设备故障诊断方法6-齿轮箱监测与诊断
轴承和齿轮箱的故障诊断
轴承和齿轮箱的故障诊断摘要:本文针对轴承和齿轮箱的故障诊断展开分析,思考了轴承和齿轮箱的故障诊断的方法和基本的措施,希望可以为今后的轴承和齿轮箱的故障诊断工作带来参考。
关键词:轴承;齿轮箱;故障;诊断前言在轴承和齿轮箱的故障诊断的过程中,应该清楚诊断的方法和原理,明确轴承和齿轮箱的故障诊断的具体的技术,才能够提高轴承和齿轮箱的故障诊断的效果。
1、齿轮箱故障诊断特点与诊断方法1.1常见的齿轮箱故障形式通常齿轮箱运行过程中,由于齿轮箱本身制造装配误差以及操作维护不善或者不合适的环境下使用等,均会使其极易产生各种形势的故障。
故障类型也会随着齿轮材料、热处理工艺程度、运转状态等因素的不同而产生不同的变化。
常见的齿轮箱故障形式有:齿面磨损、粘着撕伤、齿面疲劳剥落、轮齿龟裂和断齿、齿面点蚀、齿面胶合与擦伤以及齿面接触式疲劳、弯曲疲劳等故障。
1.2齿轮箱的振动特征在齿轮箱高速运转状态下,伴随着内部构件故障的发生与发展,必定会产生异常的振动,振动信号可以很快的反映出齿轮箱的运行状态,判别出各构件是否出现异常。
大量实验证明,对齿轮箱故障检测进行振动分析是最有效的方法。
由于齿轮箱的零部件在工作过程中所受得激励源不同会使其产生出多种复杂的振动类型,而且其中齿轮在啮合过程中产生的齿形和周期误差、偏心以及质量不平衡等故障,同时还会是齿轮箱工作过程中发生齿面磨损、疲劳断齿等故障[2],严重影响到机械设备的运行,进而影响的经济效益,甚至出现伤亡事故。
由于故障对振动信号的影响是多方面的,因此如果仅仅依靠对齿轮箱振动信号出现啮合频率和倍频成分的差异来识别齿轮箱各部件的故障是远远不够的,其中包括幅值调制、频率调制等频率成分进行诊断。
1.3故障诊断过程对小波的内在需求小波分析应用于机械故障诊断,快速准确的识别故障,是小波分析要完成在齿轮箱的故障诊断过程对小波的内在需求中的主要任务。
通过实验研究说明,机械故障诊断和信号特征提取的所采用的方式是对特征信号进行高效的时域-频域分析,该分析方法是故障诊断的必要要求。
行星齿轮箱故障诊断方法
行星齿轮箱故障诊断方法1. 引言1.1 引言行星齿轮箱是一种常见的传动装置,在各种机械设备和车辆中被广泛应用。
它能够有效地将动力传递给机械系统,从而实现各种动力传动和转速调节的功能。
由于长时间的使用和磨损,行星齿轮箱可能会出现故障,导致设备性能下降甚至完全失效。
及时准确地诊断行星齿轮箱的故障非常重要。
本文将介绍行星齿轮箱的故障现象、可能的原因、诊断方法、常见解决方案和预防措施,帮助读者更好地了解行星齿轮箱故障的发生和处理方法。
通过掌握这些知识,读者可以及时发现和解决行星齿轮箱的故障,延长设备的使用寿命,提高设备的可靠性和安全性。
在本文的指导下,读者可以更加有效地管理和维护行星齿轮箱,确保设备的正常运行和高效工作。
愿本文能够为读者提供有价值的信息和帮助,使他们能够更好地了解和处理行星齿轮箱故障问题。
2. 正文2.1 故障现象故障现象是指在行星齿轮箱工作过程中可能出现的各种问题和异常情况。
通过观察和记录这些故障现象,可以帮助工程师们更快速、准确地诊断问题,并采取相应的处理措施。
常见的行星齿轮箱故障现象包括:轴承异响、运转噪音过大、温升异常、油品泄漏、齿轮磨损严重、工作效率下降等。
轴承异响可能是轴承损坏或润滑不良导致的;运转噪音过大可能是齿轮配合间隙过大或叶轮受损;温升异常可能是润滑油渗漏或油温过高所致;油品泄漏可能是密封件老化或松动;齿轮磨损严重可能是使用寿命到期或润滑不当引起的;工作效率下降可能是因为零部件磨损过大或系统故障。
通过仔细观察和分析这些故障现象,可以有针对性地进行故障诊断和解决方案的制定。
定期检查和维护行星齿轮箱,及时处理故障现象,可以提高设备的可靠性和工作效率,延长设备的使用寿命。
2.2 故障可能原因行星齿轮箱故障可能原因很多,主要包括以下几个方面:1. 润滑不足:行星齿轮箱在工作过程中需要足够的润滑油来减少摩擦和磨损,如果润滑油不足或质量不合格,就会导致齿轮箱零件间的摩擦增大,从而引起故障。
风力发电机组齿轮箱故障诊断
