模拟信号数字化过程

合集下载

第三章模拟信号的数字化传输

第三章模拟信号的数字化传输
均匀量化: 数字通信过程中,量化实际上是将模拟信号取样后,可用2n个离散电平值来表示PAM的样值幅度变化,并且经量化后,每一个连续样值都将被 这些离散值所取代,这些电平被称为量化电平,用量化电平取代每个取样值的过程称为量化。
非均匀量化:所谓非均匀量化,指当信号幅度小时,量化台阶也小,信号幅度大时,量化台阶也大,以改善量化性能。
• 3.2.4 自适应差分脉冲编码调制
● 发展过程:1972年CCITT制定了G.711 64kb/s PCM语音编码标准,CCITT G.711A规 定的A律和μ律PCM采用非线性量化,在64kb/s的速率语音质量能够达到网络等级,当前 已广泛应用于各种数字通信系统中。由于它是一维统计语音信号,当速率进一步减小时, 将达不到网络等级所要求的话音质量。对于许多应用,尤其在长途传输系统中,64kb/s 的速率所占用的频带太宽以至通信费用昂贵,因此人们一直寻求能够在更低的速率上获 得高质量语音编码质量的办法。于是在1984年CCITT又提出了32kb/s标准的G.721 ADPCM 编码。ADPCM充分地使用了语音信号样点间的相关性,利用自适应预测和量化来解决语 音信号的非平稳特点,在32kb/s速率上能够给出符合公用网的要求的网络等级语音质量。
• PCM是一种最典型的语音信号数字化的波形编码方式,其系统原理,首先,在发送端 进行波形编码 (主要包括抽样、量化和编码三个过程),把模拟信号变换为二进制码
组。编码后的PCM码组的数字传输方式可以是直接的基带传输,也可以是调制后的调
制传输。在接收端,二进制码组经译码后还原为量化后的样值脉冲序列,然后经低通
P6
+
1)
8
×本段长度
第8个比较电平=本段的起始电平+(1
2

数字信号处理知识点总结

数字信号处理知识点总结

频域采样
X (k)

N 1

x(n)e
j 2 N
kn,0
k

N
1
3. DFT
n0
频域采样不失真条件:采样长度不小于信号长度(频域采样定理)
2/11/2020
9
2) Computation cost of DFT
N 1
X(k) x(n)WNnk n0
x(n)

1 N
Nபைடு நூலகம்1
单位圆
2/11/2020
7
Discrete Fourier Transform
x n
Sequence’s Fourier Transform
X e jw
Periodic Copies
xn
DFS
N
X% k
Extract One period
Extract One period
xa( t )|tnT x( n ) sin( nTs ) x( n ) sin(n )
时域离散 幅度量化

4
数字信号处理 Digital signal processing
(1) 模拟信号数字化过程 奈奎斯特采样定理 Nyquist sampling theorem
xa t
优越性,特别当点数N越大时,
FFT的优点更为明显。
2/11/2020
13
m=0
x(0)
x(1)
x(2)
x(3) x(4) x(5) x(6) x(7)
W
0 N
1
W
1 N
1
W
2 N
1
W
3 N

通信原理与技术第6 章模拟信号的数字化

通信原理与技术第6 章模拟信号的数字化

第6 章模拟信号的数字化本章教学要求:1、掌握低通型抽样定理、PCM 基本工作原理。

掌握均匀量化原理、非均匀量化原理(A 律13折线)和编码理论。

2、理解时分复用和多路数字电话系统原理。

3、了解PCM 抗噪声性能、DM 和DPCM 系统原理。

§6.1 引言一、什么是模拟信号数字化?就是把模拟信号变换为数字信号的过程,即模数转化。

这是本章欲解决的中心问题。

二、为什么要进行模数转换?由于数字通信的诸多优点,数字通信系统日臻完善。

致使许多模拟信源的信号也想搭乘数字通信的快车;先将模拟信号转化为数字信号,借数字通信方式(基带或频带传输系统)得到高效可靠的传输,然后再变回模拟信号。

三、怎样进行数字化?就目前通信中使用最多的模数转换方法—脉冲编码调制(PCM)为典型,它包含三大步骤:1.抽样(§2 和§3);2.量化(§4);3.编码(§5)1.抽样:每隔一个相等的时间间隙,采集连续信号的一个样值。

