【精选】 有理数单元测试卷附答案

合集下载

第一章 有理数单元检测卷(解析版)

第一章 有理数单元检测卷(解析版)

第1章《有理数》一、选择题(共36分)1.2023的相反数是( )A .12023B .2023-C .2023D .12023-【答案】B【分析】根据只有符号不同的两个数互为相反数进行解答即可得.【详解】解:2023的相反数是2023-,故选:B .【点睛】本题考查了相反数的定义,熟练掌握相反数的定义是解题的关键.2.中国是最早采用正负数表示相反意义的量、并进行负数运算的国家.若收入500元记作500+元,则支出237元记作( )A .237+元B .237-元C .0元D .474-元【答案】B【分析】根据相反意义的量的意义解答即可.【详解】∵收入500元记作500+元,∴支出237元记作237-元,故选B .【点睛】本题考查了相反意义的量,正确理解定义是解题的关键.3.2022年河南省凭借6.13万亿元的经济总量占据全国各省份第五位,占全国的5.0%,将数据“6.13万亿”用科学记数法表示为( )A .86.1310´B .106.1310´C .126.1310´D .146.1310´【答案】C【分析】科学记数法的表示形式为10n a ´的形式,其110a £<,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.【详解】解:将数据“6.13万亿”用科学记数法表示为126.1310´.故选:C .【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为10n a ´的形式,其中110a £<,n 为整数,表示时关键要正确确定a 的值以及n 的值.4.下列说法正确的是( )A .0既是正数又是负数B .0是最小的正数C .0既不是正数也不是负数D .0是最大的负数【答案】C【分析】根据有理数的分类判断即可.【详解】∵0既不是正数也不是负数,故选C.【点睛】本题考查了零的属性,熟练掌握0既不是正数也不是负数是解题的关键.5.点A 为数轴上表示3的点,将点A 向左移动9个单位长度到B ,点B 表示的数是( )A .2B .−6C .2或−6D .以上都不对【答案】B【分析】根据数轴上的平移规律即可解答【详解】解:∵点A 是数轴上表示3的点,将点A 向左移9个单位长度到B ,∴点B 表示的数是:396-=-,故选B .【点睛】本题主要考查了数轴及有理数减法法则,掌握数轴上的点左移减,右移加是解题关键.6.哈尔滨市2023年元旦的最高气温为2℃,最低气温为8-℃,那么这天的最高气温比最低气温高( )A .10-℃B .6-℃C .6℃D .10℃【答案】D【分析】用最高温度减去最低温度,然后根据减去一个数等于加上这个数的相反数进行计算即可.【详解】解:根据题意,得:()282810--=+=,\这天的最高气温比最低气温高10℃,故选:D .【点睛】本题考查了有理数的减法的应用,是基础题,熟记减去一个数等于加上这个数的相反数是解题的关键.7.把()()()()8452--++---写成省略加号的形式是( )A .8452-+-+B .8452---+C .8452--++D .8452--+【答案】B 【分析】观察所给的式子,要写成省略加号的形式,即是将式子中的括号去掉即可.【详解】解:根据有理数的加减混合运算的符号省略法则化简,得,()()()()28452845---+---=--++.故选:B .【点睛】本题考查有理数的加减混合运算,熟练掌握去括号的法则:括号前是正号,去括号时,括号里面的各项都不改变符号;括号前是负号,去括号时,括号里面的各项都要改变符号是解题的关键.8.下列各对数中,不相等的一对数是( )A .()33-与33-B .33-与33C .()43-与43-D .()23-与23【答案】C【分析】根据有理数的乘方和绝对值的概念,逐一计算即可.【详解】解:()3327-=-,3327-=-,2727-=-,故A 不符合题意;3327-=,3327=,2727=,故B 不符合题意;()4381-=,4381-=-,8181¹-,故C 符合题意;()239-=,239=,99=,故D 不符合题意,故选:C .【点睛】本题考查了有理数的乘方和绝对值的概念,熟练掌握计算法则是解题的关键.9.用四舍五入法按要求对0.30628分别取近似值,其中错误的是( )A .0.3(精确到0.1)B .0.31(精确到0.01)C .0.307(精确到0.001)D .0.3063(精确到0.0001)【答案】C【分析】根据近似数的精确度对各选项进行判断即可.【详解】解:0.30628精确到0.1是0.3,A 选项正确,不符合题意;0.30628精确到0.01是0.31,B 选项正确,不符合题意;0.30628精确到0.001是0.306,C 选项错误,符合题意;0.30628精确到0.0001是0.3063,D 选项正确,不符合题意.【点睛】本题考查了近似数的精确度,熟练掌握四舍五入法及精确度的概念是解题的关键.10.若计算式子1(27)()3-W V 的结果为最大,则应分别在 ,△中填入下列选项中的( )A .+,-B .´,-C .¸,-D .-,¸【答案】D【分析】将四个选项中的运算符号分别代入式子中进行运算,通过比较结果即可得出结论.【详解】解:当选取A 选项的符号时,111(27)()99333+--=+=;当选取B 选项的符号时,111(27)()1414333´--=+=;当选取C 选项的符号时,12113(27)()37321¸--=+=;当选取D 选项的符号时,1(27)()5(3)153-¸-=-´-=,∵1113151493321>>>,当选取D 选项的符号时,计算式子1(27)(3-W V 的结果最大,故选:D .【点睛】本题主要考查了有理数的混合运算,熟练掌握有理数的混合运算法则是解题的关键.11.如图,点A 、B 均在数轴上,且点,A B 所对应的实数分别为a 、b ,若0a b +>,则下列结论一定正确的是( )A .0ab >B .0a b ->C .0a b >D .0b >【答案】B【分析】根据0a b +>,可知,a b 可能同号,也可能异号,而a b >恒成立,即可求解.【详解】∵0a b +>,∴a b >-,即在数轴上,b -在a 的左侧,∴0b b a <<-<或0b b a -<<<,∴,a b 可能同号,也可能异号,而a b >恒成立,∴0a b ->一定正确,【点睛】本题考查了数轴上点的位置及其大小关系,熟练掌握数轴上右边的数总比左边的数大是解题的关键.12.若a 、b 互为相反数,c 、d 互为倒数,m 的倒数是它本身,则232cd m a b m+++的值为A .5B .5或2C .5或1-D .不确定【答案】C 【分析】根据相反数,倒数的性质,可得0,1a b cd +== ,1m =± ,再代入,即可求解.【详解】解:∵a 、b 互为相反数,c 、d 互为倒数,∴0,1a b cd +== ,∵m 的倒数是它本身,∴1m =± ,∴21m = ,当1m = 时,2331221051cd m a b m ´+++=´++=,当1m =- 时,2331221011cd m a b m ´+++=´++=--,∴232cd m a b m+++的值为5或1-.故选:C【点睛】本题主要考查了相反数,倒数的性质,熟练掌握一对互为相反数的和等于0,互为倒数的两个数的乘积为1是解题的关键.二、填空题(共18分)13.6-等于_____.【答案】6【分析】根据绝对值的定义进行求解即可.【详解】解:66-=,故答案为:6.【点睛】本题主要考查了求一个数的绝对值,熟知正数和0的绝对值是它本身,负数的绝对值是它的相反数是解题的关键.14.某种试剂的说明书上标明保存温度是(102)±℃,请你写出一个适合该试剂保存的温度:___________℃.【答案】10(答案不唯一)【分析】根据正数和负数的定义即可解答.【详解】解:由题意,可知适合该试剂的保存温度为8~12℃,在此温度范围内均满足条件.故答案为10(答案不唯一).【点睛】本题考查正负数在实际生活中的应用,解题关键是理解“正”和“负”的相对性,确定一对具有相反意义的量.15.把2.674精确到百分位约等于______.【答案】2.67【分析】把千分位上的数字进行四舍五入即可.【详解】解:2.674 2.67».故答案为:2.67.【点睛】本题主要考查了近似数,解题的关键是熟练掌握定义,经过四舍五入得到的数叫近似数.16.计算:()14877-¸´=_____________.【答案】4849-【分析】根据有理数的乘除运算法则,从左往右依次计算即可.【详解】解:()111484874877749-¸´=-´´=-,故答案为:4849-.【点睛】本题考查了有理数的乘除运算.解题的关键在于明确运算顺序.易错点是先计算乘法然后计算除法.17.已知实数m ,n 在数轴上的对应点的位置如图所示,则m _______n .(填“<”、“>”或“=”)【答案】<【分析】根据在数轴上右边的数据大于左边的数据即可得出答案.【详解】解: m Q 在n 的左边,m n \<,故答案为:<.【点睛】此题考查了实数与数轴,正确掌握数轴上数据大小关系是解题关键.18.若()2180x y ++-=,则x y -的值为______.【答案】9-【分析】利用非负数的性质得出x y ,的值,代入计算得出答案.【详解】解:()2180x y ++-=Q ,1080x y \+=-=,,解得:18x y =-=,,189x y \-=--=-,故答案为:9-.【点睛】本题考查了非负数的性质,掌握非负数的意义和性质是正确解答的关键.三、解答题(共66分)19.(6分)计算:(1)23(22)(21)+---;(2)(3)(2)16(8)-´-+¸-.【答案】(1)22(2)4【分析】(1)利用加法的运算律进行求解即可;(2)先计算乘除,再计算加减即可求解.【详解】(1)解:23(22)(21)+---232221=-+22=;(2)解:(3)(2)16(8)-´-+¸-()62=+-4=.【点睛】本题考查了有理数的混合运算,解题的关键是掌握相应的运算法则.20.(6分)将下列各数在数轴上表示出来,并用“<”连接.2153,|3|,2,0,,(222----+【答案】详见解析,25312()0|3|222-<-<-+<<<-【分析】由绝对值,相反数,有理数的乘方的概念,找到各数在数轴上对应点的位置即可.【详解】解:25312(0|3|222-<-<-+<<<-.【点睛】本题考查数轴的概念,相反数,绝对值,有理数的乘方的概念,关键是准确确定各数在数轴上对应点的位置.21.(6分)计算:()()21125|2|953--´--+-¸.【答案】26-【分析】原式先算乘方及绝对值,再算乘除,最后算加减即可得到结果.【详解】解:()()21125|2|953--´--+-¸41227=---26=-.【点睛】此题考查了有理数的混合运算,其运算顺序为:先乘方,再乘除,最后加减,有括号先算括号里边的,同级运算从左到右依次进行,熟练掌握运算法则是解题关键.22.(6分)数学老师布置了一道思考题:115626æöæö-¸-ç÷ç÷èøèø,小明仔细思考了一番,用了一种不同方法解决了这个问题,小明解法如下:原式的倒数为()151156226626æöæöæö-¸-=-´-=ç÷ç÷ç÷èøèøèø,所以11516262æöæö-¸-=ç÷ç÷èøèø.(1)请你判断小明的解答是否正确(2)请你运用小明的解法解答下面的问题计算:111112346æöæö-¸-+ç÷ç÷èøèø【答案】(1)小明的解答正确(2)13-【分析】(1)正确,利用倒数的定义判断即可;(2)求出原式的倒数,即可确定出原式的值.【详解】(1)解:小明的解答正确,理由为:一个数的倒数的倒数等于原数;(2)解:111134612æöæö-+¸-ç÷ç÷èøèø()11112346æö=-+´-ç÷èø()()()111121212346=´--´-+´-432=-+-3=-,∴11111123463æöæö-¸-+=-ç÷ç÷èøèø.【点睛】本题主要考查了有理数乘法和除法计算,熟练掌握相关计算法则是解题的关键.23.(6分)如果a ,b ,c 是非零有理数,求式子222||||||||a b c abc a b c abc -+++的所有可能的值.【答案】3±或5±【分析】根据绝对值的性质和有理数的除法法则分情况讨论即可.【详解】解:根据题意,当000a b c >>>,,时,22222215||||||||a b c abc a b c abc -+++=++-=;当000a b c >><,,时,22222213||||||||a b c abc a b c abc -+++=+-+=;当000a b c ><>,,时,22222213||||||||a b c abc a b c abc -+++=-++=;当000a b c <>>,,时,22222213||||||||a b c abc a b c abc -+++=-+++=;当000a b c <<>,,时,22222213||||||||a b c abc a b c abc -+++=--+-=-;当000a b c ><<,,时,22222213||||||||a b c abc a b c abc -+++=---=-;当000a b c <><,,时,22222213||||||||a b c abc a b c abc -+++=-+--=-;当000a b c <<<,,时,22222215||||||||a b c abc a b c abc -+++=---+=-;综上所述,式子222||||||||a b c abc a b c abc -+++的所有可能的值为3±或5±.【点睛】本题考查了有理数的乘法和绝对值的性质,熟练掌握绝对值的性质以及有理数的除法法则是解题的关键.24.(8分)某工厂一周内,计划每天生产自行车100辆,实际每天生产量如下表(以计划量为标准,增加的车辆记为正数,减少的车辆记为负数):星期周一周二周三周四周五周六周日增减(辆)1-+32-+4+75-10-(1)生产量最多的一天比最少的一天多生产多少辆?(2)本周一共生产了多少辆自行车?【答案】(1)17辆;(2)696辆.【分析】(1)由表可知,生产最多的一天为()1007+辆,最少的一天为()10010-,两者相减即可;(2)先用100乘以7,再将多生产或少生产的数量相加,两者相加即可.【详解】(1)()()10071001071017+--=+=(辆)∴生产量最多的一天比最少的一天多生产17辆;(2)()100713247510´+-+-++--7004=-696=(辆)∴本周一共生产了696辆自行车.【点睛】本题考查了正数和负数、有理数的四则运算在实际问题中的应用,根据表中数据正确列式,是解题的关键.25.(8分)如图,在数轴上有A、B、C三个点,请回答下列问题.(1)A、B两点间距离是,B、C两点间距离是,A、C两点间距离是.(2)若将点A向右移动5个单位到点D,B、C、D这三点所表示的数哪个最大?最大数比最小数大多少?【答案】(1)3 ;4;7(2)C点表示的数最大,最大数比最小数大4【分析】(1)根据数轴上两点之间的距离公式进行解答即可;(2)求出点D表示的数,然后再进行比较即可.【详解】(1)解:点A表示的数为4-,点B表示的数为1-,点C表示是数为3,则()AB=---=-+=,14143()31314BC=--=+=,()AC=--=+=,34347故答案为:3;4;7.-+=,点B表示的数为1-,点C表示(2)解:将点A向右移动5个单位到点D,则点D表示是数为451是数为3,>>-,∵311∴表示最大数的是点C,表示最小数的是点B()--=+=,31314∴最大数比最小数大4.【点睛】本题主要考查了用数轴上点表示有理数,数轴上两点之间的距离,解题的关键是数形结合找出点A、B、C在数轴上所表示的有理数.26.(10分)数学实验室:点A、B在数轴上分别表示有理数a、b,A、B两点之间的距离表示为AB,在数轴上A、B两点之间的距离=-.AB a b利用数形结合思想回答下列问题:(1)数轴上表示2和6两点之间的距离是 ,数轴上表示1和4-的两点之间的距离是 .(2)数轴上表示x 和3-的两点之间的距离表示为 .数轴上表示x 和6的两点之间的距离表示为 .(3)若x 表示一个有理数,则14x x -++的最小值= .(4)若x 表示一个有理数,且134x x ++-=,则满足条件的所有整数x 的是 .(5)若x 表示一个有理数,当x 为 ,式子234x x x ++-+-有最小值为 .【答案】(1)4,5(2)3x +,6x -(3)5(4)1-或0或1或2或3(5)3,6【分析】(1)根据数轴上A 、B 两点之间的距离AB a b =-列式计算即可;(2)根据数轴上A 、B 两点之间的距离AB a b =-列式计算即可;(3)根据数轴上两点之间的距离的意义可知x 在4-与1之间时,14x x -++有最小值5;(4)根据数轴上两点之间的距离的意义可知当x 在1-与3之间时(包含1-和3),134x x ++-=,然后可得满足条件的所有整数x 的值;(5)根据数轴上两点之间的距离的意义可知当3x =时,234x x x ++-+-有最小值,最小值为2-到4的距离,然后可得答案.【详解】(1)解:数轴上表示2和6两点之间的距离是264-=,数轴上表示1和4-的两点之间的距离是()145--=,故答案为:4,5;(2)解:数轴上表示x 和3-的两点之间的距离表示为()33x x --=+,数轴上表示x 和6的两点之间的距离表示为6x -;故答案为:3x +,6x -;(3)解:根据数轴上两点之间的距离的意义可知:14x x -++可表示为点x 到1与4-两点距离之和,∴当x 在4-与1之间时,14x x -++有最小值5,故答案为:5;(4)解:根据数轴上两点之间的距离的意义可知:134x x ++-=表示为点x 到1-与3两点距离之和为4,∴当x 在1-与3之间时(包含1-和3),134x x ++-=,∴满足条件的所有整数x 的是1-或0或1或2或3;故答案为:1-或0或1或2或3;(5)解:根据数轴上两点之间的距离的意义可知:234x x x ++-+-可看作是数轴上表示x 的点到2-、3、4三点的距离之和,∴当3x =时,234x x x ++-+-有最小值,最小值为2-到4的距离,即246--=,故答案为:3,6.【点睛】本题考查了数轴上两点之间的距离公式,绝对值的几何意义,正确理解数轴上两点之间的距离以及绝对值的几何意义是解题的关键.27.(10分)【概念学习】规定:求若干个相同的有理数(均不等0)的除法运算叫做除方,如333¸¸,()()()()2222-¸-¸-¸-等.类比有理数的乘方,我们把333¸¸记作3③,读作“3的圈3次方”,()()()()2222-¸-¸-¸-记作()2-④,读作“2-的圈4次方”.一般地,把()0n aa a a a ¸¸¸××׸¹1442443个记作,读作“a 的圈n 次方”.【初步探究】(1)直接写出计算结果:4=③______,412æö-=ç÷èø______.【深入思考】我们知道,有理数的减法运算可以转化为加法运算,除法运算可以转化为乘法运算,有理数的除方运算如何转化为乘方运算呢?(此处不用作答)(2)试一试:仿照上面的算式,将下列运算结果直接写成乘方幂的形式()3-=④______;5=⑥______;12æö=ç÷èø⑤______.(3)想一想:将一个非零有理数a 的圈n 次方写成乘方幂的形式等于______.(4)比较:()9-⑤______()3-⑦(填“>”“<”或“=”)【灵活应用】(5)算一算:211334æöæö-¸-´-ç÷ç÷èøèø⑤④.【答案】(1)14,4;(2)213æö-ç÷èø,415æöç÷èø,32;(3)21n a -æöç÷èø;(4)>;(5)163【分析】(1)根据题目给出的定义,进行计算即可;(2)将有理数除法转化为乘法,再写成幂的形式即可;(3)从(2)中总结归纳相关规律即可;(4)将两数变形,求出具体值,再比较大小即可;(5)先将除方转化为乘方,再运用有理数混合运算的方法进行计算即可.【详解】解:(1)144444=¸¸=③,411111422222æöæöæöæöæö-=-¸-¸-¸-=ç÷ç÷ç÷ç÷ç÷èøèøèøèøèø,故答案为:14,4;(2)()()()()()21333333æö--¸-¸-¸-=-è=ç÷ø④;4155555555æö=¸¸¸¸¸=ç÷èø⑥31111112222222æö=¸¸¸¸=ç÷èø⑤;故答案为:213æö-ç÷èø,415æöç÷èø,32;(3)a 的圈n 次方为:21...n n a a a a a a -æö¸¸¸¸=ç÷èø1442443个;(4)()31172999æö-=-=-ç÷èø⑤,()51124333æö-=-=-ç÷èø⑦,∵729243>,∴11729243->-,∴()9-⑤>()3-⑦,故答案为:>;(5)211334æöæö-¸-´-ç÷ç÷èøèø⑤④()232334=-¸-´()92716=-¸-´163=.【点睛】本题考查了有理数的除法运算,乘方运算,以及有理数混合运算,正确理解相关运算法则是解题的关键.。

