landmark地震工区的建立

landmark地震工区的建立
landmark地震工区的建立

第2章地震工区的建立

思路:首先建立3D Survey ,然后建立地震工区,最后加载地震数据。

一、建立3D Survey

Command Menu---->Data---->Management---->Seismic Data Manager弹出窗口(图1),File---->New---->Survey弹出“New Survey”小窗口,输入Survey的名字,如:aaa ,然后在Type中选择3D---->OK。

图1

选择Grid---->分别输入Upper Right:和Lower Left:的Line 值、Trace值(提供值);

X Axis:---->选择Line(图2)

图2

选择Original Cartographic Reference System,(一般用Gauss 21N)。输入X /Y 坐标---->回车。

保存Survey。(图3)

图3

二建立地震工区

Command Menu ---->Data---->Management---->Seismic Project Manager 弹出窗口“Seismic Project Manager”(图4)

图4

在“Seismic Project Manager”中点击Project---->Seismic Project Create 弹出窗口(图5)

图5

选择对应的Openworks Project,键入Seismic Project Name,选择“3D”,在3D Survey in

Openworks中选择之前建立的3D Survey---->Create 。

三加载地震数据

Command Menu---->Applications---->Poststack/PAL弹出窗口(图6)

图6

Project Type选择“3D”;

选择所建立的地震工区;

在Product Selection的选项中,可选其一,也可多选,建议全选。---->Launch弹出窗口(图7)。

图7

点击Input Data弹出窗口(图8)。

图8

选择SEG-Y---->Parameters弹出窗口(图9)。

图9 Storage---->Disk

选择地震数据文件SEG-Y Disk File---->OK.

回到图7窗口,点击Output Data弹出窗口(图10)

图10

选择Vertical---->点击Parameters弹出窗口(图11)

图11

选择或输入Output File名---->OK。(其他设置可不进行修改)回到图10窗口---->OK---->回到图7窗口,---->Run

matlab编程合成地震记录

clc; %s1=input('请输入文件名: ','s'); fid=fopen('yy-10.txt','r'); c1=fscanf(fid,'%f'); N=length(c1); for i=2:3:N k=(i-2)/3+1; deltt(k)=c1(i); vv(k)=1000000/deltt(k); rr(k)=0.31*vv(k)^(1/4); Z(k)=vv(k)*rr(k); end n1=N/3; dp=360.2:0.2:2303 for k=1:n1-1 R(k)=(Z(k+1)-Z(k))/(Z(k+1)+Z(k)); end figure(9); plot(dp,R); %============================================================= %对反射系数序列进行低通滤波 %============================================================== r1=fft(R); r1(1001:8716)=0.0; figure(10); plot(abs(r1)); r2=ifft(r1); R1=real(r2); figure(11); plot(dp,R1); for i=1:n1-1 if(abs(R1(i))<0.01) R1(i)=0.0; end end figure(12); plot(dp,R1); f=30; wl=50; t=-wl:wl; deltt=0.002; b=(1-2*(pi*f*t*deltt).^2).*exp(-(pi*f*t*deltt).^2); figure(1);

数字信处理合成地震记录fft

数字信号处理实验报告 实验一、地震子波波形显示及一维地震记录合成、实验目的 1、认识地震子波(以雷克子波为例) ,对子波有直观的认识。 2、利用线性褶积公式合成一维地震记录。 、实验内容 1、雷克子波: w t e 2 fm / t cos 2 f m t (零相位子波)、 w t e 2 fm / t sin 2 f m t (最小相位子波), 其中f m 代表子波的中心频率,代表子波宽度, 随着的增大,子波能量后移,当=7 时,最小相位子波可视为混合相位子波,这里取f m = 25 Hz ,= 3; 2、根据公式编程实现零相位子波、最小相位子波的波形显示; 3、设计反射系数r (n) (n=500) ,其中r (100) 1.0 ,r(200) 0.7 ,r(300) 0.5 , r(400) 0.4 ,r (500) 0.6 ,其它为0; N 4、应用褶积公式f (n) r(n) w(n) r(m)w(n m) 合成一维地震记录,并图 m1 形显示; 5、根据所学知识对实验结果进行分析

三、实验结果: 1 、零相位子波: (1)程序源代码: %编写零相位子波 t=0.002; r=3; fm=25; for n=1:51 w(n )=exp(-(2*pi*fm/rF2*(t* nF2)*cos(2*pi*fm*t* n); end plot(w) xlabel( 'n' ) ylabel( 'w' ) title( ' 零相位子波' ) (2)图像: 2、最小相位子波:

1)程序源代码: %最小相位子波 t=0.002; r=3; fm=25; for n=1:51 w( n)=exp(-(2*pi*fm/rF2*(t* nF2)*si n(2*pi*fm*t* n); end plot(w) xlabel( 'n' );ylabel( 'w' ); title( '最小相位子波' ) (2)图像: 3、对比不同时的波形图 (1)程序: r=3;