2.量化:将量值连续分布的样值,归并到有限个取值范围内。

3.编码:用二进制数字代码,表达这有限个值域(量化区)。

2、解调3、抽样定理从频谱图清楚地看到,能用低通滤波器完整地分割出一个F(ω)的关键条件是ωs≥2ωm,或f s≥2f m。

这里2f m 是基带信号最大频率,2f m 叫做奈奎斯特抽样频率。

抽样定理告诉我们,只要抽样频率不小于2f m,从理想抽样序列就可无失真地恢复原信号。

二、带通抽样带通信号的带宽B=f H-f L,且B<<f H,抽样频率f s 应满足f s=2B(1+K/N)=2f H/N 式中,K=f H/B-N,N 为不超过f H/B 的最大整数。

由于0≤K<1,所以f s在2B~4B 之间。

当f H >> B 即N >>1 时f S =2B。

当f S > 2B(1+R/N) 时可能出现频谱混叠现象(这一点是与基带信号不同的)例:f H= 5MHz,f L = 4MHz,f S =2MHz 或3MHz 时,求M S(f)§6.3 脉冲幅度调制(PAM)理想抽样采用的单位冲击序列,实际中是不存在的,实际抽样时采用的是具有一定脉宽和有限高度的窄脉冲序列来近似。

pcm技术的理解

pcm技术的理解

pcm技术的理解PCM技术,即脉冲编码调制技术(Pulse Code Modulation),是一种用于模拟信号数字化的方法。

它是一种将连续时间和连续幅度的模拟信号转换为离散时间和离散幅度的数字信号的技术。

在PCM技术中,模拟信号首先经过采样过程,将连续时间的信号转变为离散时间的信号。

采样频率决定了信号在时间轴上的离散程度,采样频率越高,信号越接近原始信号。

接下来,经过量化过程,将离散幅度的信号转变为离散级别的信号。

量化级别决定了信号的精度,级别越高,信号的精度越高。

最后,经过编码过程,将离散级别的信号转换为二进制码,以便在数字系统中传输和处理。

PCM技术的主要优点是能够精确地复制和传输原始模拟信号,从而减少了信号传输过程中的失真和噪声。

同时,PCM技术还具有抗干扰性强、传输距离远、可靠性高等优点。

这使得PCM技术广泛应用于音频、视频、通信等领域。

在音频领域,PCM技术被广泛应用于音频采集、录制和传输等方面。

通过PCM技术,可以将声音转换为数字信号,并通过数字化的方式进行存储和传输。

这种数字化的方式不仅可以减少信号的失真和噪声,还可以方便地对音频信号进行处理和编辑。

在视频领域,PCM技术也被用于视频信号的采集和传输。

通过PCM技术,可以将模拟视频信号转换为数字信号,然后进行压缩和编码,以便在数字系统中进行存储和传输。

这种数字化的方式不仅可以提高视频信号的质量和清晰度,还可以方便地对视频信号进行编辑和处理。

在通信领域,PCM技术被广泛应用于电话和网络通信中。

通过PCM技术,可以将语音信号转换为数字信号,并通过数字化的方式进行传输和处理。

这种数字化的方式不仅可以提高通信的质量和可靠性,还可以方便地对语音信号进行压缩和加密。

总结起来,PCM技术是一种将模拟信号转换为数字信号的技术,通过采样、量化和编码等过程,将连续时间和连续幅度的信号转换为离散时间和离散幅度的信号。

PCM技术具有精确复制和传输原始信号、抗干扰性强、传输距离远、可靠性高等优点。

自动控制原理-模拟信号的数字化

自动控制原理-模拟信号的数字化
如果模拟信号 xt是带通信号,其角频率限制在 fL
和 fH 之间,则必须的最低抽样率为:
f s 2B 2 f H nB/ n
带通信号的最小抽样速率也可用以下公式:
fs 2B1 M / N
其中:N是小于 f H /B的最大整数(当 f H 刚好是 B的整数倍时,N就为该倍数)
M fH / B N
插值:把量化信号恢复成模拟信号
平滑:恢复成原来的模拟信号
量化特性及噪声分析
所谓量化特性:是指量化输入信号x(n)与 量化输出信号y(n)之间的函数关系。信号的量化 特性主要取决于量化器的特性和信号本身的特性。
量化的结果使信号只能取有限个量化电平值之 一,所以量化过程不可避免地要造成误差,这种 量化误差产生的噪声叫做量化噪声。
其中第一位 C1表示量化值的极性正负后面的7位分为段落 码和段内码两部分,用于表示量化值的绝对值。其中第2至4 位( C2C3C4)是段落码,共计3位,可以表示8种斜率的段落; 其他4位( C5C6C7C8)为段内码,可以表示每一段落内的16种 量化电平。段内码代表的16个量化电平是均匀划分的。
7
f fH
H
(
f
)
1 0
xo (t)
h(t)
xs (t)
1 Ts
sin 2 fHt 2 fHt
k
x(kTs )
(t
kTs )
1 Ts
k
x(kTs )
sin 2 fH (t kTs ) 2 fH (t kTs )
1 Ts
k
x(kTs )sa[2
fH (t
kTs )]
(c)
fs+fL
f
带通信号的抽样频谱(fs=2fH)