风力发电机组齿轮箱故障诊断1. 引言1.1 背景介绍齿轮箱是风力发电机组中的重要组成部分,承担着转动力传递和速度变换的功能。
由于长期运行和恶劣环境条件的影响,齿轮箱容易出现各种故障,影响发电机组的正常运行和发电效率。
及时准确地诊断齿轮箱故障尤为重要。
随着风力发电技术的飞速发展,齿轮箱故障诊断技术也在不断创新和完善。
通过对齿轮箱故障进行精确诊断,可以有效提高风力发电机组的运行可靠性和安全性,降低运维成本,延长设备寿命,最大限度地实现风能资源的利用。
本文旨在对风力发电机组齿轮箱故障诊断方法进行概述,探讨常见的齿轮箱故障特征,介绍故障诊断技术和原理,分析振动信号分析方法和温度监测技术的应用,并总结齿轮箱故障诊断的重要性和未来发展趋势。
希望通过本文的研究,为风力发电行业的技术进步和发展贡献一份力量。
1.2 研究目的研究目的:本文旨在探讨风力发电机组齿轮箱故障诊断的方法与技术,提供有效的故障诊断方案,为风力发电行业提供更加可靠、高效的运维保障。
通过对常见齿轮箱故障特征、故障诊断技术及原理、振动信号分析方法、温度监测技术等方面进行综合分析与研究,旨在提高齿轮箱故障的预警能力,减少故障带来的损失和影响,保障风力发电机组的安全稳定运行。
本研究还将探讨齿轮箱故障诊断的重要性,展望未来发展趋势,为该领域的深入研究和技术创新提供参考和借鉴。
通过本文的研究成果,期望能够为风力发电行业提供更加科学、可靠的齿轮箱故障诊断解决方案,推动行业的持续发展与进步。
1.3 研究意义风力发电机组在风能资源利用中起到至关重要的作用。
齿轮箱作为风力发电机组的核心部件之一,其故障诊断对于发电机组的正常运行至关重要。
研究齿轮箱故障诊断技术可以帮助提前发现和解决齿轮箱的故障问题,保障风力发电机组的运行稳定性和有效性。
齿轮箱故障诊断的研究意义主要体现在以下几个方面:在风力发电行业中,齿轮箱故障是一种常见的故障类型,及时准确地诊断齿轮箱故障可以有效降低故障率,延长齿轮箱的使用寿命,减少维修成本,提高发电效率;齿轮箱故障一旦发生,可能会导致整个风力发电机组的停机维修,给发电厂和电网带来损失,影响电力供应的稳定性,因此研究齿轮箱故障诊断技术对于保障电力供应的可靠性具有重要意义;齿轮箱故障诊断技术的研究也可以促进风力发电行业技术的进步和发展,推动我国清洁能源产业的发展。
船用齿轮箱状态监测与故障诊断系统探讨
61 /[1]刘双成.断系统[J ].军民两用技术与产品,2018(20):83-83.若超出极限值,则系统报警。
例如,振动指标超出设定值,则报警灯亮,提示异常。
振动信号的调整指标可能伴随故障发展而存在一定上升,但是仍需考虑机器工作极限对振动的限制。
无量纲指标并不会因为工作条件变化而变化,当故障持续发生一断时间,无量纲参数也会出现一定程度下降。
故需利用好各种参数,以峭度及均方幅值检测。
4.2信号频域(1)功率谱。
通过LabVIEW技术,可以对信号频域中功率谱函数节点PS/PSD.vi分析,通过对该函数节点深入分析,进一步实现对时域信号功率谱的分析。
但是需注意,在具体分析前,应设置好函数节点的各项参数,设置好函数节点加窗,以此采集振动时域信号,且避免功率谱变换时发生谱能量丢失等问题,保证信号可以平稳的过度,也确保谱分析值的准确性。
(2)倒频谱分析。
倒频谱指对功率谱对数值实施傅立叶逆变换,对相关的视域信号自功率谱详细分析,最终以单边功率谱(返回)For循环中得其对数,之后进行一维实数傅立叶逆变换,最终得到倒频谱。
对于船用齿轮箱故障的诊断,以倒频谱分析,无需考虑测点不同导致传感器传递函数差异导致造成干扰。
通过倒频谱分析,也可区别由于调制而导致的功率谱周期分量,诊断具体调制源。
(3)Hilbert包络谱分析。
包络谱分析通过Hilbert函数节点、交流及直流分量,以此估计函数节点及傅里叶变换函数节点算数运算。
通过此分析方式,可得到幅值、相位及频率变换。
5.效果分析船用齿轮箱连接船只柴油机及螺旋桨,其性能决定船只运行稳定性。
船用齿轮箱运行以传递扭矩,起到减速控制作用。
下文以相应故障模拟实验台分析文章研究系统是否可靠。