有理数单元测试卷(含答案)

有理数单元测试卷(含答案)

有理数单元测试卷(含答案)数学试卷(第一章有理数,时间90分,满分100分)班级姓名成绩一、填空题(每小题2分,共20分)题号 1 2 3 4 5 6得分答案 2.|-2| 2/5 向西走60m 2 ①-3/4-3/5 1题号 7 8 9 10得分答案 13 2.3.4.5 -14/15二、选择题(每小题3分,共24分)题号 11 12 13 14 15 16 17 18答案 A C B D B B D A三、解答题(76分)19.把下列各数填入它所属的集合内:(6分)15,-3/4,-5,0,5/6,-5.32,21)分数集合{ -3/4.5/6}2)整数集合{ -5.0.2}3)正数集合{ 5/6.2}20.比较大小:-(-0.3)和| - |(4分)0.3) = 0.3,| - | = 00.3.0,所以-(-0.3)。

| - |21.计算下列各题(24分)1) (-3) + (-9) = -122) (-4.7) + 3.9 = -0.83) (4) / (-2/3) = -65) (-2/3) / (3/4) = -8/96) (-1/2) * (-4/5) = 2/522.用简便方法计算下列各题(8分)1) 2/5 + 1/4 = (8 + 5) / 20 = 13/202) 5/6 - 1/3 = (5 - 2) / 6 = 3/6 = 1/223.在数轴上表示 -4,+2,-1.5,用"<"号连接它们。

24.某公司去年总的盈亏情况是:1-3月平均每月亏损1.5万元,4-6月平均每月盈利2万元,7-10月平均每月盈利1.7万元,11-12月平均每月亏损2.3万元。

25.若。

求的值。

26.某检修小组乘车沿公路检修线路,约定向东为正。

某天从A地出发到收工时行走记录为(单位:千米)+15,-2,+5,-1,+10,-3.1) 收工时检修小组在A地的西边,距A地距离为14千米。

有理数的单元测试题及答案

有理数的单元测试题及答案

有理数的单元测试题及答案一、选择题(每题2分,共10分)1. 下列各数中,是正数的有()A. -3B. 0C. 3D. -3.52. 绝对值是5的数是()A. 5B. -5C. 5或-5D. 都不是3. 两个负数相加,和的符号是()A. 正B. 负C. 0D. 不确定4. 有理数的乘方运算中,-3的平方是()A. 9B. -9C. 3D. -35. 若a < 0,b > 0,且|a| > |b|,则a+b的值是()A. 正B. 负C. 0D. 不确定二、填空题(每题2分,共10分)1. 有理数包括整数和______。

2. 绝对值是数轴上表示该数的点到原点的距离,例如|-4|=______。

3. 两个有理数相除,如果被除数和除数同号,则商是______数。

4. 有理数的乘法运算中,-2乘以-3等于______。

5. 一个数的相反数是与它相加等于______的数。

三、计算题(每题5分,共20分)1. 计算下列各数的绝对值:|-7|,|0|,|5.5|。

2. 计算下列各数的和:-3 + 2 + (-1)。

3. 计算下列各数的乘积:(-4) × (-5)。

4. 计算下列各数的差:7 - (-2)。

四、解答题(每题10分,共20分)1. 某班有学生40人,其中20人喜欢数学,15人喜欢英语,5人既喜欢数学又喜欢英语。

请问喜欢数学或英语的学生有多少人?2. 某商店出售两种商品,商品A的进价是20元,售价是30元;商品B的进价是15元,售价是25元。

如果商店同时购进这两种商品各10件,商店的总利润是多少?五、应用题(每题15分,共30分)1. 某工厂有工人100名,其中60名工人每天能完成10个产品,剩余的工人每天能完成5个产品。

