一次函数之面积问题(讲义及答案).

合集下载

一次函数面积问题专题(含答案解析)

一次函数面积问题专题(含答案解析)

一次函數面積問題1、如图,一次函数的图像与X轴交于点B (- 6 , 0),交正比例函数的图像于点A,点A的横坐标为-4,△ ABC的面积为15,求直线OA的解析式。

2、直线y=x+3的图像与X轴、y轴分别交于A B两点,直线a经过原点与线段AB 交于。

,把厶ABO勺面积分为2:1的两部分,求直线a的函数解析式。

3、直线PA是一次函数y=x+n的图像,直线PB是一次函数y=-2x+m (m>n>0的图像,(1) 用m n表示A、B、P的坐标(2) 四边形PQoB勺面积是',AB=2求点P的坐标4、A AOB的顶点0( 0, 0) A (2, 1)、B (10, 1),直线CDL X 轴且△ AOB面积二等分,若D (m, 0),求m的值5、点B在直线y=-x+1上,且点B在第四象限,点A(2, 0)、0(0, 0),A ABo 的面积为2,求点B的坐标。

6直线y=- x+1与X轴y轴分别交点A B,以线段AB为直角边在第一象限内作等腰直角△ ABC N BAC=90 ,点P( a,])在第二象限,△ ABP勺面积与△ ABC7、如图,已知两直线y=0.5x+2.5和y=-x+1分别与X轴交于A、B两点,这两直线的交点为P(1)求点P的坐标(2)求厶PAB的面积8、已知直线y=ax+b (b>0)与y轴交于点N,与X轴交于点A且与直线y=kx交于点M (2, 3),如图它们与y轴围成的厶MoN勺面积为5,求(1)这两条直线的函数关系式(2)它们与X轴围成的三角形面积9、已知两条直线y=2x-3和y=5-x(1)求出它们的交点A的坐标(2)求出这两条直线与X轴围成的三角形的面积10、已知直线y=x+3的图像与X轴、y轴交于A B两点,直线I经过原点,与线段AB 交于点。

,把厶AoB的面积分为2:1的两部分,求直线I的解析式。

11、已知直线y=2x+3与直线y=-2x-1与y轴分别交于点A B(1)求两直线交点C的坐标(2)求厶ABe的面积(3)在直线BC上能否找到点P,使得△ APC的面积為6,求出点P的坐标,12、已知直线y=-x+2与X轴、y轴分别交于点A和点B,另一直线y=kx+b(k≠ 0)经过点C(1,0),且把△ AOB分为两部分,(1)若厶AOB被分成的两部分面积相等,求k和b的值(2)若厶AOB被分成的两部分面积为1:5,求k和b的值13、直线y=- x+3交X, y坐标轴分别为点A B,交直线y=2x-1于点P,直线-Iy=2x-1交X, y坐标轴分别为C。

一次函数之面积问题ppt课件

一次函数之面积问题ppt课件
(1)用m,n表示A,B,P的坐标.
(2)若AB=2,四边形PQOB的面积为5/6,求点P的坐 标.

11.如图,直线y=2x+2与坐标轴交于A,B点.
(1)求出A,B的坐标.(2) 直线y=kx(k≠0)交直线y=2x+2于点P,把 △ABC分成两部分,
①若△AOP与 △BOP的面积之比为1:2,求k值和P的坐标.
点B的坐标为(1,0)∴OB=∣1∣=1
三角形ABP的高为点P的纵坐标的绝对值∣2∣=2
∴S△ABP=
1 2
(5+1)
×2=6
6.在同一直角坐标系中画出直线y=x+3与y=x+1的图像.(1)求出两条直线与x轴的两个交点 A,B间的距离.(2)求两条直线的交点C的坐标.(3) 求△ABC的面积.
7.已知,直线y=2x+3与直线y=-2x-1. (1)求两直线交点C的坐标; (2)求△ABC的面积. (3)在直线BC上能否找到点P,使得S△APC=6,
5.已知直线y=2x+3与x轴交于点A,与y轴交于点 B,
• (1)求A,B的坐标.
• (2)过点B作直线BP与x轴交于点P,且使 OP=2OA,求△ABP的面积
例1、
{ 解:
y=0.5x+2.5 y=-x+1
{ 解方程组得: X=-1 y=2
∴点p的坐标为(-1,2)
(2)点A的坐标为(-5,0)∴OA=∣-5∣=5
• 1.(黄石中考)将函数y=-2x的图像l1向上平移4个单 位得直线l2,(1)求直线l2与坐标轴的交点坐标.(2)求 直线l2与坐标轴围成的三角形面积.
2.直线经过(1,2)、(-3,4)两点,求直 线与坐标轴围成的图形的面积。

一次函数与几何图形面积问题含答案

一次函数与几何图形面积问题含答案

一次函数与几何图形面积问题解析课时小练一、新课导入(一)学习目标学会运用数形结合思想,能根据题意处理与面积有关的一次函数问题,依据函数性质及图形特征学会面积转化,建立相应的数式关系,运用方程或不等式的知识来解决问题.(二)预习导入如图,已知A(0,2),B(6,0),C(2,m)),当S△ABC=1时,m=______..二、典型问题知识点一:与静态图形有关的面积问题例1如图,点A,B的坐标分别为(0,2),(1,0),直线y=12x−3与y轴交于点C、与x 轴交于点D.(1)直线AB解析式为y=kx+b,求直线AB与CD交点E的坐标;(2)四边形OBEC的面积是________;分析:(1)运用待定系数法即可得到直线AB解析式,再根据方程组的解,即可得到直线AB 与CD交点E的坐标;(2)根据坐标轴上点的特征求出C、D两点的坐标,然后根据S四边形OBEC=S△DOC−S△DBE 面积公式计算即可;知识点二:与动态图形有关的面积问题例2如图,平面直角坐标系中,直线AB:y=﹣x+b交y轴于点A,交x轴于点B,S△AOB=8.(1)求点B的坐标和直线AB的函数解析式;(2)直线a垂直平分OB交AB于点D,交x轴于点E,点P是直线a上一动点,且在点D 的上方,设点P的纵坐标为m.①用含m的代数式表示△ABP的面积;②当S△ABP=6时,点P的坐标为;③在②的条件下,在坐标轴上,是否存在一点Q,使得△ABQ与△ABP面积相等?若存在,直接写出点Q的坐标,若不存在,请说明理由.分析:(1)利用一次函数图象上点的坐标特征可找出点A、B的坐标,结合S△AOB=8即可求出b值,进而可得出点B的坐标和直线AB的函数表达式;(2)①由OB的长度结合直线a垂直平分OB,可得出OE、BE的长度,利用一次函数图象上点的坐标特征可求出点D的坐标,进而可用含m的代数式表示出DP的值,再利用三角形的面积公式即可用含m的代数式表示△ABP的面积;②由①的结论结合S△ABP=6,即可求出m值,此题得解;③分点Q在x轴及y轴两种情况考虑,利用三角形的面积公式即可求出点Q的坐标,此题得解.三、阶梯训练A组:基础练习1.直线y=kx-4与两坐标轴所围成三角形的面积是4,则k=.2.已知直线y=2x+4与x轴、y轴分别交于A,B两点,点P(﹣1,m)为平面直角坐标系内一动点,若△ABP面积为1,则m的值为.3.如图,过点A(2,0)的两条直线l1,l2分别交y轴于B,C,其中点B在原点上方,点C在原点下方,已知AB=13.(1)则点B的坐标为;(2)若△ABC的面积为4,求l2的解析式为.4.如图,直线y=12x+2分别与x轴、y轴相交于点A,B两点.(1)求点A和点B的坐标;(2)若点P是y轴上的一点,设△AOB、△ABP的面积分别为S△AOB与S△ABP,且S△ABP=2S△AOB,求点P的坐标.5.如图,点N(0,6),点M在x轴负半轴上,ON=3OM,A为线段MN上一动点,AB ⊥x轴,垂足为点B,AC⊥y轴,垂足为点C.(1)点M的坐标为;(2)求直线MN的解析式;(3)若点A的横坐标为﹣1,求四边形ABOC的面积.6.如图,在平面直角坐标系中,O为坐标原点,直线l1:y=12x与直线l2:y=−x+6交于点A,l2与x轴交于B,与y轴交于点C.(1)求△OAC的面积;(2)若点M在直线l2上,且使得△OAM的面积是△OAC面积的34,求点M的坐标.B组:拓展练习7.如图,一直线与两坐标轴的正半轴分别交于A,B两点,P是线段AB上任意一点(不包括端点),过P分别作两坐标轴的垂线与两坐标轴围成的矩形的周长为10,则该直线的函数解析式是().A.y=x+5B.y=x+10C.y=-x+5D.y=-x+108.如图,直线AB:y=12x+1分别与x轴、y轴交于点A.点B,直线CD:y=x+b分别与x轴、y 轴交于点C.点D.直线AB与CD相交于点P,已知S△ABD=4,则点P的坐标是.9.如图,在平面直角坐标系中,矩形OABC的顶点A(4,0),C(0,3),直线y=﹣32x+92交OA于点D,交BC于点E,动点P从点O出发,以每秒2个单位长度的速度沿OA﹣AB运动,到点B停止,设△PDE的面积为S(平方单位),点P的运动时间为t(秒).(1)求点D和点E的坐标;(2)求S与t之间的函数关系式,并写出t的取值范围;(3)当点P在边AB上运动,且PD+PE的值最小时,直接写出直线EP的解析式.四、归纳小结方法、规律解决有关图形面积问题,着眼于相应条件在环境下的集中和转化,利用函数的性质及图形特征,运用全等、勾股及方程等相关知识进行处理,如何建立相应的方程或进行相应的计算,从而确定点的坐标,灵活运用条件是处理问题的关键.一次函数与几何图形面积问题解析课时小练答案预习导入1或53.例1(1)点A,B的坐标分别为(0,2),(1,0),∴k+b=0,b=2.解得k=−2,b=2.∴直线AB的解析式是y=-2x+2.∴y=−2x+2,y=12x−3.解得x=2,y=−2.∴E(2,-2).(2直线CD的解析式为y=12x−3.当x=0时,y=-3,当y=0时,x=6,则点C的坐标是(0,-3),点D的坐标是(6,0).S四边形OBEC=S△DOC−S△DBE=12×6×3−12×5×2=4.例2(1)∵直线AB:y=﹣x+b交y轴于点A,交x轴于点B,∴点A的坐标为(0,b),点B的坐标为(b,0).∵S△AOB=12b2=8,∴b=±4.∵点A在y轴正半轴上,∴b=4.∴点B的坐标为(4,0),直线AB的函数解析式为y=﹣x+4;(2)①∵直线a垂直平分OB,OB=4,∴OE=BE=2.当x=2时,y=﹣x+4=2.∴点D的坐标为(2,2).∵点P的坐标为(2,m)(m>2),∴PD=m﹣2.∴S△ABP=S△APD+S△BPD=12DP•OE+12DP•BE=12×2(m﹣2)+12×2(m﹣2)=2m﹣4;②∵S△ABP=6,∴2m﹣4=6.∴m=5.∴点P的坐标为(2,5);③假设存在.当点Q在x轴上时,设其坐标为(x,0).∵S△ABQ=12AO•BQ=12×4×|x﹣4|=6,∴x1=1,x2=7.∴点Q的坐标为(1,0)或(7,0);当点Q在y轴上时,设其坐标为(0,y).∵S△ABQ=12BO•AQ=12×4×|y﹣4|=6,∴y1=1,y2=7.∴点Q的坐标为(0,1)或(0,7).综上所述:假设成立,即在坐标轴上,存在一点Q,使得△ABQ与△ABP面积相等,且点Q 的坐标为(1,0)或(7,0)或(0,1)或(0,7).1.±2.2.由y=2x+4,当x=0时,y=4;当y=0时,x=﹣2∴点A(﹣2,0),点B(0,4).如图,过点P作PE⊥x轴,交线段AB于点E.∴点E横坐标为﹣1.∴y=﹣2+4=2.∴点E(﹣1,2).=12×PE×2=1,∴|m﹣2|=1.∴m=3或1.∵S△ABP故答案为3或1.3.(1)(0,3);(2)y=12x−1.4(1)在y=12x+2中,令y=0,则12x+2=0,解得x=-4,∴点A的坐标为(-4,0).令x=0,则y=2,∴点B的坐标为(0,2);(2)∵点P是y轴上的一点,∴设点P的坐标为(0,y).又∵点B的坐标为(0,2),∴BP=y−2.∵S△AOB=12OA·OB=12×4×2=4,S△ABP=12BP·OA=12|y-2|×4=2|y-2|,又∵S△ABP=2S△AOB,∴2y−2=2×4.解得y=6或y=-2.∴点P的坐标为(0,6)或(0,-2).5.(1)(﹣2,0);(2)设直线MN的函数解析式为y=kx+b,把点(﹣2,0)和(0,6)分别代入上式,得−2k+b=0,b=6.解得k=3,b=6.∴直线MN的函数解析式为y=3x+6;(3)把x=﹣1代入y=3x+6,得y=3×(﹣1)+6=3.∴点A(﹣1,3).∴点C(0,3).∵AB⊥x轴,AC⊥y轴,∠BOC=90°,∴四边形ABOC为矩形,OB=1,OC=3.∴四边形ABOC的面积=1×3=3.6.(1)联立{y=12x,y=−x+6,解之得{x=4,y=2.∴A(4,2)由y=-x+6,当x=0,y=6,∴C(0,6).∴S△OAC=12×6×4=12;(2)当△OMC的面积是△OAC的面积的34时,∴M点的横坐标是34×4=3,当点M在线段OA上时,把x=3代入y=12x得y=32,则此时M(3,32);当点M在线段AC上时,把x=3代入y=-x+6得y=3,则此时M(3,3).综上所述,M的坐标为(1,32)或(3,3).7.C.8.(8,5).9.(1)由y=﹣32x+92,当y=0时,x=3.∴点D(3,0),当y=3时,x=1.∴点E(1,3).(2)如图1,①当点P在OD段时,此时0≤t≤32,S =12×PD ×OC =12×3t −2t ×3=﹣3t +92;②当点P 在DA 段时,此时32<t ≤2,同理可得S =3t ﹣92;③当点P (P ′)在AB 段时,此时2<t ≤72,S =S 梯形DABE ﹣S △ADP ′﹣S △BEP ′=6﹣12×1×(2t ﹣4)﹣12×3×(7﹣2t )=2t ﹣52;故S =−3t +92,0≤t ≤323t −92,32<t ≤22t −52,2<t ≤72;(3)在x 轴上取点D 的对称点D ′(5,0),连接D ′E 交AB 于点P ,则此时PD +PE 的值最小,将点E ,D ′的坐标代入一次函数解析式y =kx +b ,得5k +b =0,k +b =3.解得k =−34,b =154.故直线EP 的解析式为y =﹣34x +154.。

一次函数之面积问题(转化法)(北师版)(含答案) (1)

一次函数之面积问题(转化法)(北师版)(含答案) (1)

