物理化学第2章 热力学第二定律

合集下载

物理化学02章_热力学第二定律01

物理化学02章_热力学第二定律01
V2 V3 相除得 V1 V4
热机效率(efficiency of the engine )
任何热机从高温 (Th ) 热源吸热 Qh ,一部分转化 为功W,另一部分Qc 传给低温 (Tc ) 热源.将热机所作 的功与所吸的热之比值称为热机效率,或称为热机 转换系数,用 表示。 恒小于1。
任意可逆循环的热温商
任意可逆循环热温商的加和等于零,即:
Qi )R 0 ( i Ti

Q ( T )R 0
证明如下:(1)在如图所示的任意可逆 循环的曲线上取很靠近的PQ过程; (2)通过P,Q点分别作RS和TU两条可逆绝热膨胀线, (3)在P,Q之间通过O点作等温可逆膨胀线VW,使两个 三角形PVO和OWQ的面积相等, 这样使PQ过程与PVOWQ过程所作的功相同。 同理,对MN过程作相同处理,使MXO’YN折线所经过程 作的功与MN过程相同。VWYX就构成了一个卡诺循环。
2.3 卡诺循环与卡诺定理
•卡诺循环 •热机效率 •冷冻系数 •卡诺定理
卡诺循环(Carnot cycle)
1824 年,法国工程师 N.L.S.Carnot (1796~1832)设 计了一个循环,以理想气体
为工作物质,从高温h ) 热源 (T
Qh 吸收 Qc 一部分
的热量,一部分通过 的热量放给低温c ) (T
熵的引出
用一闭合曲线代表任意可逆循环。 在曲线上任意取A,B两点,把循环分成AB和 BA两个可逆过程。
根据任意可逆循环热温商的公式:
Q ( T )R 0
可分成两项的加和
A Q Q A ( T )R1 B ( T )R2 0 B
熵的引出
移项得:
B Q Q A ( T )R1 A ( T )R2 B

北京大学-物理化学-第2章-热力学第二定律

北京大学-物理化学-第2章-热力学第二定律
第二章 热力学第二定律
2.1 变化的方向性------不可逆性
除可逆过程外,一切变化都有一定的方 向和限度,都不会自动逆向进行。热力 学的不可逆过程。
各类变化过程的不可逆性不是孤立而是 彼此相关的,而且都可归结为借助外力 使系统复原时在环境留下一定量的功转 化为热的后果。
有可能在各种不同的热力学过程之间建 立起统一的普遍适用的判据,并由此去 判断复杂过程方向和限度。
热机效率(efficiency of the engine )
功功W与任,所另何吸一热的部机热分从之Q高c比传温值给(T称低h )为热温热源(T机吸c ) 热效热源率Qh.,,或将一称热部为机分热所转机作化转的为
换系数,用 表示。 恒小于1。
W Qh Qc
Qh
Qh
(Qc 0)

nR(Th
卡诺定理的意义:(1)引入了一个不等号 I R , 原则上解决了化学反应的方向问题;(2)解决了热
机效率的极限值问题。
卡诺定理:
所有工作在同温热源与同温冷源之间的热 机,其效率不可能超过可逆机。 Carnot循环:第二定律发展中重要里程碑。
指明了可逆过程的特殊意义
原则上可以根据Clausius或Kelvin说法来判断一个过程的 方向,但实际上这样做是很不方便,也太抽象,还不能指 出过程的限度。Clausius从分析Carnot过程的热功转化关 系入手,最终发现了热力学第二定律中最基本的状态函 数——熵。
即ABCD曲线所围面积为 热机所作的功。
卡诺循环(Carnot cycle)
•根据绝热可逆过程方程式
: 过程2 T V 1 h2
T V 1 c3
过程4:
T V 1 h1
TcV4 1

物理化学第二章 热力学第二定律2.1

物理化学第二章 热力学第二定律2.1

风的走向
• 空气的流动形成风 • 风的流动:从高压处流向低压处
• 风的流动因磨擦将空气的势能变为 热能而散失。 • 风的逆向流动是不可能的。
电的输送
• 电流总是从电压高的一端流向电压低的 一端,即电子由电压低的一端流向电压 高的一端。
• 电子的流动须克服电路的电阻,其结果 是电能(功)转变为热能(电灯光等)。
= -ln(V4/V3)= -ln(V1/V2)
(V2/V1)-1 = (V3/V4)-1 ∴ V2/V1=V3/V4 =Rln(V1/V2)(T2-T1)=R(T2-T1)ln(V2/V1)
W= RT2ln(V1/V2)+RT1ln(V3/V4)
• 热机的效率:
热机作功与获取能量之比
• 从外界获取的热量是Q2 • =-W/Q2 • =(T2-T1)/T2 • =1-(T1/T2)
∵ I>R
T2
Q2
W’ W W ’’
Q2 R
I
Q1’
Q1
T1
• 可逆热机的效率必定等于卡诺热机的效率 • 由卡诺定理, 提高热机效率的最好方法是提高高温热 源的温度. • 将卡诺热机逆向运行便成为致冷机. • 定义致冷机效率: • =|Q1/W|=T1/(T2-T1) • 致冷的温差愈小, 其效率愈高. • 值可>1 • 热机效率 <1 (可逆及不可逆热机) • 热机的效率永远小于1, 故热不可能完全变为功. • 理论上: • →1 (T→0K)
的效率最大, 此效率与工作物质无关, 只与两热源的
温度有关, 此书的基本结论即为卡诺定理. • 卡诺当时是用热质论来证明卡诺定理的, 后来 Kelvin和Claudius对卡诺的工作进行了修正, 用热力