地震解释_Landmark手册_精炼版

第一章建立oracle数据库 (2) 第二章数据加载 (4) 第三章地震工区的建立 (21) 第四章制作合成地震记录 (27) 第五章相干体的制作 (38) 第六章层位解释 (46) 第七章层位与断层数据的输出 (51) 第八章属性提取 (55) 第九章时深转换 (59) 第十章ZmapPlus 地质绘图模块 (63) 第十一章边缘检测与倾角显示 (80) 第十二章层位计算 (83)

第一章建立oracle数据库 思路:oracle数据库的建立是为了在硬盘中开辟空间,为加suvery、断层、井 数据提供基础。 1、Openworks2003 Command Menu(以下简称OW)——project create(图1-1) 图1-1 图1-2 project create——Project name(数据库名):shengcai(图1-2) project create——Cartographic Reference——List——Beijing Causs 21 Measurement system——SPE Preferred Metric 数据空间大小——Medium 参数选取完毕,然后Apply,等几分钟就可产生一个数据库(图1-3、4、5)。

图1-3 图1-4 图1-5

第二章数据加载 一、加载井数据 思路:井数据的加载主要分三个部分:井位的加载、测井曲线的加载,分层数据的加载,其重点在于格式文件的编辑。 1、井位的加载 (1)编辑井位文件:well.dat well name x y depth (1)输入井位: Command Menu—Data—Import—ASCII Well Loader ①输入文件名:file:home/ow2003/well.dat(图1)

TMD多点控制体系随机地震响应分析的虚拟激励法_朱以文

收稿日期:2003-10-26; 修回日期:2003-11-22 基金项目:国家电力公司资助项目(KJ 00-03-26-01) 作者简介:朱以文(1945-),男,教授,主要从事计算力学和结构防灾减灾研究 文章编号:1000-1301(2003)06-0174-05 TM D 多点控制体系随机地震响应 分析的虚拟激励法 朱以文,吴春秋 (武汉大学土木建筑工程学院,湖北武汉430072) 摘要:对于频率分布密集或受频带较宽的地震激励的结构,其响应不再以某一单一振型为主,须考虑采用多点控制。本文对受T M D 多点控制的结构进行了研究。文中建立了带有多个子结构系统的以模态坐标和子结构自由度为未知量的统一运动方程。针对所得方程为非对称质量、非对称刚度、非经典阻尼的情况,本文给出了使用直接法求解的格式。地震随机响应分析采用了虚拟激励法,可以考虑各振型之间的耦合项,计算量小且精度高。本文的方法适用于带有多个子结构的系统的一般性问题,具有广泛的应用价值。 关键词:多点控制;主结构;子结构;随机地震响应中图分类号:P315.96 文献标识码: A Pseudo -excitation method for random earthquake response analysis of control system with MTMD ZH U Yi -wen ,WU Chun -qiu (Civil and structural engineering school ,W uhan university ,Wuhan 430072,China ) A bstract :The response of the structure is no t constituted with one sing le mode shape w hen the frequency distri -bution is dense o r the earthquake excitation 's frequency band is w ide .At this time ,it is necessary to adopt the multi -point control sy stem .The study on the structures w ith M TMD is carried out in this paper .The uniform dynamic equation w ith mode coordinate and slave system 's DOF as variables is established fo r the system w ith multi slave sy stem .The equatio n has asy mmetric mass m atrix ,asymmetric stiffness matrix and nonclassical damping m atrix ,and the direct solving format is given in this paper .The random earthquake response is studied by using pseudo -excitation method ,thus the coupling items between modes can be considered .The calculation is cheap and precision is high .The method in this paper is adaptable to the general case of the sy stem with multi -slave structures and has broad application wo rth .Key words :multi -point control ;master structure ;slave structure ;random earthquake response 1 引言 对于高层建筑、大跨桥梁、高耸塔架等高柔结构采用TMD (Tuned Mass Damper )减小风振及地震响应是有效的,这一点得到了人们的普遍认同。TMD 对建筑结构的功能影响较小,便于安装、维修和更换控制元 第23卷第6期2003年12月地 震 工 程 与 工 程 振 动EA RT HQ UAK E ENG IN EERI NG A ND ENG IN EERIN G V IBRA T ION V ol .23,No .6 Dec .,2003DOI :10.13197/j .eeev .2003.06.028