学生做题前请先回答以下问题问题1:平行线转化法求面积的依据是什么?问题2:当题目中的条件出现什么特征时可以考虑用平行线转化法求面积?问题3:直线上方的平行线确定之后,通过什么操作手段来确定直线下方的平行线位置?一次函数之面积问题(转化法)(北师版)一、单选题(共6道,每道16分)1.如图,在平面直角坐标系中,△ABC三个顶点的坐标分别为A(0,6),B(3,0),C(0,4),若点P是x轴上一动点,且,则点P的坐标为( )A.(1,0)或(5,0)B.(2,0)或(4,0)C.(0,1)或(0,5)D.(0,2)或(0,4)答案:B解题思路:试题难度:三颗星知识点:一次函数、坐标、几何的互相转化2.如图,在平面直角坐标系中,△ABC三个顶点的坐标分别为A(0,3),B(-3,2),C(-2,1),若点P是y轴上一动点,且,则点P的坐标为( )A. B.C. D.答案:D解题思路:试题难度:三颗星知识点:一次函数、坐标、几何的互相转化3.如图,直线y=2x+4与x轴、y轴分别交于A,B两点,点M是OB的中点,点P是直线AM 上一动点,若,则点P的坐标为( )A.(0,0)或(0,8)B.(0,0)或(-4,0)C.(2,4)或(-6,-4)D.(1,3)或(-5,-3)答案:C解题思路:试题难度:三颗星知识点:一次函数、坐标、几何的互相转化4.如图,直线y=-2x+2与x轴、y轴分别交于A,B两点,以线段AB为直角边在第一象限内作等腰Rt△ABC,且∠BAC=90°,在x轴上找一点P,使,则点P的坐标为( )A. B.C. D.答案:A解题思路:试题难度:三颗星知识点:一次函数、坐标、几何的互相转化5.如图,直线与x轴、y轴分别交于A,B两点,以AB为直角边在第二象限内作等腰Rt△ABC,∠BAC=90°,点P为直线x=1上的动点.若,则点P的坐标为( )A. B.C.(1,4)或(1,-1)D.(1,3)或(1,0)答案:C解题思路:试题难度:三颗星知识点:一次函数、坐标、几何的互相转化6.如图,直线与x轴、y轴分别交于A,B两点,以AB为边在AB左侧作等边三角形ABC,若平面内有一点P(m,),使得△ABP与△ABC的面积相等,则m的值为( )A. B.C. D.答案:D解题思路:试题难度:三颗星知识点:一次函数、坐标、几何的互相转化。

一次函数中的面积问题

一次函数中的面积问题

一次函数中的面积问题姓名:一、基础图形面积问题1、如图,在平面直角坐标系中,已知A (-1,3),B (3,-2),求AOB ∆的面积2、如图,直线AB :1+=x y 与x 轴、y 轴分别交于点A 、B ,直线CD :2-=kx y 与x 轴、y 轴分别交于点C 、点D ,直线AB 与直线CD 交于点P ,若,4.5=∆APD S 求k3、4、在平面直角坐标系xOy 中,直线y =﹣2x +4与坐标轴所围成的三角形的面积等于5、的面积6、直线21y x =+和直线2y x =-+与x 轴分别交与A 、B 两点,并且两直线相交与点C,(1)求△ABC 的面积,(2)求四边形CDOB 的面积7、如图,在平面直角坐标系中,一次函数y =kx +b 的图象经过点A (6,0),与y 轴交于点B (0,﹣3), 与正比例函数y =2x 的图象相交于点C .(1)求此一次函数的解析式;(2)求出△OBC 的面积;(3)点D 在此坐标平面内,且知以O 、B 、C 、D 为顶点四边形是平行四边形,请直接写出符合条件的点D 的坐标.二、面积倍分、相等问题1、如图,已知直线y =x +3的图象与x ,y 的轴交于B ,A 两点,直线l 经过A 点,与线段OB 交于点C 且把△AOB 面积分为2:1两部分.(1)求线段OA ,OB 的长;(2)求直线l的解析式.O2、如图,在平面直角坐标系中,直线y=kx+b与x轴、y轴分别交于点A(3,0)、点B(0,2),以线段AB为直角边在第一象限内作等腰直角三角形ABC,∠BAC=90°.(1)求直线y=kx+b的解析式;(2)求出△ABC的面积;(3)若P(1,m)为坐标系中的一个动点,连结P A,PB.当△ABC与△ABP面积相等时,求m的值.3、综合与探究:如图,直线l1的表达式为y=﹣3x+3,与x轴交于点C,直线l2交x轴于点A,OA=4,l1与l2交于点B,过点B作BD⊥x轴于点D,BD=3.(1)求点C的坐标;(2)求直线l2的表达式;(3)求S△ABC的值;(4)在x轴上是否存在点P,使得S△ABP=2S△ABC?若存在,请直接写出点P的坐标;若不存在,请说明理由.三、分论讨论1、直线y=x+3的图像与x轴、y轴分别交于A、B两点,直线a经过原点与线段AB交于C,把△ABO的面积分为2:1的两部分,求直线a的函数解析式。

一次函数中的面积问题公开课获奖课件百校联赛一等奖课件

一次函数中的面积问题公开课获奖课件百校联赛一等奖课件
注意:用坐标值表达线段长时要加上绝对值符号,以防漏解
2、如图,一次函数旳图像交x轴于点B(6,0),交正百分比函数旳图像于点A,且点A 旳横坐标为-4,S△AOB =15,求一次函数和正 百分比函数旳解析式.
y
A x
BO
1、如图,已知直线y=-x+2与x轴,y轴分别相 交于A、B两点,另一直线y=kx+b经过B和点 C,将△AOB面积提成相等旳两部分,求k和 b旳值.
16
旳面积为3 ,求y=kx+4旳y 解析式。
A B
oD
Cx
背景变式
1、如图,已知直线y=-x+2与x轴,y轴分别相 交于A、B两点,另一直线y=kx+b经过B和点 C,将△AOB面积提成相等旳两部分,求k和 b旳值.
2、如图,已知直线y=-x+2与x轴、y轴分别交 于点A和点B,另已知直线y=kx+b(k≠0)经 过点C(1,0),且把△AOB提成两部分.
若△AOB被提成旳两部分面积比为1:5, 求k和b旳值.
3、已知一次函数y=2x+6与两坐标轴围成旳三 角形面积被一正百分比函数提成面积旳比为1: 2旳两部分,求这个正百分比函数旳解析式.
如图:正方形ABCD边长为4,将此正方形置于坐标系 中点A旳坐标为(1,0)。
48 (1)过点C旳直线 y 3 x 3 与X轴交与E, 求S四边形AECD (2)若直线l经过点E且将正方形
形状变式
如图所示:直线y=kx+b经过点B(0,3 )与点C(-
2
1,3),且与x轴交与点A,经过点E(-2,0)旳 直线
与OC平行,而且与直线y=kx+b交与点D,
(1)求BC所在直线旳函数解析式;

沪教版八年级 一次函数中的面积问题,带答案

沪教版八年级   一次函数中的面积问题,带答案

1.能由一次函数的知识求有关图形的面积;2.能由已知图形的面积解决一次函数的有关问题; 3.体会一次函数的有关面积问题的解决思路.(此环节设计时间在10—15分钟)回顾上次课的预习思考内容,要求学生先画出一次函数的大致图形再解题.1.直线1y x =--与x 轴相交于点 ,与y 轴相交于点 ,与坐标轴围成的三角形面积为 .2.一次函数的图像经过(3,5),(—4,—9),则此一次函数的解析式为 ,一次函数与坐标轴围成的三角形面积为 .3.直线34y x =-+与直线21y x =-相交于P ,直线34y x =-+与x 轴相交于点A ,直线21y x =- 与x 轴相交于点B ,交点P 的坐标为 ,△ABP 面积为 . 参考答案:1.(—1,0),(0,—1),12; 2.21y x =-,14; 3.4(,0)3,1(,0)2,(1,1),512; 归纳总结:一次函数与坐标轴围成的面积可以推到出相应公式:22b S k∆=(此环节设计时间在50-60分钟)案例1:问题1:如图,已知直线l :22y x =-+与直线m :y x =交于点T ,求直线l 和直线m 与x 轴所围成的图形面积。

参考答案:解:由题意:(3,0),(0,3)A B - ∴1922AOBS OA OB =⋅= ∴11113232BOC AOBSOB C D S =⋅==∴11C D = 代入3y x =+得1(1,2)C -, 设直线l 的解析式:y kx = 代入1(1,2)C -得2k =- ∴直线l 的解析式2y x =- 同理:2(2,1)C -,∴直线l 的解析式12y x =-试一试:已知直线2y x =-+与x 轴、y 轴分别交于A 点和B 点,另一条直线(0)y kx b k =+≠经过点C (1,0),且把△AOB 分成两部分。

若△AOB 被分成的两部分面积比为1:5,求k 和b 的值.参考答案:22,33k b =-=或2,2k b ==-此环节设计时间在30分钟左右(20分钟练习+10分钟互动讲解)。

专题07 一次函数中的面积问题精讲(解析版)

专题07 一次函数中的面积问题精讲(解析版)

专题07 一次函数中的面积问题精讲一、平面直角坐标系中面积的几种求法面积问题是中考的一个重点知识点,考查方式灵活多样,很多题目有创新性,能很好考查学生的灵活运用知识的能力.我们除了要熟知常见图形的面积公式外,在平面直角坐标系中还要懂得以下几种面积的方法: 方法一、割补法割补方法不仅仅只有一种,要灵活使用.方法二、铅垂高、水平宽法=21=2ABC ABC S CD OAS CE OB⨯⨯⨯⨯△△ 二、典型例题选讲题1. 如图1-1所示,把Rt △ABC 放在直角坐标系内,其中∠CAB =90°,BC =5,点A 、B 的坐标分别为(1,0)、(4,0).将△ABC 沿x 轴向右平移,当点C 落在直线y =2x ﹣6上时,线段BC 扫过的面积为( )图1-1A .4B .8C .16D .12 【答案】C .【解析】如图1-2所示.图1-2设C 点移动到直线y =2x ﹣6上的点为C ’. ∵点A 、B 的坐标分别为(1,0)、(4,0), ∴AB =3.∵∠CAB =90°,BC =5,∴在Rt △ABC 中,由勾股定理得:AC =4. ∴A ′C ′=4.∵点C ′在直线y =2x -6上, ∴2x -6=4,解得 x =5.即OA ′=5, ∴CC ′=5-1=4.∴四边形BB ’C ’C 是平行四边形,面积 =4×4=16. 即线段BC 扫过的面积为16,故答案为:C .题2. 已知一次函数2y x a =+与y x b =-+的图象都经过A (2-,0),且与y 轴分别交于B 、C 两点,则△ABC 的面积为 ( ).A . 4B . 5C . 6D . 7 【答案】C .【解析】因为y =2x +a 与y =-x +b 的图象都经过A (-2,0), 所以0=2×(-2)+a , 解得:a =4, 又因为0=2+b 解得:b =-2y =2x +4、y =-x -2与y 轴分别交于B 、C 两点 ∴B (0.4),C (0,-2),三角形ABC 的面积=2×6÷2=6. 故答案为:C .题3. (河北中考)如图3-1所示,在平面直角坐标系xOy 中,A (0,5),直线x =-5与x 轴交于点D ,直线y =-38x -398与x 轴及直线x =-5分别交于点C ,E .点B ,E 关于x 轴对称,连接AB . (1)求点C ,E 的坐标及直线AB 的解析式; (2)若S =S △CDE +S 四边形ABDO ,求S 的值;(3)在求(2)中S 时,嘉琪有个想法:“将△CDE 沿x 轴翻折到△CDB 的位置,而△CDB 与四边形ABDO 拼接后可看成△AOC ,这样求S 便转化为直接求△AOC 的面积,如此不更快捷吗?”但大家经反复验算,发现S △AOC ≠S ,请通过计算解释他的想法错在哪里.图3-1【答案】见解析【解析】解:(1)y =-38x -398,令y =0,有0=-38x -398,解得:x =-13,即C (-13,0).令x =-5,则有y =-38×(-5)-398=-3,即E (-5,-3).∵点B ,E 关于x 轴对称, ∵B (-5,3). ∵A (0,5),∵设直线AB 的解析式为y =kx +5, ∵-5k +5=3, ∵k =25,∵直线AB 的解析式为y =25x +5.(2)由(1)知E (-5,-3), ∵DE =3. ∵C (-13,0),∵CD =-5-(-13)=8, ∵S ∵CDE =12CD ·DE =12.由题意知OA =5,OD =5,BD =3, ∵S 四边形ABDO =12(BD +OA )·OD =20,∵S =S ∵CDE +S 四边形ABDO =12+20=32.(3)由(2)知S =32,在∵AOC 中,OA =5,OC =13, ∵S ∵AOC =12OA ·OC =652=32.5,∵S ≠S ∵AOC .理由:由(1)知直线AB 的解析式为y =25x +5,令y =0,则0=25x +5,∵x =-252≠-13,∵点C 不在直线AB 上,即点A ,B ,C 不在同一条直线上, ∵S ∵AOC ≠S .题4. 已知一次函数的图象过点(0,3),且与两坐标轴所围成的三角形面积为3, 则其表达式为( ) A . y =1.5x +3B . y =-1.5x +3C . y =1.5x +3或y =-1.5x +3D . y =1.5x -3或y =-1.5x -3【答案】C .【解析】解:设该一次函数与x 轴的交点坐标为(a ,0), 由题意得:1332a ⨯⨯=, 解得:a =±2, 当a =2时,设直线解析式为y =kx +3,将(2,0)代入,求得k =-1.5; 同理求得,当a =-2时,k =1.5.所以函数解析式为:y =1.5x +3或y =-1.5x +3,故答案为C .题5. 如图5-1所示,已知一次函数y =kx +b 的图象经过A (-2,-1),B (1,3)两点,并且交x 轴于点C ,交y 轴于点D .图5-1(1)求该一次函数的解析式;(2)求∵AOB 的面积. 【答案】见解析.【解析】解:(1)把A (-2,-1),B (1,3)代入y =kx +b ,得:⎩⎪⎨⎪⎧-2k +b =-1,k +b =3. 解得⎩⎨⎧k =43,b =53.∵一次函数的解析式为y =43x +53.(2)把x =0代入y =43x +53,得y =53,∵D 点坐标为(0,53).∵S ∵AOB =S ∵AOD +S ∵BOD =12×53×2+12×53×1=52.题6. 已知,一次函数y kx b =+的图像与正比例函数13y x =交于点A ,并与y 轴交于点(0,4)B -,△AOB 的面积为6,则kb = 【答案】203-或4. 【解析】解:因为一次函数y kx b =+的图像与y 轴交于点(0,4)B -, ∴b =-4,OB =4, 设A 点横坐标为a , 因为△AOB 的面积为6, 所以162a OB ⨯⨯=, 即a =3或-3,点A 的坐标为(3,1)或(-3,-1) 将A 点坐标代入4y kx =-,得: k =53或-1 所以kb = 203-或4. 故答案为:203-或4.题7. 如图7-1所示,点G ,D ,C 在直线a 上,点E ,F ,A ,B 在直线b 上,若a ∥b ,Rt △GEF 从如图所示的位置出发,沿直线b 向右匀速运动,直到EG 与BC 重合.运动过程中△GEF 与矩形ABCD 重合部分的面积(S )随时间(t )变化的图象大致是( )图7-1A B C D【解析】根据题意可得:①F、A重合之前没有重叠面积;②F、A重叠之后,重叠部分面积逐渐增大,且增加的速度越来越快;③△EFG完全进入且F与B重合之前,重叠部分的面积是三角形的面积,不变,④F与B重合之后,重叠部分的面积逐渐减小,减小的速度越来越慢,直至最后重叠部分的面积为0.综上所述,只有B选项图形符合.故答案为:B.题8. 如图8-1所示,已知直线y=2x+3与直线y=-2x-1.(1)求两直线交点C的坐标;(2)求∵ABC的面积.(3)在直线BC上能否找到点P,使得S∵APC=6,若能,请求出点P的坐标,若不能请说明理由。