大学课程《物理化学》第二章(热力学第二定律)知识点汇总

大学课程《物理化学》第二章(热力学第二定律)知识点汇总
B
VB ,m
V nB T , p ,n jB
H nB T , p ,n jB G nB T , p ,n jB
U B ,m
U nB T , p ,n jB
S nB T , p ,n jB
T2 p1 dT S S '1 S '2 nR ln C p p2 T1 T
dU TdS pdV
T p V S S V
dH TdS Vdp
( U )V T S
T V p S S p
S系统 S B S A
Qr
T
S孤立=S系统 S环境 0
A
熵变的计算
总则
S环境
Q实际 T环境
理想气体等温过程的熵变
S S B S A
B
Qr
A
Q ( )r T T
Wmax Qr S T T
可逆相变过程的熵变

V2
V1
dG SdT Vdp B dnB
B
dU TdS pdV B dnB
B
U dU TdS pdV dnB nB S ,V ,n j B
B
U H F G nB S ,V ,n j B nB S , p ,n j B nB T ,V ,n j B B nB T , p ,n j B
B
dG SdT Vdp B dnB
B
纯理想气体的化学势
Gm Vm p T p T

物理化学02章_热力学第二定律02

物理化学02章_热力学第二定律02

S体系
Qr Qsurr Qsys Q Δ S环 = = = Tsurr Tsurr Tsurr T
Δ S 总 =Δ S 体 + Δ S 环 ≥ 0
上一讲回顾
(1) 熵变的计算: 可逆过程,直接计算过程的热温商 不可逆过程,设计可逆过程计算。 (2) 等温过程,变温过程及相变过程熵变的计算 (3) 利用熵变判断过程的方向
a)恒 T 可逆 b)恒 T 不可逆 V2 V2 V2 Δ S 总 = nRTLn +(-nRLn ) Δ S 总 = nRTLn + 0 V1 V1 V1
= 0
V2 = nRTLn > 0 V1
等温过程的熵变
例: 1mol理想气体在等温下通过:(1)可逆膨胀,(2)真 空膨胀,体积增加到10倍,分别求其熵变。 解:(1)可逆膨胀
简化:
V2 P2 等 T:Δ S= nRLn =- nRLn V1 P1 T2 等 P:Δ S= CP Ln T1
T2 等 V:Δ S= CV Ln T1
变温过程的熵变
1. 先等温后等容 2. 先等温后等压 3. 先等压后等容
T2 nCV ,m dT V2 S nR ln( ) T1 V1 T T2 nC p ,m dT p1 S nR ln( ) T1 p2 T V2 p2 S nC p ,m ln( ) nCV ,m ln( ) V1 p1
S T
T2
1
nCV ,m dT T
(2) 物质的量一定的等压变温过程
S T
T2
1
nC p ,m dT T
等 P 过程:
W`=0, QP = dH = CPdT = QR
QR QP C P dT dS = = = T T T CP S )P 或 ( T T

物理化学 热力学第二定律

物理化学 热力学第二定律

上式为
B
A
δ
Q T
ir
A B
δ Qr T
0
B
A
δ
Q T
ir
ABS
0
BAS
B A
δ
Q T
ir
S δTQ
> ir =r
Clausius Inequality
(1) 意义:在不可逆过程中系统的熵变大于过程 的热温商,在可逆过程中系统的熵变等于过 程的热温商。即系统中不可能发生熵变小于 热温商的过程。 是一切非敞开系统的普遍规律。
= r cycle (可逆循环)
意义:的极限 提高的根本途径
Carnot定理的理论意义:
§2-4 熵 (Entropy)
一、熵函数的发现 (Discovery of entropy)
1 T2
T1

1 Q2 1 T2
Q1
T1
< ir cycle = r cycle
Q1 Q2 0 T1 T2
1mol He(g) 200K
1m3o0l0HK2(g)
101.3kPa 101.3kPa
解:求末态 过程特点:孤立系统, U = 0
U U (He) U (H 2 )
n
3 2
RT2
200 K
n
5 2
RT2
300 K
0
T2 = 262.5K
1mol He(g) 200K
101.3kPa
1mol H2(g) 300K
对两个热源间的可逆循环:热温商
之和等于0
Q1 Q2 0 T1 T2
对任意可逆循环(许许多多个热源):
pቤተ መጻሕፍቲ ባይዱ

