解决断路器开关合闸线圈烧毁的技巧

合集下载

断路器合闸线圈烧毁现象分析及故障处理

断路器合闸线圈烧毁现象分析及故障处理

收稿日期3断路器合闸线圈烧毁现象分析及故障处理郑炳坤(漳州市南一水库管理局,福建南靖 363605)摘要:南一电站发电机出口断路器多次在倒闸操作时出现合闸线圈烧毁故障,有时合闸操作完成后合闸接触器仍不能返回。

该文对此故障进行了分析,以查找故障原因,并针对设备存在的问题提出了处理措施,以消除跳合闸插件板存在的隐患。

同时从设计、运行维护、设备检修等方面入手,制定相应的防范和技改措施,保证断路器操作的顺利进行。

关键词:断路器;合闸线圈;故障分析处理中图分类号:TM561 文献标识码:B 文章编号:1002-3011(2008)04-0069-021 引言南一电站在倒闸操作时经常出现断路器合闸线圈烧毁的异常现象。

此类异常现象的发生增加了人员的维护工作量不能及时恢复发电,延长停机时间影响发电效益;严重时将会造成电气火灾事故,烧毁断路器操作机构。

因此有必要对此类现象的原因进行分析总结,并制定有效的防范及整改措施,彻底避免此类现象的重复发生,保护设备,保证倒闸操作的顺利进行和机组的安全、可靠运行。

2 故障现象利用手动同期开关合上发电机出口开关并网发电时,多次发生发电机出口开关合闸线圈、开关操作机构本体二次控制回路端子排及二次接线烧毁现象,有时在合闸操作完成后仍可看到合闸接触器HC 在励磁状态无法返回。

发电机出口开关二次控制回路原理见图1。

3 故障原因分析对发电机出口开关控制回路进行分析,首先怀疑辅助触点1DL 不能正确转换,在开关合闸到位后,合闸回路的辅助触点断不开,跳闸回路的辅助触点未接通。

这时操作人员根据开关位置指示器显示的灯光信号,判断开关合闸尚未到位,控制开关KK 仍在合闸位置,使合闸接触器HC 长期励磁,HC 的常开接点一直接通使合闸线圈长期带电,导致合闸线圈及部分二次接线过热烧毁。

因此,在检查控制开关KK 及同期开关TK 在各种工作位置对应的触点通断情况良好,操作箱内的R TC6、RTC3插件内各元器件完好的情况下,将检查重点放在发电机出口开关辅助触点1DL 上。

LW25-126SF6断路器合闸线圈烧毁原因分析与解决办法

LW25-126SF6断路器合闸线圈烧毁原因分析与解决办法

电工电气 (20 7 No.4)LW25-126 SF6断路器合闸线圈烧毁原因分析与解决办法林向宇,连和,雷军军,李清东,林向昊(国网福建省电力有限公司泉州供电公司,福建 泉州 362000)LW25-126型SF6断路器采用了自能灭弧结构,具有优越的开断性能,并配用结构简单轻巧、可靠性高、操作噪音小的弹簧操动机构,运行安全可靠,维护工作量小,因此,LW25-126型SF6断路器在110kV电网中得到广泛的运用。

某220kV变电站110kV高压系统中就都采用了这类型的断路器,但随着LW25-126型SF6断路器在该变电站投运年限的增长,开始发生了一些故障现象。

1 故障发生和检查经过某日,运行人员要将该变电站的一台LW25-126型SF6断路器合闸投入运行,远控合闸操作时,断路器未合闸,却发生了合闸控制回路断线,检修人员到现场检查时闻到一股烧焦味,发现操作机构箱内的合闸线圈烧毁。

接着,运行人员把断路器从热备用操作到冷备用(即断开断路器两侧隔离开关),并断开断路器控制和电机储能电源。

检修人员要给断路器更换新的合闸线圈前,需对机构内的弹簧释放能量,却发现机构内的合闸弹簧机械指示在未储能位置,然而远控的储能信号却显示合闸弹簧已储能。

这时,更换上新的合闸线圈后,机构箱内的合闸回路却是接通的(此时回路电阻为115Ω左右),只要回路接通直流电源,合闸线圈就会通电吸合。

而一般断路器合闸回路与合闸弹簧储能是有电气回路闭锁的,只有合闸弹簧储满能后,合闸回路才有可能接通。

这样才不会造成:合闸线圈通电后因合闸弹簧未储能无法合闸,而断路器辅助开关不能切断合闸回路,最后因合闸线圈长时间通电而烧毁。

为什么该断路器机构箱内合闸弹簧实际未储能,合闸回路也能接通,并且远控信号却显示已储能,检修人员对机构进一步检查,发现机构内的储能微动开关断裂且合闸弹簧未储能时储能微动开关应闭合的触点却断开。

文中对储能微动开关断裂是不是引起这起合闸线圈烧毁故障的原因进行了分析。

断路器分合闸线圈烧毁的原因及预防措施

断路器分合闸线圈烧毁的原因及预防措施

Electric Power Technology300《华东科技》断路器分合闸线圈烧毁的原因及预防措施张 锐(南京南电继保自动化有限公司,江苏 南京 210000)摘要:电网安全维护视域下,分析断路器分合闸线圈烧毁原因,针对电流过大、机械故障两项原因深入分析,进而针对性制定故障预防措施,确保断路器常态运行。

对于现场总协调项目经理来说,务必提高重视程度,根据现场电路器分合闸线圈实际情况,提出线圈安全控制的合理化建议,使断路器综合效益全面发挥。

关键词:断路器;分合闸线圈;烧毁原因;预防措施近年来,断路器分合闸线圈烧毁现象频繁出现,要想有效规避安全问题、排除安全风险,应在线圈烧毁原因分析的基础上,制定故障处理措施,将经济损失降到最低。

当前分析断路器分合闸线圈烧毁原因及预防措施具有必要性和迫切性。

1 断路器分合闸线圈控制的意义 断路器属于负荷开关,其作用从短路保护、过载保护两方面体现,即通过控制分合闸线圈充分发挥保护效用,为高效维修、便捷应用提供可靠支持。