中考数学复习考点知识归类讲解08 一次函数中的面积问题

中考数学复习考点知识归类讲解08 一次函数中的面积问题

中考数学复习考点知识归类讲解专题08 一次函数中的面积问题知识对接考点一、怎样解一次函数中的面积问题(1)如果三角形有一边在坐标轴上(或平行于坐标轴)直接用面积公式求面积.(2)如果三角形任何一边都不在坐标轴上,也不平行于坐标轴,则需转化为几个有边在坐标轴上的三角形面积之和(或差).专项训练一、单选题1.在平面直角坐标系中,点O(0,0),A(5,3),B(4,0),直线y=mx﹣5m+3将△OAB 分成面积相等的两部分,则m的值为()A.1 B.2 C.3 D.﹣12.将一次函数y=2x+4的图象与坐标轴围成的三角形面积是()A.4 B.5 C.6 D.73.如图,在平面直角坐标系中,已知点A坐标为(4-,5),点B坐标为(0,3),点D在x轴上.若线段DB交直线12y x=-于点C,当点D从点O向x轴负半轴方向运动时,△ABC面积的变化趋势是()A .先变大再变小B .先变小再变大C .无法确定D .保持不变 4.直线24y x =-与两坐标轴所围成三角形的面积等于()A .2B .4C .8D .165.一次函数y =2x +4的图象与坐标轴分别交于A ,B 两点,O 为坐标原点,则△AOB 的面积()A .6B .8C .2D .46.如图,点A ,B ,C 在一次函数y = -2x +m 的图象上,它们的横坐标依次为-1,1,2,分别过这些点作x 轴与y 轴的垂线,则图中的阴影部分的面积之和是()A .1B .3C .3(m -1)D .()322m -7.如图,直线l 分别与x 轴,y 轴相交于点A (5,0),B (0,4),点E (2.5,m )在l 上,直线y =kx +b 经过点E ,并与x 轴相交于点F .若EF 将△AOB 分割为左右两部分,且四边形OFEB 与△FEA 的面积之比为3:2,则线段OF 的长为( )A .0.5B .1C .1.5D .28.已知a ,b ,c 分别是Rt △ABC 的三条边长,c 为斜边长,∠C =90°,我们把关于x的形如y =a b x c c 的一次函数称为“勾股一次函数”.若点P (﹣1)在“勾股一次函数”的图象上,且Rt △ABC 的面积是92,则c 的值是( )A .6B .12C .D .9.如图①,在矩形ABCD 中,动点P 从点B 出发,沿BC ,CD ,DA 运动至点A 停止.设点P 运动的路程为x ,ABP △的面积为y ,如果y 关于x 的函数图像如图②所示,则ABC 的面积是()A .6B .12C .16D .2110.如图,在平面直角坐标系xOy 中,半径为2的⊙O 与x 轴的正半轴交于点A ,点B 是⊙O 上一动点,点C 为弦AB 的中点,直线y =34x ﹣3与x 轴、y 轴分别交于点D 、E ,则△CDE 面积的最小值为( )A .3.5B .2.5C .2D .1.2二、填空题 11.在平面直角坐标系中,□OABC 的边OC 落在x 轴的正半轴上,且点C (4,0),B (6,2),直线y =2x +1以每秒1个单位的速度向右平移,经过_______秒该直线可将□OABC 的面积平分.12.已知平行四边形ABCD 三个顶点的坐标分别为A (﹣1,0),B (5,0),C (7,4).直线y =kx +1将平行四边形ABCD 分成面积相等的两部分,则k 的值为______.13.在平面直角坐标系xOy 中,直线24y x =-+与两坐标轴围成三角形的面积_______.14.直线m 过A (1,﹣4)和B (5,4)两点,则它与坐标轴围成的面积=__.15.如图,已知一次函数y =kx +b 的图象与反比例函数y =m x的图象交于点A (3,a ),点B (14﹣2a ,2).若一次函数图象与y 轴交于点C ,点D 为点C 关于原点O 的对称点,则△ACD 的面积____.三、解答题16.(1)如图1,梯形ABCD 中对角线交于点O ,AB ∥CD ,请写出图中面积相等的三角形;(2)如图2,在直角坐标系中,O 是坐标原点,点A (﹣2,3),B (2,1).①分别求三角形ACO 和三角形BCO 的面积及点C 的坐标;②请利用(1)的结论解决如下问题:D 是边OA 上一点,过点D 作直线DE 平分三角形ABO 的面积,并交AB 于点E (要有适当的作图说明).17.如图,已知四边形ABCD 的四个顶点的坐标为(1,1),(3,1)A B ---,(1,2),(1,1)C D -.请用不含刻度的直尺和圆规作图并解答问题:(1)请在图中作出这个平面直角坐标系;(2)过点A 作一条直线把四边形ABCD 的面积二等分,并直接写出该直线对应的函数表达式.18.如图,在平面直角坐标系中,过点()0,6C 的直线AC 与直线OA 相交于点()4,2A ,动点M 在线段OA 和射线AC 上运动,试解决下列问题:(1)求直线AC 的表达式;(2)求OAC 的面积;(3)是否存在点M ,使OMC 的面积是OAC 的面积的14?若存在,求出此时点M 的坐标;若不存在,请说明理由.19.ABC 在平面直角坐标系中的位置如图所示,点C 在y 轴正半轴上,6OC =,OA ,OB60OB -=.过点A 的直线交BC 于点D ,ABD △的面积等于ABC 面积的13,请解答下列问题:(1)求点A ,点D 的坐标:(2)过点B 作BH AC ⊥于H ,交y 轴于点G ,求线段OG 的长;(3)点M 在y 轴上,平面内是否存在点N ,使以A ,B ,M ,N 为顶点的四边形是菱形?若存在,直接写出点N 坐标;若不存在,请说明理由.20.设一次函数11y k x b =+(10k ≠)的图像为直线1l ,一次函数22y k x b =+(20k ≠)的图像为直线2l ,若12k k =,且12b b ≠,我们就称直线1l 与直线2l 互相平行.解答下面的问题:(1)求过点()1,4P 且与已知直线21y x =--平行的直线l 的函数表达式;(2)设(1)中的直线l 分别与x 轴、y 轴交于A 、B 两点,直线21y x =--分别与x 轴、y 轴交于C 、D 两点,求四边形ABCD 的面积.21.如图,已知直线11:l y x b =+经过点()5,0A -,交y 轴于点B ,直线22:24l y x =--与直线11:l y x b =+交于点C ,交y 轴于点D .(1)求b 的值.(2)求BCD △的面积(3)当210y y ≤<时,则x 的取值范围是________.(直接写出结果)22.如图,已知直线AB 过点A (5,0)、B (0,﹣5),交直线OC 于点C ,且直线OC 的解析式为y 32x =-.(1)求直线AB 的解析式;(2)求△AOC 的面积;(3)若点P 在直线OC 上,且△BCP 的面积是△AOC 面积的2倍,求点P 的坐标.23.如图,直线1l :23y x =-与x 轴交于点A ,直线2l 经过点()()4,0,0,2B C ,与1l 交于点D .l的解析式;(1)求直线2(2)求ABD△的面积.。

一次函数面积问题专题(含答案解析)

一次函数面积问题专题(含答案解析)

一次函數面積問題1、如图,一次函数的图像与*轴交于点B〔-6,0〕,交正比例函数的图像于点A,点A的横坐标为-4,△ABC的面积为15,求直线OA的解析式。

2、直线y=*+3的图像与*轴、y轴分别交于A、B两点,直线a经过原点与线段AB交于C,把△ABO的面积分为2:1的两局部,求直线a的函数解析式。

3、直线PA是一次函数y=*+n的图像,直线PB是一次函数y=-2*+m〔m>n>0〕的图像,〔1〕用m、n表示A、B、P的坐标〔2〕四边形PQOB的面积是,AB=2,求点P的坐标4、△AOB的顶点O〔0,0〕、A〔2,1〕、B〔10,1〕,直线CD⊥*轴且△AOB面积二等分,假设D〔m,0〕,求m的值5、点B在直线y=-*+1上,且点B在第四象限,点A〔2,0〕、O〔0,0〕,△ABO的面积为2,求点B的坐标。

6、直线y=-*+1与*轴y轴分别交点A、B,以线段AB为直角边在第一象限内作等腰直角△ABC, BAC=90°,点P〔a,〕在第二象限,△ABP的面积与△ABC 面积相等,求a的值.7、如图,两直线y=0.5*+2.5和y=-*+1分别与*轴交于A、B两点,这两直线的交点为P〔1〕求点P的坐标〔2〕求△PAB的面积8、直线y=a*+b〔b>0〕与y轴交于点N,与*轴交于点A且与直线y=k*交于点M 〔2,3〕,如图它们与y轴围成的△MON的面积为5,求〔1〕这两条直线的函数关系式〔2〕它们与*轴围成的三角形面积9、两条直线y=2*-3和y=5-*〔1〕求出它们的交点A的坐标〔2〕求出这两条直线与*轴围成的三角形的面积10、直线y=*+3的图像与*轴、y轴交于A、B两点,直线l经过原点,与线段AB 交于点C,把△AOB的面积分为2:1的两局部,求直线l的解析式。

11、直线y=2*+3与直线y=-2*-1与y轴分别交于点A、B〔1〕求两直线交点C的坐标〔2〕求△ABC的面积〔3〕在直线BC上能否找到点P,使得△APC的面积為6,求出点P的坐标,假设不能请说明理由。

专题51 一次函数的平行、垂直、面积问题(解析版)

专题51 一次函数的平行、垂直、面积问题(解析版)