如果工厂每天需要生产800个产品,问工厂是否需要增加工人?2. 某公司计划在两个城市之间铺设一条铁路,已知城市A到城市B的距离是300公里。

如果铁路的铺设成本是每公里5万元,公司需要准备多少资金?答案:一、选择题1. C2. C3. B4. A5. B二、填空题1. 分数2. 43. 正4. 65. 0三、计算题1. 绝对值:7,0,5.52. 和:-23. 乘积:204. 差:9四、解答题1. 喜欢数学或英语的学生有35人。

有理数单元测试题及答案

有理数单元测试题及答案

有理数单元测试题及答案一、选择题(每题2分,共20分)1. 下列哪个数是有理数?A. πB. √2C. 0.33333(无限循环)D. 1/32. 有理数-3和5的和是多少?A. -8B. 2C. -2D. 83. 哪个是有理数的相反数?A. 3B. -3C. 0D. 1/24. 绝对值是5的有理数有几个?A. 1B. 2C. 3D. 45. 下列哪个表达式等于0?A. -3 + 3B. -3 - 5C. -3 × 0D. -3 ÷ 3二、填空题(每题2分,共20分)6. 有理数-7的绝对值是________。

7. 有理数-2和4的差是________。

8. 有理数-6和-3的乘积是________。

9. 有理数-4的倒数是________。

10. 若a是有理数,且a的相反数是-5,则a=________。

三、计算题(每题5分,共30分)11. 计算下列表达式的值:(-3) × (-2) + 4 ÷ (-2)。

12. 解下列方程:3x - 7 = 8。

13. 计算下列各数的绝对值:-12,0,5.5。

14. 求下列数的相反数:-9,3/4,0。

四、解答题(每题10分,共30分)15. 某商店在一天内卖出了价值为-500元的商品(亏损),同时又购入了价值为300元的商品。

请问这一天商店的净亏损是多少?16. 某工厂在一个月内生产了200件产品,每件产品的成本是5元,销售价格是10元。

请问工厂这个月的纯利润是多少?17. 某学生在一次数学测验中得了85分,第二次测验得了90分,第三次测验得了75分。

请问该学生这三次测验的平均分是多少?答案一、选择题1. D2. C3. B4. B5. A二、填空题6. 77. -68. 189. -1/410. 5三、计算题11. 412. x = 513. 12,0,5.514. 9,-3/4,0四、解答题15. 净亏损200元16. 纯利润1000元17. 平均分81.67分(保留两位小数)结束语本测试题旨在检验学生对有理数的基本概念、运算规则和实际应用的理解。

有理数单元测试及答案

有理数单元测试及答案

有理数单元测试及答案有理数单元检测试题一、填空题(本题共有9个小题,每小题2分,共18分)1、一幢大楼地面上有12层,还有地下室2层,如果把地面上的第一层作为基准,记为0,规定向上为正,那么惯上将2楼记为1;地下第一层记作-1;数-2的实际意义为地下第三层,数+9的实际意义为地面上的第十层。

2、如果数轴上的点A对应有理数为-2,那么与A点相距3个单位长度的点所对应的有理数为-5.3、某数的绝对值是5,那么这个数是-5或5.(保留四个有效数字)4、(4/3)²=16/9,(-4/3)²=16/9.5、数轴上和原点的距离等于3的点表示的有理数是-3或3.6、计算:(-1)+(-1)=-2.7、如果a、b互为倒数,c、d互为相反数,且m=-1,则代数式2ab-(c+d)+m=-1.8、(+5.7)的相反数与(-7.1)的绝对值的和是12.8.9、已知每辆汽车要装4个轮胎,则51只轮胎至多能装配12辆汽车。

二、选择题(本题共有10个小题,每小题都有A、B、C、D四个选项,请你把你认为适当的选项前的代号填入题后的括号中,每题2分,共20分)10、下列说法正确的是(C)。

A。

整数就是正整数和负整数B。

负整数的相反数就是非负整数C。

有理数中不是负数就是正数D。

零是自然数,但不是正整数11、下列各对数中,数值相等的是(A)。

A。

-2与(-2)B。

-3与(-3)C。

-3×2与-3×2D。

-( -3)与-( -2)12、在-5,-9,-3.5,-0.01,-2,-212各数中,最大的数是(D)。

A。

-12B。

-9C。

-0.01D。

-213、如果一个数的平方与这个数的差等于1,那么这个数只能是(B)。

A。

-1B。

1C。

0D。

或114、绝对值大于或等于1,而小于4的所有的正整数的和是(C)。

A。

8B。

7C。

6D。

515、计算:(-2)+(-2)的是(D)。

A。

2B。

-1C。

-2D。

有理数单元测试题及答案

有理数单元测试题及答案

有理数单元测试题及答案一、选择题(每题2分,共10分)1. 下列哪个数是有理数?A. πB. √2C. 1/3D. 0.33333(无限循环)答案:C2. 如果a和b都是有理数,且a > b,那么下列哪个选项是正确的?A. a + b > 0B. a - b > 0C. a × b > 0D. a ÷ b > 0答案:B3. 两个负有理数相加的结果是什么?A. 正数B. 负数C. 零D. 无法确定答案:B4. 下列哪个数是无理数?A. 0.5B. √3C. 1/7D. 3.1415答案:B5. 有理数a和b的绝对值相等,且a < b,那么a和b的和是多少?A. aB. bC. 0D. -2a答案:D二、填空题(每题2分,共10分)6. 如果一个有理数的绝对值是5,那么这个数可以是______或______。

答案:5,-57. 两个有理数相除,如果商是正数,那么这两个数的符号必须______。

答案:相同8. 如果一个有理数的平方是9,那么这个数可以是______或______。

答案:3,-39. 有理数的加法运算满足交换律,即a + b = ______ + a。

答案:b10. 有理数的乘法运算满足结合律,即(a × b) × c = a ×(______ × c)。

答案:b三、计算题(每题5分,共15分)11. 计算下列表达式的值:(-3) × 2 + 4 × (-2) - 6。

答案:原式 = -6 - 8 - 6 = -2012. 计算下列表达式的值:(-4)² - 3 × 2 - 5。

答案:原式 = 16 - 6 - 5 = 513. 计算下列表达式的值:(-2)³ + 3 × (-1/3) - 1。

答案:原式 = -8 - 1 - 1 = -10四、解答题(每题10分,共20分)14. 某商店在一天内卖出了10件商品,每件商品的售价为x元,成本为y元。

有理数单元测试题(含答案)

有理数单元测试题(含答案)

有理数单元测试题(含答案)有理数单元测试题⼀、选择题(本⼤题共10⼩题,共30分) 1.下列各数表⽰准确数的是()A. ⼩明同学买了6⽀铅笔B. ⼩亮同学的⾝⾼是1.72mC. 教室的⾯积是60m2D. ⼩兰在菜市场买了3⽄西红柿1.下列说法:①近似数3.45精确到百分位;②近似数0.50精确到百分位,③2019.5精确到个位是2019.其中说法正确的个数有()A. 1个B. 2个C. 3个D. 0个2.关于(?3)4的正确说法是()A. ?3是底数,4是幂B. ?3是底数,4是指数,?12是幂C. 3是底数,4是指数,81是幂D. ?3是底数,4是指数,81是幂3.在算式|5□(?3)|+4中的□所在位置,填⼊下列哪种运算符号,计算出来的值最⼤()A. +B. ?C. ×D. ÷4.已知xy>0,x+y<0,则()A. x>0,y>0B. x<0,y<0C. x>0,y<0D. x<0,y>05.若a+b<0,baB. a<0,b<0C. a>0,b<0D. a<0,b>06.计算1357×316最简便的⽅法是()A. (13+57)×316B. (14?27)×316C. (10+357)×316D. (16?227)×3167.计算(?1)2017?(?1)2018等于()A. 0B. 2C. ?2D. ?18.⽤科学记数法表⽰136000,其结果是()A. 0.136×106B. 1.36×105C. 136×103D. 136×1069.有理数a、b在数轴上的对应位置如图所⽰,则a+b的值为()B. 负数C. 0D. ⾮正数⼆、填空题(本⼤题共10⼩题,共30分)10.四舍五⼊求近似值:0.7951≈__________ (精确到0.01)11.已知2.73×10n是⼀个7位数,则n=________,原数为________.12.已知a,b互为相反数,c,d互为倒数,m的绝对值等于2.则a+ba+b+c2cd+m=0的值为________.13.若|m|=7,|n|=4,那么mn=________.14.计算:(?22)×57×(?311)×(?21)=______.15.计算:1+(?2)+3+(?4)+5+(?6)+?+99+(?100)=______.16.已知两个数的和为?225,其中⼀个数为?134,则另⼀个数是________.17.已知|x|=7,|y|=2,且x18.若a是?[?(?7)]的相反数,则a=________.19.如果2a?5与?7互为相反数,则a=________.三、计算题21、(本⼤题共1⼩题,共6×4=24分)(1)(?1)100×5+(?2)4÷4;(2)(?3)3?3×(?13)4;(3)76×(1613)×314÷3;(4)(?10)3+[(?4)2?(1?32)×2];(5)?23÷49×(?23)2;(6)4+(?2)3×5?(?0.28)÷4.四、解答题(本⼤题共6⼩题,共36分)20.已知数轴上有点A,B,A,B两点之间的距离是1个单位长度,点A到原点O的距离是3个单位长度,那么点B对应的数可能是多少?(5分)21.在活动课上,有6名学⽣⽤橡⽪泥做了6个乒乓球,直径可以有0.02毫⽶的误差,超过规定直径的毫⽶数记作正数,不⾜的记为负数,检查结果如下表:(1)请你指出哪些同学做的乒乓球是合乎要求的?(2)指出合乎要求的乒乓球中哪个同学做的质量最好?哪个同学做的质量较差?(3)请你对6名同学做的乒乓球质量按照最好到最差排名;(4)⽤学过的绝对值知识来说明以上问题.(1+2+2+1=6分)22.已知a=?212,b=?314,c=413,求下列各式的值.(3+3=6分)(1)a?b+c;(2)a?b?c.23.已知a、b互为相反数,c、d互为倒数,m是绝对值等于2的数,求:a+ba+b+c+m2?cd 的值.(5分)24.观察下⾯三⾏数.(2+2+3=7分)2,4,?8,16,?32,64,…;4,2,?10,14,?34,62,…;4,?8,16,?32,64,?128,….(3)取每⾏的第100个数,计算这三个数的和.25.观察下列等式:(4+3=7分)第1个等式:a1=11×3=12×(1?13);第2个等式:a2=13×5=12×(1315);第3个等式:a3=15×7=12×(1517);第4个等式:a4=17×9=12×(1719);……请解答下列问题:(1)按以上规律列出第5个等式:a5=________=________;(2)⽤含n的式⼦表⽰第n个等式:a n=____________=____________(n为正整数);有理数测试题答案【答案】1. A2. B3. D4. C5. B6. B7. D8. C9. B10. A11. 0.8012. 6;273000013. 0或?414. ±2815. ?9016. ?5017. ?132018. ?9或?519. 720. 621. 解:(1)原式=1×5+16÷4 =5+4=9;(2)原式=?27?3×181=?27?1 27=?27127;(3)原式=76×(?16=?572;(4)原式=?1000+[16?(?8)×2]=?1000+(16+16)=?1000+16+16 =?968;(5)原式=?8×94×49=?8;(6)原式=4+(?8)×5+0.07=4?40+0.07 =?35.93.22. 解:当点A 表⽰3时,点B 表⽰的数是2或4,当点A 表⽰?3时,点B 表⽰的数是?2或?4.23. 解:(1)∵绝对值⼩于0.02的数有?0.017,?0.011,∴张兵、蔡伟做的乒乓球是合乎要求的; (2)∵|?0.011|<|?0.017|,∴蔡伟做的质量最好,张兵做的质量较差;(3)∵|?0.011|<|?0.017|<|?0.021|<|+0.022|<|+0.023|<|+0.031|,∴从最好到最差排名为:蔡伟、张兵、余佳、赵平、王敏、李明; (4)这是绝对值在实际⽣活中的应⽤,对误差来说绝对值越⼩越好.24. 解:(1)原式=(?212)?(?314)+413=?52+134+133=30+39+5212=6112;(2)原式=(?212)?(?314)?41=30+395212=?4312.25. 解:∵a 、b 互为相反数,c 、d 互为倒数,m 是绝对值等于2的数,∴a +b =0,cd =1,m 2=4,∴a+ba+b+c +m 2?cd =0+4?1=3.26. 解:(1)第⼀⾏数的规律是:从第⼀个数开始,后⾯⼀个数是前⾯⼀个数乘?2得到的,即?2,(?2)2,(?2)3,(?2)4……,则第n 个数为(?2)n ;(2)第⼀⾏数?2对应得出第⼆⾏的数,即(?2)n ?2;第⼀⾏数×(?2)对应得出第三⾏的数,即(?2)n+1; (3)∵第⼀⾏的第100个数为(?2)100,第⼆⾏的第100个数为(?2)100?2,;第三⾏的第100个数为(?2)100×(?2)=(?2)101(?2)100+[(?2)100?2]+(?2)101=(?2)100+(?2)100+(?2)101?2 =(?2)100(1+12)2=?2.27. 解:(1)19×11 12×(19?111);1×(12n?112n+1);(3)a1+a2+a3+a4+?+a100=12×(1?13)+15)+12×(1517)+12×(1719)+···+ 12×(1 1991 201 ) =3+1315+1517+1719 +···+ 1 1991 201 )=1×(1? 1)12×200 201 =100 201.。

