数控直流电源设计
数控直流电源的设计
摘要本系统是以直流电压源为核心,以AT89C51单片机为主控制器,通过按键来设置直流电源的输出电压,步进电压等级可达0.1V,输出电压为0—9.9V之间,最大电流能达到330mA,并可由液晶显示屏输出实际电压值。
系统中的ADC0832 是8位分辨率的A/D转换芯片,它的分辨最高能达到256级,能够适应一般情况下的模拟量转换要求。
其内部电源的输入和参考电压的复用,使得芯片的输入的模拟电压范围在0~5V之间。
芯片的转换时间只有32μS,据有双数据输出可用做数据校验,从而减小数据的误差,它的转换速率快而且稳定性能好。
单独的芯片使能输入,使多器件的挂接和处理器的控制变地更加便捷。
经过DI 数据输入端,能够轻松地实现通道功能的选取。
本系统是由单片机来控制输出数字信号,经过D/A转换器(AD0832)输出模拟信号量,再由运算放大器隔离放大,控制输出功率管的基极,以功率管电压输出的不同来变化电压。
经过实际检测结果表明,本系统可以应用于需求高稳定度和小功率恒压源的场合。
关键词:直流稳压电源单片机数字控制AbstractThis system to dc voltage source as the core, mainly AT89S52 SCM, through the keyboard controller to install dc power supply output voltage, setting stepping class can reach.01v output voltage, the range of 0-9.9 V, the maximum current 330mA for, and can show the actual pipe by digital output voltage values.This System ADC0832 8-bit resolution A / D converter chip, the highest resolution up to 256, can be adapted to the general analog conversion requirements. The internal power supply input and reference voltage multiplexing, allows the chip analog voltage between 0 ~ 5V input. Chip conversion time of only 32μS, according to a pair of data output can be used as validation data to reduce data errors, the conversion is fast and strong stability. Separate chip enable input, so many hooks and processor control device becomes more convenient. Data input through the DI, you can easily choose the realization of channel function.This system consists of microcontroller program output digital signal, through D/A converter (AD2083) output analog amplifier, through isolating amplifier output power, control of base, with the power to change the passive tube voltage output of different voltage. Test results show that this system application in need of high stability of small power constant-voltage source fields.Key words:regulated power supply of direct current; single2ch ip m icrocomputer, digitalcontrol目录第1章绪论.......................................................................................................................... 错误!未定义书签。
数控直流稳压电源设计
数控直流稳压电源设计1.数控直流稳压电源的概述现代电子装置在供电要求方面有着越来越高的要求,而数控直流稳压电源则是目前广泛应用的一种供电装置。
数控直流稳压电源不仅具有直流稳定的输出特性,而且还能实现数字化控制,具有更加高效、精确的供电能力和性能。
数控直流稳压电源适用于各种电子装置的开发和生产领域,如通信技术、医疗器械、军事通讯和工业自动化等。
2.数控直流稳压电源的设计原理数控直流稳压电源主要由下列几个模块组成。
2.1输入端输入端是稳压电源的第一步,它接收外部电源的直流或交流信号,并且对输入电压进行过滤和波形整形,以确保后续的电路可以正常工作。
2.2稳压模块稳压模块负责稳定输出电压的值。
在闭环控制下,稳压模块保证输出电压稳定在标准值附近,即使在输入电压波动或负载变化的条件下,它也能确保输出电压的稳定性和可靠性。
2.3数控模块数控模块为整个电源提供了数字化控制的功能。
它包括一个集成电路、显示屏、输入设备和计算机接口等组成部分。
通过输入输出端口与计算机相连,可实时监测和控制电源的电压、电流、功率等参数。
2.4保护模块保护模块负责保护电源免受外界环境的影响。
它包括四种保护措施:过压保护、过温保护、过载保护和短路保护,并采用相应的防护电路来实现保护功能。
3.数控直流稳压电源的设计流程数控直流稳压电源的设计流程包括以下几个步骤:3.1确定电源的基本参数这包括电源输出电压、电流、功率、负载范围等参数。
设计人员需要根据电路应用需要,确定电源所需的输出电压和电流等参数。
3.2选取和确认元件在确定电源的基本参数后,设计人员应选择与之相适应的元件,包括电容器、电感器、稳压管、集成电路等,这是设计数控直流稳压电源的关键步骤之一。
设计人员需要综合考虑元件的品质、供货和维护等方面的因素,以便在成本和性能之间取得平衡。
3.3进行电路设计在确定元件后,设计人员需要根据设计参数和基本电路原理,设计稳压电源的具体电路方案,逐步完善和优化电路。
数控dcdc电源设计设计思路
数控dcdc电源设计设计思路数控DC-DC电源设计是现代电子设备中常用的一种电源设计方案。
它通过数字控制技术和直流-直流变换器的结合,实现对电源输出电压的精确调节和稳定性控制。
在电子设备设计中,数控DC-DC电源设计起着至关重要的作用。
数控DC-DC电源设计需要考虑的是电源的输出电压范围和精度。
不同的电子设备对电源的输出电压要求不同,因此在设计电源时需要根据具体的需求来确定输出电压的范围和精度。
同时,还需要考虑电源的负载能力,以确保在负载变化时电源输出电压的稳定性。
数控DC-DC电源设计还需要考虑的是电源的效率和功耗。
高效率的电源设计可以减少能源的浪费,提高电子设备的使用时间和续航能力。