模型介绍方法点拨☑知识点1两直线平行如图,直线b∥a,那么k b =k a ,若已知k a 及C 的坐标即可求出直线b 的解析式.☑知识点2两直线垂直如图,直线c⊥a,那么k c *k a =-1,若已知k a 及C 或B 的坐标即可求出直线c 的解析式.(针对这一性质,初中不要求掌握,一般用全等、相似的方法求解)例题精讲考点一:一次函数平行问题【例1】.一次函数y=kx+b与y=3x+1平行,且经过点(﹣3,4),则这个函数的表达式为y=3x+13.解:∵一次函数y=kx+b与y=3x+1平行,∴k=3,把(﹣3,4)代入y=3x+b得﹣9+b=4,解得b=13,∴所求一次函数解析式为y=3x+13.故答案为y=3x+13.变式训练【变1-1】.一条直线平行于直线y=2x﹣1,且与两坐标轴围成的三角形面积是4,则直线的解析式是()A.y=2x+4B.y=2x﹣4C.y=2x±4D.y=x+2解:∵所求直线与直线y=2x﹣1平行∴可设所求直线的解析式为y=2x+b令x=0可得直线在y轴的截距为b令y=0可得直线在x轴的截距为由题意可知:b××=4∴b=±4,故选:C.【变1-2】.一个一次函数图象与直线y=x+平行,与x轴、y轴的交点分别为A、B,并且过点(﹣1,﹣20),则在线段AB上(包括端点A、B),横、纵坐标都是整数的点有4个.解:因为一次函数的图象与直线y=x+平行,所以所求直线的斜率为,又因为所求直线过点(﹣1,﹣20),所以所求直线为5x﹣4y﹣75=0,所以此直线与x轴、y轴的交点分别为A(15,0)、B(0,﹣),设在直线AB上并且横、纵坐标都是整数的点的横坐标是x=﹣1+4N,纵坐标是y=﹣20+5N,(N是整数).因为在线段AB上这样的点应满足0≤x=﹣1+4N≤15,且﹣<y=﹣20+5N≤0,解得:≤N≤4,所以N=1,2,3,4,故答案为:4.考点二:一次函数垂直问题【例2】.已知直线y=kx+b经过点A(3,8),并与直线y=2x﹣3垂直,则k=﹣;b=.解:∵已知直线y=kx+b与直线y=2x﹣3垂直,则k=﹣,∴y=x+b,将A(3,8)代入,8=+b,解得b=,故答案为﹣,.变式训练【变2-1】.如图,在平面直角坐标系中,直线y=﹣x+4与x轴、y轴分别交于点A、B,直线CD与y轴交于点C(0,﹣8),与直线AB交于点D,若△AOB∽△CDB,则点D的坐标为(,).解:∵△AOB∽△CDB,∴∠CDB=∠AOB=90°,设直线CD的解析式为:y=2x+b,∵点C的坐标为(0,﹣8),∴b=﹣8,,解得,,则点D的坐标为:(,),故答案为:(,).【变2-2】.直线y=kx+b与抛物线y=x2交于A(x1,y1),B(x2,y2)两点,当OA⊥OB时,直线AB恒过一个定点,该定点坐标为(0,4).[提示:直线l1:y=k1x+b1与直线l2:y=k2x+b2互相垂直,则k1•k2=﹣1]解:∵直线y=kx+b与抛物线y=x2交于A(x1,y1)、B(x2,y2)两点,∴kx+b=x2,化简,得x2﹣4kx﹣4b=0,∴x1+x2=4k,x1x2=﹣4b,又∵OA⊥OB,∴×=====﹣1,解得,b=4,即直线y=kx+4,故直线恒过顶点(0,4),故答案为:(0,4).考点三:一次函数的面积问题【例3】.已知一次函数y=mx+2的图象与两坐标轴围成的三角形的面积为1,则常数m=±2.解:令x=0,则y=2,令y=0,则x=﹣,∵一次函数y=mx+2的图象与两坐标轴围成的三角形的面积为1,∴×2×|﹣|=1,解得m=±2.故答案为:±2.变式训练【变3-1】.已知直线y=(n为正整数)与坐标轴围成的三角形的面积为S n.则S1+S2+S3+…+S2020的值为()A.B.C.D.解:令x=0,则y=,令y=0,则=0,解得x=,所以,S n=••=(﹣),所以,S1+S2+S3+…+S2020=(+﹣+﹣+…+﹣)=(﹣)=.故选:B.【变3-2】.如图,正比例函数y=﹣3x的图象与一次函数y=kx+b的图象交于点P(m,3),一次函数图象经过点B(1,1),与y轴的交点为D,与x轴的交点为C.(1)求一次函数表达式;(2)求△COP的面积.解:(1)∵正比例函数y=﹣3x的图象过点P(m,3),∴3=﹣3m,解得:m=﹣1,∴P(﹣1,3),∵一次函数y=kx+b的图象过点P(﹣1,3),B(1,1),∴,解得:,∴一次函数表达式为y=﹣x+2;(2)由(1)知,一次函数表达式为y=﹣x+2,令y=0,﹣x+2=0,解得:x=2,∴C(2,0),∴OC=2,∴=3.1.两直线y1=k1x+b1与y2=k2x+b2相交于y轴,则()A.k1≠k2,b1≠b2B.k1≠k2,b1=b2C.k1=k2,b1≠b2D.k1=k2,b1=b2解:两直线y1=k1x+b1与y2=k2x+b2相交于y轴,则两直线与y轴的交点是同一点,在直线y1=k1x+b1中,令x=0,解得y=b1,与y轴的交点是(0,b1),同理直线y2=k2x+b2与y轴的交点是(0,b2),则b1=b2,若k1=k2,则两直线重合,因而k1≠k2.故选:B.2.若直线x+3y+1=0与ax+y+1=0互相垂直,则实数a的值为()A.﹣3B.﹣C.D.3解:直线x+3y+1=0的斜率为:﹣,直线ax+y+1的斜率为:﹣a,∵两直线垂直,∴﹣×(﹣a)=﹣1,∴a=﹣3,故选:A.3.已知一次函数y=x+2与y=﹣2+x,下面说法正确的是()A.两直线交于点(1,0)B.两直线之间的距离为4个单位C.两直线与x轴的夹角都是30°D.两条已知直线与直线y=x都平行解:根据一次函数的性质,一次函数y=x+2与y=﹣2+x,分别与y轴相交于(0,2)和(0,﹣2)两点,因为x的系数,都为1,因此直线的方向是一样的,都与直线y=x平行.故选:D.4.如图,直线l1过原点,直线l2解析式为y=﹣x+2,且直线l1和l2互相垂直,那么直线l1解析式为()A.y=x B.y=x C.y=x D.y=x解:∵一次函数经过原点,∴设所求的一次函数为y=kx,∵一次函数的图象与直线y=﹣x+2垂直,∴k=,则直线l1解析式为y=x,故选:D.5.已知直线y=mx﹣1上有一点B(1,n),它到原点的距离是,则此直线与两坐标轴围成的三角形的面积为()A.B.或C.或D.或解:∵点B(1,n)到原点的距离是,∴n2+1=10,即n=±3.则B(1,±3),代入一次函数解析式得y=4x﹣1或y=﹣2x﹣1.(1)y=4x﹣1与两坐标轴围成的三角形的面积为:××1=;(2)y=﹣2x﹣1与两坐标轴围成的三角形的面积为:××1=.故选:C.6.如图,一次函数y=kx+b的图象与正比例函数y=2x的图象平行且经过点A(1,﹣2),则kb=﹣8.解:∵一次函数y=kx+b的图象与正比例函数y=2x的图象平行,∴k=2,∴y=2x+b,把点A(1,﹣2)代入y=2x+b得2+b=﹣2,解得b=﹣4,∴kb=2×(﹣4)=﹣8.故答案为﹣8.7.若平行于直线y=﹣2x的某直线y=kx+b与两坐标轴所围成的三角形面积为5,则b=.解:直线y=kx+b与直线y=﹣2x平行,因而k=﹣2,直线y=﹣2x+b与x轴的交点坐标是,与y轴的交点坐标是(0,b),∴||•|b|=5,即=5,解得:b=±2.8.如图,直线y=﹣x+2与x,y轴交于A、B两点,以AB为边在第一象限作矩形ABCD,矩形的对称中心为点M,若双曲线y=(x>0)恰好过点C、M,则k=.解:∵y=﹣x+2,∴x=0时,y=2;y=0时,﹣x+2=0,解得x=4,∴A(4,0),B(0,2).∵四边形ABCD是矩形,∴∠ABC=90°.设直线BC的解析式为y=2x+b,将B(0,2)代入得,b=2,∴直线BC的解析式为y=2x+2,设C(a,2a+2),∵矩形ABCD的对称中心为点M,∴M为AC的中点,∴M(,a+1).∵双曲线y=(x>0)过点C、M,∴a(2a+2)=(a+1),解得a1=,a2=﹣1(不合题意舍去),∴k=a(2a+2)=(2×+2)=.故答案为.9.在平面直角坐标系xOy中,已知直线AB与x轴交于点A(2,0),与y轴交于点B(0,1).(1)求直线AB的解析式;=2,求点C的坐标.(2)若x轴上有一点C,且S△ABC解:(1)设直线AB的解析式为y=kx+b(k≠0),将点A(2,0),B(0,1)代入,可得,解得,∴直线AB的解析式为y=﹣x+1;(2)∵x轴上有一点C,设点C(x,0),∴AC=|2﹣x|,=2,∵S△ABC∴×|2﹣x|×1=2,∴x=﹣2或x=6,∴C(﹣2,0)或C(6,0).10.如图,直线l1:y=x﹣3与x轴交于点A,与y轴交于点B,直线l2:y=kx+b与x轴交于点C(0.5,0),与y轴交于点D(0,2),直线l1,l2交于点E.(1)求直线l2的函数表达式.(2)试说明CD=CE.(3)若P为直线l1上一点,当∠POB=∠BDE时,求点P的坐标.解:(1)将C(0.5,0).D(0,2)代入y=kx+b得,,解得,∴直线l2的函数解析式为y=﹣4x+2;(2)当﹣4x+2=x﹣3时,∴x=1,∴E(1,﹣2),过点E作EF⊥x轴于F,∴EF=OD=2,∵∠ODC=∠CEF,∠DCO=∠ECF,∴△DOC≌△EFC(AAS),∴CD=CE;(3)∵∠POB=∠BDE,∴点P在l1上有两个位置,当点P在点B上方时,如图,∴OP∥DE,∴直线OP的函数解析式为y=﹣4x,∴﹣4x=x﹣3,∴x=,当x=时,y=﹣,∴P(,﹣),当点P在点B的下方时,设点P关于y轴的对称点为Q,连接OQ交l1为点P',∴Q(﹣),则直线OQ的函数解析式为y4,∴直线OQ与l1的交点为P'(﹣1,﹣4),综上所述:P(,﹣)或(﹣1,﹣4).11.如图,在平面直角坐标系中,将一块等腰直角三角板△ABC放在第三象限,斜靠在两坐标轴上,点C坐标为(0,﹣4),直角顶点B坐标为(﹣1,0),一次函数y=kx+b的图象经过点A、C交x轴于点D.(1)求点A的坐标;(2)求直线AC与坐标轴围成的三角形的面积.解:(1)作AE⊥x轴,垂足为E.∵∠AEB=90°,∴∠ABE+∠CBO=90°.在Rt△AEB中,∵∠ABE+∠EAB=90°,∴∠CBO=∠EAB,在△AEB和△BOC中,,∴△AEB≌△BOC(AAS).∴AE=BO=1,BE=OC=4,∴OE=OB+BE=1+4=5,∴A(﹣5,﹣1).(2)把A(﹣5,﹣1),C(0,﹣4)代入y=kx+b,得,解得,函数解析式为:y=﹣x﹣4,当y=0时,x=﹣,D(﹣,0).S△COD=××4=.12.如图,直线l1:y=x+3分别与直线l2:y=kx+b(k≠0)、直线l3:y=k1x+b1(k1≠0)交于A、B两点,直线l1交y轴于点E,直线l2与x轴和y轴分别交于C、D两点,已知点A的纵坐标为,B的横坐标为1,l2∥l3,OD=1,连BD.(1)求直线l3的解析式;(2)求△ABD的面积.解:(1)在y=x+3中,令y=,则x=﹣,∴A(﹣,),∵OD=1,∴D(0,﹣1),把点A,D的坐标代入l2:y=kx+b,可得,解得,∴l2:y=﹣x﹣1,在y=x+3中,令x=1,则y=4,∴B(1,4),∵l2∥l3,∴k1=﹣,把B(1,4)代入y=﹣x+b1可得,4=﹣+b1,∴b1=,∴直线l3的解析式为y=﹣x+;(2)在y=x+3中,令x=0,则y=3,∴E(0,3),∴DE=3+1=4,=DE(|x A|+|x B|)=(+1)=5.∴S△ABD13.如图,一次函数y=x﹣2的图象与x轴交于点A,与反比例函数y=(x>0)的图象交于点B,且点B的纵坐标为1.(1)求反比例函数y=(x>0)的表达式;(2)过点A作x轴的垂线交反比例函数y=(x>0)的图象于点C,平移直线y=x ﹣2得到过点C的直线l,l的函数表达式为y=mx+n,结合函数的图象,求>mx+n对应x的取值范围.解:(1)∵点B在一次函数y=x﹣2的图象上,且B的纵坐标为1,∴1=,∴x=6,∴B(6,1),∵反比例函数y=(x>0)的图象过点B,∴,∴k=6,∴反比例函数的表达式为(x>0);(2)∵一次函数y=x﹣2的图象与x轴交于点A,∴令y=0得,,∴x=4,∴A(4,0),∵CA⊥x轴,∴点C的横坐标为4,结合函数图象可知,要求>mx+n,即反比例函数y=的图象在一次函数y=mx+n的图象的上方,∴0<x<4.14.已知抛物线y=ax2﹣a(a>0).(1)求抛物线与x轴的交点坐标;(2)设C为抛物线上的一定点,抛物线和x轴交点为E、F,直线l:y=kx+2k+3与抛物线交于点A、B(点B与点C不重合),与y轴交于点P,直线BD垂直于直线y=﹣a,垂足为D,且△CEF为等腰直角三角形.①求点C的坐标和抛物线的解析式;②证明:对于每一个给定的实数k,都有DP∥AC.解:(1)在y=ax2﹣a中,令y=0,得ax2﹣a=0,∵a>0,∴x2﹣1=0,解得:x=﹣1或x=1,∴抛物线与x轴的交点坐标为(﹣1,0)和(1,0);(2)①∵y=ax2﹣a,∴E(﹣1,0),F(1,0),∵△CEF为等腰直角三角形,∴CE=CF,∠ECF=90°,∠CEF=∠CFE=45°,∵∠EOC=∠FOC=90°,OE=OF=1,∴OC=OE=1,∴C(0,﹣1),将C(0,﹣1)代入y=ax2﹣a中,则﹣a=﹣1,∴a=1,∴抛物线的解析式为y=x2﹣1;②由题意得:,解得:或,∴A(﹣2,3),B(k+2,k2+4k+3),且k+2≠0,∵直线BD垂直于直线y=﹣1,垂足为D,∴D(k+2,﹣1),在y=kx+2k+3中,令x=0,得y=2k+3,∴P(0,2k+3),设直线AC解析式为y=mx+n,则,解得:,∴直线AC解析式为y=﹣2x﹣1,设直线DP的解析式为y=m′x+n′,则,解得:,∴直线DP的解析式为y=﹣2x+2k+3,∴AC∥DP.15.定义:已知直线l:y=kx+b(k≠0),则k叫直线l的斜率.性质:直线l1:y=k1x+b1.l2:y=k2x+b2(两直线斜率存在且均不为0),若直线l1⊥l2,则k1k2=﹣1(1)应用:若直线y=2x+1与y=kx﹣1互相垂直,求斜率k的值;(2)探究:一直线过点A(2,3),且与直线y=﹣x+3互相垂直,求该直线的解析式.解:(1)∵直线y=2x+1与y=kx﹣1互相垂直,∴2•k=﹣1,∴k=﹣;(2)设该直线的解析式为y=kx+b,∵直线y=kx+b与直线y=﹣x+3互相垂直,∴﹣k=﹣1,解得k=3,把A(2,3)代入y=3x+b得6+b=3,解得b=﹣3,∴该直线的解析式为y=3x﹣3.16.在平面几何中,我们学过两条直线垂直的定义,下面就两个一次函数的图象所确定的两条直线,给出它们垂直的定义:设一次函数y=k1x+b(k1≠0)的图象为直线l1,一次函数y=k2x+b2(k≠0)的图象为直线l2,若k1•k2=﹣1,我们就称直线l1与直线l2互相垂直,如直线y=3x﹣1与直线y=﹣x+1,因为3×(﹣)=﹣1,所以相互垂直.根据以上定义内容,解答下面的问题:(1)求过点P(1,2)且与已知直线y=0.5x﹣2垂直的直线l的函数表达式,并在如图所示的坐标系中画出直线l的图象.(2)求(1)问中的两条直线与y轴所围的三角形的面积;(3)已知点A(0,2),点B,C分别是(1)问中直线l和x轴上的动点,求出△ABC 周长的最小值.解:(1)设直线l的函数表达式为y=kx+b,∵直线l与直线y=0.5x﹣2垂直,∴k=﹣2,∵直线l过点P(1,2),∴﹣2×1+b=2,∴b=4.∴直线l的函数表达式为y=﹣2x+4;直线l的图象如图;(2)解方程组得,,∵直线y=0.5x﹣2与y轴的交点为(0,﹣2),直线l的函数表达式为y=﹣2x+4与y轴的交点为(0,4),∴两条直线与y轴所围的三角形的面积=×6×=;(3)∵点A(0,2)关于x轴的对称点为E(0,﹣2),关于直线l的对称点D(,),连接DE交直线l于B,交x轴于C,则此时,△ABC周长的值最小,△ABC周长的最小值=DE==.17.如图,在平面直角坐标系中,反比例函数的图象经过点A(﹣4,3),将点A向右平移2个单位长度,再向上平移a个单位长度得到点B,点B恰好落在该函数的图象上,过A,B两点的直线与y轴交于点C.(1)求k的值及点C的坐标;(2)在y轴上有一点D(0,4),连接AD,BD,求△ABD的面积.解:(1)设反比例函数表达式为,把A(﹣4,3)代入得,3=,解得k=﹣4×3=﹣12.∴反比例函数的表达式为.∵将点A向右平移2个单位长度,再向上平移a个单位长度得到点B,∴点B的坐标为(﹣2,y).当x=﹣2时,.∴点B的坐标为(﹣2,6).设直线AB的函数表达式为y=kx+b.由题意,得,解得.∴.∵当x=0时,y=9,∴点C的坐标为(0,9).(2)由(1)知CD=OC﹣OD=9﹣4=5.∴|x A|﹣=.18.如图在平面直角坐标系中,过点C(0,6)的直线AC与直线OA相交于点A(4,2),动点M在线段OA和射线AC上运动.(1)求直线AB的函数关系式;(2)求△OAB的面积;(3)是否存在点M,使△OMC的面积与△OAB的面积相等?若存在求出此时点M的坐标;若不存在,说明理由.解:(1)设直线AB的解析式是y=kx+b,根据题意得:,解得:.则直线的解析式是:y=﹣x+6;(2)∵y=﹣x+6,当y=0时,x=6,∴B(0,6),∴OB=6,∴△OAB的面积=×6×2=6;(3)存在点M,使△OMC的面积与△OAB的面积相等,理由如下:如图所示:设OA的解析式是y=mx,则42,解得:m=.则直线OA的解析式是:y=x,∵点C(0,6),∴OC=6,∴OB=OC=6,∵△OMC的面积与△OAB的面积相等,∴M到y轴的距离=点A的纵坐标2,∴点M的横坐标为2或﹣2;当M的横坐标为2时,在y=x中,当x=2时,y=1,则M的坐标是(2,1);在y=﹣x+6中,当x=2则y=4,则M的坐标是(2,4).则M的坐标为(2,1)或(2,4).当M的横坐标为﹣2时,在y=﹣x+6中,当x=﹣2时,y=8,则M的坐标是(﹣2,8).综上所述:点M的坐标为(2,1)或(2,4)或(﹣2,8).19.如图1,平面直角坐标系中,直线y=x﹣2与x轴、y轴分别交于点A,B,直线y=﹣x+b经过点A,并与y轴交于点C.(1)求A,B两点的坐标及b的值;(2)如图2,动点P从原点O出发,以每秒1个单位长度的速度沿x轴正方向运动.过点P作x轴的垂线,分别交直线AC,AB于点D,E.设点P运动的时间为t.点D的坐标为(t,﹣t+4).点E的坐标为(t,t﹣2);(均用含t的式子表示)(3)在(2)的条件下,当点P在线段OA上时,探究是否存在某一时刻,使DE=OB?若存在,求出此时△ADE的面积;若不存在说明理由.解:(1)令y=0,则x=4,∴点A的坐标为(4,0),令x=0,则y=﹣2,∴点B的坐标为(0,﹣2),将A(4,0)代入y=﹣x+b,得0=﹣4+b,解得b=4;(2)由(1)知,直线AC的表达式为y=﹣x+4,∵点P(t,0),∵PD⊥x轴,∴D(t,﹣t+4),E(t,t﹣2),故答案为(t,﹣t+4),(t,t﹣2);(3)存在t,使DE=OB,理由如下:∵点P在线段OA上,∴0≤t≤4,由(2)知D(t,﹣t+4),E(t,t﹣2),∴DE=﹣t+4﹣(t﹣2)=﹣t+6,∵B(0,﹣2),∴OB=2,∵DE=OB,∴﹣t+6=2,解得:t=,∴AP=4﹣t=4﹣=,=DE•AP=×2×=.∴S△ADE20.如图,已知一次函数y1=kx+b的图象与函数y2=(x>0)的图象交于A(6,﹣),B(,n)两点,与y轴交于点C.将直线AB沿y轴向上平移t个单位长度得到直线DE,DE与y轴交于点F.(1)求y1与y2的解析式;(2)观察图象,直接写出y1<y2时x的取值范围;(3)连接AD,CD,若△ACD的面积为6,则t的值为2.解:(1)将点A(6,﹣)代入y2=中,∴y2=,∵B(,n)在y2=中,可得n=﹣6,∴B(,﹣6),将点A、B代入y1=kx+b,∴,解得,∴y1=x﹣;(2)∵一次函数与反比例函数交点为A(6,﹣),B(,﹣6),∴<x<6时,y1<y2;(3)在y1=x﹣中,令x=0,则y=﹣,∴C(0,﹣),∵直线AB沿y轴向上平移t个单位长度,∴直线DE的解析式为y=x﹣+t,∴F点坐标为(0,﹣+t),过点F作GF⊥AB于点G,连接AF,直线AB与x轴交点为(,0),与y轴交点C(0,﹣),∴∠OCA=45°,∴FG=CG,∵FC=t,∴FG=t,∵A(6,﹣),C(0,﹣),∵AB∥DF,=S△ACF,∴S△ACD∴×6×t=6,∴t=2,故答案为:2.21.如图,抛物线y=ax2+bx与直线l交于点A(1,5)、B(6,0),点C是l上方的抛物线上的一动点,过C作CD⊥x轴于点D,交直线l于点E.连接AC、BC.(1)求抛物线的解析式;(2)设点C的横坐标为n,△的面积为S,求出S的最大值;(3)在抛物线上是否存在点P,使得△PAB是直角三角形,且始终满足AB边为直角边?若存在,求出所有符合条件的P的坐标;若不存在,简要说明理由.解:(1)∵抛物线y=ax2+bx与直线l交于点A(1,5)、B(6,0),∴,解得,∴抛物线的解析式为y=﹣x2+6x;(2)易求直线l的解析式为y=﹣x+6.由题意,知C(n,﹣n2+6n),E(n,﹣n+6),∴EC=(﹣n2+6n)﹣(﹣n+6),即EC=﹣n2+7n﹣6.过A作AF⊥CD于F,则AF=n﹣1,DB=6﹣n,+S△BCE∴S=S△ACE=×EC×(n﹣1)+×EC×(6﹣n)=×EC×5=(﹣n2+7n﹣6),即S=﹣n2+n﹣15,配方得S=﹣(n﹣)2+.∵﹣<0,=;∴S有最大值,当n=时,S最大值(3)在抛物线上存在点P,能够使得△PAB是直角三角形,且始终满足AB边为直角边.分两种情况:①当∠PBA=90°时,∵∠ABO=45°,∴过点B且垂直于AB y=x﹣6,解方程组,得,,∵B(6,0),∴P1(﹣1,﹣7);②当∠PAB=90°时,∵过点A且垂直于AB的直线解析式为y=x+4,解方程组,得,,∵A(1,5),∴P2(4,8).综上所述,符合条件的P点坐标为P1(﹣1,﹣7),P2(4,8).。