有理数单元测试卷附答案

有理数单元测试卷附答案

第一章有理数单元测试卷(一)附答案(总13页)-CAL-FENGHAI.-(YICAI)-Company One1-CAL-本页仅作为文档封面,使用请直接删除第一章有理数单元测试卷基础卷考试范围:有理数;考试时间:100分钟;命题人:xxx学校:___________姓名:___________班级:___________考号:___________题号一 二 三 总分 得分评卷人得 分 一.选择题(共12小题)1.如果水库的水位高于正常水位5m 时,记作5m +,那么低于正常水位3m 时,应记作( )A .3m +B .3m -C .13m +D .5m -2.下列说法正确的有( )①正有理数是正整数和正分数的统称;②整数是正整数和负整数的统称;③有理数是正整数、负整数、正分数、负分数的统称;④0是偶数,但不是自然数;⑤偶数包括正偶数、负偶数和零.A .1个B .2个C .3个D .4个3.有理数a ,b 在数轴上的对应点的位置如图所示,则下列各式成立的是( )A .a b >B .0ab >C .||||a b <D .a b ->4.下列各数中,相反数是12-的是( ) A .12- B .12 C .2- D .25.下列化简错误的是( )A .(2)2--=B .(3)3-+=-C .(4)4+-=-D .|5|5-=6.23-的倒数是( ) A .32 B .32- C .23 D .23- 7.下列四个数中,最大的数是( )A .13-B .0C .2-D .28.我国古代的“九宫格”是由33⨯的方格构成的,每个方格内均有不同的数,每一行、每一列以及每一条对角线上的三个数之和相等.如图给出了“九宫格”的一部分,请你推算x 的值是( )251 x A .3 B .4 C .6 D .89.计算(13)(8)---的结果是( )A .21B .21-C .5D .5-10.下列各式中,正确的是( )A .422--=-B .3(3)0--=C .10(8)2+-=- D .54(4)5----=- 11.有理数a 、b 在数轴上的位置如图所示,下列各式正确的是( )A .0ab >B .0a b +<C .0a b ->D .0b a ->12.已知有理数a ,b 在数轴上表示的点如图所示,则下列式子中正确的是( )A .0a b +>B .0a b ->C .0a b >D .||||a b >评卷人得 分 二.填空题(共6小题)13.如果盈利5千元记作5+千元,那么亏损2千元记作 千元.14.在113,714,1340中不能化成有限小数的是 15.点A 、B 在数轴上对应的数分别为2-和5,则线段AB 的长度为 .16.a 的相反数是710,则a 的倒数是 . 17.已知a 与b 的和为2,b 与c 互为相反数,若||1c =,则a = .18.若a 和b 互为倒数,则ab = .评卷人得 分三.解答题(共8小题)19.股民老宋上周五在股市以收盘价(股市收市时的价格)每股36元购买进某公司股票1000股,周六,周日股市不交易,在接下来的一周交易日内,老宋记下该股票每日收盘价格相比前一天的涨跌情况如表:(单位:元)(1)星期三收盘时,每股是多少元?(2)已知买入股票与卖出股票均需支付成交额的1.5%的手续费,并且卖出股票还要交成交额的1%的交易税,如果股民老宋在周五以收盘价将全部股票卖出,他的收益情况如何?20.对于任意四个有理数a 、b 、c 、d ,可以组成两个有理数对(,)a b 与(,)c d .我们规定:(a ,)(b c ,)d bc ad =-.例如:(1,2)(3,4)23142=⨯-⨯=.根据上述规定解决下列问题:(1)有理数对(3,5)(4-,2)-= ;(2)若有理数对(4-,31)(2x -,1)8x -=,求x 的值;(3)当满足等式(2-,31)(x k -,)5x k k +=+的x 是整数时,求整数k 的值.21.数轴上两点间的距离等于这两个点所对应的数的差的绝对值.例:点A 、B 在数轴上对应的数分别为a 、b ,则A 、B 两点间的距离表示为||AB a b =-.根据以上知识解题:(1)点A 在数轴上表示3,点B 在数轴上表示2,那么AB = .(2)在数轴上表示数a 的点与2-的距离是3,那么a = .(3)如果数轴上表示数a 的点位于4-和2之间,那么|4||2|a a ++-= .(4)对于任何有理数x ,|3||6|x x -+-是否有最小值?如果有,直接写出最小值.如果没有.请说明理由.22.已知324x +=-与3321y m -=-,且x 、y 互为相反数,求m 的值.23.有理数a 、b 、c 在数轴上的位置如图:(1)判断正负,用“>”或“<”填空:b c - 0,a b + 0,c a - 0.(2)化简:||||||b c a b c a -++--.24.若a 、b 互为相反数,c 、d 互为倒数,m 的绝对值为2.(1)直接写出a b +,cd ,m 的值;(2)求a b m cd m+++的值. 25.画出数轴,并在数轴上画出表示下列各数的点,再按从小到大的顺序用“<”号把这些数连接起来:1-,0,122-,3,1226.七年级二班的几位同学正在一起讨论一个关于数轴上的点表示数的题目:甲说:“这条数轴上的两个点A 、B 表示的数都是绝对值是4的数”;乙说:“点C 表示负整数,点D 表示正整数,且这两个数的差是3”;丙说:“点E 表示的数的相反数是它本身”.(1)请你根据以上三位同学的发言,画出一条数轴,并描出A 、B 、C 、D 、E 五个不同的点,(2)求这五个点表示的数的和.第一章有理数单元测试卷参考答案与试题解析一.选择题(共12小题)【分析】在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.【解答】解:如果水库的水位高于正常水位5m 时,记作5m +,那么低于正常水位3m 时,应记作3m -.故选:B .【点评】此题主要考查正负数的意义,关键是掌握正数与负数表示意义相反的两种量,看清规定哪一个为正,则和它意义相反的就为负.【分析】按照有理数的分类对各项进行逐一分析即可.【解答】解:①正有理数是正整数和正分数的统称是正确的;②整数是正整数、0和负整数的统称,原来的说法是错误的;③有理数是正整数、0、负整数、正分数、负分数的统称,原来的说法是错误的; ④0是偶数,也是自然数,原来的说法是错误的;⑤偶数包括正偶数、负偶数和零是正确的.故说法正确的有2个.故选:B .【点评】考查了有理数,认真掌握正数、负数、整数、分数、正有理数、负有理数、非负数的定义与特点.注意整数和正数的区别,注意0是整数,但不是正数.【分析】根据各点在数轴上的位置得出a 、b 两点到原点距离的大小,进而可得出结论.【解答】解:由图可知101a b <-<<<,则0ab <,||||a b >,a b ->.故选:D .【点评】本题考查的是数轴,解答本题的关键在于结合有理数a 、b 在数轴上的对应点的位置进行判断求解.【分析】根据只有符号不同的两个数是互为相反数,求出12-的相反数,然后选择即可. 【解答】解:12的相反数是12-,∴相反数等于12-的是12.故选:B.【点评】本题考查了相反数的定义,熟记定义是解题的关键.【分析】根据相反数的含义和应用,以及绝对值的含义和应用,逐项判断即可.【解答】解:(2)2--=,∴选项A不符合题意;(3)3-+=-,∴选项B不符合题意;(4)4+-=-,∴选项C不符合题意;|5|5-=-,∴选项D符合题意.故选:D.【点评】此题主要考查了相反数的含义和应用,以及绝对值的含义和应用,要熟练掌握,解答此题的关键是要明确:①当a是正有理数时,a的绝对值是它本身a;②当a是负有理数时,a的绝对值是它的相反数a-;③当a是零时,a的绝对值是零.【分析】根据倒数的定义,可得答案.【解答】解:23-的倒数是32-,故选:B.【点评】本题考查了倒数,分子分母交换位置是求一个数的倒数.【分析】根据正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小进行比较即可.【解答】解:12023-<-<<,∴最大的数是2;故选:D.【点评】此题主要考查了实数的大小比较,关键是掌握比较大小的法则.【分析】首先根据三阶幻方的特征,可得:第三行第一列的数是:5228⨯-=;然后根据:第三行的各个数的和53=⨯,求出x 的值是多少即可.【解答】解:第三行第一列的数是:5228⨯-=,53816x =⨯--=.故选:C .【点评】此题主要考查了有理数加法的运算方法,以及幻方的特征和应用,要熟练掌握.【分析】原式利用减法法则变形,计算即可求出值.【解答】解:原式1385=-+=-,故选:D .【点评】此题考查了有理数的减法,熟练掌握运算法则是解本题的关键.【分析】直接利用有理数的混合运算法则计算得出答案.【解答】解:A 、426--=-,故此选项不合题意;B 、3(3)6--=,故此选项不合题意;C 、10(8)2+-=,故此选项不合题意;D 、54(4)5----=-,正确,符合题意.故选:D .【点评】此题主要考查了有理数的混合运算,正确掌握相关运算法则是解题关键.【分析】根据数轴上点的位置确定出a b +,a b -以及ab 的正负即可.【解答】解:由题意:0a <,0b >,||||b a >,0ab ∴<,0a b +>,0a b -<,0b a ->,故选:D .【点评】此题考查了数轴,熟练掌握有理数的运算法则是解本题的关键.【分析】先根据数轴上两数,右边的数总是大于左边的数,即可得到:0b a <<,且||||b a >,再根据有理数的运算法则即可判断.【解答】解:根据数轴可得:0b a <<,且||||b a >.A 、0a b +<,故选项错误;B 、0a b ->,故选项正确;C 、0ab <,故选项错误;D 、||||a b <,故选项错误.【点评】本题主要考查了数轴上两数比较大小的方法以及有理数的运算法则.二.填空题(共6小题)【分析】根据正数与负数的定义即可求出答案.【解答】解:如果盈利5千元记作5+千元,那么亏损2千元记作2-千元,故答案为:2-.【点评】本题考查正数与负数,解题的关键是正确理解正负数的定义,本题属于基础题型.【分析】分别将每个分数化为小数,则有70.514=,130.32540=,141 1.333==,即可求解.【解答】解:70.514=,130.32540=,141 1.333==,113∴不能化成有限小数,故答案为113.【点评】本题考查有理数;能够将分数正确的化为小数是解题的关键.【分析】根据数轴上两点距离公式进行计算即可.【解答】解:|25|7AB=--=,故答案为:7.【点评】考查数轴表示数的意义,点A、B在数轴上表示的数为a、b,则A、B两点之间的距离为||AB a b=-.【分析】利用相反数及倒数的定义计算即可得到结果.【解答】解:a的相反数是710,710a∴=-,则a的倒数为107 -.故答案为:107 -.【点评】此题考查了相反数,以及倒数,熟练掌握各自的定义是解本题的关键.【分析】根据绝对值的定义得出c的值,根据互为相反数的两数相加为0,进而得出b的值,即可得出a的值.【解答】解:||1c=,b与c互为相反数,∴+=,b c∴=-或1,b1a与b的和为2,∴+=,2a b∴=或1.a3故答案为:3或1.【点评】此题主要考查了绝对值、相反数的定义.解题的关键是掌握绝对值、相反数的定义.【分析】根据倒数定义可得答案.【解答】解:a和b互为倒数,1∴=,ab故答案为:1.【点评】此题主要考查了倒数,关键是掌握乘积是1的两数互为倒数.三.解答题(共8小题)【分析】(1)由表格可得:3(0.5)2 4.5++-+=(元),36 4.540.5+=(元),(2)买入时的花费:361000 1.5%540⨯⨯=(元),周五卖出时股票价格:⨯⨯+=(元),总收益:+-=(元),卖出时的花费:401000(1.5%1%)100040.51 1.540-⨯--=(元).(4036)100054010002460【解答】解:(1)3(0.5)2 4.5++-+=(元),∴+=(元),36 4.540.5∴星期三收盘时,每股是元;(2)买入时的花费:361000 1.5%540⨯⨯=(元),周五卖出时股票价格:40.51 1.540+-=(元),卖出时的花费:401000(1.5%1%)1000⨯⨯+=(元),总收益:(4036)100054010002460-⨯--=(元),∴老宋总的收益2460元.【点评】本题考查正数与负数;理解正数与负数在实际问题的意义是解题的关键.【分析】(1)原式利用题中的新定义计算即可求出值;(2)原式利用题中的新定义计算即可求出x 的值;(3)原式利用题中的新定义计算,求出整数k 的值即可.【解答】解:(1)根据题意得:原式20614=-+=-;故答案为:14-;(2)根据题意得:2(31)4(1)8x x -+-=去括号得,62448x x -+-=,移项合并得:26x =,解得:3x =(3)等式(2-,31)(x k -,)5x k k +=+的x 是整数,(31)(2)()5x k x k k ∴---+=+,(32)5k x ∴+=,532x k ∴=+, k 是整数,321k ∴+=±或5±, k 为整数,1k ∴=-,1.【点评】此题考查了解一元一次方程,解方程去分母时注意各项都乘以各分母的最小公倍数.【分析】(1)根据两点的距离公式计算 即可;(2)根据两点的距离公式以及绝对值的意义解答即可;(3)根据两点的距离公式以及绝对值的意义解答即可;(4)结合数轴得出:||3||6|x x -+-表示数x 到3和6两点的距离之和,||3||6|x x -+-有最小值,则x 一定在3和6之间,则最小值为3.【解答】解:(1)点A 在数轴上表示3,点B 在数轴上表示2,那么|32|1AB =-=, 故答案为:1;(2)根据题意得,|2|3a +=,解得1a =或5-.故答案为:1或5-;(3)如果数轴上表示数a 的点位于4-和2之间,那么|4||2|426a a a a ++-=-+++=. 故答案为:6;(4)|3||6|x x -+-表示数x 到3和6两点的距离之和,如果求最小值,则x 一定在3和6之间,则最小值为3.【点评】本题考查了一元一次方程的应用,数轴、绝对值、列代数式,解答本题的关键是明确题意,利用分类讨论的数学思想解答.【分析】求出第一个方程的解,根据两方程解互为相反数求出第二个方程的解,即可求出m 的值.【解答】解:方程324x +=-,解得:2x =-,因为x 、y 互为相反数,所以2y =,把2y =代入第二个方程得:6321m -=-,解得:2m =.【点评】此题考查了一元一次方程的解和解一元一次方程.解题的关键是正确理解一元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.【分析】(1)根据数轴判断出a 、b 、c 的正负情况,然后分别判断即可;(2)去掉绝对值号,然后合并同类项即可.【解答】解:(1)由图可知,0a <,0b >,0c >且||||||b a c <<,所以,0b c -<,0a b +<,0c a ->;故答案为:<,<,>;(2)||||||b c a b c a -++--()()()c b a b c a =-+----c b a b c a =----+2b =-.【点评】本题考查了绝对值的性质,数轴,熟记性质并准确识图观察出a 、b 、c 的正负情况是解题的关键.【分析】(1)根据互为相反数的和为0,互为倒数的积为1,绝对值的意义,即可解答;(2)分两种情况讨论,即可解答.【解答】解:(1)a 、b 互为相反数,c 、d 互为倒数,m 的绝对值为2,0a b ∴+=,1cd =,2m =±.(2)当2m =时,2103a b m cd m +++=++=; 当2m =-时,2101a b m cd m+++=-++=-. 【点评】本题考查了倒数、相反数、绝对值,解决本题的关键是熟记倒数、相反数、绝对值的意义.【分析】首先根据在数轴上表示数的方法,在数轴上表示出所给的各数;然后根据当数轴方向朝右时,右边的数总比左边的数大,把这些数由小到大用“<”号连接起来即可.【解答】解:,11210322-<-<<<. 【点评】此题主要考查了在数轴上表示数的方法,以及数轴的特征:一般来说,当数轴方向朝右时,右边的数总比左边的数大,要熟练掌握.【分析】(1)根据要求分别表示五个不同的数;(2)相加可得结论.【解答】解:(1)点E 表示的数的相反数是它本身,E ∴表示0,A 、B 表示的数都是绝对值是4的数,A ∴表示4,B 表示4-或A 表示4-,B 表示4,点C 表示负整数,点D 表示正整数,且这两个数的差是3,∴若C 表示1-,则D 表示2;若C 表示2-,则D 表示1,如图所示:(2)440211-+++-=或440121-+++-=-,则这五个点表示的数的和1或1-.【点评】本题考查了数轴的相关概念,解答本题的关键是明确题意,利用数形结合的思想解答..。