而功耗的控制则可以减少电子设备的发热量和对环境的影响。
因此,在设计电源时需要选用高效率的电源模块和优化电路拓扑,以提高电源的效率和降低功耗。
数控DC-DC电源设计还需要考虑的是电源的稳定性和可靠性。
电源的稳定性是指在输入电压和负载变化时,电源输出电压的波动范围。
而可靠性则是指电源在长时间工作中的稳定性和可靠性。
为了提高电源的稳定性和可靠性,设计中需要采用合适的反馈控制策略和稳压器件,以及进行充分的温度和负载测试。
数控DC-DC电源设计还需要考虑的是电源的保护功能。
在电子设备的使用过程中,电源可能会面临电压过高、电流过大、过热等问题,这些问题可能会对电子设备造成损害。
因此,在设计电源时需要加入过压保护、过流保护和过温保护等功能,以提高电源的安全性和可靠性。
数控DC-DC电源设计还需要考虑的是电源的尺寸和成本。
在电子设备中,电源通常需要尽可能小巧轻便,以满足电子设备的小型化和轻量化要求。
同时,电源的成本也需要尽可能低,以降低电子设备的生产成本。
因此,在设计电源时需要选用尺寸紧凑的电源模块和低成本的电源器件,以满足电子设备的要求。
数控DC-DC电源设计是一项综合考虑电源输出电压范围和精度、效率和功耗、稳定性和可靠性、保护功能、尺寸和成本等因素的设计任务。
数控直流稳压电源的设计和制作
数控直流稳压电源的设计和制作数控直流稳压电源,是一种集数字化控制、直流电源稳定输出功能于一体的电子制品,它广泛应用于各类实验、测试、仪器、通讯系统及各种机电设备中。
今天我们就来谈谈数控直流稳压电源的设计和制作的具体过程。
一、设计1.稳压芯片选型在设计数控直流稳压电源中,首先要选用一款适合的稳压芯片。
常见的稳压芯片有LM317、LM350、LM338等,选择其中的一种根据自己的需求进行选择。
例如,LM317适合安装功率较低的电路,LM350适合于安装功率较大的电路,而LM338的输出电流可达5A以上,是一种非常适合于实验室及大功率稳压电源设计的芯片。
2.规划电源输出模块在设计中需要考虑输出模块的功能设置与实际需要相符,因此需要详细了解电源输出模块的所有类型,包括DC稳压输出、DC包络线输出、交流输出、多路并联输出等的优劣之处,然后选用适合自己需要的类型进行设计。
3.阻容电路的设计在电源输出中需要设计阻容电路,其目的是为了保护电源不受怠工放置,以及电源的过载保护等,详见下面内容。
二、制作1.准备器材在制作数控直流稳压电源之前,需要准备相应的器材和材料,例如PCB板、元器件、焊接工具等。
2.电源输出模块的焊接在制作中需要用到数控直流稳压电源输出模块,首先在PCB板上进行焊接,接下来安装电容、二极管等元器件,进行一定量的基础防护。
3.安装稳压芯片安装稳压芯片需要考虑其散热问题,此时应该做好散热片附加硅脂,以保证芯片处于稳定状态。
4.接线在焊接和装配完成后,接线工作是必要的。
在接线时,必须要认真看清接线图,把电路板上的元器件和接线线路进行一一对应,以便拼接时不会出现误差。
5.开机测试制作数控直流稳压电源时,一定要经过开机测试。
在开机时,应该观察电源的工作状态是否正常,电压是否稳定,是否存在短路等问题。
这样可以在实际应用时更加安全和稳定。
以上就是数控直流稳压电源的设计和制作的具体过程,每一步都要做好方案设计和操作步骤的准备工作,以确保电源的稳定运行。
简易数控直流稳压电源设计
简易数控直流稳压电源设计数控直流稳压电源是一种能够提供稳定输出电压的电源装置,常用于电子设备的测试、实验和制造过程中。
下面是一个简易的数控直流稳压电源设计。
1.设计需求和规格在开始设计之前,我们需要明确电源的输出电压和电流需求。
假设设计目标为输出电压范围为0-30V,最大输出电流为5A。
2.选择电源变压器根据设计需求,我们需要选择一个合适的电源变压器。
变压器的选择应该满足以下条件:-输入电压范围为市电的电压范围;-输出电压是设计需求的两倍,即60V;-输出功率需大于最大输出功率,即300W。
3.整流电路设计使用桥式整流电路将交流输入电压转换为直流电压。
桥式整流电路由4个二极管组成,将交流输入电压的负半周和正半周均转换为正向电流。
4.滤波电路设计滤波电路用于减小输出电压中的纹波,并提供稳定的直流输出电压。
常见的滤波电路是使用电容滤波器。
根据设计需求,选择适当的电容来达到所需的输出纹波和稳定性。
5.稳压电路设计稳压电路用于控制输出电压在设定范围内稳定。
可以使用集成稳压器芯片,例如LM317,它可以根据外部电阻器和电容器的值来控制输出电压。
6.控制电路设计为了实现数控功能,可以使用微控制器或模拟电路来控制输出电压和电流。
通过合理设置电容、电阻和电位器等元器件,可以设计出合适的控制电路。
7.保护电路设计为了确保电源和负载的安全,应设计适当的保护电路。
常见的保护电路包括过流保护、过压保护和过温保护。
可以使用电流检测器、过压保护器和温度传感器等元器件来实现这些保护功能。
8.PCB设计和制造根据上述电路设计,进行PCB布局和布线。
设计合适的PCB尺寸和布局,以容纳所有元器件,并确保电路的稳定性和可靠性。
完成设计后,可以选择将PCB文件发送给制造商进行制造。
9.组装和测试将制造好的PCB组装在电源箱中,接好输入电源线和输出连接线。
在保证安全的情况下,通电测试电源的稳定性、输出的准确性和保护电路的可靠性。
10.调试和优化根据实际测试结果,不断调试和优化电源的性能。
数控直流稳压电源设计(a)
数控直流稳压电源设计(a)数控直流稳压电源设计的目的是为了实现对电压的精确控制,使其稳定在所设定的值,保证被供电设备能够正常工作。
在本文中,将介绍数控直流稳压电源的设计及其原理。
一、设计原理数控直流稳压电源在设计中需要考虑多种原理,包括电子原理、电磁原理和控制原理等。
其主要工作原理是将交流电源变换成直流电源,通过控制电压稳定器的输出电压来实现对电压的精确控制。
二、电路图设计数控直流稳压电源的电路图分为两部分,分别是控制电路和电源电路。
其中,控制电路包括电压稳定器、电压比较器、AD转换器和单片机等部分,而电源电路则包括变压器、整流电路和滤波电路等部分。
在电源电路中,变压器的选取要根据负载电流和输出电压的大小来确定,整流电路一般采用桥式整流电路。
而在滤波电路中,选用大容值的电容器来实现对电源波动的滤波,达到稳压的效果。
在控制电路中,主要包括电压稳定器、电压比较器、AD转换器和单片机等部分。
电压稳定器的作用是将输入电压转换成稳定的输出电压,而电压比较器则用来比较设计值和实际输出值之间的差异。
AD转换器则用于将电压信号转换成数字信号,以便单片机进行处理。
在单片机中,通过对输入数据的计算和比较,控制输出电压稳定在设定值附近,从而实现对电压的精确控制。
四、稳压原理当输入电压发生变化时,电压稳定器会发挥作用,自动调节输出电压,使其保持稳定。
在电压变化较小的情况下,调节速度较快,反应时间较短。
需要注意的是,稳压电源在进行设计时,需要考虑到负载电流的大小和输出电压的稳定性。
同时,还需要考虑到设备的工作环境和安全问题,确保电源设计符合安全要求。
五、总结。
基于单片机的数控直流稳压电源设计方案
基于单片机的数控直流稳压电源设计方案一、设计方案简介基于单片机的数控直流稳压电源设计方案主要是通过单片机控制开关电源的开关管,控制输出电压的稳定性和精度。
本设计方案采用闭环控制的方式,通过反馈电路将输出电压反馈给单片机,单片机根据反馈信号控制开关电源的开关管进行开关操作,以实现电源输出电压的稳定。
二、设计方案详细介绍1.系统总体设计:本设计方案将开关电源分为输入电源模块、控制模块和输出电源模块。
