常用Python数据分析库详解
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
常用Python数据分析库详解
Python之所以这么流行,这么好用,就是因为Python提供了大量的第三方的库,开箱即用,非常方便,而且还免费哦,学Python的同学里估计有30%以上是为了做数据分析师或者数据挖掘,所以数据分析相关的库一定要熟悉,那么常用的Python数据分析库有哪些呢?
1.NumPy
NumPy是Python科学计算的基础包,它提供:
1).快速高效的多维数组对象ndarray;
2).直接对数组执行数学运算及对数组执行元素级计算的函数;
3).用于读写硬盘上基于数组的数据集的工具;
4).线性代数运算、傅里叶变换,以及随机数生成。
2.Pandas
大名鼎鼎的Pandas可以说只要做数据分析的,无人不知无人不晓,因为它太重要了.Pandas库提供了我们很多函数,能够快速的方便的,处理结构化的大型数据,不夸张的说,Pandas是让Python成为强大的数据分析工具的非常重要的一个因素。
而且对于金融行业,比如基金股票的分析师来说,pandas提供了高性能的时间序列功能和一系列的工具,可以自由的灵活的处理数据,一次使用你就会爱上它。
3.Matplotlib
matplotlib是最流行的用于绘制数据图表的Python库,它和下面我们要讲
的 IPython结合的很爽,绝对是好基友,提供了一种非常好用的交互式的数据绘图环境。
4.IPython
IPython是Python科学计算标准工具集的组成部分,它可以把很多东西联系到一起,有点类似一个增强版的Python shell。
目的是为了提高编程,测试和调试Python代码的速度,好像很多国外的大学教授,还有Google大牛都很喜欢用IPython,确实很方便,至少我在分析数据的时候,也是用这个工具的,而且不用print,回车就能打印。