pcm 是 ( )转换的例子

pcm 是 ( )转换的例子

PCM(Pulse Code Modulation)是一种数字信号处理技术,主要用于模拟信号的数字化处理。

PCM将连续的模拟信号按照一定的规则进行采样、量化和编码,将模拟信号转换成为数字信号,以便于数字系统的处理和传输。

PCM技术广泛应用于数字通信、音频处理、视瓶处理等领域,是数字化处理领域的重要基础。

下面将从几个方面来详细介绍PCM技术的转换过程和应用领域:一、PCM的转换过程1. 采样:模拟信号在一定时间间隔内进行取样,将连续的模拟信号变成离散的信号序列。

2. 量化:采样后的模拟信号幅度将去量化为一系列有限的离散值,这种离散值被称为量化水平,用来代表原始模拟信号的幅度。

3. 编码:量化后的离散值通过编码方式转换为二进制码流,以便于数字系统的处理和传输。

通过以上三个过程,PCM技术成功将模拟信号转换成为数字信号,并实现了模拟到数字的转换过程。

二、PCM的应用领域1. 通信领域:PCM技术被广泛用于数字通信系统中,如通信方式通信、数据传输等。

PCM技术可以有效地将模拟信号转换成为数字信号,进行数字化处理和传输,提高了通信质量和稳定性。

2. 音频处理领域:PCM技术在音频处理中应用广泛,如CD音频、MP3音频等。

PCM技术可以对音频信号进行精确的数字化处理,保证音频质量,并且与数字音频处理系统兼容性好。

3. 视瓶处理领域:PCM技术在视瓶处理中也有重要应用,如数字电视、视瓶会议等。

PCM技术可以将视瓶信号数字化处理,提高视瓶质量和清晰度,满足了高清晰度视瓶传输和处理的需求。

PCM技术作为一种重要的数字信号处理技术,在通信、音频处理、视瓶处理等领域有着广泛的应用和重要的作用。

随着数字化处理技术的不断发展,PCM技术将会有更多的创新和应用,推动数字化处理技术的发展和应用。

PCM技术作为数字信号处理领域的重要技术,不仅在通信、音频处理和视瓶处理领域有着广泛的应用,同时也在其他领域展现出了强大的潜力和价值。

通信原理课件:模拟信号的数字传输

通信原理课件:模拟信号的数字传输

数字信号传输过程中的误差
讨论数字信号传输过程中的量化误差、信道误差和解调误差,并探索如何降 低这些误差。
数字信号传输过程的相关参数
介绍采样率、量化位数和信噪比等与数字信号传输相关的重要参数,并解释它们的意义和影响。
数字信号传输的应用
探索数字音频的传输、视信号的数字传输以及数字通信系统在各个领域的应 用。
结论与总结
总结数字传输技术的优势与不足,并展望未来数字传输技术的发展趋势。
通信原理课件:模拟信号 的数字传输
模拟信号的数字传输是通信原理中的重要概念。通过将模拟信号转换为数字 信号,我们可以实现更高的传输效率和更低的传输误差。
模拟信号的数字传输概述
模拟信号与数字信号的差异以及模拟信号的数字传输的必要性。探讨模拟信 号的数字PCM)、Δ-调制(Delta)和组合型编码(DPCM)等常用的模拟信号数字化方法。