输入电源模块主要是对输入电压进行滤波和稳压,以保证输入电源的稳定性;控制模块主要是使用单片机进行控制,接收反馈电路的反馈信号,根据设定值进行比较,并控制开关电源的开关管进行开关操作;输出电源模块主要是将开关电源的输出电压经过滤波和稳压处理,以保证输出电压的稳定性和精度。
2.输入电源模块设计:输入电源模块主要是对输入电压进行滤波和稳压处理,保证输入电源的稳定性和安全性。
常用的电源滤波电路有LC滤波电路、RC滤波电路等。
同时,可以使用稳压芯片来实现输入电压的稳压。
3.控制模块设计:控制模块使用单片机进行控制,主要是通过反馈电路将输出电压反馈给单片机,并经过AD转换后与设定值进行比较。
根据比较结果,单片机控制开关电源的开关管进行开关操作,调整输出电压的稳定性。
在控制过程中,可以设置合适的控制算法,如PID控制算法,以提高控制的精度和稳定性。
4.输出电源模块设计:输出电源模块主要是对开关电源的输出电压进行滤波和稳压处理,以保证输出电压的稳定性和精度。
常用的电源滤波电路有LC滤波电路、RC滤波电路等。
可以使用稳压芯片或者反馈调节电路来实现输出电压的稳压。
5.电源保护设计:为了保护电源和设备的安全性,可以设计过压保护、欠压保护、过流保护、短路保护等保护电路。
过压保护可以使用过压保护芯片,欠压保护可以使用欠压保护芯片,过流保护可以通过电流传感器实现,短路保护可以通过保险丝或者短路保护芯片实现。
三、设计方案的优势和应用1.优势:本设计方案采用闭环控制的方式,通过反馈电路将输出电压反馈给单片机,使得输出电压的稳定性和精度得到保证。
基于单片机的数控直流稳压电源设计
基于单片机的数控直流稳压电源设计一、概述随着科技的飞速发展,电子设备在我们的日常生活和工业生产中扮演着越来越重要的角色。
这些设备的稳定运行离不开一个关键的组件——电源。
在各种电源类型中,直流稳压电源因其输出电压稳定、负载调整率好、效率高等优点,被广泛应用于各种电子设备和精密仪器中。
传统的直流稳压电源通常采用模拟电路设计,但这种方法存在着电路复杂、稳定性差、调整困难等问题。
为了解决这些问题,本文提出了一种基于单片机的数控直流稳压电源设计方案。
本设计采用单片机作为控制核心,通过编程实现对电源输出电压的精确控制和调整。
相比于传统的模拟电路设计,基于单片机的数控直流稳压电源具有以下优点:单片机具有强大的计算和处理能力,能够实现复杂的控制算法,从而提高电源的稳定性和精度单片机可以通过软件编程实现各种功能,具有很强的灵活性和可扩展性单片机的使用可以大大简化电路设计,降低成本,提高系统的可靠性。
本文将详细介绍基于单片机的数控直流稳压电源的设计原理、硬件电路和软件程序。
我们将介绍电源的设计原理和基本组成,包括单片机控制模块、电源模块、显示模块等我们将详细介绍硬件电路的设计和实现,包括电源电路、单片机接口电路、显示电路等我们将介绍软件程序的设计和实现,包括主程序、控制算法、显示程序等。
1. 数控直流稳压电源的应用背景与意义随着科技的快速发展,电力电子技术广泛应用于各个行业和领域,直流稳压电源作为其中的关键组成部分,其性能的稳定性和可靠性直接影响着整个系统的运行效果。
传统的直流稳压电源多采用模拟电路实现,其调节精度、稳定性以及智能化程度相对较低,难以满足现代电子设备对电源的高性能要求。
开发一种高性能、智能化的数控直流稳压电源具有重要意义。
数控直流稳压电源通过引入单片机控制技术,实现了对电源输出电压和电流的精确控制。
它可以根据实际需求,通过编程灵活调整输出电压和电流的大小,提高了电源的适应性和灵活性。
同时,数控直流稳压电源还具备过流、过压、过热等多重保护功能,有效提高了电源的安全性和可靠性。
数控直流电源设计
数控直流电源设计(总10页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--数控直流稳压电源 1)输出电压:范围0~+,步进,纹波不大于8mV。
2)输出电流:500mA。
3)输出电压值用数码管LED显示。
4)用+、—两键分别控制输出电压的步进增减。
5)为实现上述几个部件工作,自制一台稳压直流电源,输出+ 、-15V、+5V。
发挥部分:1)输出电压可预置在0~之间的任何一个值。
2)用自动扫描代替人工按键,实现输出电压变化(步进不变)。
3)扩展输出电压种类(如三角波等)。
#include <>#include <>#define uchar unsigned char#define uint unsigned int#define DataPort P2sbit LCM_RS=P1^5;sbit LCM_RW=P1^6;sbit LCM_EN=P1^7;sbit K1=P3^4;sbit K2=P3^2;sbit K3=P3^0;sfr P1ASF=0x9D;sfr ADC_CONTR = 0xbc;sfr ADC_RES = 0xbd;sfr ADC_RESL= 0xbe;void GET_AD_Result();void AD_init( );extern void WriteCommandLCM(uchar CMD,uchar Attribc);extern void InitLcd();extern void DisplayoneChar(unsigned char X,unsigned char Y,unsigned char DData); extern void DisplayListChar(uchar X,uchar Y,uchar code *DData);unsigned char codedispcode[]={0x30,0x31,0x32,0x33,0x34,0x35,0x36,0x37,0x38,0x39};unsigned char dispbuf[8]={0,0,16,0,0,16,0,0};uchar AD_value,key,Vd=60;unsigned char i,j,temp8,temp9,temp10,temp11;float tt=;uchar tt1=0,tt2=0,tt3=0,m=0;uchar code str0[]={"by "};0CK2K2K2设计任务设计出有一定输出电压范围和功能的数控电源。
数控直流稳压电源的设计1
1. 设计任务和要求1.1设计要求1.1.1 任务设计出有一定输出电压范围和功能的数控电源。
其原理示意图如下:1.1.2 要求基本要求:(1)输出电压:范围0~+9.9V,步进0.1V,纹波不大于10mV;(2)输出电流:500mA;(3)输出电压值由数码管显示;(4)由“+”、“-”两键分别控制输出电压步进增减;(5)为实现上述几部件工作,自制一稳压直流电源,输出±15V,+5V。
发挥部分:(1)输出电压可预置在0~9.9V之间的任意一个值;(2)用自动扫描代替人工按键,实现输出电压变化(步进0.1V不变);(3)扩展输出电压种类(比如三角波、方波等)。
2 系统方案选择和论证2.1 系统基本方案通过对题目的任务、要求进行分析,我们将整个设计划分成三个部分:自制稳压电源部分,数控部分和输出显示部分。
其系统框图如图2.1所示:市电220V 50Hz图2.11.自制稳压电源部分自制稳压电源输入220v、50hz交流电,通过变压、整流、滤波和稳压电路,输出系统所需的三种直流电压:+15v、-15v、5v。
2.数控部分为完成题目要求制作可调节数控电源,需要有简单的人机接口界面,即需要按键输入和显示输出。
由于数控部分功能较多,较为复杂,对系统性能影响很大,采用了可编程控制器件来作为系统的核心,便可完成题目要求。