当前,断路器分合闸线圈控制实践在电力系统中普遍存在,经就地控制、集中控制实现断路器的常态操控,满足成本节约、设备性能提升、设备全寿命周期延长等目的[1]。

集中控制主要在主控室完成,由于支持远距离控制,所以有远程控制之称。

2 断路器分合闸线圈烧毁的原因 2.1 电流过大 基于断路器工作原理可知,电磁力是断路器运行的内动力,然而电流是电磁力形成的主要源头。

正常来说,电磁力大小与电流大小呈正相关,电流值变大时,分合闸线圈实际热量超过受热的安全范围,极易出现线圈烧毁现象。

实际上,分合闸电流大小受操作机构这项因素影响较大,现今,弹簧操作机构广泛应用,据相关要求可知,电流应在5A 之内,但部分厂家分合闸线圈电流值超过规定值,约6.3A,最终线圈因过热面临烧毁威胁[2]。

当液压操动机构投用时,直流电压220V 对应合闸电流2.5A,实际上合闸电流值过大,进而出现线圈烧毁问题。

断路器合闸线圈烧坏故障分析与处理

断路器合闸线圈烧坏故障分析与处理

断路器合闸线圈烧坏故障分析与处理摘要:合闸线圈是断路器操动机构中重要的命令执行元件,其可靠性直接关乎断路器能否正常合闸。

现针对一起断路器合闸线圈烧损故障原因进行分析并提出了相应的改进措施,以提高设备运维可靠性。

关键词:断路器;合闸线圈;烧损;1分合闸线圈的工作原理分合闸线圈设计时均考虑其理想状态下短时间通过大电流。

空心的多匝线圈工作于直流220V系统中,当保护装置发出分合闸信号或是进行分合闸操作时,相应的分合闸回路接通,线圈通过励磁电流,产生较大电磁场,吸引吸盘、撞针动作,通过机械配合撞击连片,使弹簧释放能量或机械复位,实现分合闸。

该过程结束后,线圈失电,复位弹簧将连杆推至原位置,直至下一次动作。

2分合闸线圈的故障案例及分析2020年2月21日,500kV某变电站开展线路融冰试验过程中,35kV融冰装置断路器出现无法合闸、合闸线圈烧损冒烟的情况。

断路器型号为LTB72.5D1/B,操动机构型号为BLK222,额定电压为72.5kV,操作方式为三相联动操作。

该断路器2011年10月出厂,2011年12月投运。

烧损的合闸线圈如图1所示。

检修人员到达现场后发现,断路器合闸线圈间隙明显偏小,因此初步怀疑故障原因是合闸线圈间隙变小造成合闸挚子不能有效脱扣,导致合闸线圈长时间带电而烧损。

断路器合闸线圈烧损,不能再次进行合闸操作,无法进一步判断故障原因,因此检修人员对损坏的合闸线圈予以更换。

检修人员更换断路器损坏的合闸线圈后进行数次现场操作后,合闸线圈再次烧损。

其间断路器间断性出现储能电源空开跳闸、储能指针指示异常(储能指针指向储满能位置后反弹至未储能位置)的情况,根据以上情况判断合闸卷簧出现过储能现象。

合闸卷簧出现过储能,会对合闸挚子和合闸卷簧产生一定程度的影响,因而怀疑合闸线圈烧损为合闸卷簧过储能所致。

2.1合闸卷簧过储能判断根据以下迹象可以判断合闸卷簧出现了过储能现象:(1)合闸拐臂搭在合闸挚子滚轴上。

断路器合闸线圈烧坏故障分析与处理

断路器合闸线圈烧坏故障分析与处理

断路器合闸线圈烧坏故障分析与处理摘要:断路器是电力企业发电运行过程中的重要组件,在维持电力企业正常运转方面发挥着重要作用。

但是,断路器自身也存在一定的故障问题,比如合闸线圈烧坏问题就会影响断路器的正常运行。

目前,断路器在分合闸操作过程中,经常会出现线圈无法分合的问题,导致线圈被烧毁。

因此,相关工作人员必须要采取科学有效的方法来处理这一问题,确保故障问题能够得到及时处理。

本文将分析断路器合闸线圈发生烧坏的主要原因,并提出科学高效的处理措施。

关键词:断路器合闸线圈;烧坏故障;合闸回路;遥控触点在整个电力系统运行过程中,断路器是十分重要的基础设备。

断路器的主要作用就是能够在运行期间,用最短的时间排除故障问题,将损失降到最低。

所以保证断路器安全性和运行高效性十分重要。

相关工作人员要对实际情况展开分析,总结断路器合闸线圈发生烧毁的主要原因,进而提出对应的解决方法,为变电站的稳定运行提供保障。

1.断路器合闸线圈发生烧坏的主要原因随着我国对断路器运行安全性的重视程度不断提升,断路器正常工作效率也得到了明显提升。

但是在变电站实际运行期间,断路器经常会出现合闸线圈烧毁问题,对断路器后续正常运行造成了严重影响[1]。

所以,必须要对已经烧坏的合闸线圈进行及时更换,清除其中存在的杂物垃圾,这样才能够确保断路器维持在一个稳定运行状态。

从以往实际工作经验中可以得知,导致短路器合闸线圈烧坏的主要原因包括以下几方面:一是在工作缸密封圈更换之后,需要开展重新安装工作。

但是在回装期间,经常会忘记对断路器开关进行检查。

而且由于合闸线圈运行时间较长,分断路器也没有手动结合,进而导致合闸线圈出现了故障问题,发生了烧毁,供电企业效益也因此面临着巨大损失。

二是随着变电站运行周期越来越长,断路器会产生一定的震动现象,导致合闸铁芯螺栓出现了松动情况。

而且变电站经过长时间运行之后,也会导致铁芯顶杆长度发生了变化,一般都会变得非常短,二级闸阀无法顺利完成一系列动作,导致合闸线圈运行时间过长,整个运行过程也会处于一个带电状态。