通信原理 第四章 模拟信号的数字化

通信原理 第四章  模拟信号的数字化
段落序号
8 7 6
12
11 10
1100
1011 1010 1001
段落码 c2 c3 c4
111 110 101
9
8
7 6 5
1000
0111 0110 0101
5
4 3 2
100
011 010 001
4
3 2 1
0100
0011 0010 0001
1
000
0
0000
18
4.4.3 PCM系统的量化噪声
2 b 2 mi a i 1 mi 1 M
式中,sk为信号的抽样值,即s(kT) sq为量化信号值,即sq(kT) f(sk)为信号抽样值sk的概率密度 E表示求统计平均值 M为量化电平数 mi a iv

q i a i v
v 2
求信号sk的平均功率 :
S E ( s k ) s k f ( s k )dsk
S / Nq 22(B/fH )
上式表明,PCM系统的输出信号量噪比随系统的带宽 B按指数规律增长。
19
4.5 差分脉冲编码调制
4.5.1差分脉冲编码调制(DPCM)的原理

线性预测基本原理

线性预测 利用前面的几个抽样值的线性组合来预测当前的抽样值 预测误差 当前抽样值和预测值之差 由于相邻抽样值之间的相关性,预测值和抽样值很接近,即误 差的取值范围较小。 对较小的误差值编码,可以降低比特率。
正极性
负极性

折叠二进制码的特点: 有映像关系,最高位可以表示极性,使编码电路简化; 误码对小电压影响小,可减小语音信号平均量化噪声。
17

13折线法中采用的折叠码

模拟信号的数字化

模拟信号的数字化

模拟信号的数字化一、 实验原理与目的模拟信号的数字化包括:抽样,量化和编码。

本文主要是对模拟信号从采样到量化再到编码的整个过程做一个比较全面的matlab仿真,同时也对不同的采样频率所采取的信号进行了比较。

模拟信号首先被抽样,通常抽样是按照等时间间隔进行的,虽然在理论上并不是必须如此的。

模拟信号抽样后,成为了抽样信号,它在时间上离散的,但是其取值仍是连续的,所以是离散的模拟信号。

第二步是量化,量化的结果使抽样信号变成量化信号,其取值是离散的。

故量化信号已经是数字信号了,它可以看成多进制的数字脉冲信号。

第三步是编码,最基本的和最常用的编码方法是脉冲编码调制(PCM ),它将量化后的信号变成二进制码。

由于编码方法直接和系统的传输效率有关,为了提高传输效率,常常将这种PCM 信号进一步作压缩编码,再在通信系统中传输。

二、 抽样抽样:在等时间间隔T 上,对它抽取样值,在理论上抽样可以看作是用周期单位冲激脉冲和模拟信号相乘,在实际上是用周期性窄脉冲代替冲激脉冲与模拟信号相乘。

对一个带宽有限的连续模拟信号进行抽样时,若抽样速率足够大,则这些抽样值就能够完全代替原模拟线号,并且能够由这些抽样值准确地恢复出原模拟信号。

因此,不一定要传输模拟信号本身,可以只传输这些离散的抽样值,接受端就能恢复原模拟信号。

描述这一抽样速率条件的定律就是著名的抽样定律,抽样定律为模拟信号的数字化奠定了理论基础。

抽样定律指出采样频率是:2sH ff对于本文中的信号定义为()(sin)s t A t 其中2ft 。

三、 量化模拟信号抽样后变成在时间上离散的信号,但是仍然是模拟信号,这个抽样信号必须经过量化后成为数字信号。

本文主要采用的是均匀量化,设模拟信号的取值范围是在a 和b 之间,量化电平时M,则在均匀量化时的量化间隔为b a M且量化区间的端点为i a i m若量化输出电平是i q取为量化间隔的中点,则:12i i im m q显然,量化输出电平和量化前信号的抽样值一般不同,即量化输出电平有误差。

