状有多发性骨折、蓝色巩膜、传导性或混合性耳聋。

由于表现度的不同,轻症患者只表现出蓝色巩膜;重症患者可表现出早发、频发的骨折,耳聋和牙本质发育不全等症状。

在一个家庭中即可看到受累器官的差异及严重程度的不同,称为表现度不一致。

基因的多效性是一个基因可以决定或影响多个性状。

遗传异质性是一种遗传性状可以由多个不同的遗传改变所引起。

遗传异质性又可分为基因座异质性和等位基因异质性。

一个个体来自双亲的某些同源染色体或等位基因存在着功能上的差异,因此当它们发生相同的改变时,所形成的表型却不同,这种现象称为遗传印记,也称基因组印记或亲代印记。

限性遗传是指位于常染色体上的基因,由于基因表达的性别限制,只在一种性别表现,而在另一种性别则完全不能表现。

这主要是由于男女性在解剖学结构上的性别差异造成的,也可能受性激素分泌方面的差异限制。

如女性的子宫阴道积水症,男性的前列腺癌等。

在多基因性状中,每一对控制基因的作用是微小的,故称为微效基因。

若干对基因作用积累之后,可以形成一个明显的表型效应,称为累加效应,所以这些基因也称累加基因,这些基因相互之间没有显隐性之分,也就是说是共显的。

多基因性状往往受环境因子的影响较大,因此这类性状或疾病也称为复杂性状或复杂疾病。

微效基因所发挥的作用并不是等同的,可能存在一些起主要作用的所谓主基因,也就是说各个基因的贡献率是不相同的。

在多基因遗传病中,遗传基础是由多基因构成的,它部分决定了个体发病的可能性。

这种由遗传基础决定一个个体患病的风险称为易感性。

由于环境对多基因遗传病产生较大影响,因此学术界将遗传因素和环境因素共同作用决定一个个体患某种遗传病的可能性称为易患性。

在一定的环境条件下,易感性高低可代表易患性高低。

当一个个体易患性高到一定限度就可能发病。

这种由易患性所导致的多基因遗传病发病最低限度称为发病阈值。

阈值代表患病所必需的、最低的易患基因的数量。

遗传度(又称为遗传率)是在多基因疾病形成过程中,遗传因素的贡献大小。

H=b/r (b为亲属易患性对先证者易患性的回归系数;r为亲属系数)已知一般人群患病率:b=(Xg-Xr)/ag( Xg 为一般群体易患性平均值与阈值之间的标准差数;Xr 为先证者亲属易患性平均值与阈值之间的标准差数;ag 为一般群体易患性平均值与一般群体中患者易患性平均值之间的标准差数)在随机婚配的大群体中,在没有受到外在因素影响的情况下,显性性状并没有随着隐性性状的减少而增加,不同基因型的相对频率在一代代传递中保持稳定,这就是Hardy-Weinberg 平衡定律。

近亲的程度可以用亲缘系数(r)来表示。

亲缘系数有共同祖先的两个人,在某一基因座上带有相同基因的概率。

按照等位基因的分离规律,每传一代得到其中一个等位基因的概率是1/2,双亲和子女之间的亲缘系数为1/2,同胞之间的亲缘系数也是1/2 近亲婚配中的 2 人,他们可能从共同祖先继承到同一基因,婚后又可能把同一基因传递到他们子女,这样,子女的这一对基因就是相同的。

近亲婚配使子女得到这样一对相同基因的概率,称为近婚系数(F)。

一级亲属间的近婚系数就是F=1/4。

二级亲属近婚系数F=1/8。

三级亲属的近婚系数F=1/16。

适合度(f)是一定环境条件下,某一基因型个体能够生存并能将基因传给后代的相对能力。

选择反映了环境因素对特定表型或基因型的作用,它可以是正性选择,也可以是负性选择。

实际上对特定缺陷的表型往往由于生育力下降,呈现负性选择。

选择系数(s)指在选择作用下适合度降低的程度,用s表示。

s反映了某一基因型在群体中不利于存在的程度,因此s=1-f。

对于某些常染色体隐性遗传病,杂合子比正常纯合子具有更高的适合度,称之为“杂合子优势”突变是遗传物质发生的改变,这种变化的频率称为突变率,用每代每个配子中每个基因座的突变数量来表示。

由突变引起的群体基因频率改变十分缓慢。

常染色体显性疾病卩=sp 或卩=1 /2I (1-f)常染色体隐性疾病卩=sq2或卩=1 (1-f)(不适合杂合子优势)X-连锁隐性疾病卩=1/3sq或卩=1/31 (1-f)卩:每代每个基因的突变率p和q:基因频率s:选择系数f:适合度=1-sI:人群中该性状的频率(发生率)遗传负荷是由群体中导致适合度下降的所有有害基因构成,遗传负荷主要有突变负荷和分离负荷,受近亲婚配和环境因素的影响。

人类染色体:1.染色体命名的一般规则:每一染色体都以着丝粒为界标,分成短臂(p)和长臂(q)。

区和带的序号均从着丝粒为起点,沿着每一染色体臂分别向长臂、短臂的末端依次编号为1区、2区、……,以及1带、2带……。

界标所在的带属于此界标以远的区,并作为该区的第 1 带。

被着丝粒一分为二的带,分别归属于长臂和短臂,分别标记为长臂的 1 区 1 带和短臂的 1 区 1 带。

描述一特定带时需要写明以下4个内容:①染色体序号;②臂的符号;③区的序号;④带的序号。

例如:1p31表示第1号染色体,短臂,3区,1带。

2.染色体的形态:在有丝分裂中期的染色体的形态是最典型的,可以在光学显微镜下观察,常用于染色体研究和临床上染色体病的诊断。

每一中期染色体都具有两条染色单体,互称为姐妹染色单体,它们各含有一条DNA 双螺旋链。

两条单体之间由着丝粒相连接,着丝粒将染色体划分为短臂(p)和长臂(q)两部分。

染色体上的着丝粒位置是恒定不变的,根据染色体着丝粒的位置可将染色体分为4种类型:①中着丝粒染色体,着丝粒位于或靠近染色体中央。

若将染色体全长分为8等份,则着丝粒位于染色体纵轴的1/2〜5/8之间,着丝粒将染色体分为长短相近的两个臂;②亚中着丝粒染色体,着丝粒位于染色体纵轴的5/8〜7/8之间,着丝粒将染色体分为长短不同的两个臂;③近端着丝粒染色体,着丝粒靠近一端,位于染色体纵轴的7/8〜末端之间,短臂很短;④端着丝粒染色体,着丝粒位于染色体的末端,没有短臂。

人类染色体只有前三种类型,即中着丝粒染色体、亚中着丝粒染色体和近端着丝粒染色体三种。

3 染色体显带:显带染色体是染色体标本经过一定程序处理,并用特定染料染色,使染色体沿其长轴显现明暗或深浅相间的横行带纹,称为染色体带,这种使染色体显带的方法,称为显带技术。

它能显示染色体本身更细微的结构,有助于准确地识别每一条染色体及诊断染色体异常疾病。

显带技术主要有G 带分析、 C 带分析、Q 带分析、R 带分析、T 带分析、N 带分析和高分辩染色体技术等。

4.染色体核型:一个体细胞中的全部染色体,按其大小、形态特征顺序排列所构成的图像就称为核型。

将待测细胞的核型进行染色体数目、形态特征的分析,确定其是否与正常核型完全一致,称为核型分析。

5.染色体数目异常:以人二倍体数目为标准,体细胞的染色体数目(整组或整条)的增加或减少,称为染色体数目畸变。

相关文档
最新文档