地震属性分析技术综述

【全文】地震属性分析技术综述 [摘要] 地震属性是从地震资料中提取的隐藏有用信息,因而地震属性分析技术近几年在油气勘探开发中得到了广泛的应用与研究。本文对地震属性分析技术的发展状况进行了归纳、总结,简单阐述了地震属性分析技术的在不同时期所用到的基本原理和方法。特别对新地震属性进行了具体介绍。最后对该技术进一步的研究工作进行了总结和展望。 摘要:在勘探和开发周期的各个阶段,地震资料在复杂油藏系统的解释过程中,扮演着至关重要的角色。然而,缺少一种有效地将地质知识应用于地震解释中的上具。随着一系列属性新技术的出现,对地震属性进行充分研究,就给地质家提供了快速地从三维地震数据中获得地质信息的能力。尤其在用常规解释手段难以识别日的储层的情况下,属性分析技术更是给地质上作人员指出了新的方向。 [关键词] 地震属性储层预测叠前数据叠后数据 关键词:储层;波形分析;地震属性 1.引言 地震属性是指叠前或叠后的地震数据经过数学变换而导出的有关地震波的几何形态、运动学特征、动力学特征和统计学特征的特殊度量值。地震属性的发展大致从20世纪60年代的直接烃类检测和亮点、暗点、平点技术开始,经历了70年代的瞬时属性(主要是振幅属性)和复数道分析,90年代的多维属性(特别是相干体属性)分析,21世纪的地震相分析等阶段[1一SJ。随着地震属性分析技术的发展与研究,该技术已广泛应用于储层预测、油气藏动态监测、油气藏特征描述等领域,并取得了很好的效果。总之,地震属性分析技术可以从地震资料中提取隐藏其中的多种有用信息,这为油气勘探与开发提供了丰富宝贵的资料,也为解决复杂地质体评价提供了实用的分析手段。因此,对该技术进行深人调查研究具有很强的现实意义。 地震属性是指从地震数据中导出的关于儿何学、运动学、动力学及统计特性的特殊度量值。它可包括时问属性、振幅属性、频率属性和吸收衰减属性,不同的属性可指示不同的地质现象。地震属性分析则是从地震资料中提取其中的有用信息,并结合钻井资料,从不同角度分析各种地震信息在纵向和横向上的变化,以揭示出原始地震剖面中不易被发现的地质异常现象及含油气情况。 地震属性分析技术的研究已由线、面信息扩展到三维体信息,从分类提取扰化发展为一项系统的应用技术。随着地震技术的日趋成熟,地震属性技术近儿年也发展迅速,其中有多属性联合解释技术、波形分析技术、吸收滤波技术等。应用地震属性分析技术去完善勘探生产中的油藏描述工作,已经成为油藏地球物理的核心内容。利用地震属性分析技术预测岩性和有利储集体,描述油藏特征及孔隙度变化,寻找难以发现的隐蔽油区,以至于监测流体运动和进行其它综合研究,一直是石油工作人员追求的目标。 1波形分析技术的研究与应用 通常的层段属性只是表示了某儿个地震信号的物理参数(振幅、相位、频率等),但它们没有一个能够单独描述地震信号的异常,而地震信号的任何物理参数的变化总是对应着反映地震道形状的变化,所以,研究和分析地震资料中代表各种属性总体特征的地震道形状(波形),应该能有非常不错的效果[,]。 1. 1波形分析技术的原理及处理过程

C++实现合成地震记录

#include #include #include using namespace std; #define pi 3.14 #define dt 0.002 #define xl 0.060 #define hl 0.300 #define fm 30 void main() { double h[200]; double t,m,n; int i,j; m=xl/dt+1; n=hl/dt+1; int b=(int)m/2; double x[31], y[246]; cout<<"设计的层数为层"<<'\n'<<"各层密度分别为2.0 2.3 2.3 2.6 2.0"<<'\n'; cout<<"各层速度分别为2000 2500 2100 2700 3000"<<'\n'<<"各层厚度分别为100 100 100 100 100"<<'\n'; ofstream out1("wavelet.txt"); for(i=0;i<=15;i++)///////////////////生成雷克子波 { t=i*dt; x[15-i]=(1.0-2.0*pow(pi*fm*t,2.0))*exp(-pow(pi*fm*t,2.0)); x[15+i]=x[15-i]; // cout<