有理数单元测试题(含答案)

有理数单元测试题(含答案)

第一章有理数单元测试一、选择题(共10小题)1.在,﹣2,0,﹣3.4这四个数中,属于负分数的是()A. B. -2 C. 0 D. ﹣3.4【答案】D2.下列四个数中,其倒数的相反数是正整数的是()A. 3B.C. -2D.【答案】D3.2018年五一小长假,杭州市公园、景区共接待游客总量617.57万人次,用科学计数法表示617.57万的结果是( )A. B. C. D.【答案】B4.a,b是有理数,它们在数轴上的对应点的位置如图所示,则下列结论正确的是()A. a+b>0B. a+b<0C. a﹣b=0D. a﹣b>0【答案】B5.若有理数a与3互为相反数,则a的值是()A. 3B. -3C.D. -【答案】B6.数据26000用科学记数法表示为2.6×10n,则n的值是()A. 2B. 3C. 4D. 5【答案】C7.在一次数学测试中,七(2)班的平均分为85分,把高于平均分的高出部分数记为正数,老师将某一小组的美美、多多、田田、乐乐四位同学的成绩记为+7,-4,-11,+13,则这四位同学实际成绩最高的是()A. 美美B. 多多C. 田田D. 乐乐【答案】D8.下列说法中正确的是()A. 减去一个数等于加上这个数B. 两个相反数相减得0C. 两个数相减,差一定小于被减数D. 两个数相减,差不一定小于被减数【答案】D9.下列计算①(﹣1)×(﹣2)×(﹣3)=6;②(﹣36)÷(﹣9)=﹣4;③×(﹣)÷(﹣1)= ;④(﹣4)÷×(﹣2)=16.其中正确的个数()A. 4个B. 3个C. 2个D. 1个【答案】C10.下列说法中正确的是()A. 若a+b>0,则a>0,b>0B. 若a+b<0,则a<0,b<0C. 若a+b>a,则a+b>bD. 若|a|=|b|,则a=b或a+b=0【答案】D二、填空题(共10小题)11.若约定向北走5km记作+5km,那么向南走3km记作________ km.【答案】﹣312.比较大小:4 ________5【答案】<13.若x=4,则|x﹣5|=________.【答案】114.(2016•镇江)计算:(﹣2)3=________.【答案】-815.设[x]表示不超过x的最大整数,计算[2.7]+[﹣4.5]=________.【答案】﹣316.到原点的距离不大于3的整数有________ 个【答案】717. 截止2017年4月28日,电影《美人鱼》的累计票房达到大约3390000000元,数据3390000000用科学记数法表示为________【答案】3.39×10918.﹣1减去与的和,所得的差是________【答案】19.数轴上A点表示原点左边距离原点3个单位长度、B点在原点右边距离原点2个单位长度,那么两点所表示的有理数的和与10的差是________【答案】—1120.对有理数a、b定义运算“﹡”如下:a﹡b= ,则(﹣3)﹡4=________.【答案】-12三、解答题(共5题)21.写出数轴上所有大于-4,且小于2的整数;【答案】—3、—2、—1、0、122.规定a※b=a﹣b,求4※(﹣6)的值.【答案】解:4※(﹣6)=4﹣(﹣6)=4+6=10.23.计算:(1)4×(﹣5)+|5﹣8|+24÷(﹣3)(2).【答案】(1)解:原式=﹣20+3﹣8=﹣25(2)解:原式=﹣1﹣=﹣24.今年的“十•一”黄金周是8天的长假,某风景区在8天假期中每天旅游人数变化如表(正号表示人数比前一天多,符号表示比前一天少)日期1日2日3日4日5日6日7日8日人数变化单位:万人+1.8 ﹣0.6 +0.2 ﹣0.7 ﹣1.3 +0.5 ﹣2.4 ﹣1.2(1)若9月30日的游客人数为4.2万人,则10月4日的旅客人数为________万人;(2)八天中旅客人数最多的一天比最少的一天多________万人?(3)如果每万人带来的经济收入约为100万元,则黄金周八天的旅游总收入约为多少万元?【答案】(1)4.9(2)4.3(3)解:根据表格得:每天旅客人数分别为6万人、5.4万人、5.6万人、4.9万人、3.6万人、4.1万人、1.7万人,则黄金周七天的旅游总收入约为(6+5.4+5.6+4.9+3.6+4.1+1.7)×100=3130(万元).25.检修组乘汽车,沿公路检修线路,约定向东为正.向西为负,某天自A出发,到收工时,行走记录为(单位:千米):+8、﹣9、+4、+7、﹣2、﹣10、+19、﹣3 回答下列问题:(1)收工时在A地的哪边?距A地多少千米?(2)若每千米耗油0.3升,问从A地出发到收工时,共耗油多少升?【答案】(1)解:+8﹣9+4+7﹣2﹣10+19﹣3=14,东边14千米(2)解:(+8+|﹣9|+4+7+|﹣2|+|﹣10|+19+|﹣3|)×0.3=18.3升,答:从A地出发到收工时,共耗油18.3升。

《有理数》考试题附答案

《有理数》考试题附答案

《有 理 数》 单 元 综 合 测 试 题班级 --- 姓名 -------试卷满分 120 分.考试时间 100分钟 .一、选择题(每小题 3分,共 30 分)1.下列说法正确的是()A .任何负数都小于它的相反数B .零除以任何数都等于零22C .若 a b ,则 a 2 b 2D .两个负数比较大小,大的反而小 2.如果一个数的绝对值等于它的相反数,那么这个数()A .必为正数B .必为负数 3.当a 、b 互为相反数时,下列各式一定成立的是()4. 3.14 的计算结果是( )C .一定不是正数D .不能确定正负b A .aB .aC .a b 0D .ab 0A .0B .3.14C . 3.14D . 3.145.a 为有理数,则下列各式成立的是(A.a2 0 B.1 a2 0C.( a) 0 D.a2 1 06.如果一个数的平方与这个数的绝对值相等,那么这个数是 () A.0 B.1 C.-1 D.0,1或-1 7.若 3.0860 是四舍五入得到的近似数,则下列说法中正确的是( )A.它精确到0.00001B.它精确到万分位C.它精确到0.001D.它精确到千分位8.已知a0,1 b 0,则a ,ab ,ab2按从小到大的顺序排列为( )A.a ab ab2B.ab2a ab C.a b a b2a D .a ab2ab 9. 下列各组运算中,其值最小的是( )A.( 3 2)2B.( 3) ( 2)C.( 3)2 ( 2)2D.( 3)2 ( 2)10. 几个同学在日历纵列上圈出了三个数,算出它们的和,其中错误的一个是()A .28 B.33 C.45 D.57二、填空题(每小题3分,共24 分)11.绝对值小于 5 的整数共有______________________________ 个。