模拟信号的数字化过程

模拟信号的数字化过程

模拟信号的数字化过程
模拟信号的数字化过程是指将连续变化的模拟信号转化为离散的数字信号的过程。

这个过程包括采样、量化和编码三个步骤。

1. 采样:采样是指在一段时间内以固定的时间间隔对模拟信号进行采样,获得一系列离散的采样值。

采样定理指出,为了正确地恢复模拟信号,采样率(采样频率)至少要是模拟信号的两倍。

2. 量化:量化是指将连续的采样值映射为有限个离散的取值。

量化过程中,将连续的采样值转换为最接近的离散取值,并用固定的精度表示。

采样值的表示精度决定了数字信号的分辨率。

3. 编码:编码是指将量化后的离散采样值转化为二进制编码,以便于数字信号的存储、传输和处理。

常用的编码方式有脉冲编码调制(PCM)、Δ调制(DM)、压缩编码(如Huffman
编码)等。

通过以上三个步骤,模拟信号就被转化为一系列离散的数字样本,即数字化的信号。

数字化的信号可以用于数字通信、数字存储、数字处理等各种应用。

在接收端,通过逆向的过程进行解码、量化和还原,可以恢复出近似的模拟信号。

通信原理-模拟信号数字化与PCM

通信原理-模拟信号数字化与PCM

信号类型不同,影响D,影响量化信噪比。
峰值信噪比:D=1时(理论上D的最大值)
NS qPk_dB 6.02n 4.77
最大幅度均匀分布信号
Ps
(2V )2 12
V2 3
NS qAvr_dB 6.02n
Dmax
Ps V
4.77 4.77
1 3
6.02n
(dB)
第6章 模拟信号数字化与PCM:量化信噪比与对数量化
k n
2fH n
第6章 模拟信号数字化与PCM:模拟信号的抽样
19
综合两种情况,取样频率为
fs
2fH n
其中
n
fH
B
2B fs 4B
恢复原信号时需使用带通滤波器。
第6章 模拟信号数字化与PCM:模拟信号的抽样
20
例6.1:假定带通信号的中心频率为4 MHz、带宽 为2 MHz。(1)试求带通抽样的频率并绘出抽样信 号的频谱示意图;(2)将采样率提高0.5MHz是否还
ms(t) m(nTs)(t nTs) * h(t)
Ms(f
) 1 Ts
n
M(f nfs)H (f
n
) Ts
sinc(f
n
)M (f
nfs )
第6章 模拟信号数字化与PCM:模拟信号的抽样
13
平顶抽样的频谱具有孔径失真,脉冲宽度
越小,失真越小。
可用均衡电路进行校正
H
eq
(f
量化器要点
区间个数M,即量化电平数,一般M=2n; 区间的分界xi,即分层或阈值电平; 区间对应的输出yi,即输出电平。
第6章 模拟信号数字化与PCM:均匀量化与最佳量化
25