第二章 热力学第二定律 物理化学课件

第二章  热力学第二定律  物理化学课件

设始、终态A,B的熵分别为SA 和 SB,则:
SB SA S
B Qr AT
对微小变化
dS Qr
T
上式习惯上称为熵的定义式,即熵的变化值可 用可逆过程的热温商值来衡量。
2 不可逆过程的热温商
• 如果热机进行不可逆循环,则其效率必 然比卡诺循环效率低,即
Q1 Q2 Q1
T1
T 2
T1

1+
T K
2
dT T
J K-1
24.3J K-1
• 此过程热温商为
Q
T
2
373 K 273 K
32.22
22.18 103
T K
373
3.49
106
• 故开动此致冷机所需之功率为
1780
1 60
W
50%=59.3
W
§2.4 熵的概念
• 1 可逆过程的热温商及熵函数的引出
• 在卡诺循环中,两个热源的热温商之和 等于零,即
Q1 Q2 QB 0
T1 T2
TB
• 那么,任意可逆循环过程的多个热源的 热温商之和是否仍然等于零?
§2.4 熵的概念
S Qr Qr TT
• 对理想气体定温可逆过程来说 Qr=-Wr
nRT ln V2
S
V1 nR ln V2 nR ln p1
T
V1
p2
例题3
• (1) 在300K时,5mol的某理想气体由 10dm3定温可逆膨胀到100dm3。计算此过 程中系统的熵变;
• (2)上述气体在300K时由10dm3向真空膨 胀变为100dm3。试计算此时系统的S。 并与热温商作比较。
Q1

大学物理化学 第二章 热力学第二定律学习指导及习题解答

大学物理化学 第二章 热力学第二定律学习指导及习题解答

3.熵可以合理地指定
Sm$
(0K)
0
,热力学能是否也可以指定
U
$ m
(0K)
0
呢?
答:按能斯特热定理,当温度趋于0K,即绝对零度时,凝聚系统中等温变化过
程的熵变趋于零,即
, 只要满足此式,我们就可以任意
选取物质在0K时的任意摩尔熵值作为参考值,显然 Sm$ (0K) 0 是一种最方便的
选择。但0K时反应的热力学能变化并不等于零,
(2)变温过程
A.等压变温过程 始态 A(p1,V1,T1) 终态 B(p 1,V2,T2)
S
T2
δQ R
T T1
T2 Cp d T T T1
Cp
ln
T2 T1
B.等容变温过程 始态 A(p1,V1,T1) 终态 B(p2,V1,T2)
S
T2
δQ R
T T1
C.绝热过程
T2 CV d T T T1
,所以不
能指定
U
$ m
(0K)
0

4.孤立系统从始态不可逆进行至终态S>0,若从同一始态可逆进行至同
一终态时,则S=0。这一说法是否正确?
答:不正确。熵是状态函数与变化的途径无关,故只要始态与终态一定S
必有定值,孤立系统中的不可逆过程S>0,而可逆过程S=0 是毋庸置疑的,
问题是孤立系统的可逆过程与不可逆过程若从同一始态出发是不可能达到相同
4.熵 (1)熵的定义式
dS δ QR T

S SB SA
B δ QR AT
注意,上述过程的热不是任意过程发生时,系统与环境交换的热量,而必须是在
可逆过程中系统与环境交换的热。

物理化学2_热力学第二定律

物理化学2_热力学第二定律

∆S = ∫
T2
T1
nCV.m dT T
2.等压变温 δQR = nC p ,m dT
∆S = ∫
T2
nC p.m T
T1
dT
3.理想气体状态变化(仅有体积功 WR = −∫ p外dV = − pdV )
δQR=dU-δWR = dU + pdV = nCV,m dT + nRT
于是
dV V
∆S = ∫
Zn+CuSO 4 (aq)
ZnSO 4(aq)+Cu ∆H m *= -216.8 kJ mol -1
热力学第二定律所要解决的问题是寻找一个在一定条件下的过程进行的共 同判据----普遍适用的判据。 这个判据一定是体系的状态函数。它的改变值反映在一定条件下过程的方向 性。 一热力学第二定律的表述 (Expression of Second Law of Thermodynamics) 1824 年 Carnot 认为热机必须在两个热源间工作,从高温热源吸热只有部分 作功,而其余部分传给低温热源。 * 1850 年克劳修斯(R.Clausius): 不可能把热从低温物体传到高温物体而不产生其他影响。 * 1851 年开尔文(Kelvin) : 不可能从单一热源吸取热量使之完全转化为功而不引起其他变化。 热力学第二定律的确立,证明第二类永动机是不可造出的。第二类永动机: 一种能够从单一热源吸热,并将所吸收的热全部变为功而无其他影响的机器 (Second Kind of permanent motion machine) 上述两种表达方法是完全有效的。 设有一部违反 Kelvin 热机 A 和制冷机 B 联合工作,如下图:
高温热源T2
高温热源 T2
W =Q2 Q2 B Q1