由于控制器部分为数字电路,而具体的输出部分为模拟电路,需要D/A 转换电路联系起来,实现电压的输出和调节。
数控部分由自制稳压电源部分供电。
3.输出部分将D/A器件发送过来的电压控制字转换成稳定电压输出,电路主要为D/A转换,稳压输出等组成。
单片机控制电压值通过LED数码管显示出来。
2.2 各模块方案的选择和论证2.2.1 控制器模块作用:各按键信号的辨认,控制电压的输出、显示电压值、各种类波形输出等。
方案1:采用FPGA或CPLD作为系统的控制器。
优点:可以实现复杂逻辑功能,规模大,速度快,密度高,体积小,稳定性高,容易实现仿真、调试和功能扩展。
数控直流电源的设计与实现样本
数控直流电源设计与实现一、实验目1.理解数控技术和电源技术。
2.熟悉微机原理及其接口技术。
3.运用微机系统实现一种数控直流电源。
二、实验内容与规定基于80x86实验箱平台设计并制作数控直流电源。
规定由键盘预置输入直流电压在0~+9.9V之间任意一种值, 数控直流电源输出, 且输出电压与给定值偏差不不不大于0.1V。
重要技术指标:(1)输出电压: 范畴0~+9.9V, 纹波不不不大于10mV, 电压值由数码管显示;(2)具备“+”、“-”步进调节功能, 步进0.1V;(3)用自动扫描代替人工按键, 实现输出电压变化(步进0.1V不变)。
三、实验报告规定1. 设计目和内容2. 总体设计3. 硬件设计: 原理图(接线图)及简要阐明4. 软件设计框图及程序清单5. 设计成果和体会(涉及遇到问题及解决办法)四、总体设计采用8086解决机构成该系统核心——数控模块, 与基本接口实验板相连, 通过软件编译实现设计各种功能实现, 输出某些也不再采用老式调节管方式, 而是在D/A转换后, 通过稳定功率放大电路得到。
由于使用了微解决器, 整个系统可编程实现, 系统灵活性大大增长。
系统设计框图如图1所示。
图1 方案三系统设计框图为实现数控直流电源各项功能, 系统分为三个构成某些: 键盘/显示电路, 数控模块, 稳压输出电路。
下面简介系统各某些基本功能:(1)键盘/显示电路: 该电路显示某些又可分为电压预制值显示电路和电压实际输出值显示电路。
系统运用可编程并行接口8255单元电路构成实验板上4*4小键盘接口和LED数码管电路接口, 从而辨认键码同步显示电压预置值;在得到实际输出值后, 实验板上提供了模数转换ADC0809单元电路, 转化成数字量后传递给LED数码管就可以显示实际输出值。
(2)数控模块:该某些重要由8086微解决器和数模转换DAC0832单元电路构成。
其中通过编写汇编语言程序控制8086微解决器迅速完毕各功能所需复杂运算, 然后数模转换电路DAC0832可将运算所得数字量转换为模仿量。
数控直流电压源的设计 毕业设计 好
数控直流电压源的设计摘要直流稳压电源的应用非常的广泛,质量优良的直流稳压电源才能满足电子现在的要求。
所以,直流稳压电源的设计颇为重要,特别是数控直流电压源。
本文主要介绍数控直流电压源的设计,将单片机数字控制技术,有机的融入直流稳压电源的设计中,就能设计出一款高性价比的多功能数字化通用直流稳压电源。
本文论述了一种基于基于A VR16单片机为核心控制的数控直流电压源的设计原理和实现方法,该电源具有电压可预置、可调整、输出的电压信号和预设电压信号可同时显示。
本系统主要包含LCD1602显示模块、4*4矩阵键盘模块、功率放大电路(推挽输出),和辅助电源+15V , -15V , +5V。
本文所设计的数控直流电压源与传统稳压电源相比,具有操作方便、电压稳定度高的特点,其输出电压大小采用数字显示。
数控直流电压源在研究单位、实验室、工业生产线等实际应用中有诸多优势,值得进一步学习和研究。
关键词:单片机数控LCD1602IAbstractThe application of dc voltage stabilizer very extensive, quality excellent dc voltage stabilizer can meet the requirements of electronic now, so, dc voltage stabilizer design are important, especially the numerical control dc voltage source this paper mainly introduces the numerical control dc voltage source design, be single chip microcomputer control technology digital, organic integration into the dc voltage stabilizer design, can design a high ratio of performance multi-function digital general dc voltage stabilizer This paper discusses the AVR16 based on single chip microcomputer as the core control based on the numerical control dc voltage source design principle and method, the power supply voltage preset with adjustable output voltage signal and the voltage signal can also shows that this system mainly include LCD1602 display module 4 * 4 matrix keyboard module power amplifier circuit (the push-pull output), and auxiliary power + 15V,-15 V, + 5 VThe design of the CNC dc voltage source and the traditional manostat, it is characterized by easy operation voltage stability high characteristic, the output voltage size using digital display numerical control dc voltage source research unit in laboratory of industrial production line, in practice, there are many advantages, deserves further study and researchKeywords: a single-chip microcomputer, numerical control, LCD1602目录摘要 .................................................................................................................I Abstrac t.........................................................................................................II 