为分析齿轮箱故障监测及诊断系统是否有效,设置相关实验平台,实验平台可为监测及诊断系统提供诊断平台,平台以可调节带轮方向确定故障模拟形式,齿轮箱及转圆盘传动系统。
项目主要分析齿轮断裂、齿轮裂纹、齿轮磨损等。
齿轮箱故障的原因和诊断方法.ppt
齿轮箱是机械设备中应用最为广泛的传 动机构。 自身结构复杂,工作环境恶劣,非常容 易出故障。 齿轮箱故障将直接影响设备的安全可靠 运行,降低加工精度和生产效率。 由此,齿轮箱故障研究的目的和意义就 不言而喻了,比如:保障机器安全,有 效地运行;提高生产效率,保障产品质 量等等。
齿轮箱故障的原因
小波包函数
被定义为 :
式中 n=0,1 ,2 …为振荡参数 , J∈Z和 k∈Z 分别是尺度 参数和平移参数
齿轮箱故障诊断试验
三:小波包特征提取
对采集到的齿轮箱振动信号进行 3层小波包分解,采用Shannon熵准,可 得到从低频到高频的8个等宽频率的子频带,本文采样频率为2560kHz。
齿轮箱故障诊断试验
式中n=1,2,3,4, i=1,2,…,N, N为信号长度N=1024。
设所提取的 4个能量值为 网络的一组特征参数 将 P作为小波神经
齿轮箱故障诊断试验
四:小波特征提取
小波变换后的逼近信号和细节信号
齿轮箱故障诊断试验
五:小波神经网络小波神Βιβλιοθήκη 网络模型齿轮箱故障诊断试验
小波神经网络测试流程
齿轮箱故障诊断步骤
信号检测 号 根据齿轮箱的工作环境和性质,选样并测取能够反映 齿轮箱工作情况或状态的信号,这种信号称为原始信号。
特征提取
将原始信号进行信号分析和处理,提取反映 齿轮箱状态的有用信息(特征),形成待检模式。
状态识别
将待检模式与样式模式(故障档案)对比和状 态分类,判断齿轮箱是否工作正常或者说有无故障。
网络参数初始化 计算隐含层及输出层的输出
计算误差E和梯度向量p
齿轮的故障诊断
齿轮的故障诊断齿轮的故障诊断一、齿轮的常见故障齿轮是最常用的机械传动零件,齿轮故障也是转动设备常见的故障。
据有关资料统计,齿轮故障占旋转机械故障的10.3%。
齿轮故障可划分为两大类,一类是轴承损伤、不平衡、不对中、齿轮偏心、轴弯曲等,另一类是齿轮本身(即轮齿)在传动过程中形成的故障。
在齿轮箱的各零件中,齿轮本身的故障比例最大,据统计其故障率达60%以上。
齿轮本身的常见故障形式有以下几种。
1. 断齿断齿是最常见的齿轮故障,轮齿的折断一般发生在齿根,因为齿根处的弯曲应力最大,而且是应力集中之源。
断齿有三种情况:①疲劳断齿由于轮齿根部在载荷作用下所产生的弯曲应力为脉动循环交变应力,以及在齿根圆角、加工刀痕、材料缺陷等应力集中源的复合作用下,会产生疲劳裂纹。
裂纹逐步蔓延扩展,最终导致轮齿发生疲劳断齿。
②过载断齿对于由铸铁或高硬度合金钢等脆性材料制成的齿轮,由于严重过载或受到冲击载荷作用,会使齿根危险截面上的应力超过极限值而发生突然断齿。
③局部断齿当齿面加工精度较低、或齿轮检修安装质量较差时,沿齿面接触线会产生一端接触、另一端不接触的偏载现象。
偏载使局部接触的轮齿齿根处应力明显增大,超过极限值而发生局部断齿。
局部断齿总是发生在轮齿的端部。
2. 点蚀点蚀是闭式齿轮传动常见的损坏形式,一般多出现在靠近节线的齿根表面上,发生的原因是齿面脉动循环接触应力超过了材料的极限应力。
在齿面处的脉动循环变化的接触应力超过了材料的极限应力时,齿面上就会产生疲劳裂纹。
裂纹在啮合时闭合而促使裂纹缝隙中的油压增高,从而又加速了裂纹的扩展。
如此循环变化,最终使齿面表层金属一小块一小块地剥落下来而形成麻坑,即点蚀。
点蚀有两种情况:①初始点蚀(亦称为收敛性点蚀)通常只发生在软齿面(HB<350)上,点蚀出现后,不再继续发展,甚至反而消失。
原因是微凸起处逐渐变平,从而扩大了接触区,接触应力随之降低。
②扩展性点蚀发生在硬齿面(HB>350)上,点蚀出现后,因为齿面脆性大,凹坑的边缘不会被碾平,而是继续碎裂下去,直到齿面完全损坏。
齿轮箱中齿轮故障的振动分析与诊断
齿轮箱中齿轮故障的振动分析与诊断摘要:齿轮箱常见的失效类型为齿轮箱,所以定期监控其工作状况,以减少故障率,提供预测型的检修计划。