物理化学答案——第二章-热力学第二定律

物理化学答案——第二章-热力学第二定律

第二章 热力学第二定律 一、基本公式和基本概念 基本公式1. 热力学第二定律的数学表达式----克劳修斯不等式 ()0A B A B QS Tδ→→∆-≥∑2. 熵函数的定义 ()R QdS Tδ=, ln S k =Ω3. 熵变的计算理想气体单纯,,p V T 变化22,1122,1122,,11ln ln ln ln lnln V m p m p m V m T V S C R T V T p S C R T p V p S C C V p ∆=+∆=-∆=+理想气体定温定压混合过程ln i i iS R n x ∆=-∑封闭系统的定压过程21,d T p m T C S n T T∆=⎰封闭系统定容过程 21,d T V m T C S n T T∆=⎰可逆相变 m n H S T∆∆=标准状态下的化学反应 ,()r m Bm B BS S T θθν∆=∑定压下由1T 温度下的化学反应熵变求2T 温度下的熵变 21,21()()d T p m r m r m T C S T S T T T∆∆=∆+⎰4. 亥姆霍兹函数 A U TS ≡-5. 吉布斯函数 G H TS ≡-6. G ∆和A ∆的计算(A ∆的计算原则与G ∆相同,做相应的变换即可)定温过程G H T S ∆=∆-∆组成不变的均相封闭系统的定温过程 21d p p G V p ∆=⎰理想气体定温过程 21ln p G nRT p ∆= 7. 热力学判据熵判据:,()0U V dS ≥亥姆霍兹函数判据:,,'0(d )0T V W A =≤ 吉布斯函数判据:,,'0(d )0T p W G =≤8. 热力学函数之间的关系组成不变,不做非体积功的封闭系统的基本方程d d d d d d d d d d d d U T S p V H T S V pA S T p V G S T V p=-=+=--=-+麦克斯韦关系S VpS T Vp TT p V S T V p S S p V T S V p T ∂∂⎛⎫⎛⎫=- ⎪ ⎪∂∂⎝⎭⎝⎭⎛⎫∂∂⎛⎫= ⎪ ⎪∂∂⎝⎭⎝⎭∂∂⎛⎫⎛⎫= ⎪ ⎪∂∂⎝⎭⎝⎭⎛⎫∂∂⎛⎫=- ⎪ ⎪∂∂⎝⎭⎝⎭9. 吉布斯-亥姆霍兹方程2()pG HT T T ∆⎡⎤∂⎢⎥∆=-⎢⎥∂⎢⎥⎣⎦ 基本概念1. 热力学第二定律在研究化学或物理变化驱动力来源的过程中,人们注意到了热功交换的规律,抓住了事物的共性,提出了具有普遍意义的熵函数。

物理化学热力学第二定律

物理化学热力学第二定律

对微小变化
Qr dS T
上式为熵的定义式。 熵的变化必须由可逆过程的热温商求得。
(2) 不可逆过程的热温商
• 如果热机进行不可逆循环,则其效率必然比卡 诺循环效率小,即 Q1 Q2 T2 T Q2 T2
1
• 其中Q表示不可逆过程的热效应。由上式得
Q1* Q2* 0 T1 T2
• 因此,对一任意不可逆循环来说,必有

Q*
T
0
假定一不可逆循环A→B→A,其中A→B为不可 逆过程(标记ir)、B→A为可逆过程(标记r)。
警告:对不可逆过程 A→B (1→2) 不可颠倒积分限。
2 T T 2 Q 2 Q r ir > 1 T 1 T 2 Q > 不可逆 S 1 T = 可逆 Q > 不可逆 dS T = 可逆 1
①A→B 定温可逆膨胀 ②B→C 绝热可逆膨胀 ③C→D 定温可逆压缩 ④D→A 绝热可逆压缩
• 过程①:定温(T2)可逆膨胀 理想气体Δ U= 0, 故 Q2 = -W1 W1 = -RT2*ln(V2/V1) • 过程② :绝热可逆膨胀 由于绝热 Q= 0, 故ΔU = W2 Δ U= Cv*Δ T = Cv*(T1-T2) • 过程③ :定温(T1)可逆压缩 理想气体ΔU=0,故 Q1 = -W3 W3 = -RT1*ln(V4/V3) • 过程④ :绝热可逆压缩 由于绝热 Q= 0, ΔU = W4 ΔU= Cv* ΔT = Cv*(T2-T1)
卡诺定理: 1. 在两个不同温度的热源之间工作的任意 热机,以卡诺热机的效率为最高。 2. 卡诺热机的效率只与两个热源的温度有 关,而与工作物质(水蒸气或其它气体) 无关。

第二章:热力学第二定律(物理化学)