一次函数之面积问题(铅垂法)(人教版)(含答案)

一次函数之面积问题(铅垂法)(人教版)(含答案)

一次函数之面积问题(铅垂法)(人教版)一、单选题(共8道,每道11分)1.如图,已知一次函数的图象经过A(5,-1),B(-3,-5)两点,则△AOB的面积为( )A. B.C.14D.28答案:C解题思路:试题难度:三颗星知识点:铅垂法求面积2.如图,已知一次函数的图象经过A(2,a),B(-1,b)两点,则△AOB的面积为( )A. B.5C.3D.答案:A解题思路:试题难度:三颗星知识点:铅垂法求面积3.如图,已知一次函数y=x-1的图象经过A(m,1),B(n,-2)两点,则△AOB的面积为( )A.3B.C.2D.答案:D解题思路:试题难度:三颗星知识点:铅垂法求面积4.如图,△ABC三个顶点的坐标分别为A(4,1),B(5,5),C(-1,2),则三角形的面积为( )A. B.C.21D.答案:D解题思路:试题难度:三颗星知识点:铅垂法求面积5.如图,已知一次函数的图象经过A(5,m),B(1,n)两点,点C(3,4),则△ABC 的面积为( )A.8B.4C.5D.6答案:B解题思路:试题难度:三颗星知识点:铅垂法求面积6.如图,已知一次函数的图象经过A(-5,-1),B(-1,n)两点,点C(-3,0),则△ABC的面积为( )A.8B.4C.5D.7答案:B解题思路:试题难度:三颗星知识点:铅垂法求面积7.如图,直线AB:分别与x轴、y轴交于点A,B,直线CD:y=x+b分别与x轴、y轴交于点C,D,直线AB与CD交于点P(8,5),则的面积为( )A.12B.16C.18D.20答案:D解题思路:试题难度:三颗星知识点:铅垂法求面积8.如图,直线与x轴、y轴分别交于A,B两点,直线与x 轴、y轴分别交于C,D两点.设直线,交于点P,则△PAD的面积为( )A. B.C. D.答案:C解题思路:试题难度:三颗星知识点:铅垂法求面积二、填空题(共1道,每道12分)9.如图,在平面直角坐标系中,四边形ABCD各顶点的坐标分别为A(-1,3),B(-3,-2),C(4,-3),D(3,2),则四边形ABCD的面积是____.答案:28 解题思路:试题难度:知识点:铅垂法求面积。

一次函数与面积结合问题解题技巧

一次函数与面积结合问题解题技巧

一次函数与面积结合问题解题技巧全文共四篇示例,供读者参考第一篇示例:一次函数与面积结合问题解题技巧在数学中,一次函数是最基础的函数之一,它的图像是一条直线。

而面积则是一个二维概念,通常用来描述平面图形的大小。

一次函数与面积结合起来,可以帮助我们解决一些实际问题,例如求直线与X轴之间的面积、寻找最优解等。

在本文中,我们将介绍一些一次函数与面积结合问题的解题技巧。

一、基本概念在解决一次函数与面积结合问题时,首先需要了解一些基本概念。

一次函数的一般形式为y = kx + b,其中k为斜率,b为截距。

斜率表示函数的变化率,截距表示函数与Y轴的交点。

面积的计算公式为S = 底* 高,对于矩形和平行四边形,底和高即为长度和宽度;对于三角形,则一般取底边和高为两边。

二、求直线与X轴之间的面积当我们需要求一次函数与X轴之间的面积时,可以通过以下步骤进行:1. 找出函数与X轴的交点,即解方程kx + b = 0,得到交点的横坐标x0;2. 确定两个交点间的区间[a,b],其中a为交点的横坐标的较小值,b为较大值;3. 计算函数在区间[a,b]上的积分,即∫[a,b] (kx + b)dx;4. 根据积分的结果,确定函数与X轴之间的面积。

对于函数y = 2x + 3,我们需要求函数图像在[1,3]上与X轴之间的面积。

解方程2x + 3 = 0,得到交点的横坐标为-3/2;然后计算∫[1,3] (2x + 3)dx = x^2 + 3x,将上限和下限代入,得到面积为10.5。

三、寻找最优解在一些实际问题中,我们需要找到最优解,即使得面积最大或最小的情况。

在这种情况下,我们可以通过一次函数的性质来解决问题。

假设我们需要用一根长度为L的绳子围成一个长方形,求这个长方形的面积最大值。

设长方形的长为x,宽为y,则面积为xy。

根据题意,有2x + 2y = L,即x + y = L/2,可以将y表示为y = L/2 - x。

将y代入面积公式中,得到S = x(L/2 - x) = Lx/2 - x^2。

一次函数面积问题专题(含答案)

一次函数面积问题专题(含答案)

一次函數面積問題1、如图,一次函数的图像与x轴交于点B(-6,0),交正比例函数的图像于点A,点A的横坐标为-4,△ABC的面积为15,求直线OA的解析式。

2、直线y=x+3的图像与x轴、y轴分别交于A、B两点,直线a经过原点与线段AB交于C,把△ABO的面积分为2:1的两部分,求直线a的函数解析式。

3、直线PA是一次函数y=x+n的图像,直线PB是一次函数y=-2x+m(m>n>0)的图像,(1)用m、n表示A、B、P的坐标(2)四边形PQOB的面积是,AB=2,求点P的坐标4、△AOB的顶点O(0,0)、A(2,1)、B(10,1),直线CD⊥x轴且△AOB面积二等分,若D(m,0),求m的值5、点B在直线y=-x+1上,且点B在第四象限,点A(2,0)、O(0,0),△ABO 的面积为2,求点B的坐标。

6、直线y=-x+1与x轴y轴分别交点A、B,以线段AB为直角边在第一象限内作等腰直角△ABC, BAC=90°,点P(a,)在第二象限,△ABP的面积与△A BC 面积相等,求a的值.7、如图,已知两直线y=0.5x+2.5和y=-x+1分别与x轴交于A、B两点,这两直线的交点为P(1)求点P的坐标(2)求△PAB的面积8、已知直线y=ax+b(b>0)与y轴交于点N,与x轴交于点A且与直线y=kx交于点M(2,3),如图它们与y轴围成的△MON的面积为5,求(1)这两条直线的函数关系式(2)它们与x轴围成的三角形面积9、已知两条直线y=2x-3和y=5-x(1)求出它们的交点A的坐标(2)求出这两条直线与x轴围成的三角形的面积10、已知直线y=x+3的图像与x轴、y轴交于A、B两点,直线l经过原点,与线段AB交于点C,把△AOB的面积分为2:1的两部分,求直线l的解析式。

11、已知直线y=2x+3与直线y=-2x-1与y轴分别交于点A、B(1)求两直线交点C的坐标(2)求△ABC的面积(3)在直线BC上能否找到点P,使得△APC的面积為6,求出点P的坐标,若不能请说明理由。

一次函数与面积问题

一次函数与面积问题

19.2.2一次函数复习---面积问题.一内容和内容解析1内容一次函数复习------面积问题2内容解析函数是初中数学的重点也是难点,学生第一次接触的函数就是一次函数,一次函数与面积的结合问题是近年来中考的热点题型,也是常见题型,能体现数学中的数形结合思想,整体思想,转化思想。

二目标和目标解析知识点:通过本节学习,巩固一次函数的图像与性质,能利用解析式求组合图形的面积,能利用面积求点坐标或直线的解析式能力点:确定由坐标到距离的转换,掌握运用坐标和割补方法求面积。

非智力因素:初步应用一次函数解决图象中的有关问题,体会一次函数的应用价值,体会合作中进一步辅助知识和能力的提升。

重点:确定一次函数图象中有关的面积问题.难点:运用割补法求面积教学具:多媒体、教学案三教学过程设计(一)我热身1 点A(-1,2)到 x 轴的距离是 ,到y轴的距离2直线y=2x+4 与x轴相交于点A, 与y 轴相交于点B,则点A的坐标 ,点B的坐标3直线y=x+5与直线y=-3x+3 的交点坐标师生活动;回顾旧知识,教师提出问题,学生回顾旧知识,回答问题,设计意图;考察学生一次函数的图象与坐标轴交点的坐标的求法,和二元一次方程组和一次函数的关系,为例题的教学做好铺垫。

(二)我思考例题:已知一次函数y=x+5,与x轴交于点B,与y轴交于点D,求该函数图象与坐标轴所围成的三角形面积。

师生活动 ;通过对例题的给出,学生观察思考板演,教师规范书写格式。

设计意图 ;考察二元一次方程组一次函数的关系 ,引导学生如何求出?如何找出交点坐标呢?(三)我探索探究:已知直线y=x+5和直线y=-3x+3相交于点A 与x 轴分别交于B,C 两点(1) 求△ABC 的面积角形的底和高由谁决定?引导学生求出交点A 的坐标。

2 △ABC 又可以看成是直线直线y=x+5和直线y=-3x+3 与谁围成的面积呢?3 若设直线y=-3x+3与y 轴交点坐标为 E ,则△ADE 的面积又可以看成y=x+5和直线y=-3x+3与谁围成的面积呢?教学设计; 通过问题的提出,让学生体会面积的分割抓住与坐标轴的方法。

一次函数压轴题专题突破6:一次函数与面积问题(含解析)

一次函数压轴题专题突破6:一次函数与面积问题(含解析)

