动点问题题型方法归纳

合集下载
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

动点问题

知识点:

动态几何特点----问题背景是特殊图形,考查问题也是特殊图形,所以要把握好一般与特殊的关系;分析过程中,特别要关注图形的特性(特殊角、特殊图形的性质、图形的特殊位置。)动点问题一直是中考热点,近几年考查探究运动中的特殊性:等腰三角形、直角三角形、相似三角形、平行四边形、梯形、特殊角或

其三角函数、线段或面积的最值。

下面就此问题的常见题型作简单介绍,解题方法、关键给以点拨。

一、三角形边上动点

1、(2009年齐齐哈尔市)直线与坐标轴分别交于两点,动点同时从点出发,同时到达点,运动停止.点沿线段运动,速度为每秒1个单位长度,点沿路线→→运动.

(1)直接写出两点的坐标;

(2)设点的运动时间为秒,的面积为,求出与之间的函数关系式;

(3)当时,求出点的坐标,并直接写出以点为顶点的平行四边形的第四个顶点的坐标.

提示:第(2)问按点P到拐点B所有时间分段分类;

第(3)问是分类讨论:已知三定点O、P、Q ,探究第四点构成平行四边形时按已知线段身份不同分类-----①OP为边、OQ为边,②OP为边、OQ为对角线,③OP为对角线、OQ为边。然后画出各类的图形,根据图形性质求顶点坐标。

2、(2009年衡阳市)如图,AB是⊙O的直径,弦BC=2cm,∠ABC=60o.

(1)求⊙O的直径;

(2)若D是AB延长线上一点,连结CD,当BD长为多少时,CD与⊙O相切;

(3)若动点E以2cm/s的速度从A点出发沿着AB方向运动,同时动点F以1cm/s的速度从B点出发沿BC方向运动,设运动时间为,连结EF,当为何值时,△BEF为直角三角形.

注意:第(3)问按直角位置分类讨论

简单题。

3、(2009重庆綦江)如图,已知抛物线经过点,抛物线的顶点为,过作射线.过顶点平行于轴的直线交射线于点,在轴正半轴上,连结.

(1)求该抛物线的解析式;

(2)若动点从点出发,以每秒1个长度单位的速度沿射线运动,设点运动的时间为.问当为何值时,四边形分别为平行四边形直角梯形等腰梯形

(3)若,动点和动点分别从点和点同时出发,分别以每秒1个长度单位和2个长度单位的

速度沿和运动,当其中一个点停止运动时另一个点也随之停止运动.设它们的运动的时间为,连接,当为何值时,四边形的面积最小并求出最小值及此时的长.

注意:发现并充分运用特殊角∠DAB=60°

当△OPQ面积最大时,四边形BCPQ的面积最小。

二.特殊四边形边上动点

4、(2009年吉林省)如图所示,菱形的边长为6厘米,.从初始时刻开始,点、同时从点出发,点以1厘米/秒的速度沿的方向运动,点以2厘米/秒的速度沿的方向运动,当点运动到点时,、两点同时停止运动,设、运动的时间为秒时,与重叠部分的面积为平方厘米(这里规定:点和线段是面积为的三角形),解答下列问题:

(1)点、从出发到相遇所用时间是秒;

(2)点、从开始运动到停止的过程中,当是等边三角形时的值是秒;

(3)求与之间的函数关系式.

提示:第(3)问按点Q到拐点时间B、C所有时间分段分类;提醒----- 高相等的两个三角形面积比等于底边的比。

5、(2009年哈尔滨)如图1,在平面直角坐标系中,点O是坐标原点,四边形ABCO是菱形,点A的坐标为(,4),点C在x轴的正半轴上,直线AC交y轴于点M,AB边交y轴于点H.(1)求直线AC的解析式;

(2)连接BM,如图2,动点P从点A出发,沿折线ABC方向以2个单位/秒的速度向终点C匀速运动,设△PMB的面积为S(),点P的运动时间为t秒,求S与t之间的函数关系式(要求写出自变量t的取值范围);

(3)在(2)的条件下,当 t为何值时,∠MPB与∠BCO互为余角,并求此时直线OP与直线AC所夹锐角的正切值.