12.当a b 0时,1__________ 1(填“>”“ =”或“<”)。

有理数单元测试题及答案

有理数单元测试题及答案

有理数单元测试题及答案一、选择题(每题 3 分,共 30 分)1、下列各数中,是正有理数的是()A 0B -1C 1D -2答案:C解析:正有理数是指大于 0 的有理数,0 既不是正数也不是负数,-1 和-2 是负有理数,1 是正有理数。

2、在数轴上,与表示-3 的点距离为 5 个单位长度的点表示的数是()A 2B -8C 2 或-8D -2 或 8答案:C解析:在数轴上,与表示-3 的点距离为 5 个单位长度的点,可能在-3 的左侧,即-3 5 =-8;也可能在-3 的右侧,即-3 + 5 =2。

3、下列说法正确的是()A 整数就是正整数和负整数B 分数包括正分数、负分数C 正有理数和负有理数组成全体有理数D 一个数不是正数就是负数答案:B解析:整数包括正整数、0 和负整数,A 选项错误;分数包括正分数、负分数,B 选项正确;有理数包括正有理数、0、负有理数,C 选项错误;一个数不是正数,可能是 0 或负数,D 选项错误。

4、下列计算结果为 0 的是()A -2 + 2B -2 2C -2 × 0D 0 ÷(-2)答案:A解析:-2 + 2 = 0,A 选项正确;-2 2 =-4,B 选项错误;-2 × 0 = 0,但题目要求计算结果为 0 的运算,C 选项不符合;0 ÷(-2) = 0,但同样不符合题目要求,D 选项错误。

5、若两个有理数的和为负数,那么这两个数()A 一定都是负数B 一个为零,一个为负数C 一正一负D 至少有一个为负数答案:D解析:两个有理数的和为负数,可能两个数都是负数,也可能一正一负且负数的绝对值较大,还可能一个数是负数另一个是 0,所以至少有一个为负数。

6、计算:(-3) × 2 的结果是()A 6B -6C 5D -5答案:B解析:负数乘以正数,结果为负数,(-3) × 2 =-6 。

7、下列各式中,正确的是()A |-5| = 5B |-5| =-5C (-5) =-5D (-5) = 5答案:D解析:|-5| =-5,A 选项错误;|-5| = 5,B 选项错误;(-5) = 5,C 选项错误,D 选项正确。

有理数单元检测题10套附答案

有理数单元检测题10套附答案

1有理数单元检测001有理数及其运算(综合)(测试5)一、境空题(每空2分,共28分)1、31-的倒数是____;321的相反数是____. 2、比–3小9的数是____;最小的正整数是____. 3、计算:._____59____;2123=--=+-4、在数轴上,点A 所表示的数为2,那么到点A 的距离等于3个单位长度 的点所表示的数是5、两个有理数的和为5,其中一个加数是–7,那么另一个加数是____.6、某旅游景点11月5日的最低气温为2-,最高气温为8℃,那么该景点 这天的温差是____.C7、计算:.______)1()1(101100=-+-8、平方得412的数是____;立方得–64的数是____. 9、用计算器计算:._________95=10、观察下面一列数的规律并填空:0,3,8,15,24,_______.二、选择题(每小题3分,共24分)11、–5的绝对值是( ) A 、5 B 、–5 C 、51 D 、51- 12、在–2,+3.5,0,32-,–0.7,11中.负分数有( ) A 、l 个 B 、2个 C 、3个 D 、4个 13、下列算式中,积为负数的是( )A 、)5(0-⨯B 、)10()5.0(4-⨯⨯C 、)2()5.1(-⨯D 、)32()51()2(-⨯-⨯-14、下列各组数中,相等的是( )A 、–1与(–4)+(–3)B 、3-与–(–3)C 、432与169 D 、2)4(-与–1615、小明近期几次数学测试成绩如下:第一次85分,第二次比第一次高8分,第三次比第二次低12分,第四次又比第三次高10分.那么小明第 四次测验的成绩是…………( )A 、90分B 、75分C 、91分D 、81分16、l 米长的小棒,第1次截止一半,第2次截去剩下的一半,如此下去, 第6次后剩下的小棒长为( )A 、121 B 、321C 、641D 、128117、不超过3)23(-的最大整数是( )A 、–4B –3C 、3D 、418、一家商店一月份把某种商品按进货价提高60%出售,到三月份再声称 以8折(80%)大拍卖,那么该商品三月份的价格比进货价( ) A 、高12.8% B 、低12.8% C 、高40% D 、高28% 三、解答题(共48分) 19、(4分)把下面的直线补充成一条数轴,然后在数轴上标出下列各数: –3,+l ,212,-l.5,6.20、七年级一班某次数学测验的平均成绩为80分,数学老师以平均成绩为基准,记作0,把小龙、小聪、小梅、小莉、小刚这五位同学的成绩简 记为+10,–15,0,+20,–2.问这五位同学的实际成绩分别是多少分?221、(8分)比较下列各对数的大小. (1)54-与43- (2)54+-与54+-(3)25与52 (4)232⨯与2)32(⨯ 22、(8分)计算.(1)15783--+- (2))6141(21--(3))4(2)3(623-⨯+-⨯- (4)61)3161(1⨯-÷ 23、(12分)计算. (l )51)2(423⨯-÷- (2)75.04.34353.075.053.1⨯-⨯+⨯-(3)[]2)4(231)5.01(-+⨯÷--(4))411()2(32)53()5(23-⨯-÷+-⨯-24、(4分)已知水结成冰的温度是0C ,酒精冻结的温度是–117℃。

《有理数》单元检测卷经典3套含答案

《有理数》单元检测卷经典3套含答案

《有理数》单元检测卷班级姓名____ 考号得分____________一、选择题(每小题3分,共30分)1、下列各对量中,不具有相反意义的是()A、胜2局与负2局B、增产400kg与减产3000kgC、向东走100m与向北走100mD、转盘逆时针转6圈与顺时针转6圈2、大于—4.8而小于2.5的整数共有()A、7个B、6个C、5个D、4个3、下列各对数中,互为相反数的是()A、-1.01和1.1B、和C、-0.125和D、-0.125和84、如果两个数的积为负数,和也为负数,那么这两个数是()A、都是正数B、都是负数C、一正一负,且负数的绝对值大D、一正一负,且正数的绝对值大5、设a是最小的自然数,b是最小的正整数,c是最大的负整数,则a、b、c三数之和为()A、-1B、0C、1D、26、比较(-4)3和-43,下列说法正确的是()A、它们底数相同,指数也相同。

B、它们底数相同,但指数不相同。

C、它们所表示的意义相同,但运算结果不相同。

D、虽然它们底数不同,但运算结果相同。

7、据科学家统计,地球的年龄大约是4600 000 000年,这个数用科学记数法表示为()A、4.6×108B、46×108C、4.6×109D、0.46×10108、下列说法正确的是()A、0.720精确到百分位B、5.078×104精确到千分位C、36万精确到个位D、2.90×105精确到千位9、4个有理数相乘,积的符号是负号,则这4个有理数中,负数有()A、1个或3个B、1个或2个C、2个或4个D、3个或4个10、若|x-2|+|2y+6|=0,则x+y的值是()A、2B、-1C、-3D、+1二、填空题(11、12两题每空1分,13-18题每空2分)11、比较大小(填<、>或=)-0 +0.001 -100 -π-3.1412、绝对值是本身的数是;相反数是本身的数是;倒数是本身的数是。

有理数单元测试题及答案大全

有理数单元测试题及答案大全

有理数单元测试题及答案大全一、选择题(每题2分,共20分)1. 下列哪个数是有理数?A. πB. √2C. 0.33333(无限循环)D. 1.1010010001...(无限不循环)答案:C2. 如果a是一个负有理数,那么-a是:A. 正数B. 负数C. 零D. 无理数答案:A3. 两个负有理数相加,结果为:A. 正数B. 负数C. 零D. 无理数答案:B4. 绝对值最小的有理数是:A. 1B. -1C. 0D. 2答案:C5. 下列哪个运算结果不是有理数?A. 2 + 3B. 4 - 5C. √4D. √9答案:C二、填空题(每题2分,共20分)6. 有理数包括_______和_______。

答案:整数,分数7. 一个数的相反数是它本身的数是_______。

答案:零8. 绝对值是它本身的数是_______。

答案:非负数9. 两个互为相反数的有理数相加的和是_______。

答案:零10. 一个数的绝对值是它到原点的距离,这个数是_______。

答案:实数三、计算题(每题5分,共30分)11. 计算:|-5| + (-2) + |-3| × 2答案:5 + (-2) + 6 = 912. 计算:(-3) × (-2) - 4 ÷ 2答案:6 - 2 = 413. 计算:(-1)^2 - 3 × 2 + 4答案:1 - 6 + 4 = -114. 计算:(-2)^3 + 3 × (-1) + 5答案:-8 - 3 + 5 = -6四、解答题(每题10分,共30分)15. 某班有40名学生,其中20名学生的数学成绩高于80分,10名学生的数学成绩低于60分,其余学生的数学成绩在60分到80分之间。

请计算这个班级的平均数学成绩。

答案:假设高于80分的学生平均成绩为85分,低于60分的学生平均成绩为55分,其余10名学生的平均成绩为70分。

则总成绩为:20 × 85 + 10 × 55 + 10 × 70 = 1700 + 550 + 700 = 2950。

有理数单元测试题及答案

有理数单元测试题及答案

有理数单元测试题及答案一、选择题(每题 3 分,共 30 分)1、下列说法正确的是()A 整数就是正整数和负整数B 负整数的相反数就是非负整数C 有理数中不是负数就是正数D 零是自然数,但不是正整数答案:D解析:整数包括正整数、零和负整数,A 选项错误;负整数的相反数是正整数,不是非负整数,B 选项错误;有理数包括正数、零和负数,C 选项错误;零是自然数,但不是正整数,D 选项正确。

2、在有理数中,绝对值等于它本身的数有()A 1 个B 2 个C 3 个D 无数个答案:D解析:绝对值等于它本身的数是非负数,包括零和所有正数,有无数个。

3、下列计算正确的是()A (-3) =-3B |-3| =-3C (-3)²=-9D -3²= 9答案:B解析:(-3) = 3,A 选项错误;|-3| =-3,B 选项正确;(-3)²= 9,C 选项错误;-3²=-9,D 选项错误。

4、比-3 大 2 的数是()A -5B -1C 1D 5答案:B解析:-3 + 2 =-15、两个有理数的和为负数,那么这两个数一定()A 都是负数B 至少有一个负数C 有一个是 0D 绝对值相等答案:B解析:两个有理数的和为负数,那么这两个数至少有一个负数。

6、计算(-1)×(-2)的结果是()A 2B 1C -2D -1答案:A解析:(-1)×(-2) = 27、若 a < 0 , b > 0 ,且|a| >|b| ,则 a + b 的值()A 是正数B 是负数C 是零D 不能确定答案:B解析:因为 a < 0 , b > 0 ,且|a| >|b| ,所以 a + b 的值是负数。