分、合闸线圈烧毁主要原因与解决措施分析

分、合闸线圈烧毁主要原因与解决措施分析

分、合闸线圈烧毁主要原因与解决措施分析摘要高压断路器在分、合闸过程中,经常出现相关分、合闸线圈的烧毁等情况。

本文对线圈故障烧毁原因进行分析,同时提出应对措施,进行适当的技术改造,以减小分合闸线圈烧毁故障发生的频率;当然还需要工作人员平时细心地维修与护理。

这些防范措施的有效应用,可以大大降低该类故障的发生率,进而保证电力设备的正常运行。

关键词线圈烧毁;合闸;分闸;断路器前言目前,高压断路器有完善的灭弧技术,其可以很好地实现对空载电流、负荷电流以及故障电流的断开处理。

与此同时,基于断路器的作用可以很好依据实际电力设备、线路等的实际情况,在充分保护线路不受损坏的情况下快速实现设备以及线路的通断处理等。

当发生事故时,断路器可以第一时间将事故进行隔离,避免事故进一步蔓延。

由此可见断路器设备在电力系统中扮演着十分重要角色。

近些年人们发现在执行断路器分合闸操作时经常出现分合闸线圈烧毁等情况,进而导致断路器设备难以完成相关操作指令,给电力设备以及操作人员等带来极大的负面影响,对于电力系统安全运行影响重大。

1 分合闸线圈烧毁原因分析现阶段大多数变电站均配有微机保护装置,而实际正是由于此类微机保护装置,大大提高了分合闸线圈的烧毁概率。

而传统的基于常规继电保护形式、集成电路保护形式相对而言很少出现此类情况。

如下图所示为常见的断路器合闸线路示意图:由上图可以看出在采用微机保护装置前,合闸动作的执行主要由开关KK进行控制。

通常情况下,KK开关吸合,合闸线圈带电启动,此时断路器执行相应的合闸动作。

待该断路器合闸到位后则由其辅助常闭触电DL自动断开合闸线圈回路。

此时,如若断路器设备出现问题无法执行合闸操作,当控制开关kk吸合后,由于KK开关自身特性待发出合闸操作指令后其自身具有一定的容量,进而可以及时断开整个合闸线圈回路,从而有效避免整个合闸线圈长期带电造成线圈的烧坏。

此类情况下,如若发生合闸线圈烧毁等情况,主要原因为相关控制开关kk其没有彻底断开,依旧处于吸合状态,继而导致合闸线圈长时间带电,基于大电流使得整个线圈烧毁。

一起220kV断路器合闸线圈烧毁的原因分析及对策

一起220kV断路器合闸线圈烧毁的原因分析及对策

。 I 寸———r——— ● — 0一…’ ● L |

图 3操 作机构 台闸控制 回路图
_
2 原因分析 : 、 ①查阅刚完成不久的此断路器动 作电压测试试验 , 合 闸最低动作 B相 电压为 15 , 0 7 小于 8 % 0 额定操作 电压值, 动作试 验合格。 除了线 圈挚子 固 排 有动作 电压偏高 , 施加 在线圈上 的系统电压不足 于使合 闸挚 子脱扣 , 断路 器 辅 助 开关 未转 换 线 圈长 期 带 电烧 毁 可 能 ; ②万用 表量取合 闸回路 6 2端 子 电压 为 一 1V 电压合 格 , 除系统 0 15, 排 电压偏低,满足不 了最 低动作 电压发 出合 闸指令后 拒动造成线 圈烧毁 可
类似障碍发生。 该 断 路 器 型 号 为 H L 4 ,配 分 相 式 B G O 2 P25 L I O A型 弹 簧操 作 机 构 ,9 9 19



Y3

Байду номын сангаас
60 1
: :
: :
l = 9


/ F -

_ —厂 _ ,

, 一
B N
不足 衔 铁 吸 力 不 够 不 能 撞 开 项 拒 绝脱 扣 而 无 法 合 闸 可 能 ;
分析 。 机构初始为断路器分闸, 没有气压, 合闸弹簧未储能, 手动状态 。 当满足 断路器分闸位置 , 储能完毕 , 气体压力 正常, 选择 开关 打向远控 时, 对应 B 1B 1K 、4触点 闭合 , G 、W 、9 s 机构合 闸回路为接通状态 。 正常操 作时, 当 发 出合 闸 脉 冲 后 , 闸 出 口继 电 器 H J 合 B b动 作 , 常 开 触 点 闭 合 , 闸 回 路 其 合 接通 , 电磁 铁 Y 3励 磁 带 电 , 于 H J I 线 圈 流 过 合 闸 电流 使 H J 自保 由 B b() Bb 持, 直至断路器合 闸使辅助触 点 B 1断开 ,B b即返 回。断路器后 台操 作 G HJ 频繁 , 隔时间短 , 考 虑间隔 时间而连 续传动试 验 , 间 无 中途 间 隔 时 间 只 有 4 O秒左 右 ,查 阅厂 家 断路 器 产 品手 册 ,规 定 :标准 操 作循 环 是 0 0 —. 3 — O 3 i— O 断路 器 和 继 电器 系 统 进 行 大 于 3次 合 闸操 作 试 验 时 , 闸 sC一mnC , 合 操 作 之 间 的 时 间不 应 小于 1 钟 。 因每 一 次 电 动 操 作 均 会 使 线 圈 发 热 , 分 发 热 后 需 要 时 间散 热 , 证 其 有 良好 通 流 能力 , 于 频 繁 操 作 , 圈通 流 后 热 保 由 线 量不 能及 时散 发, 产生 累积效应 , 温度逐渐 上升, 而线圈铜导线 的电阻随温 度升 高而增大,通流能力 随之减 小,依据麦克斯威尔吸力 推导公式 : F吸 = . 7 1) S5— 1— ( 斤 ) 式 中 ,w — 安 匝 值 ( ) s — 工 作 气 隙 的 15 (w 2 2 0 8 公 , 1— 安 ,— 有效 截面积 ( 米 2 , 厘 ) 5——工 作气隙总 长度 ( 厘米 ) 知: 圈对 衔铁 吸 可 线 力 F吸与流过线圈 电流 I的平方值成 正比, F吸随 I的平方数减小而递 即 减, 在操 作 成 功 若 干 次 N后 , N I N 1 3 次 的 重 合 闸试 验 中 , 闸 线 圈 在 + (+ >) 合 满 足 不 了低 电压 动 作 要 求 值 使 衔 铁 冲 击 力 量不 足 , 法 将 脱 扣 装 置 脱 扣 带 无 动合 闸拐臂动作 , 衔铁黏在合 闸挚子上 , 闸不 成功, 合 断路器辅助开关依然 在分位没有转换 , 串联在合 闸控制 回路 中的辅助触点 B 1的分 闸位置常 闭 G 触点 O O 卜 2保 持 在 闭合 位 置 , 制 回 路 一直 对 合 闸 线 圈 Y 控 3通 电, 圈 绝 缘 线 漆软化 , 引发 匝 间短 路 电流 开 始 增 大 , 速 线 圈 发 热 , 时 控 制 电源 空 气 开 加 此 关 并 未 断 开 , 合 闸 失 败 , 圈 彻 底 烧 毁 , 圈 内 的铁 芯 因发 热 膨 胀 卡 死 , 重 线 线