地震属性含义及其应用

地震属性含义及其应用 一、 瞬时属性 19 假定复数道表示为:)t (iy )t (x )t (u +=,则 1. 瞬时实振幅 IReAmp ( Instantaneous Amplitude ) 是在选定的采样点上地震道时域振动振幅。是振幅属性的基本参数。 广泛用于构造和地层学解释。用来圈定高或低振幅异常,即亮点、暗点。反映不同储集层、含气、油、水情况及厚度预测。 2. 瞬时虚振幅 IQuadAmp (Inst. Quadrature Amplitude) 是复数地震道的虚部,与复数地震道的相位为90o时的时域振动振幅。即正交道,为虚振幅。 因它只能在特定的相位观测到,多用来识别与薄储层中的AVO 异常。 3. 瞬时相位IPhase ( Instantaneous Phase) ))t (x )t (y tan(A )t (=γ, 定义为正切,输出相位已转换为角度,数值范围是 [-180o ,180o ]。为q(t)/f(t)的一个角,是采样点处地震道的相位。 有助于加强储层内部的弱反射同相轴,但同时也加强了噪声,可用于指示横向连续性;显示与波传播有关的相位部分;用于计算相速度;因为没有振幅信息因此能够显示所有同相轴;用于显示不连续;断层、显示层序边界。由于烃类聚集常引起局部相位变化,也可以做烃类直接指示之一。 4. 瞬时相位余弦 CIP ( Cosine of Inst. Phase ) 是瞬时相位导出的属性。其计算式为))t ((Cos γ 常用来改进瞬时相位的变异显示。并用于相位追踪和检查地震剖面对比、解释的质量。多与瞬时相位联用。 5. 瞬时频率 IFreq (Inst. Frequeney) 定义为瞬时相位对时间的函数 dt )t (d γ(以度/毫秒或弧度/毫秒表示),其量纲为频率的量纲(Hz),是地震道在频率方面的瞬时属性。 用来计算、估算地震波的衰减。油气储层常引起高频成分衰减及杂乱反射显示,所以横向上可用于碳氢指示。高频成份多显示为尖锐的界面或薄层,亦可反映岩相的粗、细变化及地层旋回。

地震子波波形显示及一维地震合成记录

地震勘探原理实验一 地震子波波形显示及一维地震合成记录 姓名: 学号:专业:地球物理勘察技术与工程 级 一、实验目的 1. 认识子波,对子波的波形有直观的认识。(名词:零相位子波,混合相位 子波,最小相位子波;了解子波的分辨率与频宽的关系;) 2. 利用褶积公式合成一维地震记录。 二、实验步骤 1. 雷克子波 ()() ))(21(22 t f e t r m t f m ππ-=- 零相位子波 ())2sin() ln(222 t f e t w m n t f m π-= (最小相位子波) n= m1/m2为最大波 峰m1和最大波谷m2之比 ()())2cos(log *22xw t f e t w m m t f m +=-π 钟型子波 xw 为初相m 为时间域主波峰与次波峰之比 w(t)=exp(-2*Fm^2*t^2*ln(n))*sin(T-2*pi*Fm*t) n=m1/m2 最大相位子波 (最大相位子波请同学们自己查找相关文献完成,非必须完成)

其中 f代表子波的中心频率, t =i*dt,dt为时间采样间隔,i为时间 m 离散点序号; 这里可以为 f = 10,25,40,100 Hz等,采样间隔dt=0.002 m 秒,i为0~256; 2.根据公式编程实现不同频率的零相位子波的波形显示; 不同中心频率的零相位子波图 f = 25: m f = 100: m 3.其地质模型为:

设计反射系数)(n r (n=512),n 为地层深度,其中0.1)100(=r ,为第一层介质深度;7.0)200(-=r ,为第二层介质深度;5.0)300(=r ,为第三层介质深度;4.0)400(=r ,为第四层介质深度;6.0)450(=r ,为第五层介质深度;其它为0。 地震波在介质中传播,当到达介质分界面时,发生反射和透射,反射波被检波器接受,生成地震记录。反射系数表示地震波在两层介质分界面的能量重新分配,如r(100)=1.0,表示地震波入射到分界面时,只有一种波,反射纵波(或反射横波)。反射系数不为1.0时,表示当地震波入射到分界面时,产生两种反射波。反射系数为正,表示反射波相位与入射波相位相差2π;反射系数为负,表示反射波相位与入射波相位相差π,存在半波损失。 4. 应用褶积公式∑=-=*=N m m n w m r n w n r n f 1)()()()()(合成一维地震记录,并图 形显示; 应用褶积公式求f (n )的程序为: #include #include #define PI 3.1415926 #define FM 100 void main() { double fac(double x[],double y[],double z[],int m,int n);

landmark培训操作手册(详解版)

Landmark 软件培训手册

目录 一、数据加载(GeoDataLoading) (3) 1、建立投影系统 (6) 2、建立OpenWorks数据库 (6) 3、加载钻井平面位置和地质分层(pick) (6) 4、加载钻井垂直位置、时深表、测井曲线和合成地震记录 (9) 二、常规解释流程(SeisWorks、TDQ、ZmapPlus) (15) 1、SeisWorks解释模块的功能 (16) (1)、三维震工区中常见的文件类型 (16) (2)、用HrzUtil对层位进行管理 (17) 2、TDQ时深转换模块 (18) (1)、建速度模型 (18) ①、用OpenWorks的时深表做速度模型 (18) ②、用速度函数做速度模型 (19) ③、用数学方程计算ACSII速度函数文件 (21) (2)、时深(深时)转换 (22) (3)、速度模型的输出及其应用 (28) (4)、基准面的类型 (29) (5)、如何调整不同的基准面 (30) 3 、ZmapPlus地质绘图模块 (30) (1)、做图前的准备工作 (32) (2)、用ASCII磁盘文件绘制平面图 (32) (3)、用SeisWorks解释数据绘制平面图................................. (33) (4)、网格运算 (37) (5)、井点处深度校正 (37) 三、合成记录制作(Syntool) (37) 1 、准备工作 (37) 2 、启动Syntool (37) 3 、基准面信息 (38) 4 、子波提取 (39)