目录 .............................................................................................................. III 1 前言 (1)1.1研究背景及意义 (1)1.2国内外研究现状 (2)1.3课题研究方法 (2)2 数控直流电压源的方案介绍 (4)2.1数控直流电压源的方案论证 (4)2.2方案比较 (6)3 数控直流电压源的工作原理 (7)3.1整体电路框图 (7)3.2工作原理 (7)3.2.1内部A/D转换电路工作原理 (7)3.2.2电源电路 (9)3.3推挽输出电路工作电路图 (10)4 单元电路工作原理 (12)4.1时钟电路 (12)4.1.1时钟振荡电路图 (12)4.1.2时钟信号的产生 (12)4.2 复位电路 (13)4.3键盘接口电路 (14)4.3.1键盘电路 (14)4.3.2键盘电路工作原理 (14)4.4显示接口电路 (15)4.4.1 LCD1602引脚 (15)4.4.2显示电路原理图 (16)4.5 A/D转换前端电路 (16)4.6主要芯片介绍 (17)4.6.1单片机A Tmega16 (17)4.6.2 LM358 (23)4.6.3 LF356 (24)5 数控直流电压源的软件系统 (25)致谢 (27)参考文献 (28)附录1:元器件清单 (29)附录2:源程序清单 (33)1 前言1.1 研究背景及意义数控直流电压源是电子技术常用的设备之一,广泛的应用于教学、科研等领域。
数控直流电源设计
数控直流电源设计数控直流电源设计是将交流电源转换为稳定的直流电源的过程,用于供应电子设备、电动机和其他需要直流电源的设备。
在设计数控直流电源时,需要考虑输出稳定性、高效率、低噪音、过载保护等因素。
下面将介绍数控直流电源设计的主要内容。
首先,设计数控直流电源需要确定输出电压和电流的需求。
根据电子设备的需求,确定所需要的输出电压和电流范围。
同时,还需要考虑到输出电压和电流的稳定性要求,以及负载变化对输出电压和电流的影响。
根据这些需求确定设计参数。
其次,选择合适的变压器。
变压器的设计需要考虑输入和输出电压的变化,以及输出电流的需求。
需要计算变压器的变比,以保证输出电压与输入电压之间的转换。
接下来,设计电源的整流电路。
整流电路将交流电源转换为直流电源。
整流电路可以采用单相或三相整流桥电路。
其中,单相整流桥电路适用于小容量的电源,三相整流桥电路适用于大容量的电源。
然后,设计滤波电路。
滤波电路用于平滑整流后的直流信号,以减小输出电压的纹波量。
滤波电路可以采用电容滤波器和电感滤波器,或者二者的组合。
在设计滤波电路时,需要结合输出电流的需求,选择合适的滤波元件。
接下来,设计稳压电路。
稳压电路用于保持输出电压的稳定性。
常见的稳压电路包括线性稳压器和开关稳压器。
线性稳压器可以通过放大器和功率器件来实现稳压功能,但效率较低。
开关稳压器则通过开关元件的控制来调整输出电压,具有较高的效率。
最后,设计保护电路。
保护电路用于保护电源和被供电设备,防止过流、过压、过热等情况发生。
常见的保护电路包括过流保护、过压保护、过热保护等。
这些保护电路可以通过传感器、比较器、放大器等电子元件来实现。
在数控直流电源设计中,还需要考虑电源的效率和功率因数问题。
电源的效率是指输出功率与输入功率之间的比值,电源的功率因数是指输入功率在交流电源中的实际工作能力。
为了提高电源的效率和功率因数,可以采用功率因数校正电路和高效率电源控制方法。
总之,数控直流电源设计是一个综合工程,需要考虑多个因素。
数控直流电源设计
contents
目录
• 数控直流电源概述 • 数控直流电源设计基础 • 数控直流电源关键技术 • 数控直流电源的应用 • 数控直流电源的发展趋势与挑战 • 数控直流电源设计案例分析
01
数控直流电源概述
定义与特点
定义
数控直流电源是一种能够输出精确、 可调直流电压或电流的电源设备。
选用合适的液晶显示屏或数码管,用于显示电源的输出电压、电 流等参数。
驱动电路
为显示模块提供必要的驱动信号。
接口电路
实现微控制器与显示模块之间的数据传输。
安全保护电路设计
过流保护
当输出电流超过设定值时,自 动切断电源输出。
过压保护
当输出电压超过设定值时,自 动切断电源输出。
短路保护
当发生短路故障时,自动切断 电源输出。
整流电路
将交流电转换为直流电,为后续电路提供稳定的 直流电源。
稳压电路
采用线性稳压器或开关稳压器,确保输出电压稳 定。
控制电路设计
1 2
微控制器
用于接收输入信号和控制电源输出。
驱动电路
将微控制器的输出信号放大,驱动功率开关管。
3
采样电路
采集输出电压和电流信号,反馈给微控制器。
显示电路设计
显示模块
医疗器械往往需要用到不同规格的直流电源,数控直流电源的灵活性和可调性能够满足各种不同的需求,提高医疗设备的稳 定性和可靠性。
05
数控直流电源的发展趋 势与挑战
高效能化
总结词
随着科技的发展,对电源设备的要求越来越高,高效能已成为数控直流电源的重要发展 趋势。
详细描述
为了满足各种高功率应用的需求,数控直流电源需要具备更高的转换效率和更低的能量 损失。这需要采用先进的电路拓扑结构和控制算法,优化电源的散热设计,提高电源的
数控dcdc电源设计设计思路
数控dcdc电源设计设计思路以数控DC-DC电源设计为题,本文将介绍数控DC-DC电源的设计思路和流程。
一、引言随着电子设备的普及和功能的增强,对电源的要求也越来越高。
传统的线性稳压电源由于效率低、功耗大,无法满足现代电子设备的需求。
因此,DC-DC电源作为一种高效、稳定的电源解决方案,逐渐得到了广泛应用。
二、数控DC-DC电源设计的基本原理1. 输入电压范围选择根据应用场景和需求确定输入电压范围,一般选择常用的12V或24V为标准输入电压。
2. 输出电压和电流选择根据设备的要求确定输出电压和电流。
可以根据设备的工作电压和功率计算得出所需的输出电流。
3. 转换拓扑选择常见的DC-DC电源拓扑有Buck、Boost、Buck-Boost、Cuk等。
根据输入输出电压和电流的关系选择合适的拓扑。
4. 控制方式选择数控DC-DC电源一般采用PWM控制,可通过微处理器或专用控制芯片实现。
5. 反馈回路设计为了实现稳定的输出电压,需要设计反馈回路,通过比较输出电压和参考电压来实现闭环控制。
6. 输出滤波设计为了减小输出纹波,需要在输出端设计适当的滤波电路。
7. 保护电路设计为了保护电源和负载,需要设计过流、过压、过热等保护电路。
三、数控DC-DC电源设计的具体步骤和注意事项1. 确定输入电压范围,选择合适的输入电源模块。
2. 根据输出电压和电流要求,计算所需的功率。
选择合适的DC-DC 芯片或模块。
3. 根据所选的DC-DC芯片或模块的规格书,设计输入和输出滤波电路。
4. 设计反馈回路,选择合适的反馈元件和比较器。
5. 设计PWM控制电路,选择合适的控制芯片或微处理器。
6. 设计保护电路,包括过流保护、过压保护、过热保护等。
7. 进行仿真和调试,验证设计的性能和稳定性。
8. 制作样机,进行实际测试和性能评估。
9. 根据测试结果进行优化和改进设计。
10. 完善设计文档,包括原理图、PCB布局、元器件清单等。
在数控DC-DC电源设计过程中,需要注意以下几点:1. 选择合适的DC-DC芯片或模块,确保其输入和输出规格满足设计要求。