第二章:热力学第二定律(物理化学)
如果是一个隔离系统,环境与系统间既无热 的交换,又无功的交换,则熵增加原理可表述为: 一个隔离系统的熵永不减少。
精选可编辑ppt
31
克劳修斯不等式的意义
克劳修斯不等式引进的不等号,在热力学上可以
作为变化方向与限度的判据。
dS Q T
dSiso 0
“>” 号为不可逆过程 “=” 号为可逆过程
“>” 号为自发过程 “=” 号为处于平衡状态
I < 20% 1度电/1000g煤
高煤耗、高污染(S、N氧化物、粉尘和热污染)
精选可编辑ppt
16
火力发电厂的能量利用
400℃
550℃
ThTC67330055%
Th
673
I < 40% 1度电/500g煤
ThTC82330063%
Th
823
精选可编辑ppt
17
火力发电厂的改造利用
精选可编辑ppt
十九世纪,汤姆荪(Thomsom)和贝塞罗特(Berthlot) 就曾经企图用△H的符号作为化学反应方向的判据。他们认 为自发化学反应的方向总是与放热的方向一致,而吸热反应 是不能自动进行的。虽然这能符合一部分反应,但后来人们 发现有不少吸热反应也能自动进行,如众所周知的水煤气反 应就是一例。这就宣告了此结论的失败。可见,要判断化学 反应的方向,必须另外寻找新的判据。
精选可编辑ppt
4
2.2 自发变化不可逆症结
T1高温热源 Q1
M
W
Q2
T2低温热源
精选可编辑ppt
5
2.3 热力学第二定律(The Second Law of Thermodynamics)
开尔文(Kelvin) :“不可能从单一热源取出热使之完全 变为功,而不发生其它的变化。”

物理化学 第二章 热力学第二定律

物理化学 第二章 热力学第二定律

101.325kPa,变到100℃,253.313 kPa,计
算△S。
S
p S1
S2
T
分析:此题是p、V、T三者都变的过程,若要计 算熵变,需要设计成两个可逆过程再计算。先等 压变温,再等温变压。
S
p S1
S2
T
S
S1
S2
C pm
ln T2 T1
R ln
p1 p2
5 R ln 37315 R ln 101325 114J K 1
-5℃苯(l)→5℃苯(l)
S1
278 Cpm(l) dT 268 T
C pm(l )
ln
T2 T1
126g77 ln 278 268
4 64J K 1
(2) 相变点的相变 5℃苯(l)→5℃苯(s)
S2
H T
9916 08 278
35 66J
K 1
(3) 恒压变温 5℃苯(S)→-5℃苯(S)
4.绝热可逆缩D(p4V4)→A(p1V1)
下面计算每一步的功和热 以1mol理想气体为体系
第一步: U1 0
W1
Q2
RT2
ln V2 V1
第二步:
T1
Q 0 W2 U2 CVmdT
T2
第三步: U3 0 第四步: Q 0
W3
Q1
RT1
ln
V4 V3
T2
W4 U4 CVmdT
T1
解:(1)
S体
nR ln V2 V1
8314 ln10 19 15J
K 1
S环
QR T
nR ln V2 V1
19 15J gK 1
S体 S环 0

物理化学 热力学第二定律概念函数

物理化学 热力学第二定律概念函数
B δQ A δQ B δQ B δQ δQ ( T )r A ( T )r( ) B ( T )r( ) A ( T )r( ) A ( T )r( ) 0
B δQ δQ 即: ( )r( ) ( )r( ) A T A T B
B δQ B δQ 则: A ( )r( ) A ( )r( ) A dS S B S A S T T B
二、任意可逆循环过程的热温商与熵函数 热温商:Q/T
Q1 Q2 对卡诺循环有: 0 T1 T2
p A
设任意可逆循环:A
B
A
B δQi δQi 1 0 每个小卡诺循环: Ti Ti 1 V δQi δQi 整个循环过程: ( )r 0 或 ( )r 0 Ti Ti i 1
T , p ,S
S1 S 2
Ttrs
nC p ,m [ A( )]
T
T
T nC p ,m [ A( )] T
dT dT
A( ) A()
Ttrs , p , trsS
Ttrs
则:S T
Ttrs
n{C p ,m [A( )] C p,m [A( )]} T
1.A (PAVAT2 )
B (PBVBT2 )等温可逆膨胀,△U1=0
2. B (PBVBT2 ) ������
p
C (PCVCT1 )绝热可逆膨胀
D (PD VD T1)等温可逆压缩
A
Q=0, B D C
3. C (PCVCT1 ) ������
△U3=0
4. D (PD VD T1) ������
Qr S T
△ S环 =
Q环 / T环 =-Q实/T环境