应用结果显示,该技术能够对变速箱进行有效的判断,并能正确地判断出变速箱的故障部位和严重性,从而为船员制定相应的检修计划,降低无用维护费用,防止机械和机械的非计划停运。
关键词:风力发电机组;齿轮箱;故障诊断引言:在回转机构中,最常见的是齿轮,它的工作状态对整个机器的工作情况有很大的影响。
齿面磨损、表面接触疲劳、齿面塑性、齿面弯曲和齿面折断等是常见的失效类型。
一、齿轮箱故障诊断的意义在风力发电机组中,齿轮箱作为重要传动设备,为风能转化为电能提供源源不断的动力,发挥着十分重要的功能。
风力发电机组中的齿轮箱,不仅体积、质量较大,而且结构十分复杂,这也导致在发电机组运转过程中,齿轮箱容易发生各种故障,进而使发电机组的运行受到较大影响,甚至蒙受重大损失。
近年来,陆续爆发出多起因为齿轮箱故障而导致风力发电机组停运的实践,不仅让发电机组受到极大影响,而且带来重大经济损失。
所以说,对风力发电机组齿轮箱实施有效的故障诊断措施,从而尽发现问题,解决问题,保证其稳定性,不仅具有极大的经济意义,而且有很强的社会意义[1]。
传统的齿轮箱故障诊断主要是通过人工方式实现的,通过人工巡检加定期维护的方式,排除齿轮箱故障。
然而,这种模式,一方面带有很强的滞后性,通常都是齿轮箱发生故障以后,并且对发电机组造成影响之后,才能够去被动的应对,依然无法完全避免损失;另一方面,齿轮箱结构复杂,人工方式诊断故障,不仅准确率不高,而且耗费大量的时间和人力。
因此,通过对齿轮箱实施在线监控,并通过监控数据对齿轮箱实施故障诊断,一旦发现异常立刻予以维护、维修,只有这样,才能够真正有效的预防齿轮箱故障,将隐患消除,从而最大程度降低对风力发电机组的影响。
二、齿轮箱故障诊断机理实现齿轮箱的故障诊断,首先必须了解齿轮箱的故障机理,以此为基础选择合适的诊断技术,才能有有效保障故障诊断的及时性与准确性。
齿轮箱故障分析与诊断策略
齿轮箱故障分析与诊断策略摘要:齿轮箱是许多机械的变速传动部件。
在聚丙烯装置最大的挤压造粒机组中,也是由它来提供扭矩和改变速度的。
,它的运行是否正常对整个机组的工作有较大影响。
然而设计不当、维护和操作不善都会引起齿轮箱出现一些故障。
这对其进一步的开发和使用带来明显的负面效应。
本文首先阐述齿轮箱的用途,接着对其故障表现和诊断对策分别进行系统描述。
关键词:齿轮箱故障用途诊断策略齿轮箱是一种工业用的组件,它能经由传动齿轮系完成功率的传递任务,同时,齿轮箱作为一种传送齿轮的机械配件,在化工方面的用途也很广。
本文由齿轮箱的应用,对齿轮箱的常见故障表现和诊断措施展开详尽的论述。
一、齿轮箱的用途齿轮箱的主要用途如下:首先,它可以通过齿轮组来改变传递的速度,在工业上常常把它叫做“变速齿轮箱”。
其次,齿轮箱能变换转动力矩,也就是说,在功率一样的前提下,转速越大的齿轮,齿轮轴所受到的力矩反而越小,反过来则越大;再次,齿轮箱用于动力的分配,在工业上,工作人员可用一台发动机,经由齿轮箱的主轴牵动若干个从轴,进而只要一台发动机就会牵引好几个负载;第四,齿轮箱有离合功能,刹车离合器就是利用的齿轮箱离合功能,人们能自由地将两个相互啮合的齿轮分隔开来,进而把负载和发动机分裂开;第五,变换传动方向,不妨采用两个扇形形态的齿轮把其中的力以垂直的方向有序地传导至另一侧的转动轴。
二、齿轮箱的典型失效故障的表现经由对齿轮箱实际应用的分析,不难测定其故障。
整个齿轮箱系统包含了轴承、齿轮、传动轴和箱体结构等部件,作为一类常用的机械动力系统,它在持续运动地同时,非常容易出现机械配件的故障,特别是轴承、齿轮和传动轴这三个零件,其他发生故障的几率明显比它们低。
齿轮执行任务时,因种种复杂的因素影响而缺乏工作的能力,功能参数的数值超越了允许的最大临界数值,这发生了典型的齿轮箱故障。
其表现形式也五花八门,通观全局,其主要分为两大类:第一是齿轮在日积月累的转动中逐渐产生的,因齿轮箱的外表面在承担相对大负载的过程中,互相啮合的齿轮的间隙中又会出现相对滚动力与滑动力,滑动时候的摩擦力与极点两端的方向刚好相反,久而久之,长期的机械运行会使齿轮胶合、出现裂隙、加大磨损的程度,齿轮断裂也就成为必然了。
风力发电增速齿轮箱的故障诊断与健康监测方法
风力发电增速齿轮箱的故障诊断与健康监测方法随着对可再生能源的需求增加,风力发电正逐渐成为人们关注的热点。