数控直流稳压电源的设计
数控直流稳压电源的设计数控直流稳压电源是一种用于供应直流电子设备的电源装置,其主要功能是将市电转换为稳定的直流电,并通过控制电路对输出电压进行调节和稳定。
在设计数控直流稳压电源时,需要考虑电源的输入特性、输出特性、保护功能和控制电路等方面。
首先,我们需要确定数控直流稳压电源的输入电压范围。
大多数电子设备的工作电压为12V、24V或48V等,因此输入电压范围通常选择110V 至230V的交流电源。
在选择输入电压范围时,需要考虑所处地区的电网电压波动范围,以及用户对电源的要求。
其次,数控直流稳压电源的输出电压范围也需要确认。
根据电子设备的需求,输出电压通常为可调范围内的恒定值,例如0-30V或0-60V等。
同时也要考虑输出电流的范围,以满足电子设备对电流的需求,常见输出电流范围为0-2A或0-5A等。
在设计数控直流稳压电源的输出电路时,可以采用开环控制电路或闭环控制电路。
开环控制电路的简单,但稳定性较差,难以保证输出电压的精度和稳定性。
闭环控制电路通过反馈控制,可以实现对输出电压的精确控制和稳定性。
为了保护电源装置和电子设备的安全,数控直流稳压电源通常需要具备过压保护、过流保护和短路保护等功能。
过压保护可以防止输出电压超过设定范围,过流保护可以防止输出电流超过设定范围,短路保护可以防止输出端短路时对电源装置和电子设备造成损害。
在控制电路方面,可以使用微处理器或单片机进行数控调节。
通过采集输入输出电压信号,经过对比和计算,控制电路可以实现对输出电压的调节并保持在设定范围内。
此外,还可以添加显示屏或数码管等显示装置,以实时显示输入输出电压和电流的数值。
最后,在设计数控直流稳压电源时,还需要考虑散热和尺寸等问题。
电源装置的散热设计要充分考虑电源内部的热量产生和散发,以保证电源的长时间稳定工作。
同时,电源装置的尺寸要适度,以适应不同的应用场合和安装空间。
总的来说,设计数控直流稳压电源需要综合考虑输入特性、输出特性、保护功能和控制电路等方面,以满足电子设备对电源的需求,并提供稳定的直流电源供应。
数控直流开关电源的设计
数控直流开关电源的设计数控直流开关电源的设计摘要本设计是根据单片机控制系统应用于开关稳压电源的方法和原理,将单片机数字控制技术,有机地融入直流稳压电源的设计中,设计出一款可调稳压输出的直流开关电源。
开关电源采用DC—DC全桥式电路,控制电路采用STC12C5A60S2的单片机,由模拟控制芯片KA7500B产生PWM信号经驱动电路实现对DC—DC开关管的控制,实现电压的稳定输出,通过键盘来设置电源的输出电压,并能够通过液晶直观地显示出电压。
该设计分析了各个模块电路和整机的工作原理,给出了整机工作的硬件实现和主要的软件流程设计。
具有电压输出范围宽、电流过流设定保护、短路自动恢复、连续可变的电压功能,电压输出调节范围为24.0~40.0V,电流输出最大为2.0A,步进电压0.1V。
关键词:直流稳压电源; 单片机; PWMThe design of numerical control dc regulatedpower supplyABSTRACTThis design is based on single-chip microcomputer control system is applied to the method and principle of a switching power supply,digital control technology,will be organically integrated into the design of dc regulated power supply,designed a adjustable output voltage dc switching power supply.Switching power supply with DC-DC full bridge circuit,control circuit adopts STC12C5A60S2 MCU,PWM signal generated by the simulation control chip KA7500B by driving circuit control system for the DC-DC switch tube,realize the stable output voltage,through the keyboard to set the output voltage of power supply,and can show visually through the LCD voltage.The design and analysis the each module circuit and working principle of the machine,the machine work on hardware implementation is given and the main software process design.Has A wide range of output voltage and over current protection,short circuit current automatic recovery,continuous variable voltage function,the output voltage range of 24.0~40.0 V,2.0 A maximum output current,the step voltage of 0.1 V.Key words:DC regulated power supply; Single chip microcomputer; PWM目录错误!未指定书签。
数控直流电源的设计
数控直流电源[摘要] 本文介绍了以8051单片机为控制单元,以数模转换器DAC0832输出参考电压,以该参考电压控制电压转换模块LM317的输出电压大小。
该电路设计简单,应用广泛,精度较高等特点。
LM317系列三端可调式集成稳压器的方法。
关键词:单片机(AT89C51),数模转换器(D/A),液晶,键盘一、设计任务设计出有一定输出电压范围和功能的数控电源。
二、设计要求1,(1)输出电压:范围0~+10V,步进0.1V,纹波不大于40mV;(2)输入电压值由液晶显示;(3)自制键盘,可以由键盘输入电压值;(4)输出电压值在输出端用万用表测得。
2.发挥部分(1)输出电压可预置在0~9.9V之间的任意一个值;(2)用自动扫描代替人工按键,实现输出电压变化(步进0.1V不变);(3)扩展输出电压种类(比如三角波等)。
目录引言1、设计原理与总体方案 (4)2、硬件电路设计 (5)2.1 DAC电路 (5)2.2 AGC控制电路 (6)2.3 键盘部分 (8)2.4 显示部分 (9)2.5 稳压输出 (10)3、软件设计流程 (10)4、总体设计电路 (11)5、调试过程 (11)6、结果分析 (11)·引言目前所使用的直流可调电源中,几乎都为旋纽开关调节电压,调节精度不高,而且经常跳变,使用麻烦。
利用数控直流电源,可以达到每步0.04 V的精度,输出电压范围0-10V。
1、设计原理与总体方案鉴于目前数控直流源一般采取运放构成的电流-电压转换电路与单片机结合,设计方案大多为开环系统,主控制器仅用于数字给定及显示,没有对输出电流进行检测和控制。