注意:第(2)问按点P到拐点B所用时间分段分类;

第(3)问发现∠MBC=90°,∠BCO与∠ABM互余,画出点P运动过程中,

∠MPB=∠ABM的两种情况,求出t值。

利用OB⊥AC,再求OP与AC夹角正切值.

6、(2009年温州)如图,在平面直角坐标系中,点A(,0),B(3,2),C(0,2).动点D以每秒1个单位的速度从点0出发沿OC向终点C运动,同时动点E以每秒2个单位的速度从点A出发沿AB向终点B运动.过点E作EF上AB,交BC于点F,连结DA、DF.设运动时间为t秒.

(1)求∠ABC的度数;

(2)当t为何值时,AB∥DF;

(3)设四边形AEFD的面积为S.

①求S关于t的函数关系式;

②若一抛物线y=x2+mx经过动点E,当S<2时,求m的取值范围(写出答案即可).

注意:发现特殊性,DE∥OA

7、(07黄冈)已知:如图,在平面直角坐标系中,四边形ABCO是菱形,且

∠AOC=60°,点B的坐标是,点P从点C开始以每秒1个单位长度的速度在线段CB上向点B移动,同时,点Q从点O开始以每秒a(1≤a≤3)个单位长度的速度沿射线OA方向移动,设秒后,直线PQ交OB于点D.

(1)求∠AOB的度数及线段OA的长;

(2)求经过A,B,C三点的抛物线的解析式;

(3)当时,求t的值及此时直线PQ的解析式;

(4)当a为何值时,以O,P,Q,D为顶点的三角形与相似当a 为何值时,以O,P,Q,D 为顶点的三角形与不相似请给出你的结论,并加以证明.

8、(08黄冈)已知:如图,在直角梯形中,,以为原点建立平面直角坐标系,三点的坐标分别为,点为线段的中点,动点从点出发,以每秒1个单位的速度,沿折线的路线移动,移动的时间为秒.

(1)求直线的解析式;

(2)若动点在线段上移动,当为何值时,四边形的面积是梯形面积的

(3)动点从点出发,沿折线的路线移动过程中,设的面积为,请直接写出与的函数关系式,并指出自变量的取值范围;

(4)当动点在线段上移动时,能否在线段上找到一点,使四边形为矩形请求出此时动点的坐标;若不能,请说明理由.

9、(09年黄冈市)如图,在平面直角坐标系xoy中,抛物线与x轴的交点为点A,与y轴的交点为点B. 过点B作x轴的平行线BC,交抛物线于点C,连结AC.现有两动点P,Q分别从O,C 两点同时出发,点P以每秒4个单位的速度沿OA向终点A移动,点Q以每秒1个单位的速度沿CB向点B移动,点P停止运动时,点Q也同时停止运动,线段OC,PQ相交于点D,过点D作DE∥OA,交CA于点E,射线QE交x轴于点F.设动点P,Q移动的时间为t(单位:秒)

(1)求A,B,C三点的坐标和抛物线的顶点的坐标;

(2)当t为何值时,四边形PQCA为平行四边形请写出计算过程;

(3)当0<t<时,△PQF的面积是否总为定值若是,求出此定值, 若不是,请说明理由;

(4)当t为何值时,△PQF为等腰三角形请写出解答过程.

提示:第(3)问用相似比的代换,

得PF=OA(定值)。

第(4)问按哪两边相等分类讨论

①PQ=PF,②PQ=FQ,③QF=PF.

三.直线上动点

8、(2009年湖南长沙)如图,二次函数()的图象与轴交于两点,与轴相交于点.连结两

相关文档
最新文档