一次函数压轴题之面积问题1.如图,直线y=﹣2x+7与x轴、y轴分别相交于点C、B,与直线y=x相交于点A.(1)求A点坐标;(2)如果在y轴上存在一点P,使△OAP是以OA为底边的等腰三角形,则P点坐标是;(3)在直线y=﹣2x+7上是否存在点Q,使△OAQ的面积等于6?若存在,请求出Q点的坐标,若不存在,请说明理由.2.如图,直线y=﹣2x+4与x轴、y轴分别交于A、B两点,P是直线AB上的一个动点,点C的坐标为(﹣4,0),PC交y轴点于D,O是原点.(1)求△AOB的面积;(2)线段AB上存在一点P,使△DOC≌△AOB,求此时点P的坐标;(3)直线AB上存在一点P,使以P、C、O为顶点的三角形面积与△AOB面积相等,求出P点的坐标.3.直线y=kx+3和x轴、y轴的交点分别为B、C,∠OBC=30°,点A的坐标是(﹣,0),另一条直线经过点A、C.(1)求点B的坐标及k的值;(2)求证:AC⊥BC;(3)点M为直线BC上一点(与点B不重合),设点M的横坐标为x,△ABM的面积为S.①求S与x的函数关系式;②当S=6时,求点M的坐标.4.如图1,已知直线y=2x+2与y轴,x轴分别交于A,B两点,以B为直角顶点在第二象限作等腰Rt△ABC (1)求点C的坐标,并求出直线AC的关系式;(2)如图2,直线CB交y轴于E,在直线CB上取一点D,连接AD,若AD=AC,求证:BE=DE.(3)如图3,在(1)的条件下,直线AC交x轴于点M,P(﹣,k)是线段BC上一点,在x轴上是否存在一点N,使△BPN面积等于△BCM面积的一半?若存在,请求出点N的坐标;若不存在,请说明理由.5.已知y关于x的一次函数y=mx+2﹣2m(m≠0且m≠1),其图象交x轴于点A,交y轴于点B.(0为坐标系的原点)(1)若OB=6,求这时m的值;(2)对于m≠0的任意值,该函数图象必过一定点,请求出定点的坐标;(3)是否存在m的值,使△OAB的面积为8?若存在,求出m的值;若不存在,请说明理由.6.如图,在平面直角坐标系中,O为坐标原点,直线y=﹣x+8与x轴交于点A,与y轴交于点B.(1)A点坐标为,B点坐标为;(2)若动点D从点B出发以4个单位/秒的速度沿射线BO方向运动,过点D作OB的垂线,动点E从点O 出发以2个单位/秒的速度沿射线OA方向运动,过点E作OA的垂线,两条垂线相交于点P,若D、E两点同时出发,此时,我们发现点P在一条直线上运动,请求这条直线的函数解析式.(3)若点P也在直线y=3x上,点Q在坐标轴上,当△ABP的面积等于△BAQ面积时,请直接写出点Q的坐标.7.如图,一次函数y=x+3的函数图象与x轴,y轴分别交于点A,B.(1)若点P(﹣2,m)为第三象限内一个动点,请问△OPB的面积会变化吗?若不变,请求出面积;若变化,请说明理由.(2)在(1)的条件下,试用含m的代数式表示四边形APOB的面积;若△APB的面积是6,求m的值.8.如图1,在直角坐标系中,过A(2,0),B(0,﹣4)两点的直线与直线y=﹣x+5交于点E,直线y=﹣x+5分别交x轴、y轴于C,D两点,(1)求直线AB的解析式和点E的坐标;(2)在射线EB上有一点M,使得点M到直线DC的距离为3,求点M的坐标;(3)在(1)的基础上,过点O,A,P,Q(0,2)作正方形OAPQ如图2,将正方形OAPQ沿x轴正方向平移,得到正方形O′A′P′Q′,当点A与点C重合时停止移动.设点A'的坐标为(t,0),正方形O′A′P′Q′与△ACE重叠部分的面积为S,直接写出S与t之间的函数关系式和相应t的取值范围.9.如图,直线OC、BC的函数关系式分别是:y1=x和y2=﹣2x+6,动点P(x,0)在OB上运动(0<x<3).(1)求点C的坐标,并回答当x取何值时y2<y1?(2)P点在运动过程中,当△COP为等腰三角形时,求点P的坐标;(3)是否存在点P,使CP将△COB分成的两部分面积之比为1:2?若存在,请求出点P的坐标;若不存在,请说明理由.10.如图,点A(0,1)、B(2,0),点P从(4,0)出发,以每秒2个单位长度沿x轴向坐标原点O匀速运动,同时,点Q从点B出发,以每秒1个单位长度沿x轴向坐标原点O匀速运动,过点P作x轴的垂线l,过点Q作AB的垂线l2,它们的交点为M.设运动的时间为t(0<t<2)秒(1)写出点M的坐标(用含t的代数式表示);(2)设△MPQ与△OAB重叠部分的面积为S,试求S关于t的函数关系式及t的取值范围.11.直线y=x﹣6与x轴、y轴分别交于A、B两点,点E从B点出发,以每秒1个单位长度的速度沿线段BO向O点移动(不考虑点E与B、O两点重合的情况),过点E作EF∥AB,交x轴于点F,将四边形ABEF沿直线EF折叠后,与点A对应的点记作点C,与点B对应的点记作点D,得到四边形CDEF,设点E的运动时间为t秒.(1)画出当t=2时,四边形ABEF沿直线EF折叠后的四边形CDEF(不写画法);(2)在点E运动过程中,CD交x轴于点G,交y轴于点H,试探究t为何值时,△CGF的面积为;(3)设四边形CDEF落在第一象限内的图形面积为S,求S关于t的函数解析式,并求出S的最大值.12.如图,在平面直角坐标系中,以点B(0,8)为端点的射线BG∥x轴,点A是射线BG上一个动点(点A与点B不重合),在射线AG上取AD=OB,作线段AD的垂直平分线,垂足为E,且与x轴交于点F,过点A 作AC⊥OA,交射线EF于点C,连接OC、CD.设点A的横坐标为t.(1)用含t的式子表示点E的坐标为;(2)当t为何值时,∠OCD=180°?(3)当点C与点F不重合时,设△OCF的面积为S,求S与t之间的函数解析式.13.如图,在平面直角坐标系中,直线与x轴交于点A,与y轴交于点B,动点P从点A出发沿折线AO﹣OB﹣BA运动,点P在AO、OB、BA上运动的速度分别为每秒3个单位长度、4个单位长度、5个单位长度,直线l从与x轴重合的位置出发,以每秒个单位长度的速度沿y轴向上平移,移动过程中直线l 分别与直线OB、AB交于点E、F,若点P与直线l同时出发,当点P沿折线AO﹣OB﹣BA运动一周回到点A 时,直线l和点P同时停止运动,设运动时间为t秒,请解答下列问题:(1)求A、B两点的坐标;(2)当t为何值时,点P与点E重合?(3)当t为何值时,点P与点F重合?(4)当点P在AO﹣OB上,且点P、E、F不在同一直线上时,设△PEF的面积为S,请直接写出S关于t的函数解析式,并写出t的取值范围.14.如图1,直线y=﹣2x+8分别交y轴、x轴于A、B两点.(1)求点A、B的坐标:(2)如图1,点P为线段AB上的动点(点P不与点A、B重合),过点P作PE⊥x轴于点E,作PF⊥y轴于点F,求矩形PEOF的面积S1与点P的横坐标m之间的函数关系式,并求出当m为何值时,S1最大,最大值是多少?(3)在(2)的条件下,当S1最大时,将直线l从与直线AB重合的位置出发,沿y轴负方向向下平移a(0<a≤8)个单位,设直线l扫过矩形PEOF的面积为S2,求S2与a之间的函数关系式,并在图2中画出他们之间的函数关系图象(画出草图即可).15.如图,在平面直角坐标系中,矩形OABC的边OA=2,OC=6,在OC上取点D将△AOD沿AD翻折,使O 点落在AB边上的E点处,将一个足够大的直角三角板的顶点P从D点出发沿线段DA→AB移动,且一直角边始终经过点D,另一直角边所在直线与直线DE,BC分别交于点M,N.(1)填空:D点坐标是(,),E点坐标是(,);(2)如图1,当点P在线段DA上移动时,是否存在这样的点M,使△CMN为等腰三角形?若存在,请求出M点坐标;若不存在,请说明理由;(3)如图2,当点P在线段AB上移动时,设P点坐标为(x,2),记△DBN的面积为S,请直接写出S与x 之间的函数关系式,并求出S随x增大而减小时所对应的自变量x的取值范围.16.如图,直线y=﹣x+4与坐标轴分别交于点A、B,与直线y=x交于点C.在线段OA上,动点Q以每秒1个单位长度的速度从点O出发向点A做匀速运动,同时动点P从点A出发向点O做匀速运动,当点P、Q其中一点停止运动时,另一点也停止运动.分别过点P、Q作x轴的垂线,交直线AB、OC于点E、F,连接EF.若运动时间为t秒,在运动过程中四边形PEFQ总为矩形(点P、Q重合除外).(1)求点P运动的速度是多少?(2)当t为多少秒时,矩形PEFQ为正方形?(3)当t为多少秒时,矩形PEFQ的面积S最大?并求出最大值.17.如图1,在平面直角坐标系中,已知△AOB是等边三角形,点A的坐标是(0,4),点B在第一象限,点P是x轴上的一个动点,连接AP,并把△AOP绕着点A按逆时针方向旋转,使边AO与AB重合,得到△ABD.(1)求直线AB的解析式;(2)当点P运动到点(,0)时,求此时DP的长及点D的坐标;(3)是否存在点P,使△OPD的面积等于?若存在,请求出符合条件的点P的坐标;若不存在,请说明理由.18.如图,在直角梯形OABC中,AB∥OC,BC⊥x轴于点C,A(1,2),C(3,0).动点P从O点出发,沿x 轴正方向以每秒1个单位长度的速度移动.过P点作PQ⊥直线OA,垂足为Q.设P点移动的时间为t秒(0<t≤7),△OPQ与直角梯形OABC重叠部分的面积为S.(1)写出点B的坐标:;(2)当t=7时,求直线PQ的解析式,并判断点B是否在直线PQ上;(3)求S关于t的函数关系式;(4)连接AC.是否存在t,使得PQ分△ABC的面积为1:3?若存在,直接写出t的值;若不存在,请说明理由.19.如图,梯形OABC中,BC∥AO,∠BAO=90°,B(﹣3,3),直线OC的解析式为y=﹣x,将△OBC 绕点C顺时针旋转60°后,O到O1,B到B1,得△O1B1C.(1)求证:点O1在x轴上;(2)将点O1运动到点M(﹣4,0),求∠B1MC的度数;(3)在(2)的条件下,将直线MC向下平移m个单位长度,设直线MC与线段AB交于点P,与线段OC的交于点Q,四边形OAPQ的面积为S,求S与m的函数关系式,并求出m的取值范围.20.如图(1)(2),直线y=﹣x+4与两坐标轴分别相交于A、B点,点M是线段AB上任意一点(A、B两点除外),过M分别作MC⊥OA于点C,MD⊥OB于D.(1)若点M的横坐标是a,则点M的纵坐标是(用含a的代数式表示)(2)当点M在AB上运动时,你认为四边形OCMD的周长是否发生变化?并说明理由;(3)当点M运动到什么位置时,四边形OCMD的面积有最大值?最大值是多少?(4)当四边形OCMD为正方形时,将四边形OCMD沿着x轴的正方向移动,设平移的距离为b(0<b<4),正方形O′CMD与△AOB重叠部分的面积为S.试求S与b的函数关系式并画出该函数的图象.21.如图1,在等腰梯形ABCD中,AB∥CO,E是AO的中点,过点E作EF∥OC交BC于F,AO=4,OC=6,∠AOC=60°.现把梯形ABCO放置在平面直角坐标系中,使点O与原点重合,OC在x轴正半轴上,点A、B在第一象限内.(1)求点E的坐标;(2)点P为线段EF上的一个动点,过点P作PM⊥EF交OC于点M,过M作MN∥AO交折线ABC于点N,连接PN.设PE=x.△PMN的面积为S.①求S关于x的函数关系式;②△PMN的面积是否存在最大值,若不存在,请说明理由.若存在,求出面积的最大值;(3)另有一直角梯形EDGH(H在EF上,DG落在OC上,∠EDG=90°,且DG=3,HG∥BC).现在开始操作:固定等腰梯形ABCO,将直角梯形EDGH以每秒1个单位的速度沿OC方向向右移动,直到点D与点C重合时停止(如图2).设运动时间为t秒,运动后的直角梯形为E′D′G′H′;探究:在运动过程中,等腰梯ABCO 与直角梯形E′D′G′H′重合部分的面积y与时间t的函数关系式.22.如图,直线AB与两坐标轴分别相交于A、B点,OA=OB=4,点M是线段AB上一动点(A、B两点除外),过M分别作MC⊥OA于点C,MD⊥OB于点D.(1)写出直线AB的函数解析式;(2)设点M的横坐标为x,写出四边形OCMD的面积S与x的函数关系式,当点M运动到什么位置时,四边形OCMD的面积有最大值?最大值是多少?(3)探究:当四边形OCMD为正方形时,将四边形OCMD沿着x轴的正方向移动,设平移的距离为a(0<a <4),正方形OCMD与△AOB重叠部分的面积为S,试求S与a的函数关系式,并画出该函数的图象.23.如图所示,四边形OABC是矩形,点A、C的坐标分别为(3,0),(0,1),点D是线段BC上的动点(与端点B、C不重合),过点D作直线y=﹣+b交折线OAB于点E.记△ODE的面积为S.(1)当点E在线段OA上时,求S与b的函数关系式;并求出b的范围;(2)当点E在线段AB上时,求S与b的函数关系式;并求出b的范围;(3)当点E在线段OA上时,若矩形OABC关于直线DE的对称图形为四边形OA1B1C1,试探究OA1B1C1与矩形OABC的重叠部分的面积是否发生变化?若不变,求出该重叠部分的面积;若改变,请说明理由.24.如图a,矩形ABCD的两条边在坐标轴上,点D与原点重合,对角线BD所在直线函数式为,AD =8,矩形ABCD沿DB方向以每秒一个单位长度运动,同时点P从点A出发做匀速运动,沿矩形ABCD的边经B到达终点C,用了14秒.(1)求矩形ABCD周长;(2)如图b,当P到达B时,求点P坐标;(3)当点P在运动时,过点P作x轴、y轴的垂线,垂足分别为E、F,①如图c,当P在BC上运动时,矩形PEOF的边能否与矩形ABCD的边对应成比例?若能,求出时间t的值,若不能,说明理由;②如图d,当P在AB上运动时,矩形PEOF的面积能否等于256?若能,求出时间t的值,若不能,说明理由;25.如图,等腰Rt△ABC中,∠ACB=90°,在直角坐标系中如图摆放,点A的坐标为(0,2),点B的坐标为(6,0).(1)直接写出线段AB的中点P的坐标为;(2)求直线OC的解析式;(3)动点M、N分别从O点出发,点M沿射线OC以每秒个单位长度的速度运动,点N沿线段OB以每秒1个长度的速度向终点B运动,当N点运动到B点时,M、N同时停止运动,设△PMN的面积为S(S≠0)运动时间为t秒,求S与t的函数关系式,并直接写出自变量t的取值范围.26.如图,在平面直角坐标系中,△ABC是直角三角形,∠ACB=90°,点A (﹣15,0),AB=25,AC=15,点C在第二象限,点P是y轴上的一个动点,连接AP,并把△AOP绕着点A逆时钟方向旋转.使边AO与AC 重合.得到△ACD.(1)求直线AC的解析式;(2)当点P运动到点(0,5)时,求此时点D的坐标及DP的长;(3)是否存在点P,使△OPD的面积等于5?若存在,请求出符合条件的点P的坐标;若不存在,请说明理由.27.如图在Rt△AOB中,∠BAO=90°,O为坐标原点,B在x轴正半轴上,A在第一象限.OA和AB的长是方程两根,且OA<AB.(1)求直线AB的解析式;(2)将△AOB沿垂直于x轴的线段CD折叠(点C在x轴上,且不与点B重合,点D在线段AB上),使点B 落在x轴上,对应点为E,设点C的坐标为(x,0).①是否存在这样的点C,使得△AED为直角三角形?若存在,求出点C的坐标;若不存在,请说明理由;②设△CDE与△AOB重叠部分的面积为S,直接写出S与点C的横坐标x之间的函数关系式(包括自变量x 的取值范围).28.如图所示,四边形OABC是矩形,点A、C的坐标分别为(3,0),(0,1),点D是线段BC上的动点(与端点B、C不重合),过点D作直线y=﹣x+b交折线OAB于点E.(1)记△ODE的面积为S,求S与b的函数关系式;(2)当点E在线段OA上时,若矩形OABC关于直线DE的对称图形为四边形O1A1B1C1,试探究O1A1B1C1与矩形OABC的重叠部分的面积是否发生变化?若不变,求出该重叠部分的面积;若改变,请说明理由.29.