物理化学 2第二章 热力学第二定律

物理化学 2第二章  热力学第二定律

第二章 热力学第二定律内容提要一、自发过程及其不可逆性(1)自发过程(spontaneous process ):不靠外力就能自动进行的过程。

自发过程都有确定的方向,它的逆过程绝不会自发进行。

若靠外力干涉,使原过程逆相进行,体系恢复原状,则在环境中会留下无论如何也不能消除的后果。

这种不能消除的后果就是自发过程的不可逆性。

即一切自发过程都是不可逆的。

(2)可逆过程(reversible process):可逆过程是由一连串近平衡态的微小变化组成的。

变化的动力与阻力相差无限小,因而可逆变化进行的无限缓慢。

循原过程相反方向无限缓慢变化,可使体系与环境同时恢复原状,可逆过程的后果是可以消除的。

可逆过程中,体系对环境做功最大,环境对体系做功最小。

过程在热力学上是否可逆,最终归结为过程热功的转换问题。

由于热不能完全变为功,所以凡是涉及热的过程都是不可逆的。

二、热力学第二定律的表述及公式1、Kelvin 表述:“不可能从单一热源取热使之完全变为功而不产生其它变化”。

单一热源取热使之完全变为功虽不违背热力学第一定律,但涉及热功转换现象。

此表述也可说成“第二类永动机不可能制成”。

2、Clausius 表述:“热不能自动地由低温热源传到高温热源而不发生其它变化”。

两种表述都断言:一切实际过程都是不可逆的。

3、Clausius (克劳修斯)不等式(Clausius ineauality ):d S ≥δQ/T 或 T d S ≥δQ“=”适用于可逆过程,“>”适用于不可逆过程。

该不等式表示:可逆过程的热温商δQ/T 等于过程的熵变d S ;不可逆过程的热温商δQ/T 小于过程的熵变d S 。

三、熵(entropy )的定义及计算1、熵(entropy )的定义熵是体系的性质,状态函数,以符号S 表示。

⎰=∆BA R T Q S 式中,Q 为可逆过程的热,T 是可逆过程体系的温度。

2、熵的微观解释:体系任一平衡的宏观状态都与一定的微观状态数,即称混乱度相对应。

物理化学2 热力学第二定律

物理化学2 热力学第二定律

2、自发过程的共同特征 、 •气体向真空膨胀 •热量从高温物体传入低温物体 •锌片与硫酸铜的置换反应
自发过程的共同特征—不可逆性; 自然界的所有自发过程都可以归结为热功转换的 不可逆性
具有普遍意义的过程: 具有普遍意义的过程:热功转换的不等价性
无代价,全部

不可能无代价,全部

① W
Q 不等价,是长期实践的结果。
1mol 理想气体的卡诺循环在 pV 图上可以分为四步: 过程1:等温(T2)可逆膨胀由 p1,V1到 p2,V2
∆U1 = 0
V2 W = RT2 ln 1 V 1
Q =−W 2 1
过程2:绝热可逆膨胀由 p2 , V2 , T2到 p3 , V3 , T1
Q=0
W2 = ∆U = ∫ CV dT = CV (T1 − T2 )
∆H = ∆H ( He) + ∆H ( H 2 )
= 207.9J
5 7 = n ⋅ R (262.5K − 200K ) + n ⋅ R (262.5K − 300K ) 2 2
(2)
∆S = ∆S ( He ) + ∆S ( H 2 )
3 262.5 5 262.5 = n ⋅ R ln + n ⋅ R ln 2 200 2 300
S是容量性质,J.K-1
T δ Q ≠ ∑ T
2、不可逆过程的热温商
* Q1* + Q2 T2 − T1 < * Q2 T2
Q Q + <0 T1 T2
* 1
* 2

δQ*
T
<0
β
设有一个循环,A→B为不可逆过程, B→A为可逆过程,整个循环为不可逆 循环。 则有

物理化学课件第2章热力学第二定律

物理化学课件第2章热力学第二定律

热不是系统的状态函数,所以要分别计算三 个过程的热: 理想气体定温过程,U=0,Q=W
卡诺定理 熵 熵变计算 自由能 热力学关系 G计算 习题课
24
S= 191 JK-1
实际过程的热温商: (a) Q/T= nR ln (p1 / p2) = 191 JK-1 S= Q/T 可逆 (b) Q/T=0; S>Q/T 不可逆过程
卡诺定理 熵 熵变计算 自由能 热力学关系 G计算 习题课
三、热传导过程
19
求算S的依据:
1.熵是系统的状态性质, S只取决于始终态,而
与变化途径无关;
2.无论是否是可逆过程,在数值上
dS =Qr/T; (Qr=TdS)
因此需设计可逆过程,求Qr
3.熵是容量性质,具有加和性。
S=SA +SB
Qr Qr Qr T T A T A B
B A B


B
其积分值与途径无关
A

V
S S B S A
A
def B
Qr
T

dS
def
Q r
T
单位:JK-1 , 容量性质
G计算
反证法
T2
Q2 Q2
R
W'
I
W
Q1
Q1 '
T1
卡诺定理告诉人们:提高热机效率的有效途径是加 大两个热源之间的温差。
卡诺定理