断路器分合闸线圈烧毁原因分析及解决方法

断路器分合闸线圈烧毁原因分析及解决方法

断路器分合闸线圈烧毁原因分析及解决方法摘要:对电力系统中常见断路器控制回路进行了详细分析,查找到分(合)闸线圈易烧毁的根源,并提出防范和技术改进措施,彻底避免合闸线圈事故的再次发生,以保证供电的可靠性、稳定性。

关键词: 断路器;线圈保护装置;解决方法Abstract: The common circuit breaker on the power system control loop is analyzed in detail, find easy to burn the root causes of the points (a) Tripping coil and proposed measures for prevention and technical improvements, completely avoid accidents from happening again in the closing coil, in order to ensure for electrical reliability and stability.Key words: circuit breakers; the coil protection devices; solution0引言近几年来,随着变电站微机保护和综合自动化系统的广泛应用,提高了供电设备的可靠性、安全性。

然而,在断路器的分(合)闸操作过程中经常发生不能正常分合的故障,常常造成断路器分(合)闸线圈的烧毁。

另外,随着自动化水平的不断提高,越来越多的操作采用远方遥控方式进行,一旦发生故障,不仅会烧毁线圈,而且很可能烧坏其它设备,使事故扩大,造成更大的损失。

本文通过分析断路器分(合)闸线圈容易烧毁的现象,在深入研究国内外断路器分合闸控制回路的基础上,提出了一个切实可行的解决方案,该方案能实现对断路器跳闸、合闸线圈的保护,能进行二次分(合)闸,还具有故障记录及相关信号出口功能。

浅谈断路器跳合闸线圈烧毁原因及解决方法

浅谈断路器跳合闸线圈烧毁原因及解决方法

这时 , 内于 T () JI线圈流过跳闸甩 流而使 ¨ 3 解决 的方 法 采用直流操作的交流接触器。 自保持 , 直至断路器跳闸使 D 一 断开解除了自 L2 为 l防止断路器操作中辅助触点不切换而烧 『 作者 简 介 : 飞( 7 ~, 黑龙 江省 哈 尔滨 于 1 1J 9 男, 保持,J T 即返回。但是 , 如果断路器因机械或其它 毁跳合闸线圈的事故 ,可以在发出断路器跳合闸 人, 从事电气运行及 电气设备检修工作。 拳科, 原 因拒绝 跳 闸 ,L 2 不 会断开 , D一就 l 不会返 旧 , 脉冲后 , 就 延时断开跳合闸回路 , 实现的方案之一如 所示。红 r() H ( r I和 J)后面通过二极管 D 、 J I 1 致使断路器跳l 嘲线圈T Q长期通电, T 而 Q足按短 图 2 时通电设计的, 长期通电就必然使 T Q过热烧毁。 D 2接一个时间继电器 s ,J Js 的延时闭合触点接一 当欲使断路器合『时, 申 计算机发出 】 合 闸脉 个中问继电器 z,J Jz 的两对常闭触点分别 串接在 冲,合闸出口继电器 Ⅲ 动作, 常开触点闭合, 跳合『回路中:当断路器操作脉冲使 T、 J 申 J JH 闭合 的同时, 起动时间继电器 S , J经一定延时后起动巾 形成 了 以下的通 路 : K 一 R l H 触 点~ J 1线 圈 L2 M+ D — l I t 【) q ! P 一 间继 电器 z , J使其常闭触点断开 , 切断跳合闸回 路。一般断路器跳合闸时间不会大于 02 S .秒,J的 TJ B2触点一 D 触 点 + I 1 H C线圈一 R 2 M一 D 一K 整定时问应不大于 O5 ,接人 D 、2的 目的是 .秒 1D 使合闸接触器 H C动作 , 其两对常开主触头 使跳闸和合闸同路可以共用一个时间和中间继电

高压断路器分合闸线圈烧毁原因分析及应对措施

高压断路器分合闸线圈烧毁原因分析及应对措施

高压断路器分合闸线圈烧毁原因分析及应对措施高压断路器线圈分合闸烧毁事故是断路器在运行中存在的较普遍的现象,严重的会导致设备器材发生烧毁以及产生火灾等事故。

为保障生产运行的安全,就需要针对高压断路器分合闸线圈烧毁的实际原因展开分析,而后制定对应的有效措施,并在分析的过程中根据自身经验提出相应的防范措施与技术改进方案,从而确保高压断路器可以正常运行。

1.高压断路器分合闸线圈烧毁的因素通常情况下高压断路器在正常运行的过程中,出现故障以及分合闸线圈烧毁的因素主要分为以下几个方面:1.1电磁铁内部出现故障(1)当固定电磁铁的螺丝出现松动的情况时,就会导致内部电磁铁出现位移的情况,这样就会造成实际撞击的力度不足或角度与标准角度之间存在偏差。