5 、应用Checkshot (41) 6 、合成地震记录的存储 (44) 7 、SeisWelll (45)

LANDMARK综合解释软件简介-1

LandMark综合解释软件功能简介 一、概述 Landmark综合解释软件(2003)除了对原有模块进行改进,提高一体化、自动化程度外,还推出了很多的新模块,帮助解释员更快更好的识别油气藏,这些技术对勘探开发研究有着重要的意义。OpenWorks 是Landmark软件一体化的数据平台,所有应用程序产生的各类数据均存储于OpenWorks数据库中,形成了一个统一的数据体,使得各个应用程序之间都可以很方便地进行数据交换。为了使Landmark软件一体化功能更加完善,OpenWorks 2003提供了统一的时-深转换工具。 在勘探开发应用软件的发展和使用历程中,Landmark公司的应用软件一体化的数据管理结构及管理工具,一直是整个勘探开发领域的领头羊。覆盖整个勘探开发研究过程中各种数据类型的一体化的数据模型,是集中数据管理、多学科数据共享的基础;丰富、全面、灵活的数据加载、输出和管理工具,为数据管理者提供了高效率的、全面的数据加载能力和数据质量控制手段;基于web技术的数据和查询工具,为各层次的管理者和技术人员提供了简单实用的数据浏览和查询手段。 二、软件功能简介 1.SynTool 2003(合成地震记录制作) SynTool是一体化的层位标定工具,用以将地质分层、岩性与地震数据精确地联结起来,它提供了建立精确的合成地震记录所需的特征参数,并提供了强大的曲线编辑处理功能来帮助用户校正测井曲线和解决井眼问题。特有的厚度编辑器和层段编辑器可帮助用户预测远离井的地方构造与油藏属性的变化。还可以从井旁地震道计算地震子波,并对提取的子波在相位和时间延迟上进行处理,最后显示和应用它,推导出准确的合成地震记录,进行储层标定。2.SeisWorks 2003(2D/3D地震资料解释) SeisWorks是2D/3D地震解释与分析领域的工业技术领导者,拥有强大的层位、断层解释及图分析功能。它的多测网合并能力允许用户轻松地将三维工区与二维工区结合起来,并可合并多个三维工区,而无需进行数据的重新格式化与数

landmark地震工区的建立

第2章地震工区的建立 思路:首先建立3D Survey ,然后建立地震工区,最后加载地震数据。 一、建立3D Survey Command Menu---->Data---->Management---->Seismic Data Manager弹出窗口(图1),File---->New---->Survey弹出“New Survey”小窗口,输入Survey的名字,如:aaa ,然后在Type中选择3D---->OK。 图1 选择Grid---->分别输入Upper Right:和Lower Left:的Line 值、Trace值(提供值); X Axis:---->选择Line(图2)

图2 选择Original Cartographic Reference System,(一般用Gauss 21N)。输入X /Y 坐标---->回车。 保存Survey。(图3) 图3

二建立地震工区 Command Menu ---->Data---->Management---->Seismic Project Manager 弹出窗口“Seismic Project Manager”(图4) 图4 在“Seismic Project Manager”中点击Project---->Seismic Project Create 弹出窗口(图5) 图5 选择对应的Openworks Project,键入Seismic Project Name,选择“3D”,在3D Survey in

Openworks中选择之前建立的3D Survey---->Create 。 三加载地震数据 Command Menu---->Applications---->Poststack/PAL弹出窗口(图6) 图6 Project Type选择“3D”; 选择所建立的地震工区; 在Product Selection的选项中,可选其一,也可多选,建议全选。---->Launch弹出窗口(图7)。 图7

合成地震记录

% 地震合成记录 % 日期:07.07.19 % clc clear reply = input('请输入层数n(Default=5):','s'); %层数为n ifisempty(reply) n = 5; else n = sscanf(reply,'%f',[1 1]); end reply = input... ('请输入各层速度、密度及层厚(Defaul=[600 1000 1500 2000 2500;1500 1800 2000 2500 3000;500 700 400 300]):','s'); ifisempty(reply) V = [600 1000 1500 2000 2500]; dens = [1500 1800 2000 2500 3000]; %速度和密度v和den h = [500 700 400 300]; else clear a; a = sscanf(reply,'%f',[3 n]); V = a(1,:); dens = a(2,:); h = a(3,:); end % % 计算反射系数R % forilayer = 1:n-1 z1(ilayer) = V(ilayer) * dens(ilayer); z2(ilayer) = V(ilayer+1) * dens(ilayer+1); %各层反射系数R R(ilayer) = (z2-z1) / (z2+z1); end % % 计算各反射界面所对应的时间tlength %