而风力发电机组中的齿轮箱作为关键部件,对于风力发电机组的性能和可靠性具有重要作用。
因此,对风力发电增速齿轮箱的故障诊断与健康监测方法进行研究具有重要意义。
一、齿轮箱故障诊断方法1. 振动信号分析法振动信号分析法是一种常用的齿轮箱故障诊断方法。
通过对齿轮箱的振动信号进行分析,可以判断齿轮箱是否存在故障。
常用的振动参数有振动加速度、振动速度和振动位移等。
通过测量这些参数的变化情况,可以判断齿轮箱是否发生故障,并确定故障类型。
2. 声波信号分析法声波信号分析法是一种通过分析齿轮箱中的声波信号来判断故障的方法。
由于齿轮箱故障会产生特定的声波信号,通过对这些信号进行分析,可以判断齿轮箱是否存在故障。
常用的声波参数有声压级、声功率级和声能级等。
通过测量这些参数的变化情况,可以判断齿轮箱是否存在故障,并确定故障类型。
3. 温度信号分析法温度信号分析法是一种通过分析齿轮箱中的温度信号来判断故障的方法。
由于齿轮箱故障会导致温度的变化,通过对温度信号进行分析,可以判断齿轮箱是否存在故障。
常用的温度参数有温度变化率、最大温度和平均温度等。
通过测量这些参数的变化情况,可以判断齿轮箱是否存在故障,并确定故障类型。
二、齿轮箱健康监测方法1. 振动数据采集与分析方法对于齿轮箱的健康监测,振动数据的采集与分析是非常重要的。
通过在齿轮箱中设置振动传感器,采集振动数据,并对这些数据进行分析,可以判断齿轮箱的健康状态。
常用的分析方法有时域分析、频域分析和小波分析等。
通过对振动数据的分析,可以判断齿轮箱是否存在故障,并进行健康评估。
2. 油液分析方法齿轮箱中的油液包含了大量的信息,通过对油液的分析,可以判断齿轮箱的健康状态。
常用的油液分析指标有油温、循环流量和油液粘度等。
通过对这些指标的变化情况进行分析,可以判断齿轮箱是否存在故障,并进行健康评估。
齿轮箱振动信号频谱分析与故障诊断
齿轮箱振动信号频谱分析与故障诊断摘要:随着科技的快速发展,齿轮已经成为现代工业中主要的零部件之一,由于齿轮箱传动比是固定的,传动力矩大,结构紧凑,被各种机械设备广泛的应用,成为各种机械的变速传动部件,但是齿轮是诱发机械故障的重要部位,所以对齿轮箱故障诊断是十分必要的,本文基于齿轮箱振动及调制边频带形成机理的分析,提出用谱平均及倒频谱分析相结合的方法,对监测系统输出信号进行频域分析,诊断齿轮箱故障,并分析产生的原因。
关键词:齿轮箱;振动信号;频谱分析;故障诊断一、齿轮传动装置故障基本形式及振动信号特征对于齿轮传动装置来说零件失效的主要表现为齿轮和轴承,而齿轮所占比例很大,所以根据提取的故障信号特征,提出行之有效的诊断方法是十分必要的,这样才能更好地诊断齿轮传动装置的问题所在。
1.齿形误差当齿轮出现齿形误差的时候,频谱产生啮合频率及高次谐波为载波频率,齿轮所在的轴转频及倍频为调制频率的啮合频率调制现象,谱图上在啮合频率及倍频附近会产生幅值比较小的边频带,当齿形误差比较严重的时候,激振能量很大,就会产生固有频率,齿轮所在轴转频及倍频为调制频率的齿轮共振频率调制现象。
2.齿面均匀磨损当齿轮使用以后齿面会出现磨损失效,当磨损的时候,使得轮齿齿形的局部出现改变,箱体振动信号与齿形误差也有很大的不同之处,啮合频率及高次谐波的幅值也会增加,由于齿轮的均匀摩擦,就不会产生冲击振动信号,所以不会出现明显的调制现象。
当摩擦达到一定程度以后,啮合频率及谐波幅值就会增加,而且越来越大,同时振动能量也在增加。
3.箱体共振齿轮传动装置箱体共振是比较严重的问题,这主要是因为受到箱体外的影响,激发箱体的固有频率,导致共振的形成。
4.轴的弯曲轴轻度弯曲就会造纸齿轮齿形误差,形成以啮合频率及倍频为载波频率,如果弯曲轴上有多对齿轮啮合,就会对啮合频率调制,但是谱图上的边带数量少,但是轴向振动能量很大。
当轴严重弯曲的时候,时域会出现冲击振动,这于单个断齿和集中性故障产生的冲击振动有很大的区别,这是一个严重的冲击过程。
齿轮箱振动信号分析和故障诊断
存在的问题:
1、应该把不同转矩作用下振动信号数据同时进行对比, 可能效果更加明显; 2、没有设置故障齿轮,连续小波变换法不能直接做出故 障诊断; 3、对于自功率谱分析,其诊断结果显著性不是很强。