(2)当电磁铁的铁芯在长时间的运行之下,未及时或未定期展开维护与检修工作时,就会导致铁芯出现被腐蚀的情况,这样一来就会导致铁芯在实际运行的过程中出现卡顿或停止运行的情况。

(3)一般情况下当线圈出现老化情况或铁芯的运行冲程较小时,接通分合闸回路器电源之后,就会导致铁芯未能及时促使机构脱扣而出现线圈长时间处在接通电源的情况,最终就会造成高压断路器的分合闸线圈出现烧毁情况。

当机器设备密封情况不完善时,就会出现液体由机器上方的孔洞进入只机器设备的内部,这样就会造成机器内部出现被腐蚀的情况;当设备机构出现密封情况不佳时,就会导致高压断路器分合闸处的电磁铁出现较为严重的锈蚀情况,最终就会导致电磁铁芯出现卡顿的情况,同时这也是造成分合闸线圈出现烧毁导致高压断路器未能正常运行的主要因素,铁芯出现腐蚀的具体情况如图1所示:图1断路器分合闸线圈电磁铁芯锈蚀情况1.2机器设备位置摆放不准确造成高压断路器分合闸线圈烧毁的因素还包括操作机器设备位置存在摆放不正确的情况。

因为分合闸一直保持在擎子转动轴承内的润滑脂剩余量较高,而在长期无人维护与检修的情况下就会导致润滑油出现大量积灰,最终造成设备转动的阻力不断提高,同时在阻力不断提高的过程中还会出现调整的转动杆位置过深的情况。

断路器合闸线圈烧坏的故障分析以及改进措施

断路器合闸线圈烧坏的故障分析以及改进措施

断路器合闸线圈烧坏的故障分析以及改进措施摘要:近年来,变电站新投入的1OkV高压断路器基本以弹簧操作机构为主,其设计和质量水平都高于早期的电磁式机构,但在日常的操作、检修、试险中,还是频繁地出现烧毁合闸线圈的故障,迫使开关停电检修,严重影响着设备的安全运行,给用电客户和社会带来不良影响。

为此,笔者对本公司的三座变电站烧坏合闸线圈的原因进行一些探讨,并提出技术改进措施,避免合闸线圈再次发生烧毁,降低了设备的故障率。

关键词:线圈;烧坏;故障分析;措施]Pick to: in recent years, the substation of new investment OkV 1 high voltage circuit breaker basic to spring operation mechanism is given priority to, its design and quality level is higher than the early assolenoid style institution, but in daily operation and maintenance, try risks, or frequent burned off the coil fault, forced switch power overhaul, the serious influence the safety equipment operation, to electricity customers and social any adverse effects. Therefore, the author of this company, three substation burn out the cause of the coil feeder is discussed, and some technical measures to improve, avoid close brake coil happen again burned down, and reduce the equipment failure.Keywords: coil; Burn out; Failure analysis; measures1 问题的提出目前35kV变电站的10kV断路器大部分采用弹簧操作机构,在变电运行中的断路器常见故障中,合闸线圈烧毁的故障超过了70%。

断路器合闸线圈烧毁原因分析及如何改进研究

断路器合闸线圈烧毁原因分析及如何改进研究

断路器合闸线圈烧毁原因分析及如何改进研究摘要:在电力运行的过程当中,时常会发生断路器合闸线圈烧毁的情况,这也直接影响着设备的运行,让供电无法处于正常的环境状态当中。

对此,本文主要分析了断路器合闸线圈烧毁的原因,得出原因有断路器产生了分合震动、断路器送电过程中很难合闸等。

而面对这样的现象,就需要探寻出有效的解决方法,改进或者是预防断路器合闸线圈烧毁情况的出现,为人们提供更好的供电服务。

关键词:断路器;合闸线圈;烧毁原因对于整体的电力系统而言,断路器属于其中重要的设备。

并且,断路器在运行的过程当中,应当保障整体的运行安全与效率,即使发生了故障问题,也要第一时间将问题解决,让损失与影响降至最低。

对此,需要让断路器运行安全获得保障,预防、避免合闸线圈被烧毁。

此外,要对断路器合闸线圈烧毁的原因进行调查,结合实际的原因寻找到相应的解决措施,以此避免更为严重故障的形成,让断路器处于安全的运行环境当中,更好的完成电力供应,不会对人们的日常生活造成影响。

一、断路器合闸线圈烧毁原因分析(一)更换了行程杆密封圈当行程杆密封圈被更换过后,这时应重新安装好工作缸,但是有时部分人员会忽视了对断路器液压机辅助开关的检查,从而导致合闸线圈容易被烧毁。

并且,因为合闸线圈始终处于工作的环境当中,且未能经过手动结合,这也导致人员无法查看红绿灯的亮灯状况,最终导致合闸线圈烧毁。

(二)断路器产生了分合震动有时断路器会出现分合震动的情况,这时铁芯顶杆的长度会随之变短。

由于合闸阀里面的钢球打开行程比较小,并且二级合闸阀也未能运作,最终让各种各样合闸难题频频发生,导致闸线圈总是处于带电的环境中,直至被烧坏。

对此,应将烧坏的线圈拆除,并把周围的杂物清理干净,以此避免线圈被烧坏[1]。

1.断路器送电过程中很难合闸有时断路器送电时很难合闸,这也导致合闸线圈被烧毁,对于这样的情况,要第一时间将其更换。

若断路器经过几次操作都无法合上,但是运行状况却处于正常,这时应排除液压机构本身。

断路器分合闸线圈烧毁原因及预防措施

断路器分合闸线圈烧毁原因及预防措施

断路器分合闸线圈烧毁原因及预防措施断路器分合闸线圈烧毁原因及预防措施断路器是负荷开关的一种,具有短路和过载保护功能,其短路保护功能靠电磁线圈实现。

因其保护功能完善,维修、使用方便,在电力系统应用广泛。

本文介绍。

分闸线圈烧毁的原因1.分闸电磁铁机械故障。

线圈松动造成断路器分闸时电磁铁位移,使铁心卡涩,造成线圈烧毁;或由于铁心的活动行程短,当接通分闸回路电源时,铁心顶不开脱扣机构使线圈长时间通电而烧毁。

2.断路器拒分。

控制回路正常时,断路器出现拒分的故障均为连杆机构问题,如顶点调整不当,使断路器分闸铁心顶杆的力度不能使机构及时脱扣;或由于防护闭锁机构未动作,致使线圈过载,造成分闸线圈烧毁。