tlength(1) = 2*h(1)/V(1); forilayer = 2:n-1 tlength(ilayer) = tlength(ilayer-1) + 2*h(ilayer)/V(ilayer); end reply = input('请输入Ricker子波的频率f和采样间隔dt(Defalt=40 0.004):','s'); ifisempty(reply) f = 40; %子波频率f和采样间隔dt dt = 0.004; else clear a; a = sscanf(reply,'%f',[2 1]); f = a(1); dt = a(2); end % % 计算各反射界面所对应的采样点数nR % nsample = floor(tlength(n-1)/dt); forilayer = 1:n-1 nR(ilayer) = floor(tlength(ilayer)/dt); end % % 形成反射系数序列RR % RR(1:2*nsample) = 0;%?这个地方反射系数的长度应该是nsample/2 forilayer = 1:n-1 RR(nR(ilayer)) = R(ilayer); %只有在有界面的地方反射系数才有值end %subplot(2,2,1); stem(RR); title('反射系数序列'); % % 形成一个Ricker子波wavelet % wavelet = ricker(f,dt); fori = 1:length(wavelet);

常用地震属性的意义

常用地震属性的意义 地震反射波来自地下地层,地下地层特征的横向变化,将导致地震反射波特征的横向变化,进而影响地震属性的变化,因此,地震属性中携带有地下地层信息,这是利用地震属性预测油气储层参数的物理基础。随着地震属性处理及提取技术的大量涌现,属性种类多达几百种,实际应用人员应用起来遇到了很大困难,迫切需要按实用的角度,总结各地震属性参数与储层特征参数间的内在联系,为进一步研究建立地震信息与储层参数之间的关系提供可靠的前提条件,做到信息提取有方向、有目标。为了达到这一目的,首先按类别较全面总结了目前常用地震属性,从算法开始,分析了各属性所表达的在地震波波形上的意义,从正向上分析地震属性变化与油气储层特征变化的关系,进而探讨总结了它的潜在地质应用。 1、属性体、属性剖面 这类属性是按剖面(或体)处理的,是一个体文件(或剖面文件),属性值对应 、属性值),可以用于常规地震剖面的方式显示与使用,常空间位置,即(x、y、t 用的属性有:相干体(方差体、相似体等)、波阻抗、道积分数据体,经希尔伯特变换得到的瞬时属性体、倾角、倾向数据体等,这些属性体可以直接应用于解释,也可以用解释层位提取出来转变为属性层,下表为常用属性体属性意义及潜在地质应用一览表。

2、沿层地震属性 这种属性是用解释层位在地震数据体(剖面)中提取出来的属性,它的数值对应一个层位或一套地层,每个属性值对应一个x、y坐标。提取方式有两类:沿一个解释层开一个常数时窗,在此时窗内提取地震属性,提取方式有4种(图2-1a)。用两个解释层提取某一段地层对应的地震属性,提取方式也有4种(图2-1b)。 常用地震属性的计算方法总结如下: (1)、均方根振幅(RMS Amplitude) 均方根振幅是将振幅平方的平均值开平方。由于振幅值在平均前平方了,因此,它对特别大的振幅非常敏感。

landmark培训操作手册(详解版)

Landmark软件培训手册

目录 一、数据加载(GeoDataLoading) (3) 1、建立投影系统 (6) 2、建立OpenWorks数据库 (6) 3、加载钻井平面位置和地质分层(pick) (6) 4、加载钻井垂直位置、时深表、测井曲线和合成地震记录 (9) 二、常规解释流程(SeisWorks、TDQ、ZmapPlus) (15) 1、SeisWorks解释模块的功能 (16) (1)、三维震工区中常见的文件类型 (16) (2)、用HrzUtil对层位进行管理 (17) 2、TDQ时深转换模块 (18) (1)、建速度模型 (18) ①、用OpenWorks的时深表做速度模型 (18) ②、用速度函数做速度模型 (19) ③、用数学方程计算ACSII速度函数文件 (21) (2)、时深(深时)转换 (22) (3)、速度模型的输出及其应用 (28) (4)、基准面的类型 (29) (5)、如何调整不同的基准面 (30) 3 、ZmapPlus地质绘图模块 (30) (1)、做图前的准备工作 (32) (2)、用ASCII磁盘文件绘制平面图 (32) (3)、用SeisWorks解释数据绘制平面图................................. (33) (4)、网格运算 (37) (5)、井点处深度校正 (37) 三、合成记录制作(Syntool) (37) 1 、准备工作 (37) 2 、启动Syntool (37) 3 、基准面信息 (38) 4 、子波提取 (39)