熵变计算 自由能 热力学关系
G计算
习题课
11
卡诺定理热温商:( Clausius
1850年)
W Q2 + Q1 T2 T1 R Q2 Q2 T2

大学物理化学 热力学第二定律

大学物理化学 热力学第二定律
说明:
(1)隔离体系中所发生的一切不可逆过程,
都使其熵值增加: 过程方向的标志;
dS隔离,这0 是自发
(2)隔离体系中所发生的一切可逆过程, 其熵值都保持不变:dS隔离 0 ,这是体 系已达到平衡态的标志。平衡态是自发 过程的限度;
(3)隔离体系不可能发生使其熵值减少的 过程。
熵增加原理:隔离体系所发生的一切自 发过程都是朝着使其熵值增加的方向进 行,一直到隔离体系的熵值达到最大为 止,即体系处于平衡态。
三、熵的物理意义
1.自发过程的本质 自发过程的方向性归结为功热转换的不 可逆性。
热:分子混乱运动的表现;
功:一种稳定有序运动的表现;
功热转换:分子由有序状态自发地变为 无序状态,即混乱度增加。无序运动却 不会自动地变为有序运动。
从微观上讲:
热功转换不可逆性是分子运动由混乱程 度较小的状态自发地向混乱程度较大的 状态变化的必然结果。一切不可逆过程 都是向混乱度增加的方向进行。
RT2
ln V4 V3
CV ,m (T2
T1)

RT1
ln
V2 V1

RT2
ln V4 V3
TV 1 常数,有:
T1V2 1 T2V3 1,T2V4 1 T1V1 1


V2 V3

1


V1 V4

1


V2 V1

nA TA
恒容
nB TB
变温
nA T’
n=nA+nB T’
恒温
膨胀
nB T’
S S A S B
S A

nA .CV .m
ln
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
BSm$ (B)
§3.7 熵变的计算
一、单纯状态变化过程
1. 等温过程 2.变温过程
S QR T
①等容变温过程
S T2 Qr T2 nCp,mdT
T T1
T1
T
nC
p,m
ln
T2 T1
②等压变温过程
S T2 Qr T T1
T2 nCV ,mdT
T1
T
nCV
,m
ln
T2 T1
U3 0
p
W3
nRTc
ln V4 V3
A(p1,V1,Th )
B(p2,V2,Th )
Th
Qc W3
D(p4,V4,TC )
C(p3,V3,TC )
Tc
环境对系统所作功如 DC曲线下的面积所示
a db
c
V
过程4:绝热可逆压缩 D( p4,V4,TC ) A( p1,V1,Th )
Q4 0
p
用一闭合曲线代表任意可逆循环。 在曲线上任意取A,B两点,把循环分成AB和 BA两个可逆过程。 根据任意可逆循环热温商的公式:
δ Q
T R
0
将上式分成两项的加和
B Q
( AT
)R1
A Q
( BT
)R2
0
移项得:
B A
(
Q T
)R1
B A
(
Q T
)R
2
说明任意可逆过程的热温商的值决定于始终 状态,而与可逆途径无关,这个热温商具有状态 函数的性质。
所以Clausius 不等式为
dS 0
等号表示绝热可逆过程,不等号表示绝热不
可逆过程。
熵增加原理可表述为:
在绝热条件下,不可能发生熵减少的过程
(2)孤立系统 环境与系统间既无热的交换,又 无功的交换,则熵增加原理可表述为:
一个孤立系统的熵永不减少。
对于孤立系统
dSiso 0
可以用来判断自发变化的方向和限度
不可逆过程,即自发变化总是朝着Helmholtz自由能 减少的方向进行。这就是Helmholtz自由能判据:
(dA)T ,V ,Wf 0 0
" "表示可逆,平衡 " "表示不可逆,自发
三、Gibbs自由能
根据热力学第一定律和第二定律的联合公式
W (dU TsurdS)
当 T1 T2 Tsur T W We Wf pdV Wf 得: pdV Wf d(U TS)
T1
T2
或:
Q1 Q2 0 T1 T2
即:卡诺循环中,热效应与温度商值(热温商)的加和
等于零。
2020/6/13
三、卡诺定理
1、所有工作于两个不同温度热源之间的热机, 可逆热机的效率最大。
I R
2、可逆热机的工作效率只取决于两热源的温度, 而与热机的工作物质无关。
Carnot定理的意义:
(1)引入了一个不等号 I R,原则上解决了
W4 U4
Th Tc
CV
,m
dT
环境对系统所作的功如 DA曲线下的面积所示。
A(p1,V1,Th )
B(p2,V2,Th )
Th
D(p4 ,V4 ,TC )
C(p3,V3,TC )
Tc
a
db
c
V
2、结果:
整个卡诺循环:
U 0
Qh 是体系所吸的热,为正值,
Q Qh Qc Qc 是体系放出的热,为负值。
Tc
)
ln
V1 V2
(2)卡诺热机效率
W Q
1
Tc
nR(Th
Tc )
ln( V1 V2
)
nRTh
ln( V1 V2
)
Th Tc Th
Th
W Qh Qc
Qh
Qh
(Qc 0)
1
联立以上二式:
W Q2 Q1 T2 T1
Q2
Q2
T2
1 Q1 1 T1
Q2
T2
Q1 Q2
即熵的变化值可用可逆过程的热温商值来衡量。
二、熵的性质
三、不可逆过程的热温商与熵变
1.不可逆循环过程的热温商
根据Carnot定理:
Qc Qh 0 Tc Th
推广为与n个热源接触的任意不可逆循环过程,得:
n i
Qi Ti
0
<
0
I
2.不可逆过程的热温商
设有一个循环, A B 为不可逆过程,B A 为可逆过程,整个循环为不可逆循环。
⊿A意义:在等温、可逆过程中,系统对外所作的 最大功等于系统Helmholtz自由能的减少值,所以把 A 称为功函(work function)。
Helmholtz自由能判据
2、如果系统在等温、等容且不作其他功的条件下
(dA)T ,V ,Wf 0 0