3.辅助开关分闸状态的行程调整不当。

断路器处于分闸状态时,应调整辅助开关使其在分闸状态的行程范围内。

然而,在调整断路器开距和超行程等参数时,断路器分闸的初始状态未做相应的调整,将导致辅助开关不能正常切换分闸回路,而使分闸线圈烧毁。

4.分闸控制回路辅助开关触点使用不当。

当断路器合闸时间极短,远小于断路器的分闸时间时,断路器未来得及脱扣就已合闸到位,此时延时触点的延时作用将失去意义。

相反,该延时触点在分闸过程中,由于辅助开关动静触头绝缘间隙较小,经常出现拉弧现象,将使辅助开关的触头烧毁,继而引起分闸线圈烧毁。

5.保护控制装置故障。

分闸指令是由保护控制装置发出的,若装置内的分闸继电器有故障,或分闸控制回路辅助开关触点动作行程较大,造成分闸指令不能及时退出,就会使分闸线圈长时间带电而烧毁。

6.分闸回路电阻偏大。

分闸线圈回路绝缘降低,或是控制回路线径过小造成电阻偏大,使得分闸控制回路电压降较大,导致电压达不到线圈分闸动作的值,使分闸线圈长时间带电烧毁。

防止分闸线圈烧毁的措施1.将分闸回路的延时动合触点改接为一对动合触点,经常检查辅助开关的触点及辅助开关的拐臂螺丝,正确调整辅助开关的位置,使辅助开关与断路器分合闸位置正确、有效地配合。

分合闸线圈烧毁主要原因及解决措施研究

分合闸线圈烧毁主要原因及解决措施研究
1 T C的 回路 。 此方案 的优 点是 能可靠 的给分合 闸回路断 电; 缺 点是增加
置的初始状态未调整准确 , 将导致辅助开关不能正常切换 分合
闸 回路 。 ( 4 ) 分闸控制回路辅助开关接 点使用 不当 。该延 时接 点在 分闸过程 中, 由于辅助 开关动静触 头绝缘 间隙较小 , 经常 出现
靠性不强 , 并且 降低 了分合 闸回路的可靠性 。
( 2 ) 方案二 : 增设带断弧功能的接触器 。 分合 闸命令首先启动接触器 , 接触器的主触点 ( 常开接 点) 再 启动跳合 闸回路 , 由于接触 器主触 点具备断弧功 能, 这样 当 K K或遥控接 点复位后 , 接触器线 圈失磁 , 接触 器主触点可靠断 开, 保证分合闸回路及 时断 电。以分闸回路为例 , 接线 图如 图 1 所 示。当有保护跳闸时, 也可 以参照将保护跳 闸接 点接 入启动
4 防止分合 闸线 圈烧毁 的措施
断路器 分闸 ( 或合 闸) 线 圈被烧 毁 , 既扩大 了事 故范 围, 又 严 重影 响 了电力 系统 的 正常运 行 。当 1 0 k V线 路 故障 时 , 因
l O k V断路器跳圈烧坏而导致主变低压 侧开关越级跳 的事件在 系统 内时有发生。 遇到断路器拒动情况 , 运行 、 维操人员 的正确 处理 方式为: 发 出分 闸 ( 或合闸) 命令后立 即查看 断路器位 置指 示灯 , 如果 断 路器位置指示灯没有在短 时间内显示 断路器发生变位 , 应在 短 时间内将断路器 的控制 回路 电源 的空气 开关来开 ,保证分 闸 ( 或合闸)回路断 电;然后合上断路器的控制回路 电源 空气 开 关, 可再 尝试 进行一次 分闸 ( 或合 闸) 操作 ; 或立 即检查相关 回 路及断路器机构, 找 出故障点并处理。 这对运行人员的素质要求较高 ,易受人 为因素的影响 ; 而 且, 人的反应时间较长 , 线 圈及 触点不能在最短时间 内断 电, 将 使元器件受到损伤。 但是, 如何避免分合闸线 圈烧毁的情况发生呢? ( 1 ) 方案一 : 增加 K K触 点或遥控触点 。 分闸 ( 或合 闸) 回路 串接多个 K K触点或遥控触 点, 增强 K K 触 点或遥控触点的断弧能力 。这样测控装置的 K K触点及遥 控 接 点数 量应增加 2  ̄ 3对 , 但 是当触点有 一个 接触不 良时, 容 易 造成分合 闸失败 。 当设有 S T J 、 S H J 重动继 电器时 , 分合 闸回路 串接 多个 S T J 、 S H J 接点。 此方案虽适 当增强 了分合 闸回路断弧 的能力 , 但 断弧的可

10kV真空断路器分合闸线圈烧毁原因分析及处理

10kV真空断路器分合闸线圈烧毁原因分析及处理

10kV真空断路器分合闸线圈烧毁原因分析及处理摘要:本文以VSEP系列真空弹簧机构断路器为例,对导致真空弹簧机构断路器分合闸线圈烧毁的原因进行了分析,并针对缺陷原因提出了处理措施,以此来预防和减少类似故障的发生。

关键词:断路器;线圈烧毁;VSEP系列。

0、引言针对日常班组处理缺陷统计,其10kV真空断路器分合闸线圈烧损的缺陷率占据了首位位置,分别是2014年26起,2015年18起,2016年21起,其中合闸线圈烧损率占其85%。