如图1,在Rt△A′OB′中,∠B′A′0=90°,A′,B′两点的坐标分别为(2,﹣1)和(0,﹣5),将A′0B′绕点O逆时针方向旋转90°,使OB’落在x轴正半轴上,得△AOB,点A′的对应点是A,点B’的对应点是B.(1)写出A,B两点的坐标,并求直线AB的解析式;(2)如图2,将△AOB沿垂直于x轴的线段CD折叠,(点C在x轴上,且不与点B重合,点D在线段AB上),使点B落在x轴上,对应点为点E,设点C的坐标为(x,0).①当x为何值时,线段DE平分△AOB的面积;②是否存在这样的点使得△AED为直角三角形?若存在,求出点C的坐标;若不存在,请说明理由.③设△CDE与△AOB重叠部分的面积为S,直接写出S与点C的横坐标x之间的函数关系式(包括自变量x 的取值范围).30.如图,已知直线l1:y=x+与直线l2:y=﹣2x+16相交于点C,l1、l2分别交x轴于A、B两点.矩形DEFG的顶点D、E分别在直线l1、l2上,顶点F、G都在x轴上,且点G与点B重合.(1)求△ABC的面积;(2)求矩形DEFG的边DE与EF的长;(3)若矩形DEFG从原地出发,沿x轴的反方向以每秒1个单位长度的速度平移,设移动时间为t(0≤t ≤12)秒,矩形DEFG与△ABC重叠部分的面积为S,求S关于t的函数关系式,并写出相应的t的取值范围.31.如图,直线l的解析式为y=﹣x+4,它与x轴、y轴分别相交于A、B两点,平行于直线l的直线m从原点O出发,沿x轴的正方向以每秒1个单位长度的速度运动,它与x轴、y轴分别相交于M、N两点,运动时间为t秒(0<t≤4)(1)求A、B两点的坐标;(2)用含t的代数式表示△MON的面积S1;(3)以MN为对角线作矩形OMPN,记△MPN和△OAB重合部分的面积为S2;①当2<t≤4时,试探究S2与之间的函数关系;②在直线m的运动过程中,当t为何值时,S2为△OAB的面积的?32.如图,在平面直角坐标系中,两个函数的图象交于点A.动点P从点O开始沿OA 方向以每秒1个单位的速度运动,运动时间是t.作PQ∥X轴交直线BC于点Q,以PQ为一边向下作正方形PQMN,设它与△OAB重叠部分的面积为S,如图1.(1)求点A的坐标.(2)当t 为何值时,正方形PQMN的边MN恰好落在x轴上?如图2.(3)当点P在线段OA上运动时,①求出S与运动时间t(秒)的关系式.②S是否有最大值?若有,求出t为何值时,S有最大值,并求出最大值;若没有,请说明理由.33.如图,直线l1的解析表达式为:y=﹣3x+3,且l1与x轴交于点D,直线l2经过点A,B,直线l1,l2交于点C.(1)求点D的坐标;(2)求直线l2的解析表达式;(3)求△ADC的面积;(4)在直线l2上存在异于点C的另一点P,使得△ADP与△ADC的面积相等,请直接写出点P的坐标.34.如图,直角梯形ABCD中,AB∥CD,∠A=90°,AB=6,AD=4,DC=3,动点P从点A出发,沿A→D →C→B方向移动,动点Q从点A出发,在AB边上移动.设点P移动的路程为x,点Q移动的路程为y,线段PQ平分梯形ABCD的周长.(1)求y与x的函数关系式,并求出x,y的取值范围;(2)当PQ∥AC时,求x,y的值;(3)当P不在BC边上时,线段PQ能否平分梯形ABCD的面积?若能,求出此时x的值;若不能,说明理由.1.【解答】解:(1)解方程组:得:∴A点坐标是(2,3);(2)设P点坐标是(0,y),∵△OAP是以OA为底边的等腰三角形,∴OP=PA,∴22+(3﹣y)2=y2,解得y=,∴P点坐标是(0,),故答案为(0,);(3)存在;由直线y=﹣2x+7可知B(0,7),C(,0),∵S△AOC=××3=<6,S△AOB=×7×2=7>6,∴Q点有两个位置:Q在线段AB上和AC的延长线上,设点Q的坐标是(x,y),当Q点在线段AB上:作QD⊥y轴于点D,如图①,则QD=x,∴S△OBQ=S△OAB﹣S△OAQ=7﹣6=1,∴OB•QD=1,即×7x=1,∴x=,把x=代入y=﹣2x+7,得y=,∴Q的坐标是(,),当Q点在AC的延长线上时,作QD⊥x轴于点D,如图②则QD=﹣y,∴S△OCQ=S△OAQ﹣S△OAC=6﹣=,∴OC•QD=,即××(﹣y)=,∴y=﹣,把y=﹣代入y=﹣2x+7,解得x=,∴Q的坐标是(,﹣),综上所述:点Q是坐标是(,)或(,﹣).2.【解答】解:(1)如图1,∵直线y=﹣2x+4与x轴、y轴分别相交于A、B两点,∴A(2,0),B(0,4),∴OA=2,OB=4.∴S AOB=OA•OB=×2×4=4,即△AOB的面积是4;(2)∵△DOC≌△AOB,∴OD=OA=2,∴D(0,2).故设直线CD的解析式为y=kx+2(k≠0).∵C(﹣4,0)则0=﹣4k+2,解得,k=,∴直线CD的解析式为y=x+2.又∵点P是直线CD与直线AB的交点,∴,解得,∴点P的坐标是(,).(3)如图2,设P(x,y),又∵点C的坐标为(﹣4,0),∴OC=4,∵S△COP=S△AOB,∴OC×|y|=4,即|y|=2,解得,y=±2,∵P是直线AB上一点,∴点P的坐标为:(1,2)或(3,﹣2).3.【解答】解:(1)直线y=kx+3和y轴的交点为C,则点C(0,3),则BC=6,OB=3,则点B(3,0),将点B的坐标代入y=kx+3得:0=3k+3,解得:k=﹣;(2)OA=,OC=3,则AC=2,则∠AOC=30°,∠ACB=∠ACO+∠BCO=∠CBO+∠BCO=90°,∴AC⊥BC;(3)①直线BC的表达式为:y=﹣x+3,则点M(x,﹣x+3),S=×AB×|y M|=4×|﹣x+3|=6±2x,②S=6,解得:x=0,故点M(0,3).4.【解答】解:(1)令x=0,则y=2,令y=0,则x=﹣2,则点A、B的坐标分别为:(0,2)、(﹣1,0),过点C作CH⊥x轴于点H,∵∠HCB+∠CBH=90°,∠CBH+∠ABO=90°,∴∠ABO=∠BCH,∠CHB=∠BOA=90°,BC=BA,∴△CHB≌△BOA(AAS),∴BH=OA=2,CH=OB,则点C(﹣3,1),将点A、C的坐标代入一次函数表达式:y=mx+b得:,解得:,故直线AC的表达式为:y=x+2;(2)同理可得直线CD的表达式为:y=﹣x﹣…①,则点E(0,﹣),直线AD的表达式为:y=﹣3x+2…②,联立①②并解得:x=1,即点D(1,﹣1),点B、E、D的坐标分别为(﹣1,0)、(0,﹣)、(1,﹣1),故点E是BD的中点,即BE=DE;(3)将点BC的坐标代入一次函数表达式并解得:直线BC的表达式为:y=﹣x﹣,将点P坐标代入直线BC的表达式得:k=,直线AC的表达式为:y=x+2,则点M(﹣6,0),S△BMC=MB×y C=×5×1=,S△BPN=S△BCM==NB×k=NB,解得:NB=,故点N(﹣,0)或(,0).5.【解答】解:(1)OB=6,即2﹣2m=±6,解得:m=﹣2或4;(2)y=mx+2﹣2m=m(x﹣2)+2,当x=2时,y=2,故定点坐标为(2,2);(3)存在,理由:OA=||,OB=|2﹣2m|,S△OAB=×OA×OB=||×|2﹣2m|=8,解得:m=﹣1或3+2或3﹣2.6.【解答】解:(1)y=﹣x+8,令x=0,则y=8,令y=0,则x=6,故答案为:(6,0)、(0,8);(2)由题意得:点P(2t,8﹣4t),则x=2t,y=8﹣4t,故点P所在的直线表达式为:y=8﹣2x;(3)①当点Q在AB下方时,将y=3x与y=8﹣2x联立并解得:x=,y=,即点P(,),△ABP的面积等于△BAQ面积时,点Q在过点P且平行于AB的直线上,设过点P且平行于AB的直线表达式为:y=﹣x+b,将点P的坐标代入上式得:=﹣×+b,解得:b=,故函数的表达式为:y=﹣x+,当x=0时,y=,当y=0时,x=,即点Q(0,)或(,0).当点Q在AB上方时,同理可得:点Q的坐标为:(,0)或(0,);综上点Q的坐标为:(0,)或(,0)或(,0)或(0,).7.【解答】解:(1)不变,理由:一次函数y=x+3的函数图象与x轴,y轴分别交于点A,B,则点A、B的坐标分别为(﹣3,0)、(0,3),S△OPB=OB×x P=×3×2=3;(2)S四边形APOB=S△ABO+S△AOP=×AO×BO+AO×(﹣m)=3(3﹣m)=﹣m+,S△ABP=S四边形APOB﹣S△BOP=﹣m+﹣3=6,解得:m=﹣3.8.【解答】解:(1)将点A、B坐标代入一次函数表达式:y=kx+b得:,解得:,故直线AB的表达式为:y=2x﹣4,直线CD的表达式为:y=﹣x+5…①,则点C、D的表达式分别为:(5,0)、(0,5),联立直线AB表达式与直线CD表达式:y=﹣x+5并解得:x=3,故点E(3,2);(2)如图,设点M(m,2m﹣4),过点M作MN⊥CD交于点N,则MN=3,∵MN⊥CD,∴直线MN表达式中的k值为﹣1,设直线MN的表达式为:y=﹣x+b′,将点M坐标代入上式并解得:直线MN的表达式为:y=x+(m﹣4)…②,联立①②并解得:x=,则点N(,),MN2=(m﹣)2+(﹣2m+4)2=(3)2,解得:m=1或5(舍去),故点M(1,﹣2);(3)①如图2(左侧图),当2≤t≤3时,图象到达O′Q′P′A′的位置,OA=2,OB=4,∵GA′∥OB,则=2,则GA′=2AA′则S=AA′×A′G=AA′×AA′tanα=(t﹣2)2;②3<t≤4时,如图3,设A′P′交直线CD于点H,S=S梯形AA′P′Q′﹣S△EHP′=(t+t+2﹣3)×2﹣(t+2﹣3)=t+;③如图4,4<t≤5时,图象到达O′′Q′′P′′A′′的位置,直线BE交O″Q″于点H′,直线CD交A″P″于点G′,则AA″=t,AO″=t﹣2,A″C=3﹣t,H′O″=2AO″=2(t﹣2),G′A″=A″C=3﹣t,S△AO″H′=×AO″×O″H′=(t﹣2)2,同理:S△A″CG′=(3﹣t)2,S=S△ACE﹣S△AO″H′﹣S△A″CG′=3﹣(t﹣2)2﹣(3﹣t)2=﹣t2+7t﹣,故:S=.9.【解答】解:(1)将y1=x和y2=﹣2x+6联立并解得:x=2,故点C(2,2),则OC=2,当x>2时,y2<y1;(2)y1=x,则∠COB=45°,①当CO=CP时,则点C的横坐标对应在x轴上的点为OP的中点,故点P(4,0);②当OC=OP时,PO=OC=2,故点P(2,0);③当OP=CP时,如下图,则OD=CO,OP====2,故点P(2,0);(3)CP将△COB分成的两部分面积之比为1:2,则OP=OB或OB,故点P(1,0)或(2,0).10.【解答】解:(1)由题意得:P(4﹣2t,0),Q(2﹣t,0),∴PQ=2﹣t,∵△OAB∽△QPM,∴=2,∴PM=2PQ=4﹣2t,∴M(4﹣2t,4﹣2t);(2)设l2与AB的交点为C,l1与AB的交点为D,易得直线AB对应的解析式为y=﹣x+1,∴4﹣2t=﹣(4﹣2t)+1,解得:t=;(i)当0<t≤1时,如图1所示,在Rt△OAB中,AB=,由△OAB∽△CQB,得到,∴S=S△CQB=××1×2=;(ii)当1<t<时,如图2所示,PD=2t﹣2,由△OAB∽△PDB,得到PB=t﹣1,∴S=S四边形CQPD=S△CQB﹣S△PDB==•(2t﹣2)•(t﹣1)═﹣+2t﹣1;(iii)当≤t<2时,S=S△PQM=PQ•PM=•(2﹣t)•(4﹣2t)=t2﹣4t+4.11.【解答】解:(1)如图1:(2)如图2:,由折叠的性质,得∠C=∠A=∠COA=45°,AF=BE=CF=t,S△CFG=CF•FG=t2=,解得t=,t=﹣(不符合题意,舍);(3)分两种情况讨论:①当0<t≤3时,如图2:四边形DCFE落在第一象限内的图形是△DFG,∴S=t2,∵S=t2,在t>0时,S随t增大而增大,∴t=3时,S最大=;②当3<t<6时,如图3:,四边形DCFE落在第一象限内的图形是四边形CHOF,∴S四边形CHOF=S△CGF﹣S△HGO,∴S=t2﹣2(2t﹣6)2=﹣t2+12t﹣18=﹣(t﹣4)2+6,∵a=﹣<0,∴S有最大值,∴当t=4时,S最大=6,综上所述,当t=4时,S最大值为6.12.【解答】解:(1)∵点B坐标为(0,8),∴OB=8.∵AD=OB,EF垂直平分AD,∴AE=4.∴BE=t+4.∴点E的坐标为(t+4,8);(2)如图所示;过点D作DH⊥OF,垂足为H.∵AC⊥OA,∴∠OAC=90°.∴∠BAO+∠EAC=90°.又∵∠BOA+∠BAO=90°,∴∠EAC=∠BOA.又∵∠OBA=∠AEC,∴△OBA∽△AEC.∴,即.∴EC=.∴点C的坐标为(t+4,8﹣)∵∠OCD=180°,∴点C在OD上.∵CF∥DH,∴,即解得:,(舍去).所以当t=4﹣4时,∠OCD=180°.(3)当0<t<16时,三角形OCF的面积=×OF•FC=(t+4)(8t)=,当t>16时,三角形OCF的面积=×OF•FC=(t+4)(t﹣8)=,∴s与t的函数关系式为s=.13.【解答】解:(1)令x=0,得y=12,令y=0,得x=9∴与y轴交点B的坐标为(0,12),与x轴交点A的坐标为(9,0);(2)点P在OA上运动的时间为9÷3=3秒,点E在OB上移动的距离为3×=4,点P和点E重合的时间为:3+4÷(4﹣)=秒,当t=秒,点P与点E重合;(3)点P在OA、OB上运动的时间和为9÷3+12÷4=6秒,点E在OB上移动的距离为6×=8,AB==15∵EF∥OA∴△BEF∽△BOA∴=即=解得BF=5,则点F运动的速度为(15﹣5)÷6=个单位/秒,∴点P与点F重合的时间为5÷(5+)+6=秒;(4)∵EF∥OA∴△BEF∽△BOA=即=EF=9﹣t①当点P在OA上运动,即0<t≤3;S=×(9﹣t)×t=﹣t2+6t;②当点P在OB上运动,即3<t<,S=×(9﹣t)×[t﹣4(t﹣3)]=﹣t2﹣18t+54.③当<t<6时,S=×(9﹣t)×[4(t﹣3)﹣t]=t2+18t﹣54.14.【解答】解:(1)在y=﹣2x+8中,令x=0,解得y=8,则A的坐标是(0,8);令y=0,解得x=4,则B的坐标是(4,0);(2)在y=﹣2x+8中令x=m,则y=﹣2m+8则S1=m(﹣2m+8),即S1=﹣2m2+8m,当m=﹣=2时,S1有最大值是﹣2×22+8×2=8,此时P的坐标是(2,4);(3)∵P的坐标是(2,4),∴S矩形PEOF=8,E的坐标是(2,0),F的坐标是(0,4),过F且平行于AB的直线解析式是:y=﹣2x+b,把(0,4)代入得:b=4,则解析式是y=﹣2x+b,在y=﹣2x+4中,令y=0,解得:x=2,则一定经过点E.则当0<a≤4时,直线l扫过矩形PEOF的部分是直角三角形,设向下平移a个单位长度,则直线的解析式是:y=﹣2x+8﹣a,设与PF交于点M,在y=﹣2x+8﹣a中令y=4,解得:x=2﹣a,则M的坐标是(2﹣a,4),则PM=a;设与PE交于点N,在y=﹣2x+8﹣a中令x=2,解得:y=4﹣a,则N的坐标是(2,4﹣a),则PN=a,则S1=PM•PN=×a•a=a2;当4<a≤8时,设直线与y轴交点是G,则OG=8﹣a,设与x轴的交点是H,则OH=(8﹣a)=4﹣a,S△OGH=OG•OH=(8﹣a)•(4﹣a)=(8﹣a)2.则S1=8﹣(8﹣a)2.即S1=﹣a2+4a﹣8.15.【解答】解:(1)∵将△AOD沿AD翻折,使O点落在AB边上的E点处,∴∠OAD=∠EAD=45°,DE=OD,∴OA=OD,∵OA=2,∴OD=2,∴D点坐标是(2,0),DE=OD=2,∴E点坐标是(2,2),故答案为:(2,0),(2,2);(2)存在点M使△CMN为等腰三角形,理由如下:由翻折可知四边形AODE为正方形,过M作MH⊥BC于H,∵∠PDM=∠PMD=45°,则∠NMH=∠MNH=45°,。