入转速下的振动信号比较,其时域特征并不能明显的做
出区分判断。
2、连续小波变换可以将机械信号很好地分解在有限的 时间—尺度范围内而保持信号的信息完整。 对比传统的频 谱分析,机械信号经过连续小波变换后,其内部蕴涵的故 障信息能在尺度域上很好地体现出来。通过比对不同输入 转速下齿轮(涡轮)传动的小波能量-尺度分布图,可以明
自功率谱分析
本实验的信号分析方法将采用Welch法,分别对齿轮 传动和涡轮传在不同输入转速下的振动信号进行自功率谱 分析,通过Matlab软件仿真估计,绘制出各个信号自功率 谱图。
齿轮传动振动信号功率谱(1495r/min)
齿轮传动振动信号功率谱(1457r/min)
齿轮传动振动信号功率谱(1402r/min)
程序如下:
clc clear close all hidden %%********************************读数据 l1=zeros(7,33); for i=1:7 l1(i,1)=i; end for i=1:7 fni=[num2str(i),'.txt']; fid=fopen(fni,'r'); x=fscanf(fid,'%f',inf); status=fclose(fid); n=length(x); c=cwt(x,1:32,'morl');%morlet小波 32维分解 a=zeros(32,1); for ii=1:32 for jj=1:n a(ii,1)=a(ii,1)+(c(ii,jj)).^2; end end %求每个尺度对应能量占总能量的百分比 sum1=0; for ii=1:32 sum1=sum1+a(ii); end b=zeros(32,1); for ii=1:32 b(ii,1)=a(ii,1)/sum1; end b=b'; l1(i,2:1:33)=b(1,:); end save data_l1 l1
齿轮故障检测总结
齿轮故障检测总结引言齿轮是机械传动系统中常见且重要的元件之一。
在工业生产中,齿轮故障可能会导致机械传动系统的失效,从而影响设备的正常运行。
因此,对齿轮故障进行有效的检测和诊断,对于预防故障和提高设备的可靠性非常重要。
本文将对常见的齿轮故障检测方法进行总结,包括振动分析、声学分析、热红外检测以及油液分析等。
这些方法可以帮助工程师及时发现齿轮故障,并采取相应的措施修复或更换齿轮,以确保机械传动系统的可靠性和安全性。
1. 振动分析振动分析是一种常见且有效的齿轮故障检测方法。
通过监测齿轮系统的振动信号,可以识别出齿轮的故障类型,如齿面磨损、齿面疲劳断裂等。
振动分析通常包括以下步骤:1.采集振动信号:使用振动传感器采集齿轮系统的振动信号。
通常,可以选择在齿轮箱的外部或内部安装振动传感器,以获取不同位置的振动信号。
2.信号预处理:对采集到的振动信号进行预处理,包括去噪处理、滤波处理等。
这些预处理操作可以提高信号的质量和准确性。
3.特征提取:从预处理后的振动信号中提取特征,如频域特征、时域特征等。
这些特征可以用于描述齿轮故障的振动特性。
4.故障诊断:根据提取到的特征,利用故障诊断算法对齿轮的故障类型进行识别和判断。
常见的故障诊断算法包括支持向量机(SVM)、人工神经网络(ANN)等。
振动分析方法具有非破坏性、实时性和高灵敏度等优点,可以对齿轮的早期故障进行有效检测,帮助预防严重事故的发生。
2. 声学分析声学分析是一种基于声波信号的齿轮故障检测方法。
通过监测齿轮系统产生的声音信号,可以判断齿轮的状态和故障情况。
常见的声学分析方法包括以下步骤:1.采集声音信号:使用麦克风或声音传感器采集齿轮系统产生的声音信号。
与振动分析类似,声音传感器可以安装在齿轮箱的内部或外部,以获取不同位置的声音信号。
2.信号预处理:对采集到的声音信号进行预处理,包括去噪处理、滤波处理等。
这些预处理操作可以提高信号的质量和准确性。
3.频谱分析:将预处理后的声音信号进行频谱分析,可以得到声音信号的频谱特征。
齿轮箱振动信号频谱分析与故障诊断