5 、应用Checkshot (41) 6 、合成地震记录的存储 (44) 7 、SeisWelll (45)

landmark常常遇见问题

Landmark软件基础数据加载流程 Landmark软件基础数据加载流程: 1)软件启动:一般情况下,在进入系统的时候,Landmark软件会自动启动, 如果不小心关掉或者没有起来,则用命令startow进行启动。 2)进入数据加载模块:Application→PostStack/PAL→选择工区类型及工区名称 →launch… 单击后进入下面的界面: 一、二维地震数据的加载 →Input Data … →选择SEGY →Parameter… →DiskAnalyze…(分析segy数据中cdp、shotpoint、x、 y在道头中的位置及地震数据的起始时间、道长)→Enter Linenames… →File→select SEG-Y File →选择要加载的segy文件,第一个用replace替换掉原来的那一行,其它的都用insert插入 →然后再相对应的文件名的右边填写上相对应的测线名(在这里也可以通过先建立测网的方法,然后用File→Select Linenames…→选择列表中的测线名)→Modify SEG-Y Headers Parameter →填写用An alyze…分析得到的结果→ OK →OK →OK →Output Data … →Vertical … Parameter …→Output file …list→输入你将要加载的数据体的名称(名字为9个字符长度)→Output Mode 选择Create New File

→Data selection Parameter 在这个参数上填入道头分析中得到的地震数据的起始时间、道长。一般情况下如果起始时间为0的话,这两个参数可以不填;但是有的数据起始时间并不是从0s开始的,例如从1s中开始、道长6s那么在start time 中要填入1000(ms),end time中填入6000,与此同时我们还要在家在流程中加入两个处理参数: ?→返回到PostStack/PAL主界面 ?→Processes→Utilities→Trace Length →填入地震数据的记录长 度(从0s开始起算) ?→Processes→Shifting/Stretching→Bulk Time Shift→填入实际 地震数据的起始时间 →重新返回到Output Data …中 →Vertical … Parameter … →Output File Format and Scaling Parameters →如果加载的数据为成果数据(滤波)则Format选择8 bit integer,并选择Scaling为Automatic;如果加载的数据为纯波,则Format选择16 bit integer, 并选择Scaling为None。→如果我们事先没有建好测网,则此事要设置Basemap info …中的参数→Basemap info …→Overwrite basemap information for existing lines(在给测线命名的时候不能够和数据库中已有的测线名相同),如果这些测线是第一次加载,可以不选这个,如果数据库中已经有该测线并且和现在的命名相同,则导航数据在没有选该选项的时候是不能够家在进去的,如果该选项选上,那么库里的同名测线将会被覆盖。解决该问题的办法就是同一条测线起不同的名字。 →Survey。选择或创建新的测网名称 →Duplicate ShotPoints 选择Use First ShotPoint →Close →OK

地震属性含义及其应用..

地震属性含义及其应用 一、 瞬时属性 19 假定复数道表示为:)t (iy )t (x )t (u +=,则 1. 瞬时实振幅 IReAmp ( Instantaneous Amplitude ) 是在选定的采样点上地震道时域振动振幅。是振幅属性的基本参数。 广泛用于构造和地层学解释。用来圈定高或低振幅异常,即亮点、暗点。反映不同储集层、含气、油、水情况及厚度预测。 2. 瞬时虚振幅 IQuadAmp (Inst. Quadrature Amplitude) 是复数地震道的虚部,与复数地震道的相位为90o时的时域振动振幅。即正交道,为虚振幅。 因它只能在特定的相位观测到,多用来识别与薄储层中的AVO 异常。 3. 瞬时相位IPhase ( Instantaneous Phase) ))t (x )t (y tan(A )t (=γ, 定义为正切,输出相位已转换为角度,数值范围是 [-180o ,180o ]。为q(t)/f(t)的一个角,是采样点处地震道的相位。 有助于加强储层内部的弱反射同相轴,但同时也加强了噪声,可用于指示横向连续性;显示与波传播有关的相位部分;用于计算相速度;因为没有振幅信息因此能够显示所有同相轴;用于显示不连续;断层、显示层序边界。由于烃类聚集常引起局部相位变化,也可以做烃类直接指示之一。 4. 瞬时相位余弦 CIP ( Cosine of Inst. Phase ) 是瞬时相位导出的属性。其计算式为))t ((Cos γ 常用来改进瞬时相位的变异显示。并用于相位追踪和检查地震剖面对比、解释的质量。多与瞬时相位联用。 5. 瞬时频率 IFreq (Inst. Frequeney) 定义为瞬时相位对时间的函数 dt )t (d γ(以度/毫秒或弧度/毫秒表示),其量纲为频率的量纲(Hz),是地震道在频率方面的瞬时属性。 用来计算、估算地震波的衰减。油气储层常引起高频成分衰减及杂乱反射显示,所以横向上可用于碳氢指示。高频成份多显示为尖锐的界面或薄层,亦可反映岩相的粗、细变化及地层旋回。