一次函数之面积问题 (习题及答案).

一次函数之面积问题 (习题及答案).

一次函数之面积问题(习题)1.如图,一次函数y=kx+b 的图象经过A(-2,-1),B(1,3)两点,并且与x 轴交于点C,与y 轴交于点D,则△AOB 的面积为.第1 题图第2 题图2.如图,直线y =1x +1 经过点A(1,m),B(4,n),点C 的坐2标为(2,5),则△ABC 的面积为.3.如图,直线y=-x+3 经过点A(4,m),B(-1,n),若点P 的坐标为(6,2),则S△ABP= .4.如图,直线l1:y=x-3 与直线l2:y=2x 交于点A,点B(5,m)在直线l1 上,点C(2,n)在直线l2 上,则△ABC 的面积为.5.如图,直线y =1x +1 与x 轴、y 轴分别交于点A,B,直线2y=kx-3 与x 轴、y 轴分别交于点C,D,两直线相交于点P,若S△ADP=20,则k 的值为.6.如图,在平面直角坐标系中,已知A(2,4),B(10,5),C(8,2),则四边形OABC 的面积为.7.如图,在平面直角坐标系中,已知直线l1,l2 相交于点A(2,1),点B(8,4)在直线l1 上,直线l2 的表达式为y=3x-5.C 为直线l2 上的一个动点,且在点A 右侧,若△ABC 的面积为15,则点C 的坐标为.8. 如图,直线 y =-x +2 与 x 轴、y 轴分别交于点 A ,B ,以 A 为直角顶点,线段 AB 为腰在第一象限内作等腰 Rt △ABC ,点 P 为直线 x =1 上的一点,若 S △ABP =S △ABC ,则点 P 的坐标为 .9. 如图,已知直线 y = - 1 x + 4 与 x 轴、y 轴分别相交于点 A ,B , 2再将△AOB 折叠,使点 A 与点 B 重合,折痕与 x 轴交于点 C , 与 AB 交于点 D .(1) 点 A 的坐标为 ,点 B 的坐标为 .(2) 求线段 OC 的长及直线 BC 的表达式.(3) 直线 BC 上是否存在一点 M ,使△ABM 的面积与△ABO 的面积相等?若存在,请直接写出所有符合条件的点M 的坐标;若不存在,请说明理由.【参考答案】1.522.923. 25 24. 205. 16. 257. (4,7)8. (1,5)或(1,-3)9. (1)(8,0),(0,4);(2)线段OC 的长为3,直线BC 的表达式为y =-4x + 4 ;3(3)存在,点M 的坐标为( 24,-12)或( -24,52).5 5 5 5。

一次函数之面积问题(讲义及答案)

一次函数之面积问题(讲义及答案)

一次函数之面积问题(讲义)➢知识点睛1.坐标系中处理面积问题,要寻找并利用横平竖直的线,通常有以下三种思路:①公式法(规则图形);②割补法(分割求和、补形作差);③转化法(例:同底等高).2.坐标系中面积问题的处理方法举例①割补法——铅垂法求面积:B()2APB B AS PM x x=⋅⋅-△②转化法——借助平行线转化:l1l2如图,满足S△ABP=S△ABC的点P都在直线l1,l2上.➢精讲精练1.如图,在平面直角坐标系中,已知A(2,3),B(4,2),则△AOB的面积为___________.2.如图,点A,B在直线74y kx=+上,点A的坐标为(-1,3),点B的横坐标为3,则△AOB的面积为___________.3.如图,直线y=-x+4与x轴、y轴分别交于点A,B,点P的坐标为(-2,2),则S△PAB=___________.4.如图,一次函数y=kx+5的图象经过点A(1,4),点B是一次函数y=kx+5的图象与正比例函数23y x的图象的交点,则△AOB的面积为___________.5.如图,直线l1:y=x+1与x轴、y轴分别交于点A,B,直线l2:y=kx-2与x轴、y轴分别交于点C,D,直线l1,l2相交于点P.若S△APD=92,则k的值为__________.6.如图,在平面直角坐标系中,已知A(2,4),B(6,6),C(8,2),则四边形OABC的面积为___________.7.如图,在平面直角坐标系中,已知点A(2,1),点B(8,4),点C(m,2m-3)在直线AB上方,若△ABC的面积为9,则m的值为________.8.如图,直线l1:y=x与直线l2:y=-2x+3相交于点A,点B在直线l1上,且横坐标为4.C为l2上的一个动点,且在点A的左侧,若△ABC的面积为18,则点C的坐标为__________.9.如图,直线112y x=-+与x轴、y轴分别交于点A,B,点C的坐标为(1,2),点P为坐标轴上一点,若S△ABP =S△ABC,则点P的坐标为__________.10.如图,在平面直角坐标系中,一次函数y=2x+4的图象与x轴、y轴分别交于点A,B,过点A的直线交y轴正半轴于点M,且点M为线段OB的中点.(1)求直线AM的函数解析式;(2)若点P是直线AM上一点,使得S△ABP =S△AOB,请直接写出点P的坐标.【参考答案】1. 42.7 23.84.55.5 26.247. 48.(-3,9)9.(0,52),(5,0),(-1,0),(0,12-)10.(1)直线AM的函数解析式为y=x+2;(2)P1(2,4),P2(-6,-4)。

一次函数之面积问题

一次函数之面积问题

一次函数之面积问题
1.如图,已知直线24
=-+
y x
(1)求该直线与x轴的交点A及y轴的交点B的坐标;
(2)该直线上有一点C(3
-,n),求△OAC的面积.
2.已知直线24
=+与x轴交于点A,与y轴交于点B,点P在x轴上,
y x
且PO=2AO.
求△ABP的面积.
3.如图,在平面直角坐标系中,△ABC三个顶点的坐标分别为A(0,6),B(3,0),C(0,4),若点P是x轴上一动点,且,求点P的坐标
4.在平面直角坐标系xOy中,已知直线4
=-+与x轴交于A点,直线上有一点M,且△AOM的面积为
y x
8,求M点的坐标.
5. 直线0.52y x =-+与x 轴、y 轴分别交于A 、B 两点,D 是x 轴上一
点,坐标为(x ,0),△ABD 的面积为S .
(1)求点A 和点B 的坐标;(2)求S 与x 的函数关系式;(3)当S=12时,求点D 的坐标.
6. 如图,已知直线1l :23y x =+,直线2l :5y x =-+,直线1l 、2
l 分别交x 轴于B 、C 两点,1l 、2l 相交于点A .(1)求A 、B 、C 三点
坐标;(2)求△ABC 的面积.。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

10. (1)直线 AM 的函数解析式为 y x 2 ;
(2)P1(2,4),P2(-6,-4)
且△ABP 与△ABC 的面积相等,则点 P 的坐标为__________.
知识点睛
1. 坐标系中处理面积问题,要寻找并利用_____________的线, 通常有以下三种思路: ①__________________(规则图形); ②__________________(分割求和、补形作差); ③__________________(例:同底等高).
8. 如图,直线 l1:y=x 与直线 l2:y=-2x+3 相交于点 A,点 B 在 直线 l1 上,且横坐标为 4.C 为 l2 上的一个动点,且在点 A 的左侧,若△ABC 的面积为 18,则点 C 的坐标为__________.
9. 如图,直线 y 1 x 1与 x 轴、y 轴分别交于点 A,B,点 C 2
4. 如图,一次函数 y=kx+5 的图象经过点 A(1,4),点 B 是一次 函数 y=kx+5 的图象与正比例函数 y 2 x 的图象的交点,则 3 △AOB 的面积为___________.
5. 如图,直线 l1:y=x+1 与 x 轴、y 轴分别交于点 A,B,直线 l2:y=kx-2 与 x 轴、y 轴分别交于点 C,D,直线 l1,l2 相交于 点 P.若 S△APD= 9 ,则 k 的值为__________. 2
2. 坐标系中面积问题的处理方法举例 ①割补法——铅垂法求面积:
S△ APB
1 PM 2
(xB
xA)
②转化法——借助平行线转化:
如图,满足 S△ABP=S△ABC 的点 P 都在直线 l1,l2 上.
精讲精练
1. 如图,在平面直角坐标系中,已知 A(2,3),B(4,2),则△AOB 的面积为___________.
6. 如图,在平面直角坐标系中,已知 A(2,4),B(6,6), C(8,2),则四边形 OABC 的面积为___________.
7. 如图,在平面直角坐标系中,已知点 A(2,1),点 B(8,4), 点 C (m,2m-3)在直线 AB 上方,若△ABC 的面积为 9,则 m 的值为________.
2. 如图,点 A,B 在直线 y = kx 7 上,点 A 的坐标为(-1,3), 4
点 B 的横坐标为 3,则△AOB 的面积为___________.
第 2 题图
第 3 题图
3. 如图,直线 y=-x+4 与 x 轴、y 轴分别交于点 A,B,点 P 的坐
标为(-2,2),则 S△PAB=___________.
【参考答案】
课前预习
1. 13 2
2. (0,3)或(0,-3) 知识点睛
1. 横平竖直,①公式法;②割补法;③转化法 精讲精练
1. 4 2.Leabharlann 72 3. 8 4. 5 5. 5
2 6. 24 7. 4 8. (-3,9)
9. (0, 5 ),(5,0),(-1,0),(0, 1 )
2
2
一次函数之面积问题(讲义)
课前预习
1. 如图,在平面直角坐标系 xOy 中,已知 A(1,2),B(3,5), C(6,3),则△ABC 的面积为__________.
第 1 题图
第 2 题图
2. 如图,直线 l1:y=-3x+3 与 x 轴交于点 A,直线 l2: y 3 x 6 2
与 x 轴交于点 B,直线 l1,l2 相交于点 C.点 P 是 y 轴上一点,
的坐标为(1,2),点 P 为坐标轴上一点,若 S△ABP=S△ABC,则 点 P 的坐标为__________________________.
10. 如图,在平面直角坐标系中,一次函数 y=2x+4 的图象与 x 轴、 y 轴分别交于点 A,B,过点 A 的直线交 y 轴正半轴于点 M, 且点 M 为线段 OB 的中点. (1)求直线 AM 的函数解析式; (2)若点 P 是直线 AM 上一点,使得 S△ABP=S△AOB,请直接 写出点 P 的坐标.
相关文档
最新文档