齿轮箱振动信号频谱分析与故障诊断发布时间:2022-01-24T05:46:58.265Z 来源:《中国科技人才》2021年第30期作者:许遥[导读] 可以系统的对齿轮故障问题进行分析总结,对生产过程中出现的齿轮问题进行很好的概括,提高诊断的准确性。
杭州前进齿轮箱集团股份有限公司浙江杭州 311203摘要:齿轮箱故障诊断是一项难度很大的工作,只有实现故障自动化诊断和智能诊断才能快速准确的判断出故障点,本文主要对齿轮传动装置典型故障进行分析,为建立自动诊断和智能诊断奠定基础,通过查找资料,可以系统的对齿轮故障问题进行分析总结,对生产过程中出现的齿轮问题进行很好的概括,提高诊断的准确性。
关键词:齿轮箱;震动信号;频谱分析;故障诊断引言许多机械设备的变速传动设备都是齿轮箱,一旦齿轮箱在运转过程中发生故障则很容易给机器或者机组的正常运作带来重要影响,情况严重的还可能会危及工作人员的生命安全,导致安全事故的发生。
因此,有效监测齿轮箱的运行状态,提高故障诊断效率,确定故障类型、具体位置,并尽快做出相应的解决对策对于维护设备正常运行,保障工作人员的生命安全意义重大。
在1960年以后,美国为了对航空航天与核能等核心设备进行故障监测,美国科研中心成立了故障监测与诊断预防小组,自此引领世界各地故障诊断技术研究的潮流。
另一方面,上世纪60年代末期,计算机行业的逐渐发展成熟,机械设备由原来纯机械化逐渐向自动化、智能化方向发展,因此大型机器组结构更加复杂,各种设备状态监测和诊断技术应运而生。
新世纪之初,故障诊断技术已经渗透到机械行业的各个领域,越来越受到社会和企业的重视,在机械设备需要24小时运行的场合,设备一旦发生急停或者失效将会对企业造成严重的经济损失。
为了保证设备能够稳定的运行,必须在机械设备出现故障之前采取一些有用技术来提高失效设备的诊断。
此外,笔者所在企业,大功率中高速柴油机则是公司主流配套产品,相应的齿轮减速箱、倒顺等设备占有很大比例,比如在船用齿轮箱项目,中高速四冲程柴油机通过齿轮箱驱动螺旋桨,使螺旋桨获得较大的功率,从而保证船舶能够快速航行。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
0、课程准备 1、绪 论 2、信号分析及处理基础 3、监测与诊断系统 4、旋转机械的振动监测与诊断 5、滚动轴承的故障监测和诊断 6、齿轮箱的监测和诊断
0
教学内容
第六章 齿轮箱的监测与诊断 6.1 齿轮副的特点 6.2 齿轮和齿轮箱的失效形式和原因 6.3 齿轮的振动诊断原理 6.4 齿轮和齿轮箱的监测和诊断方法 6.5 齿轮箱故障的振动诊断实例 6.6 其他分析方法简介
若载波信号为Asin(2πfct+φ)调制信号为βsin(2πfzt)则频率调制 后的信号为f(t)=Asin[2πfct+βsin(2πfzt)+φ] :
用贝塞尔(Besser)函数展开,得到调频信号的特性:调频的振动信 号包含有无限多个频率分量,并以啮合频率 fc为中心,以调制频率 fz为间隔形成无限多对的调制边带 :
谐频:
2 fr ,3 fr ,...
2)啮合频率及其频谱
定轴转动齿轮啮合频率: f z z1 fr1 z2 fr2
有固定齿圈行星轮系啮合频率: f z zr ( fr fc ) 12
齿轮的振动诊断原理 齿轮以啮合频率振动的特点
➢振动频率随转速变化而变化; ➢振动展开为傅里叶级数后,一般存在啮合频率的基频; ➢当啮合频率或其高阶谐频接近或等于齿轮的某阶固有频 率时,齿轮产生强烈振动; ➢由于齿轮的固有频率一般较高,但是振幅小、噪声大。
➢故障类型和失效比例 损伤发生的概率如下:齿
的断裂41%;齿面疲劳31%;齿 面磨损10%;齿面划痕10%; 其他故障8%。
6
齿轮和齿轮箱的失效形式和原因
➢故障原因和特点
齿的断裂 齿面磨损或划痕:粘着磨损;磨粒磨损与划痕;
腐蚀磨损;烧伤;齿面胶合。
齿面疲劳(点蚀与剥落) 齿面塑性变形
7
问题: 1、掌握齿轮的结构,并用自己理解的齿轮结构把齿 轮表示出来(在图中标注基圆,分度圆,齿顶齿根圆 等),写出齿轮的参数? 2、齿轮箱失效的基本形式及其失效原因分析?