数字信号传输系统工作原理

数字信号传输系统工作原理

数字信号传输系统工作原理数字信号传输系统是一种通过数字信号来传输信息的系统,它广泛应用于通信、计算机网络、音视频传输等领域。

本文将详细介绍数字信号传输系统的工作原理,包括信号的数字化、编码与解码、传输介质选择以及错误检测与纠正等方面。

一、信号的数字化在数字信号传输系统中,原始信号首先需要进行数字化处理,将连续的模拟信号转变为离散的数字信号。

这一过程通常包括采样、量化和编码三个步骤。

1. 采样采样是指将连续的模拟信号在时间上离散取样,获取一系列离散的采样点。

采样的频率取决于采样定理,通常采用两倍于信号最高频率的采样率,以保证采样后的数字信号能够准确重构原始信号。

2. 量化量化是指将采样得到的模拟信号幅度转换为离散的数字值。

量化过程中,将采样得到的信号幅度值映射为离散的幅度级别,常用的量化方法有线性量化和非线性量化。

3. 编码编码是将量化得到的数字信号转换为一系列的二进制代码,用于传输和存储。

常见的编码方式有脉冲编码调制(PCM)、差分编码(DM)等。

二、传输介质选择数字信号传输系统的传输介质选择是十分重要的,它直接影响着传输质量和传输速率。

根据传输距离和需求,可选择不同的传输介质。

1. 电缆传输电缆传输是通过金属导线传输数字信号的方式,包括同轴电缆、双绞线和光纤等。

其中,同轴电缆适用于短距离传输,双绞线适用于中短距离传输,而光纤具有高带宽和抗干扰能力强等特点,适用于长距离高速传输。

2. 无线传输无线传输是指利用无线信道传输数字信号,包括无线电波和红外线等。

无线传输通常应用于移动通信、无线局域网(WLAN)等领域,具有灵活性和便捷性的优势。

三、编码与解码在数字信号传输系统中,编码与解码是确保传输信号的准确性和完整性的重要环节。

1. 编码编码是将数字信号转换为一系列可传输的二进制码的过程。

编码的目的是提高信号抗干扰性和利用信道带宽效率,常见的编码方式有曼彻斯特编码、调制编码、哈夫曼编码等。

2. 解码解码是将接收到的传输信号转换为原始数字信号的过程。

模拟声音信号转为数字信号的过程课件.ppt

模拟声音信号转为数字信号的过程课件.ppt

采样频率:每秒对声音波形采样的次数,即每秒读取点 的个数,单位:赫兹(Hz)。
量化:就是将采样得到的幅度值进行数 字化。
用若干个声音信号的幅度值来 描述的音频信号波形图
将声音信号的幅度值划分为若干 等级,每一个等级对应一个数值
量化位数:记录一个数据所使用的二进制位数。
编码:把量化后的值用一组二进制数字 代码表示。
模拟声音信号转换为数字信号 的过程
声波
电波
麦克风——将声音信号转换为电信号。
*可以上网查询一下麦克风的工作原理。
电波 (模拟信号)
电波 (数字信号)
模数转 换器
通过取样转换 成离散的数字量。
*离散量是指分散开来的、不存在中间值的量。 *计算机使用0、1记录信息,没有0、1之间的小数,即不连续 的,这就叫离散。
0010 0110 0111 0101 0010 0011 1001
比特率:表示经过编码(压缩)后的音数据每秒钟需要用 多少个比特(最小的二进制单位)来表示。
数字化后影响音频质量的因素
• 采样频率 越高,音频质量越高
• 量化位数 越高,音频质量越高
• 声道数 单声道、双声道(立体声)
• 比特率 越高,音频质量越高
模数转换器处理信息的过程
• 采样:以相等的间隔来测量模拟信号的物 理量,完成对连续模拟信号的离散化提取。
• 量化:将采样得到的幅度值进行数字化。 • 编码:将量化后的值用一组二进制数字代
码表示。
声音采样:每间隔一段时间在模拟音频 波形上读取一个声音信号的幅度值。
模拟音频信号波形示意图
选取更多点来 描述音频信号波形图
• 量化位数
16位 (声音量级分为216=65536级)

第3章模拟信号的数字化传输

第3章模拟信号的数字化传输

① 自然二进码,就是人们熟悉的二进 码,用(an,an-1,…a1)表示,每个码元 只有二种状态,取“1”或“0”,一组自 然二进码代表的量化电平为
Q=an2n-1+an-1 2n-2+…+a120
式中n
② 反射二进码也称格雷(Grag)码。 它的特点是相邻两组代码间的码距为1,因 此如果传输中出了一位错产生的误差较小。 设 反 射 二 进 码 为 ( cn,cn-1,…,c1), 且 各码元取“1”或“0”,则对应的量化电 平值为
(2)
与编码相对应,译码也有两种情况,
一 种 是 收 到“ 1” 码上 升 一 个 量 阶 σ( 跳 变 ) , 收 到 “ 0” 码下 降 一 个 量 阶 σ( 跳 变),这样把二进制代码经过译码变成f′ (t)这样的阶梯波。另一种是收到“1” 码后产生一个正斜变电压,在Δt时间内上 升一个量阶σ,收到一个“0”码产生一个 负斜变电压,在Δt时间内均匀下降一个量 阶σ。
=1152个量化单位
I信﹥I权6,D7=1,I信 处于第八段中3~8级。 确定D8选标准电流I权7 =1024+3Δk
=1024+3×64
=1216个量化单位
I 信 ﹥ I 权 7 , D8=1, 说 明 输 入 信 号 处 在 第八段中第三量化级。经上述七次比较, 编出的八位码为11110011。它表示输入抽 样值处于第八段第三量化级,其量化后的 电平值为1216个量化单位,故量化误差等 于54个量化单位。
第三章 模拟信号的数字化传输
3.1 模拟信号数字化的基本原理 3.2 脉冲编码调制(PCM) 3.3时分复用原理 3.6 数字复接技术 3.7 小 结
3.1模拟信号数字化的基本原理