本文在传统电路设计的基础上,利用控制系统中反馈与控制原理,引入电流负反馈,在采样电阻上获取和电流成正比的采样电压,并接人运算放大器的反向输入端,实现负反馈,形成恒流输出的闭环控制系统;软件方面,将具有全局寻优能力但收敛速度慢的遗传算法和具有收敛速度快且局部寻优能力强的直接搜索法结合在一起,设计基于遗传算法和直接搜索策略的混合优化算法,充分利用了遗传算法的全局搜索能力并以此作为优化过程的“粗调”,同时利用直接搜索法良好的局部搜索能力作为优化过程的“微调”,集中了两者的优点,而克服了两者的弱点,得到的目标函数值较遗传退火策略更优,而且一致性更好,用于PID参数整定是具有整定速度快,调节时间短,稳态误差小等优点。
数控直流稳压电源的设计
数控直流稳压电源的设计数控直流稳压电源是一种常用的电源设备,用于提供稳定的电压和电流,以供电子设备工作。
在电子行业和各种制造业中广泛使用。
本篇文档将着重介绍数控直流稳压电源的设计。
一、需求分析在设计数控直流稳压电源时,需要对实际需求进行分析,以选择合适的电源参数。
通常,需要考虑以下因素:1. 输入电压范围2. 输出电压范围3. 输出电流范围4. 稳定性要求在以上因素中,输入电压范围和输出电压范围是最关键的因素。
输入电压应该能够满足设备需要的电源,而输出电压应该与设备所需的直流电压匹配。
二、设计要点在设计数控直流稳压电源时,需要考虑以下要点:1. 电源拓扑结构2. 运算放大器的选择3. 稳定性设计4. 容量和功率需求5. 保护措施1. 电源拓扑结构数控直流稳压电源的设计通常采用基于反馈电路的电源拓扑结构。
其中,最常用的电源拓扑结构是基于线性稳压器的设计。
此外,还有基于开关稳压器的设计。
两种设计各有优劣,需要根据具体需求进行选择。
2. 运算放大器的选择在反馈电路中,运算放大器是一个非常关键的因素。
运算放大器为反馈电路提供放大器,并将反馈信号传递给反馈节点。
当电压或电流发生变化时,运算放大器可以快速检测到并调整输出,以保持恒定的电压和电流。
3. 稳定性设计为保证电源稳定性,需要进行稳定性设计。
在基于线性稳压器的设计中,输出电压稳定性可以通过选择合适的线性稳压器电路进行实现。
在基于开关稳压器的设计中,可以采用PID反馈控制实现稳定性。
4. 容量和功率需求容量和功率需求应该根据设备需要的功率和电流选择。
需要选择合适的电源变压器和其他元件,并计算合适的功率。
5. 保护措施在电源设计中需要加入保护措施,以防止故障和损坏。
常见的保护措施包括过载保护、过压保护和过流保护,等等。
三、实施步骤通过实施步骤可以设计出稳定且可靠的数控直流稳压电源:1. 确定功率、电压和电流需求2. 选择最合适的电源拓扑结构3. 选择合适的运算放大器4. 进行稳定性设计5. 计算容量和功率需求6. 加入保护措施7. 编写电源控制程序8. 调试并测试电源四、结论在本篇文档中,我们介绍了数控直流稳压电源的设计要点和实施步骤。
基于单片机的数控直流稳压电源的设计设计
基于单片机的数控直流稳压电源的设计设计数控直流稳压电源是一种能够为电子设备提供稳定直流电压的电源,可以用于实验室、生产线以及科研等领域。
本文将基于单片机对数控直流稳压电源进行设计。
1.设计目标设计一个数控直流稳压电源,具有以下特点:-输入电压范围广,能够适应各种电源电压。
-输出电压范围广,能够满足不同设备的需求。
-输出电压稳定性好,能够保持输出电压在设定值附近波动范围内。
-控制方式灵活,能够通过数控手段来调整输出电压。
2.硬件设计-电源输入部分:使用变压器降低输入电压,并通过整流电路将交流电转换为直流电。
-过滤电路:用电容器对直流电进行滤波,减小纹波。
-脉宽调制(PWM)控制器:使用单片机的PWM输出,控制开关管的导通时间,从而调整输出电压。
-反馈电路:采集输出电压并与设定值进行比较,通过PWM控制器调整开关管的导通时间,使输出电压稳定在设定值上。
3.软件设计-单片机程序设计:编写单片机程序,实现输入输出控制,包括读取输入电压、设定输出电压以及调整PWM输出。
-降压控制算法:根据输入输出电压以及电流等参数,通过控制PWM 输出的占空比,实现对输出电压的调整和稳定。
4.输出保护-过压保护:当输出电压超出设定范围时,通过单片机程序停止PWM 输出,避免对设备的损坏。
-过流保护:当输出电流超过额定值时,通过监测电流大小,控制PWM输出,避免过大电流对设备的损坏。
5.调试与测试-利用示波器等测试工具,对电源的输入输出进行测试,验证稳定性和精度。
-对于过压、过流等保护功能,进行测试验证其可靠性和及时性。
总结本设计基于单片机实现了数控直流稳压电源,能够根据输入和输出的要求,实现电压的调整和稳定。
同时,通过保护电路、控制算法等设计,确保了电源的可靠性和安全性。
在实际应用中,可以根据具体需求进行扩展和优化,以满足更多应用场景的需求。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数控直流稳压电源1)输出电压:范围0~+9.9V,步进0.1V,纹波不大于8mV。
2)输出电流:500mA。
3)输出电压值用数码管LED显示。
4)用+、—两键分别控制输出电压的步进增减。
5)为实现上述几个部件工作,自制一台稳压直流电源,输出+ 、-15V、+5V。
发挥部分:1)输出电压可预置在0~9.9V之间的任何一个值。
2)用自动扫描代替人工按键,实现输出电压变化(步进0.1V不变)。
3)扩展输出电压种类(如三角波等)。
#include <reg51.h>#include <intrins.h>#define uchar unsigned char#define uint unsigned int#define DataPort P2sbit LCM_RS=P1^5;sbit LCM_RW=P1^6;sbit LCM_EN=P1^7;sbit K1=P3^4;sbit K2=P3^2;sbit K3=P3^0;sfr P1ASF=0x9D;sfr ADC_CONTR = 0xbc;sfr ADC_RES = 0xbd;sfr ADC_RESL= 0xbe;void GET_AD_Result();void AD_init( );extern void WriteCommandLCM(uchar CMD,uchar Attribc);extern void InitLcd();extern void DisplayoneChar(unsigned char X,unsigned char Y,unsigned char DData);extern void DisplayListChar(uchar X,uchar Y,uchar code *DData);unsigned char codedispcode[]={0x30,0x31,0x32,0x33,0x34,0x35,0x36,0x37,0x38,0x39}; unsigned char dispbuf[8]={0,0,16,0,0,16,0,0};uchar AD_value,key,Vd=60;unsigned char i,j,temp8,temp9,temp10,temp11;float tt=0.0;uchar tt1=0,tt2=0,tt3=0,m=0;uchar code str0[]={"by 20111018"};//uchar code str1[]={"beyond"};void delay5ms(){unsigned int i=5552;while(i--);}void delay400ms(){unsigned char