缺陷故障率高,将增加了检修的工作量、生产成本和非计划停电次数,直接影响了电力系统的供电可靠性。

因为10kV出线直接影响到数以万计的用户,为了提高电力系统的供电可靠性,我们必须对此类缺陷的原因进行深入的研究分析,并提出有效的解决措施,尽可能的减少类似故障的发生,下面以VSEP型真空断路器为例来进行研究分析。

1、VSEP系列断路器1.1分析故障原因前,先来了解VSEP型断路器机构的工作原理。

真空断路器操作机构,如下图:真空断路器操动机构(图1)①储能电机及手动储能孔位②传动链条③储能弹簧④储能保持掣子及顶轴⑤滚轮⑥凸轮⑦电气闭锁线圈⑧合闸半轴联板⑨辅助开关、拐臂头、连杆⑩分闸半轴联板⑪分闸半轴1.2真空断路器操作机构工作原理:储能:储能电机或者是手动储能①,能带动传动链条②带动储能轴跟随传动并通过拐臂拉伸对储能弹簧③进行拉伸储能,到达储能位置时,储能轴与链轮传动系统脱开储能保持掣子④顶住滚轮⑤,保持储能位置。

同时,储能到位后辅助接点闭合,电机回路断电后储能电机停止工作,如是手动储能,位置到达后储能机构将进行脱扣空转。

合闸:合闸操作分电动和手动,其工作原理就是让其合闸触板带动合闸半轴运动,让合闸半轴另一边的储能保持掣子④脱扣滚轮⑤,合闸弹簧释放能量收缩同时通过拐臂使储能轴和轴上的凸轮⑥转动,凸轮⑥又驱动连杆机构带动连接头和动触头进入合闸位置,并压缩触头弹簧,保持触头所需接触压力。

跳合闸线圈烧毁的应对策略

跳合闸线圈烧毁的应对策略

跳合闸线圈烧毁的应对策略摘要:根据跳合闸电磁铁的结构和断路器操动机构的特性,分析跳合闸线圈烧毁的原因。

根据线圈烧毁后阻值的大小,分析对信号和控制等方面的影响,尤其是阻值变小存在的隐患。

最后总结出防止线圈烧毁的应对策略。

关键词:电磁铁;跳合闸线圈;操动机构;断路器;控制回路0、引言在预试定检中,拉合传动断路器,频繁出现跳合闸线圈烧毁。

电网故障跳闸时,因跳圈烧毁,断路器拒动。

出现跳合闸线圈烧毁的原因,既有质量问题,更多的是认识不足导致的操作和维护不当。

所以,要从断路器操动机构、电磁铁的结构、操作回路原理等方面入手,找到跳合闸线圈烧毁的原因,分析线圈烧毁造成的危害,总结防止线圈烧毁的运维策略。

1、跳合闸电磁铁的构成及作用。

跳合闸电磁铁是高压断路器中的电动控制的核心部件,由跳合闸线圈、铁芯、复位弹簧、撞针构成,如图1所示。

图1 跳合闸电磁铁高压断路器的跳合闸,是利用跳合闸线圈通电后的电磁作用,把电能转化为机械能,由衔铁来撞击断路器的分合闸掣子,从而实现断路器跳合闸。

2、断路器的控制回路原理现在的断路器,为了达到跳合闸的目的,跳合闸线圈需要和操作继电器箱配合,组成完整的控制回路。

以南瑞继保RCS943保护装置的控制回路为例,图2所示。

遥控分闸或保护跳闸时,”遥跳“接点闭合或保护跳闸TJ接点闭合,接通跳闸回路,跳闸保持继电器TBJ和跳闸线圈TQ通电,直到断路器跳开,常开辅组接点QF断开,切断跳闸回路。

遥控和闸或重合闸时,”遥合“接点闭合或重合闸HJ接点闭合,接通合闸回路,合闸保持继电器HBJ和合闸线圈HC通电,直到断路器合上,常闭辅助接点QF断开,切断合闸回路。

由于保护的跳合闸脉冲和测控的分合闸脉冲,均是短脉冲,时间为80ms左右,加上微机型的保护和测控出口继电器的接点,不具备开断断路器跳合闸感性电流的能力,所有设置了跳闸保持继电器TBJ和合闸保持继电器HBJ,在跳合闸回路接通瞬间,TBJ接点和HBJ接点闭合,保持跳合闸回路接通,直至断路器变位,由灭弧能力强的断路器辅助接点QF切断跳合闸回路,保护和测控出口继电器的接点不参与切断跳合闸回路。

各类断路器合闸线圈烧坏故障分析与处理

各类断路器合闸线圈烧坏故障分析与处理

各类断路器合闸线圈烧坏故障分析与处理SW6-110/220断路器合闸线圈烧坏故障分析与处理SW6断路器合闸线圈烧坏故障分析与处理(1)断路器合闸合不上,经检查合闸线圈烧坏,拆除坏合闸线圈,清除杂物,更换新合闸线圈,手动合分正常,远方电动合分正常。

估计合闸线圈长时间运行,绝缘下降。

(2) 更换工作缸行程杆密封圈,工作缸回装后,没检查断路器液压机辅助开关拉杆有无卡滞,没有手动合分断路器,通过红、绿灯亮的情况来检查断路器液压机构辅助开关能否正确切换,就远方电动合分断路器,没监视红、绿灯亮的情况,液压机构辅助开关切换不到位没发现,没及时断开控制电源,导致合闸线圈长时间带电,烧坏合闸线圈。

(3)合闸铁心顶杆固定螺母由于断路器分合振动而松动,合闸铁心顶杆长度变短,合闸一级阀钢球打开行程过小,合闸二级阀上部无高压油, 合闸二级阀不动作,合不上闸,合闸线圈长时间带电烧坏。