1
教学内容
重点与难点 齿轮箱失效的基本形式及其失效原因分析; 齿轮箱的简易诊断; 齿轮箱的振动监测、故障频率特征与精密诊断; 齿轮箱的其他监测诊断方法,如复包络谱分析
法、时序平均法等。
学习目标 了解齿轮箱的失效形式、原因,及其故障频率特征; 掌握齿轮箱的故障特征频率的计算及其频谱特征; 学会用时域分析法、简易诊断法和精密诊断法,如
11
齿轮的振动诊断原理
6.3.2 齿轮诊断的特征频率
齿轮传动中啮合刚度的周期性变化引起与振动频率、转
速、齿数和重叠系数等有关的参数振动。基于齿形误差的随 机激励,可能引起齿形弹性系统的共振,当齿形出现故障时, 振动加剧并产生新的频率成分—齿轮的特征频率。
1)轴的转动频率及其频谱
轴的转动频率: fr n / 60
16
齿轮的振动诊断原理
齿轮啮合振动信号 偏心啮合时两齿轮的中心距 齿轮偏心啮合时的振动信号
➢幅值调制;
17
齿轮的振动诊断原理
18
齿轮的振动诊断原理
➢频率调制和相位调制; 齿轮载荷不均匀、齿距不均匀及故障造成的载荷波动,
除了对振动幅值产生影响外,同时也必然产生扭矩波动, 使齿轮转速产生波动。这种波动表现在振动上即为频率调 制(也可以认为是相位调制)。对于齿轮传动,任何导致 产生幅值调制的因素也同时会导致频率调制 。
8
齿轮的振动诊断原理
6.3、齿轮的振动诊断原理
由于制造、安装及轮齿刚度等问题,齿轮运行中会产生 振动。温度、润滑油中磨损物的含量及形态、齿轮箱的振动 及辐射的噪声、齿轮传动轴的扭转振动和扭矩、齿轮齿根应 力分布等从各个角度反映故障的信息。
6.3.1 啮合齿轮副的振动分析 直齿轮的啮合刚度
k (t) k0 Cs sin(2f zt s ) s 1
为啮合频率fz的边频。
k0 Dr sin(2sf et r )
r 1
Cs Dr sin(2sf zt s ) sin(2rf et r )
s 1 r 1
f (0, sf z , rf e , sf z rf e , sf z rf e )
把齿轮视为刚体仅考虑轮齿、轴的弹性,将齿轮视为 弹性圆盘。如果将转轴视为弹性体,还会产生很多固有频 率,并产生相应的共振。
6.2.1 制造引起的缺陷
制造缺陷包括偏心、周节误差、基节误差、齿形误 差等典型误差,见图6-5。
6.2.2 装配误差引起的缺陷
由于装配技术和装配方法等原因,通常在装配齿轮 时造成“一端接触”和齿轮轴的直线性偏差(不同轴、 不对中)及齿轮的不平衡等异常现象。
5
齿轮和齿轮箱的失效形式和原因
6.2.3 运行中产生的故障
频谱分析法及倒频谱分析法等,分析齿轮箱的各种故 障,其产生各故障的原因。
2
3
齿轮故障机理 6.1、齿轮故障机理
➢认识齿轮及齿轮箱的工作特征
4
齿轮和齿轮箱的失效形式和原因
6.2、齿轮和齿轮箱的失效形式和原因
齿轮箱的各类零件中, 失效比例分别为:齿轮 60%,轴承19%,轴10%,箱体7%,紧固件3%; 油封1%。
式中 fz为啮合频率,fz=Zfr,Z为齿轮齿数,fr为齿轮
旋转频率。
9
齿轮的振动诊断原理
齿轮系的传动误差
e(t) e0 Dr sin(2fet c ) r 1
式中 fe为传动误差的基频。
10
齿轮的振动诊断原理
齿轮系的传动频率组成模型
k (t)e(t)
k0e0
e0
sHale Waihona Puke 1Cs 多sin组当(频2基率s础f,z激tsf励z-不rsf)为e和零s时fz会+r出fe称现
13
齿轮的振动诊断原理
正常齿轮的振动特点
(1)时域特征 正常齿轮由于刚度的影响,其波形为周期性的衰减波形。其低频信号
具有近似正弦波的啮合波形,如图1所示。 (2)频域特征 正常齿轮的信号反映在功率上,有啮合频率及其谐波分量,即有nfc
(n=1,2,…),且以啮合频率成分为主,其高次谐波依次减小;同时, 在低频处有齿轮轴旋转频率及其高次谐波mfr(m=1,2,…),其频谱 如图2所示。
14
齿轮的振动诊断原理
3)隐含成分
隐含成分(鬼线):分布在啮合频率附近的,由加工过 程中滚齿机给齿轮带来的周期性缺陷。
隐含成分的特点
➢由周期性缺陷引起,振动 频谱存在高阶;
➢隐含成分由几何误差引起, 工作载荷对其影响小;
15
齿轮的振动诊断原理
4)边频带
边频带:啮合频率或高阶谐频附近存在的等间距频率成 分。主要原因是振动信号的调制。