8、下列说法正确的是()A 倒数等于它本身的数只有 1B 平方等于它本身的数只有 0C 立方等于它本身的数只有 0 和 1D 相反数等于它本身的数只有 0答案:D解析:倒数等于它本身的数有 1 和-1,A 选项错误;平方等于它本身的数有 0 和 1,B 选项错误;立方等于它本身的数有 0 、 1 和-1,C 选项错误;相反数等于它本身的数只有 0,D 选项正确。

【精选】 有理数单元测试卷附答案

【精选】 有理数单元测试卷附答案

一、初一数学有理数解答题压轴题精选(难)1.列方程解应用题如图,在数轴上的点A表示,点B表示5,若有两只电子蜗牛甲、乙分别从A、B两点同时出发,保持匀速运动,甲的平均速度为2单位长度秒,乙的平均速度为1单位长度秒请问:(1)两只蜗牛相向而行,经过________秒相遇,此时对应点上的数是________.(2)两只蜗牛都向正方向而行,经过多少秒后蜗牛甲能追上蜗牛乙?【答案】(1)3;2(2)解:设两只蜗牛都向正方向而行,经过y秒后蜗牛甲能追上蜗牛乙,依题意有,解得.答:两只蜗牛都向正方向而行,经过9秒后蜗牛甲能追上蜗牛乙【解析】【解答】解:(1)设两只蜗牛相向而行,经过x秒相遇,依题意有,解得..答:两只蜗牛相向而行,经过3秒相遇,此时对应点上的数是2.【分析】(1)可设两只蜗牛相向而行,经过x秒相遇,根据等量关系:两只蜗牛的速度和时间,列出方程求解即可;(2)可设两只蜗牛都向正方向而行,经过y秒后蜗牛甲能追上蜗牛乙,根据等量关系:两只蜗牛的速度差时间,列出方程求解即可.2.如图,将一条数轴在原点O和点B处各折一下,得到一条“折线数轴”.图中点A表示﹣10,点B表示10,点C表示18,我们称点A和点C在数轴上相距28个长度单位,动点P 从点A出发,以2单位/秒的速度沿着“折线数轴”的正方向运动,从点O运动到点B期间速度变为原来的一半;点P从点A出发的同时,点Q从点C出发,以1单位/秒的速度沿着“折线数轴”的负方向运动,当点P到达B点时,点P、Q均停止运动.设运动的时间为t秒.问:(1)用含t的代数式表示动点P在运动过程中距O点的距离;(2)P、Q两点相遇时,求出相遇时间及相遇点M所对应的数是多少?(3)是否存在P、O两点在数轴上相距的长度与Q、B两点在数轴上相距的长度相等时?若存在,请直接写出t的取值;若不存在,请说明理由.【答案】(1)解:设动点P在运动过程中距O点的距离为S,当P从A运动到O时,所需时间为:(秒),当0≤t≤5时,S=10﹣2t,当P从O运动到B时,所需时间为:(秒)∴P从A运动到B时,所需时间为:15秒当5<t≤15时,S=t﹣5,即动点P在运动过程中距O点的距离S=;(2)解:设经过a秒,P、Q两点相遇,则点P运动的距离为10+(a-5),点Q运动的距离为a,10+(a-5)+a=28解得,a=,则点M所对应的数是:18﹣=,即点M所对应的数是;(3)解:存在,t=2或t=,理由:当0≤t≤5时,10﹣2t=(18﹣10﹣t)×1,解得,t=2当5<t≤8时,(t﹣10÷2)×1=(18﹣10﹣t)×1,解得,t=,当8<t≤15时,(t﹣10÷2)×1=[t﹣(18﹣10)÷1]×1该方程无解,故存在,t=2或t= .【解析】【分析】(1)分点P在AO上和点P在OB上两种情况,先求出点P在每段时t 的取值范围,再根据题意分别列出代数式可得答案;(2)根据相遇时P,Q运动的时间相等,P,Q运动的距离和等于28可得方程,根据解方程,可得答案;(3)分0≤t≤5,5<t≤8,8<t≤15三种情况,根据PO=BQ,可得方程,分别解出方程,可得答案.3.已知数轴上A,B两点对应数分别为-2和5,P为数轴上一点,对应数为x.(1)若P为线段AB的三等分点(把一条线段平均分成相等的三部分的两个点),求P点对应的数.(2)数轴上是否存在点P,使P点到A点,B点距离和为10?若存在,求出x值;若不存在,请说明理由.(3)若点A,点B和点P(P点在原点)同时向左运动,它们的速度分别为1,6,3个长度单位/分,则第几分钟时,A,B,P三点中,其中一点是另外两点连成的线段的中点?【答案】(1)解:因数轴上A、B两点对应的数分别是﹣2和5,所以AB=7,又因P为线段AB的三等分点,所以 AP=7÷3= 或AP=7÷3×2= ,所以P点对应的数为或(2)解:若P在A点左侧,则﹣2﹣x+5﹣x=10,解得:x=﹣;若P在A点、B中间.∵AB=7,∴不存在这样的点P;若P在B点右侧,则x﹣5+x+2=10,解得:x=(3)解:设第x分钟时,点A的位置为:﹣2﹣x,点B的位置为:5﹣6x,点P的位置为:﹣3x,①当P为AB的中点,则5﹣6x+(﹣2﹣x)=2×(﹣3x),解得:x=3;②当A为BP中点时,则2×(﹣2﹣x)=5﹣6x﹣3x,解得:x= ;③当B为AP中点时,则2×(5﹣6x)=﹣2﹣x﹣3x,解得:x= .答:第分钟时,A为BP的中点;第分钟时,B为AP的中点;第3分钟时,P为AB的中点.【解析】【分析】(1)根据两点间的距离公式得出AB=7,又因P为线段AB的三等分点,所以 AP 或,进而再根据数轴上两点间的距离公式即可求出点P所表示的数;(2)分类讨论:若P在A点左侧,根据两点间的距离公式由PA+PB=10列出方程,求解算出x的值;若P在A点、B中间,由于PA+PB=AB=7,故不存在这样的点P;若P在B点右侧,根据两点间的距离公式由PA+PB=10列出方程,求解算出x的值,综上所述即可得出答案;(3)设第x分钟时,点A的位置为:﹣2﹣x,点B的位置为:5﹣6x,点P的位置为:﹣3x ,然后分类讨论:①当P为AB的中点,②当A为BP中点时,③当B为AP中点时三种情况根据线段的中点性质列出方程,求解即可。

有理数单元测试题及答案

有理数单元测试题及答案

第二章单元测试题1.填空题(1)一个数的相反数是它本身,这个数是 ;一个数的绝对值是它本身,这个数是 ;一个数的倒数是它本身,这个数是 。

(2)若a 、b 互为倒数,c 、d 互为相反数,则(c+d)2-ab= 。

(3)若│-a │=3,则a= ,若(-x)2=4,则x= 。

(4)一个负数b 与它的相反数之差的绝对值等于 。

(5)绝对值小于3的整数有 ,它们的积是 。

(6)有理数0.03497精确到百分位是 ,此时还有 个有效数字;3.47×103精确到百位数是 。

(7)若a 2+│b+2│=0,则a= ,b= 。

(8)用“<”或“>”填空:若a >0,b <0,且│a │>│b │,则a b ,若a <b <0,则│a │ │b │。

(9)若5.313=149.7,则( )3=-0.0001497;若2.4682=6.091,则246.82= 。

(10)绝对值小于4的整数是 ,其中 最小, 是非负数, 的绝对值最小。

(11)近似数2.5万是精确到 位,将1204060保留3个有效数字的科学记数法为 。

(12)-51的平方除以(-5)所得的商是 ,这个商是 的3次幂。

(13)a-b 的相反数是 ,如果a <5,那么│a-5│= 。

(14)若│-5│=4+m ,则m= ;若│x-21│+(2y+1)2=0,则x 2+y 3的值= 。

(15)若a 、b 、c 在数轴上的位置如下图,则│a │-│b-c │+│c │= 。

(16)若a <0,那么-a10;│a-1│=1-a ,则a 的取值范围是 。

(17)若aa --1|1|=1,则a= ,||a a = 。

(18)若x <-2,则│x+2│-│3-x │+│2x+1│= 。

(19)若│a 1│=2,│b1│=3,则a+b 的值为 。

2.判断题 (1)│a │与a 2都是非负数。

( ) (2)一个负数的倒数一定比这个数大。

有理数单元测试题及答案

有理数单元测试题及答案

有理数单元测试题及答案一、选择题(每题2分,共20分)1. 下列数中,不是有理数的是()。

A. -3B. 0.33333...C. πD. √22. 两个有理数的和为正数,它们的积为负数,那么这两个数()。

A. 都是正数B. 都是负数C. 一正一负D. 无法确定3. 绝对值是其本身的数是()。

A. 正数B. 负数C. 零D. 以上都是4. 有理数a、b、c在数轴上的位置如图所示,若a < b < c,那么下列不等式正确的是()。

A. a + b > cB. a + c > bC. a - b < c - bD. a × b < c × b5. 对于任意有理数a和b,以下哪个表达式总是正确的?()A. a + b = b + aB. a × b = b × aC. a / b = b / aD. a - b = b - a二、填空题(每题2分,共20分)6. 若|a| = 5,则a可能的值是_________。

7. 一个数的相反数是-7,那么这个数是_________。

8. 有理数-3和5相加的结果是_________。

9. 有理数-2的绝对值是_________。

10. 两个有理数相除,商为-1,其中一个数是-4,另一个数是_________。

三、计算题(每题10分,共30分)11. 计算下列各题,并写出计算过程:(1) (-3) × (-2) + 4(2) 9 - (-3) × 212. 化简下列各题:(1) |-8| - 2 × (-3)(2) (-2)^2 - 3 × (-4) - 5四、解答题(每题15分,共30分)13. 已知a、b、c是三个不同的有理数,且满足a + b + c = 0,如果a = -2,求b + c的值。