利用地震复合属性寻找岩性圈闭

利用地震复合属性寻找岩性圈闭 【摘要】本文着重通针对传统单一地震属性对地层岩性敏感度不高的缺点,难以寻找较复杂岩性圈闭,提出复合属性应用于勘探岩性圈闭。所谓复合属性就是应用数学的方法将多种单一属性进行联合起来得到一种全新的属性。复合属性的敏感度明显优于单一属性,复合属性解释的结果比单一属性解释的结果更好地反应了工区内地层岩性变化区域,更为清楚的突显了沙体尖灭线,为寻找岩性圈闭提供了很好的依据。因此利用地震复合属性是寻找岩性圈闭可靠和有效的方法。 【关键词】岩性敏感度;岩性突变;沙体尖灭线;岩性圈闭;复合属性 地震属性是指从地震数据中导出的关于几何学、运动学、动力学及统计特性的特殊度量值[1]。分类方法众多,主要包括时间属性、振幅属性、频率属性和吸收衰减属性[2-3],不同的属性可指示不同的地质现象。地震属性分析则是从地震资料中提取其中的有用信息,并结合钻井资料,从不同角度分析各种地震信息在纵向和横向上的变化,以揭示出原始地震剖面中不易被发现的地质异常现象及含油气情况。 大多地震属性都有明确的地质含义,如储集体含油气后,振幅变强、频率变低;断层或裂缝的存在,使相干性变差等[5]。尽管这些反映地震资料某一特征的单一属性在针对不同的储集体类型时会发挥一定的作用,但那也仅仅限于构造简单、储集体类型典型的地区。对于构造复杂、储集层类型不明确、成因复杂的断块油田[6-7],这些单一属性就往往很难解决问题。为了弥补单一属性分析的不足,提出了复合属性分析技术[12]。 1 原理及方法 复合属性分析技术的基本原理,就是利用地震资料中的多种单一属性,用相应的、适合探区地震地质条件的数学关系将它们联合起来,形成能反映储集层特性,反映油气显示为主的综合信息。这些参与数学运算的多种属性在单独用于油藏描述时也许没有明显的效果,但由它们运算形成的地震复合属性,却能够反映出该地区的岩石物理关系及油藏特征。研究地震复合属性与地质特征之间存在的对应关系,将地震信息转化为地质信息,从而完成对储层空间展布形态、分布范围和储层岩石物理特征参数的描述与预测。 2 复合属性提取过程 2.1 明确需要进行属性分析的目的层段,解释出控制目的层段的层位 2.2 单一属性提取中应严格按照储层顶底时窗来提取属性,以保证地震属性包含的信息与测井资料统计的储层特征参数一致性[8]

Landmark主要地震属性及其地质意义

Landmark主要地震属性及其地质意义利用地震进行储层预测时主要从振幅属性及其延伸属性出发,分析属性的变化特征,然后与钻井和地质进行标定,赋予属性地质意义。 为了将已知井上的岩性信息,在整个工区进行有效的外推,需要优选出在该区对岩性参数和含油气性反映敏感的属性,我们通过两个层次来完成这一个工作。第一个层次是选择对岩性变化相对敏感的地震属性,这部分工作在属性提取时已完成,其最基本的理论基础是:时间派生的属性有利于对构造的细节进行解释;振幅和频率派生的属性用于解决地层和储层特征; 一般认为振幅是最稳健和有价值的属性;频率属性更有利于揭示地层的细节; 混合属性包含振幅和频率的因素,因此更有利于地震特征的测量;同时在对所提取的地震属性的物理意义的理解也有助于对地震属性的提取第二个层次是使用数学和信息学的方法优选属性。“地震属性和井数据采样伪相关在独立的井数据较少或者参加考虑的独立的地震属性过多时产生的概率较大”(CYNTHIA T. KALKOMEY),由于对于该区已知的独立井信息多数情况下较少,勉强满足统计分析的样本要求,单纯使用相关分析方法产生伪相关的概率较大,因此我们在经过第一个层次的筛选之后,采用数据相关和信息优化组合方法进行属性优选。 目前属性种类很多,属性软件也非常多,这里转列landmark软件中的PAL 属性,供大家参考选择使用:Average Reflection Strength 平均反射强度:识别振幅异常,追踪三角洲、河道、含气砂岩等引起的地震振幅异常;指示主要的岩性变化、不整合、天然气或流体的聚集;该属性为预测砂岩厚度的常用属性; Slope Half Time 能量半衰时的斜率:突出砂岩/泥岩分布的突变点;预测砂岩厚度的常用属性; Number of Thoughs 波谷数:可以有效的识别薄层,为预测砂岩厚度的常用属性;Average Trough Amplitude 平均波谷振幅:用于识别岩性变化、含气砂岩或地层。可以有效的区分整合沉积物、丘状沉积物、杂乱的沉积物等;预测含油气性的常用属性; Average Instantaneous Phase 平均瞬时相位:由于相位的横向变化可能与地

相关文档
最新文档