模拟信号数字化步骤

模拟信号数字化步骤

模拟信号数字化步骤嘿,咱今儿个就来聊聊模拟信号数字化的那些步骤,这可有意思啦!你想想啊,模拟信号就像是一条弯弯曲曲的小河,流淌着各种连续变化的信息。

那怎么把它变成数字信号呢,就像是要把这条小河里的水一滴一滴地装进小瓶子里。

首先呢,得采样呀!这就好比从那小河里舀出一瓢水来看看。

采样的频率可重要啦,就像你舀水的速度,太慢了可就漏了好多信息,太快了又好像有点浪费精力。

咱得恰到好处地把那一个个瞬间的信号值给记录下来。

然后呢,就是量化啦!这一步就像给舀出来的水定个标准,是多还是少呀,得有个明确的说法。

把那些连续的信号值划分成一段段的,给它们贴上标签,让它们变得有规有矩的。

再接下来就是编码啦!这就像是给每个小瓶子编个号,让我们能清楚地知道每个瓶子里装的是什么样的水。

把量化后的信号值用特定的代码表示出来,这样数字世界就能轻松识别和处理啦。

你说这神奇不神奇,就这么几步,就能把那弯弯曲曲的模拟信号变得整整齐齐的数字信号啦!这就好像把一团乱麻理得顺顺溜溜的。

你看啊,在我们的生活中,到处都有这样的例子。

比如说音乐,以前的唱片那放出来的就是模拟信号,声音会随着唱片的磨损啥的变得不太一样。

但是现在通过数字化,那音乐就能一直保持清晰好听,就像永远不会变老一样。

还有那些老照片,以前的照片时间长了可能会褪色啥的,但是数字化后就能一直保存下去,随时都能拿出来看看,回忆回忆过去的美好时光。

这不就像是给我们的记忆也进行了数字化吗?把那些珍贵的瞬间都变成了一个个数字代码,永远不会丢失。

所以说呀,模拟信号数字化的步骤可太重要啦!它让我们的信息能够更准确、更方便地传输和存储。

让我们的生活变得更加丰富多彩。

咱就这么一说,你是不是对模拟信号数字化步骤有了更清楚的认识啦?哈哈!。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
表2-1各种二进制码量化电平
量化电平自然二进制码格雷码折叠二进制码
0000000011
1001001010
2010011001
3011010000
4100110100
5101111101
6110101110
7111100111
在通信理论中,编码分为信源编码和信道编码两大类。所谓信源编码是指将信号源中多余的信息除去,形成一个适合用来传输的信号。为了抑制信道噪声对信号的干扰,往往还需要对信号进行再编码,编成在接收端不易为干扰所弄错的形式,这称为信道编码。为了对付干扰,必须花费更多的时间,传送一些多余的重复信号,从而占用了更多频带,这是通信理论中的一条基本原理。
对于音频信号的非均匀量化也是采用压缩、扩张的方法,即在发送端对输入的信号进行压缩处理再均匀量化,在接收端再进行相应的扩张处理13折线压扩特性和μ律15折线的压扩特性。我国规定采用A律13折线压扩特性。
采用13折线压扩特性后小信号时量化信噪比的改善量可达24dB,而这是靠牺牲大信号量化信噪比(亏损12dB)换来的。
量化误差与噪声是有本质的区别的。因为任一时刻的量化误差是可以从输入信号求出,而噪声与信号之间就没有这种关系。可以证明,量化误差是高阶非线性失真的产物。但量化失真在信号中的表现类似于噪声,也有很宽的频谱,所以也被称为量化噪声并用信噪比来衡量。
上面所述的采用均匀间隔量化级进行量化的方法称为均匀量化或线性量化,这种量化方式会造成大信号时信噪比有余而小信号时信噪比不足的缺点。如果使小信号时量化级间宽度小些,而大信号时量化级间宽度大些,就可以使小信号时和大信号时的信噪比趋于一致。这种非均匀量化级的安排称为非均匀量化或非线性量化。数字电视信号大多采用非均匀量化方式,这是由于模拟视频信号要经过校正,而校正类似于非线性量化特性,可减轻小信号时误差的影响。
编码
抽样、量化后的信号还不是数字信号,需要把它转换成数字编码脉冲,这一过程称为编码。最简单的编码方式是二进制编码。具体说来,就是用n比特二进制码来表示已经量化了的样值,每个二进制数对应一个量化值,然后把它们排列,得到由二值脉冲组成的数字信息流。编码过程在接收端,可以按所收到的信息重新组成原来的样值,再经过低通滤波器恢复原信号。用这样方式组成的脉冲串的频率等于抽样频率与量化比特数的积,称为所传输数字信号的数码率。显然,抽样频率越高,量化比特数越大,数码率就越高,所需要的传输带宽就越宽