14. 某商店在一天内卖出了三种商品,其利润分别为x、y、z,已知x + y + z = 200元,如果x = 50元,求y + z的值。

有理数单元练习及参考答案

有理数单元练习及参考答案

有理数单元练习一、选择题1.有理数3的相反数是()A.-3B.3C.13D.132.一个数和它的倒数相等,则这个数是()A.1B.-1C.±1D.±1或者03.下列说法正确的是()A.一个数的绝对值一定比0大B.一个数的相反数一定比它本身小C.绝对值等于它本身的数一定是正数D.最小的正整数是14.若x的相反数是1,|y|=2,则x+y的值为()A. 3B.-1C. -1或3D.-35.已知a是最小的正整数,b是最大的负整数,c是绝对值最小的有理数,那么a+b+c等于()A.-1B.0C.1D.26.已知|x|=3,|y|=5,且xy<0,那么x+y的值等于()A.8B.-2C.8或者-8D.2或者-27.质检员抽查零件的质量,超过尺寸的记为正数,不足的记为负数,抽查了四个零件,结果如下,质量最差的零件是()A.+0.01mmB.-0.05mmC. +0.1mmD.-0.11mm8.(-1)2023的计算结果是()A.-1B.1C.2023D.-20239.我国陆地面积约9600000 km²,用科学记数法表示为()A.9.6×105B. 9.6×106C. 9.6×107D. 9.6×10810.如图,四个有理数在数轴上的对应点M、P、N、Q,若点M、N表示的有理数互为相反数,则图中表示绝对值最小的数的点是()A.MB.PC.ND.Q二、填空题11.武汉长江二桥是世界上第一座弧线形钢塔斜拉桥,该桥全长168000000米,用科学计数法表示这个数__________12.若(x-2)2与|x+y |互为相反数,则y-x=__________ 13. 若规定a ▽b =a ba b-+,则﹣3▽4= . 14.观察表中按次序排列的一组数,则-2023在表中第 行第 列.15.如果a <0,b >0,a +b >0,那么四个数a 、-a 、b 、-b 之间的大小关系是_____________(请用“<”连接)16.数轴上有两点M 、N ,点M 到点E 的距离为2,点N 到点E 距离为6,则M 、N 之间的距离为__________. 三、解答题 17.计算:(1)11(8)(15)(3)-+--+--; (2)8199199⎛⎫÷- ⎪⎝⎭;(3)42112(3)6⎡⎤--⨯--⎣⎦; (4)4231151454⎡⎤-+-⨯+⨯⎢⎥⎣⎦(-4)(-)-|-(-2)|18.若(a+3)2+|b -5|=0,求2a +b 的值.1111|2||1|......(1)(1)(2)(2)(2021)(2021)ab b ab a b a b a b --++++++++++19.已知与互为相反数,求的值20. 有理数a.b.c 在数轴上位置如图,化简:|c-a|-|a-b|+|b-c|.21. 某检修小组,约定向东为正,乘一辆汽车从A 地出发到收工时,行走记录为(单位:千米):+15,﹣2,+5,﹣1,+10,﹣3,﹣2,+12,+4,﹣5,+6 (1)收工时,该小组距离A 地多远?(2)若每行驶1千米汽车耗油3升,开工时储存180升汽油,问从出发到收工途中是否需要汽油?若需要,最少加多少升?若不需要,收工时还剩多少升? (3)若该小组从出发到回到A 地共花费6小时,求它的平均速度.有理数单元练习参考答案一、选择题1.有理数3的相反数是( A )A.-3B.3C.13D.132.一个数和它的倒数相等,则这个数是( C )B.1 B.-1C.±1D.±1或者03.下列说法正确的是( D )A.一个数的绝对值一定比0大B.一个数的相反数一定比它本身小C.绝对值等于它本身的数一定是正数D.最小的正整数是14.若x的相反数是1,|y|=2,则x+y的值为( C )A. 3B.-1C. -1或3D.-35.已知a是最小的正整数,b是最大的负整数,c是绝对值最小的有理数,那么a+b+c等于( B )A.-1B.0C.1D.26.已知|x|=3,|y|=5,且xy<0,那么x+y的值等于( D )A.8B.-2C.8或者-8D.2或者-27.质检员抽查零件的质量,超过尺寸的记为正数,不足的记为负数,抽查了四个零件,结果如下,质量最差的零件是( A )A.+0.01mmB.-0.05mmC. +0.1mmD.-0.11mm8.(-1)2023的计算结果是( A )A.-1B.1C.2023D.-20239.我国陆地面积约9600000 km²,用科学记数法表示为( B )A.9.6×105B. 9.6×106C. 9.6×107D. 9.6×10810.如图,四个有理数在数轴上的对应点M、P、N、Q,若点M、N表示的有理数互为相反数,则图中表示绝对值最小的数的点是( B )A.MB.PC.ND.Q二、填空题11.武汉长江二桥是世界上第一座弧线形钢塔斜拉桥,该桥全长168000000米,用科学计数法表示这个数1.68×10812.若(x -2)2与|x+y|互为相反数,则y-x = -4 13. 若规定a ▽b =a ba b-+,则﹣3▽4= -7 . 14.观察表中按次序排列的一组数,则-2023在表中第 675 行第 2 列.15.如果a <0,b >0,a +b >0,那么四个数a 、-a 、b 、-b 之间的大小关系是 -b <a <-a <b (请用“<”连接)16.数轴上有两点M 、N ,点M 到点E 的距离为2,点N 到点E 距离为6,则M 、N 之间的距离为 8或4 . 三、解答题 17.计算:(1)11(8)(15)(3)31-+--+--=-;(2)81899999910÷=(-1); (3)421112(3)66⎡⎤--⨯--=⎣⎦; (4)4231151714544⎡⎤-+-⨯+⨯⎢⎥⎣⎦(-4)(-)-|-(-2)|=- 18.若(a +3)2+|b -5|=0,求2a+b 的值. 解:a =-3,b =5,2a+b =-11111|2||1|......(1)(1)(2)(2)(2021)(2021)ab b ab a b a b a b --++++++++++19.已知与互为相反数,求的值解:b=1,a=21111......(1)(1)(2)(2)(2021)(2021)1111......2132432023202211111111 (223342022202311202320222023)ab a b a b a b ++++++++++=++++⨯⨯⨯⨯=-+-+-++-=-=20. 有理数a.b.c 在数轴上位置如图,化简:|c-a|-|a-b|+|b-c|.21. 某检修小组,约定向东为正,乘一辆汽车从A 地出发到收工时,行走记录为(单位:千米):+15,﹣2,+5,﹣1,+10,﹣3,﹣2,+12,+4,﹣5,+6 (1)收工时,该小组距离A 地多远?(2)若每行驶1千米汽车耗油3升,开工时储存180升汽油,问从出发到收工途中是否需要汽油?若需要,最少加多少升?若不需要,收工时还剩多少升? (3)若该小组从出发到回到A 地共花费6小时,求它的平均速度. 解:(1)根据题意可得:向东为正,则向西为负,则收工的距离=(+15)+(﹣2)+(+5)+(﹣1)+(+10)+(﹣3)+(﹣2)+(+12)+(+4)+(﹣5)+(+6)=+35米, 故收工时该小组在A 地东39千米,(2)从A 地出发到收工一共走了|+15|+|﹣2|+|+5|+|﹣1|+|+10|+|﹣3|+|﹣2|+|+12|+|+4|+|﹣5|+|+6|=65千米, 共消耗油:65×3=195升,故需加油15升; (3)该小组从出发到A 地共走了65+39=104千米,000||||||()()2c a a b b c c a a b b c a c a b b c a c a b b c c ---∴---++=----+=--+--=-解:由图可得:<,>,<平均速度为:千米/小时=千米/小时;答:收工时该小组距离A地39千米,需加油15升,平均速度为千米/小时.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

“﹣3 的圈 4 次方”,一般地,把 方”. (1)(【初步探究】
(a≠0)记作 aⓝ , 读作“a 的圈 n 次
直接写出计算结果:2③=________,(- )⑤=________; (2)【深入思考】 我们知道,有理数的减法运算可以转化为加法运算,除法运算可以转化为乘法运算,有理 数的除方运算如何转化为乘方运算呢? Ⅰ.试一试:仿照上面的算式,将下列运算结果直接写成幂的形式.
故答案为: ,-8; ( 2 )【深入思考】 Ⅰ.
; ;
方法则进行计算即可;②按除方法则进行计算即可; (2)①把除法化为乘法,第一个数不变,从第二个数开始依次变为倒数,由此分别得出 结果;
②结果前两个数相除为 1,第三个数及后面的数变为 , 则 aⓝ=a×( )n−1=

③将第二问的规律代入计算,注意运算顺序.
2.如图所示,一个点从数轴上的原点开始,先向右移动 3 个单位长度,再向左移动 5 个单 位长度,可以看到终点表示的数是﹣2,已知点 A、B 是数轴上的点,请参照图并思考,完 成下列各题.
(1)如果点 A 表示数﹣3,将点 A 向右移动 7 个单位长度,那么终点 B 表示的数是 ________,A、B 两点间的距离是________; (2)如果点 A 表示数 3,将 A 点向左移动 7 个单位长度,再向右移动 5 个单位长度,那么 终点 B 表示的数是________,A、B 两点间的距离为________;
(3)如果点 A 表示数﹣4,将 A 点向右移动 16 个单位长度,再向左移动 25 个单位长度, 那么终点 B 表示的数是________,A、B 两点间的距离是________; (4)一般地,如果 A 点表示的数为 m , 将 A 点向右移动 n 个单位长度,再向左移动 p 个 单位长度,那么请你猜想终点 B 表示什么数?A、B 两点间的距离为多少? 【答案】 (1)4;7 (2)1;2 (3)﹣13;9 (4)解:一般地,如果 A 点表示的数为 m,将 A 点向右移动 n 个单位长度,再向左移动 p 个单位长度,那么请你猜想终点 B 表示 m+n﹣p,A、B 两点间的距离为|n﹣p|. 【解析】【解答】解:(1)如果点 A 表示数﹣3,将点 A 向右移动 7 个单位长度,那么终 点 B 表示的数是 4,A、B 两点间的距离是 7;(2)如果点 A 表示数 3,将 A 点向左移动 7 个单位长度,再向右移动 5 个单位长度,那么终点 B 表示的数是 1,A、B 两点间的距离为 2;(3)如果点 A 表示数﹣4,将 A 点向右移动 16 个单位长度,再向左移动 25 个单位长 度,那么终点 B 表示的数是﹣13,A、B 两点间的距离是 9; 【分析】(1)根据数轴上的点向右平移加,可得 B 点表示的数,根据数轴上两点间的距 离是大数减小数,可得答案;(2)根据数轴上的点向右平移加,向左平移减,可得 B 点 表示的数,根据数轴上两点间的距离是大数减小数,可得答案;(3)根据数轴上的点向右 平移加,向左平移减,可得 B 点表示的数,根据数轴上两点间的距离是大数减小数,可得 答案;(4)根据数轴上的点向右平移加,向左平移减,可得 B 点表示的数,根据数轴上 两点间的距离是大数减小数,可得答案;
(2)根据题意分别列式求出第 5 次和第 6 次行进后相对 A 的位置,由此可得到第 P 和点
Q 到 A 的距离,即可作出判断。
(3)根据点 B 在原点的右侧,列式可求出 n=100 时,可得到点 A 在数轴上表示的数,再
根据点 B 表示的数,就可求出 AB 的距离。
4.如图 1,A、B 两点在数轴上对应的数分别为﹣12 和 4.
(2)若 B 地在原点的左侧,经过第五次行进后小乌龟到达点 P,第六次行进后到达点 Q, 则点 P 和点 Q 到点 A 的距离相等吗?请说明理由;
(3)若 B 地在原点的右侧,那么经过 30 次行进后,小乌龟到达的点与点 B 之间的距离是 多少米?
【答案】 (1)解:

.
答: 地在数轴上表示的数是 12 或
(2)解:令小乌龟从 A 地出发,前进为“+”,后退为“-”,则:
第五次行进后相对 A 的位置为:

第六次行进后相对 A 的位置为:

因为点 、 与 点的距离都是 3 米,
所以点 、点 到 地的距离相等
(3)解:若 地在原点的右侧,前进为“+”,后退为“-”, 则当 为 100 时,它在数轴上表示的数为:
3.如图,已知 A、B 两地在数轴上相距 20 米,A 地在数轴上表示的点为-8,小乌龟从 A 地 出发沿数轴往 B 地方向前进,第一次前进 1 米,第二次后退 2 米,第三次再前进 3 米,第 四次又后退 4 米,……,按此规律行进,(数轴的一个单位长度等于 1 米)
(1)求 B 地在数轴上表示的数;
(1)直接写出 A、B 两点之间的距离;

∵ B 点表示的为 12.
∴ AB 的距离为
(米 .
答:小乌龟到达的点与点 之间的距离是 70 米
【解析】【分析】(1)由已知 A,B 两地在数轴上的距离为 20 米,且 A 地在数轴上表示
的数为-8,可得到 B 地可能在 A 地的左边,也可能在 A 地的右边,然后列式可求出 B 地在
数轴上表示的数。
一、初一数学有理数解答题压轴题精选(难)
1.【概念学习】规定:求若干个相同的有理数(均不等于 0)的除法运算叫做除方,如 2÷2÷2,(﹣3)÷(﹣3)÷(﹣3)÷(﹣3)等.类比有理数的乘方,我们把 2÷2÷2 记作 2③ , 读作“2 的圈 3 次方”,(﹣3)÷(﹣3)÷(﹣3)÷(﹣3)记作(﹣3)④ , 读作
(﹣3)④=________;5⑥=________;(- ) ⑩=________. Ⅱ.想一想:将一个非零有理数 a 的圈 n 次方写成幂的形式等于________; Ⅲ.算一算:
12²÷(- )④×(-2)⑤-(- )⑥÷3³.________
【答案】 (1) ;-8
(2)



;解:
【解析】【解答】解:(1)【初步探究】 ,
相关文档
最新文档