jj=5;unsigned int jjj;while(jj--);{jjj=7269;while(jjj--);};}void delay(unsigned int k){unsigned int i,j;for(i=0;i<k;i++){for(j=0;j<121;j++){;}}}//------------AD convert----------------------------------------void AD_init( )//void AD_init(uchar AD_port_sel ) //ADC初始化{ADC_CONTR|=0x80; //开ADC电源P1ASF=0x01; //设置P1.0高阻输入方式ADC_CONTR|=0x08; //启动AD转换START=1 }void GET_AD_Result()//启动AD转换并返回转换值{uchar temp;temp=0x10; //判转换结束标志ADC_FLAGtemp&=ADC_CONTR;if ( temp ){AD_value=ADC_RES; //读取AD数据ADC_CONTR&=0xe4; //清转换结束标志ADC_FLAG}else{ADC_RES=0; //清转换数据高8位ADC_RESL=0; //清转换数据低2位ADC_CONTR|=0xe8; //启动AD转换ADC_START}}/////////////////LCD display///////////////////////////////void WaitForEnable(void){DataPort=0xff;LCM_RS=0;LCM_RW=1;_nop_();LCM_EN=1;_nop_();_nop_();while(DataPort&0x80);LCM_EN=0;}void WriteCommandLCM(uchar CMD,uchar Attribc){if(Attribc)WaitForEnable();LCM_RS=0;LCM_RW=0;_nop_();DataPort=CMD;_nop_();LCM_EN=1;_nop_();_nop_();LCM_EN=0;}void WriteDataLCM(uchar dataW){WaitForEnable();LCM_RS=1;LCM_RW=0;_nop_();DataPort=dataW;_nop_();LCM_EN=1;_nop_();_nop_();LCM_EN=0;}void InitLcd(){P2=0;WriteCommandLCM(0x38,0);delay5ms();WriteCommandLCM(0x08,0);delay5ms();WriteCommandLCM(0x08,0);delay5ms();WriteCommandLCM(0x38,1);WriteCommandLCM(0x08,1);WriteCommandLCM(0x01,1);WriteCommandLCM(0x06,1);WriteCommandLCM(0x0C,1);}void DisplayoneChar(unsigned char X,unsigned char Y,unsigned char DData) {Y&=1;X&=15;if(Y)X|=0x40;X|=0x80;WriteCommandLCM(X,0);WriteDataLCM(DData);}void DisplayListChar(uchar X,uchar Y,uchar code *DData){uchar ListLength=0;Y&=0x1;X&=0xf;while(X<=15){DisplayoneChar(X,Y,DData[ListLength]);ListLength++;X++;}}unsigned char scan_key(){GET_AD_Result();if( AD_value>=186&&AD_value<=196) return(3);else if( AD_value>=165&&AD_value<=175) return(2); else if( AD_value>=122&&AD_value<=132) return(1); }///////////////////////////////////////////////////////void key1(){if(K1==0){delay5ms();if(K1==0){Vd=Vd+1;if(Vd>=120)Vd=60;P0=Vd;}while(K1==0);}else if(K2==0){delay5ms();if(K2==0){Vd=Vd-1;if(Vd==0)Vd=60;P0=Vd;}while(K2==0);}else if(K3==0){delay5ms();if(K3==0){Vd=60;//if(Vd==0)//Vd=60;P0=Vd;}while(K3==0);}}void main(void){InitLcd();while(1){key1();P0=Vd;tt=(Vd*12.0)/120.0;m=Vd*12/120;tt1=m/10;tt2=m%10;dispbuf[8]=tt1;dispbuf[10]=tt2;tt3=(tt-m)*10;dispbuf[11]=tt3%10;temp8=dispcode[dispbuf[8]];temp10=dispcode[dispbuf[10]];temp11=dispcode[dispbuf[11]];DisplayListChar(0,0,str0);delay5ms();DisplayoneChar(0,1,0x55); delay5ms();DisplayoneChar(1,1,0x3d); delay5ms();DisplayoneChar(2,1,temp8); delay5ms();DisplayoneChar(3,1,temp10); delay5ms();DisplayoneChar(4,1,0x2e); delay5ms();DisplayoneChar(5,1,temp11); delay5ms();delay(5000);delay5ms();delay400ms();}}电子技术课程设计报告简易数控直流电源目录一、设计任务书 (1)二、设计框图及电路系统概述 (2)三、各单元电路的设计方案及原理说明 (2)四、调试过程及结果分析 (9)五、芯片介绍 (9)六、设计安装及调试中的体会 (16)七、收获和建议 (17)参考文献 (17)一、设计任务书1. 设计任务设计出有一定输出电压范围和功能的数控电源。
其原理示意图如图1所示。
图1 数控电源原理示意图2. 设计要求1) 基本要求(1)输出电压:范围0~+9.9V,步进0.1V,纹波不大于10mV;(2)输出电流:500mA;(3)输出电压值由数码管显示;(4)由“+”、“-”两键分别控制输出电压步进增减;(5)为实现上述几部件工作,自制一稳压直流电源,输出±15V,+5V。
2) 发挥部分(1)输出电压可预置在0~9.9V之间的任意一个值;(2)用自动扫描代替人工按键,实现输出电压变化(步进0.1V不变);(3)扩展输出电压种类(比如三角波等)。
二、设计框图及电路系统概述图2 简易数控直流电源总体电路框图经分析可知,本设计需要两组外部数据表达部分:一个是直流电压的输出部分;另一个是数码显示部分。
由此推得整个电路设计中需要一个稳压电路模块作为直流电源的输出部分,另外还需要一个译码显示电路部分模块作为显示部分。