除了上述的自然二进制码,还有其他形式的二进制码,如格雷码和折叠二进制码等,表2-1示出了这三种二进制码。这三种码各有优缺点:(1)自然二进制码和二进制数一一对应,简单易行,它是权重码,每一位都有确定的大小,从最高位到最低位依次为,可以直接进行大小比较和算术运算。自然二进制码可以直接由数/模转换器转换成模拟信号,但在某些情况,例如从十进制的3转换为4时二进制码的每一位都要变,使数字电路产生很大的尖峰电流脉冲。(2)格雷码则没有这一缺点,它在相邻电平间转换时,只有一位生变化,格雷码不是权重码,每一位码没有确定的大小,不能直接进行比较大小和算术运算,也不能直接转换成模拟信号,要经过一次码变换,变成自然二进制码。(3)折叠二进制码沿中心电平上下对称,适于表示正负对称的双极性信号。它的最高位用来区分信号幅值的正负。折叠码的抗误码能力强。
抽样
话音信号是模拟信号,它不仅在幅度取值上是连续的,而且在时间上也是连续的。要使话音信号数字化并实现时分多路复用,首先要在时间上对话音信号进行离散化处理,这一过程叫抽样。所谓抽样就是每隔一定的时间间隔T,抽取话音信号的一个瞬时幅度值(抽样值),抽样后所得出的一系列在时间上离散的抽样值称为样值序列。抽样后的样值序列在时间上是离散的,可进行时分多路复用,也可将各个抽样值经过量化、编码变换成二进制数字信号。理论和实践证明,只要抽样脉冲的间隔T≤1/(2fm)(或f≥2fm)(fm是话音信号的最高频率),则抽样后的样值序列可不失真地还原成原来的话音信号。
实际信号可以看成量化输出信号与量化误差之和,因此只用量化输出信号来代替原信号就会有失真。一般说来,可以把量化误差的幅度概率分布看成在-Δ/2~+Δ/2之间的均匀分布。可以证明,量化失真功率?,即与最小量化间隔的平方成正比。最小量化间隔越小,失真就越小。最小量化间隔越小,用来表示一定幅度的模拟信号时所需要的量化级数就越多,因此处理和传输就越复杂。所以,量化既要尽量减少量化级数,又要使量化失真看不出来。一般都用一个二进制数来表示某一量化级数,经过传输在接收端再按照这个二进制数来恢复原信号的幅值。所谓量化比特数是指要区分所有量化级所需几位二进制数。例如,有8个量化级,那么可用三位二进制数来区分,因为,称8个量化级的量化为3比特量化。8比特量化则是指共有个量化级的量化。
数字化信号的数字化需要三个步骤:抽样、量化和编码。抽样是指用每隔一定时间的信号样值序列来代替原来在时间上连续的信号,也就是在时间上将模拟信号离散化。量化是用有限个幅度值近似原来连续变化的幅度值,把模拟信号的连续幅度变为有限数量的有一定间隔的离散值。编码则是按照一定的规律,把量化后的值用二进制数字表示,然后转换成二值或多值的数字信号流。这样得到的数字信号可以通过电缆、微波干线、卫星通道等数字线路传输。在接收端则与上述模拟信号数字化过程相反,再经过后置滤波又恢复成原来的模拟信号。上述数字化的过程又称为脉冲编码调制。
例如,一路电话信号的频带为300~3400Hz,fm=3400Hz,则抽样频率fs≥2×3400=6800Hz。如按6800Hz的抽样频率对300~3400Hz的电话信号抽样,则抽样后的样值序列可不失真地还原成原来的话音信号,话音信号的抽样频率通常取8000Hz。对于PAL制电视信号。视频带宽为6MHz,按照CCIR601建议,亮度信号的抽样频率为13.5MHz,色度信号为6.75MHz。
量化
抽样把模拟信号变成了时间上离散的脉冲信号,但脉冲的幅度仍然是模拟的,还必须进行离散化处理,才能最终用数码来表示。这就要对幅值进行舍零取整的处理,这个过程称为量化。量化有两种方式,量化方式中,取整时只舍不入,即0~1伏间的所有输入电压都输出0伏,1~2伏间所有输入电压都输出1伏等。采用这种量化方式,输入电压总是大于输出电压,因此产生的量化误差总是正的,最大量化误差等于两个相邻量化级的间隔Δ。量化方式在取整时有舍有入,即0~0.5伏间的输入电压都输出0伏,0.5~1?5伏间的输出电压都输出1伏等等。采用这种量化方式量化误差有正有负,量化误差的绝对值最大为Δ/2。因此,采用有舍有入法进行量化,误差较小。
相关文档
最新文档