(dA)T ,V ,Wf 0 0
等号表示可逆过程,小于号表示是一个自发的
一、热机和热机效率
1、热机: 2、热机效率:热机所作的功与所吸的热之比值,
用 表示。
W
Q
二、卡诺循环
1、定义:由理想气体的两个等温可逆过程和两个绝 热可逆过程组成的可逆循环过程,叫Carnot循环。
p
A(p1,V1,Th )
B(p2 ,V2 ,Th )
Th
D(p4 ,V4 ,TC )
C(p3,V3,TC )
Clausius根据可逆过程的热温商值决定于始终态而 与可逆过程无关这一事实定义了“熵”(entropy) 这个函数,用符号“S”表示,单位为:J K1
设始、终态A,B的熵分别为SA 和 SB,则:
B Q
SB SA S
( AT
)R
对微小变化
dS
Q ( T )R
这几个熵变的计算式习惯上称为熵的定义式,
§2.2 热力学第二定律
一、 “一切自发过程都是不可逆的”。
二、凯尔文(Kelvin) 的说法: “不可能从单一热源取出热使之完全变为功,而 不发生其他的变化”
“第二类永动机是不可能造成的”。
第二类永动机:从单一热源吸热使之完全变为功而不 发生其他的变化的机器。
注意:
§ 2.3 卡诺循环与卡诺定理
第二章 热力学第二定律
§3.1 §3.2 §3.3 §3.4
自发过程的共同特征 热力学第二定律的经典表述 Carnot循环与卡诺定理 熵的概念
§3.5 熵变的计算及其应用
§3.6 熵的物理意义及规定熵的计算
§3.7 §3.8 §3.9
Helmholtz和Gibbs自由能 热力学函数的一些重要关系式 G 的计算
Q
SAB (
i
T )AB 0
Q是实际过程的热效应,T是环境温度。若是不 可逆过程,用“>”号,可逆过程用“=”号,这时 环境与系统温度相同。
对于微小变化:
dS Q 0 T
或 dS Q T
这些都称为 Clausius 不等式,也可作为热力 学第二定律的数学表达式。
2、熵增加原理
(1)绝热系统 Q 0
一、热一、二律联合式
根据第一定律 根据第二定律
将 Q 代入得:
Q dU W dS Q 0
Tsur
W (dU TsurdS)
二、Helmholtz自由能

T1 T2 Tsur
即系统的始、终态温度与环境温度相等
得: W d(U TS)
Helmholtz(Hermann von Helmholtz, 1821 ~1894 , 德国人)定义了一个状态函数
(2)求算:
已知 dS CpdT
T
ST S0
T CpdT 0T
若 S0 0
S
T Cp dT 0T
T
0 Cpd ln T
规定熵值的应用
物质在298K、标准压力时的摩尔熵值,称为标 准熵,以 Sm$ 表示。 对于任意的化学反应
aA bB gG hH
r Sm$ [gSm$ (G) hSm$ (H )] [aSm$ ( A) bSm$ (B)]
Tc
ad
b
c
V
卡诺热机:
Th 高温热源 Qh W
卡诺热机
Qc
Tc 低温热源
在p~V 图上可以分为四步:
过程1:等温可逆膨胀 A( p1,V1,Th ) B( p2,V2,Th )
U1 0
p
W1
nRTh
ln
V2 V1
Qh W1
A(p1,V1,Th )
B(p2,V2,Th )
Th
系统所作功如AB曲
B
例3、P69例8
§3.10 亥姆霍兹自由能和吉布斯自由能
热力学第一定律导出了热力学能这个状态函数, 为了处理热化学中的问题,又定义了焓。
热力学第二定律导出了熵这个状态函数,但用熵 作为判据时,系统必须是隔离系统,也就是说必须同 时考虑系统和环境的熵变,这很不方便。
通常反应总是在等温、等压或等温、等容条件下 进行,有必要引入新的热力学函数,利用系统自身状 态函数的变化,来判断自发变化的方向和限度。
一.熵的物理意义
Boltzmann认为熵和微观状态数之间有如下的 对数关系:
S k ln
这就是Boltzmann公式,式中 k 是Boltzmann常数。
Boltzmann公式把热力学宏观量 S 和微观量概 率 联系在一起,使热力学与统计热力学发生了 关系,奠定了统计热力学的基础。
熵的统计意义:熵是系统混乱度的度量。
则有
i
Q T
I,
AB
i
Q T
R, BA
<
0
相关文档
最新文档