拆除坏合闸线圈,清除杂物,用游标卡尺调整合闸铁心顶杆长度,使合闸一级阀打开行程为1- 15mm,行程为4-5mm,回装合闸线圈。

先手动合分断路器正常,再远方电动合分断路器正常,工作完毕。

(4)断路器送电,合不上闸,出"控制回路断线"光字,现场检修发现合闸线圈烧坏,更换合闸线圈。

手动合闸,发现断路器合不上,工作缸行程很小,约1cm,合分几次都不行口工作缸能动作说明合分闸一、二级闸行程、打开行程没问题,液压机构本身没问题。

检查发现三角箱支撑孔中的水平连杆锈蚀严重,三相连杆上的轴孔、轴销也严重生锈,外拐臂上的轴孔、轴销也严重生锈。

虽然生锈导致阻力增大,由于分闸力有三吨多,所以断路器分闸成功;合闸时合闸力为一吨多,无法克服阻力合闹不成功。

对生锈的三角箱支撑孔中的水平连杆;三相连杆上的轴孔、轴销;外拐臂上的轴孔、轴销除锈并涂黄油后,合分几次,合分正常。

如果现场没有砂纸黄油也可以在生锈部位点航空液压油或机油,合分几次就正常上了。

这就提醒我们开关大修及每年春检时对生锈的连杆、轴孔、轴销应除锈,并涂黄油,有条件更换生锈零件。

10kV断路器弹簧机构分合闸线圈故障原因分析及处理措施

10kV断路器弹簧机构分合闸线圈故障原因分析及处理措施

10kV断路器弹簧机构分合闸线圈故障原因分析及处理措施发表时间:2016-11-30T14:10:08.610Z 来源:《电力设备》2016年第18期作者:张晋龙[导读] 根据不同的故障原因和事故类型,提出相应的整改措施和方案。

(广东电网有限责任公司惠州供电局 516000) 摘要:变电站内10kV高压断路器分合闸线圈烧毁故障频发,由此引出对其故障原因的分析和探讨,再根据不同的故障原因和事故类型,提出相应的整改措施和方案。

关键词:断路器;分合闸线圈;辅助开关;原因;措施前言在电力系统运行中经常会出现10kV高压断路器分、合闸线圈烧毁的故障。

当电气设备发生事故时,如果因断路器分闸回路断线导致断路器拒动,将会造成断路器越级跳闸,扩大事故范围,导致大面积停电的严重后果。

另外,在合闸回路完整性遭到破坏时,虽然造成的危害比分闸回路完整性破坏时要小一些,但它最终也将导致线路不能正常送电,降低设备供电可靠性,下面本文将以两个事故案例展开分析。

案例一:2015年3月23日,220kV某变电站#2主变低压后备保护动作出口,跳开变高2202、变中1102、变低502开关,造成10kV 2M母线失压,损失负荷40MW,占全市负荷4.72%。

现场检查发现,#2主变变低502开关柜由于内部故障造成低后备保护动作。

经现场外观及试验检查,确定本次事件故障部件为10kV#2M母线侧5022刀闸,根据保护配置及故障发生部位,事件发生时应该由502断路器动作跳闸来隔离故障点,但502断路器未动作,进而导致#2主变三侧跳闸。

检查502断路器分闸线圈发现固定线圈螺栓有松动,线圈固定外壳有裂痕,见图:该分闸线圈封在一个塑料座内,塑料座通过三个螺丝固定在开关柜操作机构的一块垂直钢板上。

通过检查发现,该塑料座螺孔部位有两条裂痕,与之一起的螺丝也明显松动。

真正起作用的只有一颗螺栓。

整个分闸线圈固定不牢靠,用手感觉有明显的松动。

最后确认开关柜延迟动作的原因如下:该型开关柜分闸线圈固定塑料座质量不良,容易开裂,导致分闸线圈固定不良。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

解决断路器开关合闸线圈烧毁的技巧
2012年6月,南漳县供电公司多次发生合闸线圈烧毁问题,严重影响电网的稳定运行。

目前公司检修维护的变电站中35KV及以下开关中大量采用的是弹簧储能机构,与综合自动化控制系统配合时,我们发现35KV及以下开关合闸线圈烧毁现象时有发生,开关的线圈烧毁,将直接造成开关的拒动,一旦线路发生故障,势必严重的影响到电网安全。

线圈的烧毁看似一件不值一提的小事情,但其中必有造成这一现象的根本原因,现针对这种情况进行分析改进:
35KV及以下设备是南漳县电网的电源线路,如果停电将会影响百姓的生产、生活,给社会造成重大的经济损失。

而35KV及以下开关合闸线圈烧毁的现象时有发生,换一个线圈至少花费100元,还需人力、物力,甚至要停下开关来维修,花费大量的时间。

2012年6月,在35kv九集变电站,35KV1段进线开关九35安装完毕后,在就地操作开关分合正常,在远方由后台机操作时发生进线开关九35合闸线圈烧毁。

情况分析:
(1)进线开关九35运行状态如下:
运行指示灯:绿灯亮,保护及控制装置:四方公司生产的CSC-216保护装置无异常,后台机通讯:正常,正确显示开关位置及保护装置信息。

合闸电源:正常(直流252V)控制电源:正常(直流222V)。

(2)就地操作:
九35开关储能后,在开关本体上,采用一次按钮手动分合九35开关,均能正常动作及储能。

采用控制屏就地操作方式,远方就地把手打至就地位置,解除防误闭锁,用KK把手,分合九35开关多次,开关正确动作,无异常。

(3)远方操作:
采用远方操作时,远方就地把手打至远方位置,后台机操作,经操作人员发出远合命令后,发现后台机报操作中断告警信号,九35开关控制屏发现绿灯、红灯同时熄灭,随即发现保护装置发控制回路断线告警信号。

(4)异常发生后的处理及检查情况:
我们现场调试人员立即断开开关的保护电源及控制电源,在检查九35开关柜时,发现开关柜内有刺激性烧焦气味,断开该开关合闸电源,经详细检查,弹簧未储能到位,合闸线圈外层发黑变形,有黄色烟雾冒出,用万用表测量线圈电阻,显示电阻无穷大,由此可判断九35开关合闸线圈已烧毁。

开关机构无其它异常。

从因果图中我们可以看出造成合闸线圈烧毁的可能因素是多方面的,主要是机械部分和二次回路部分,我们这次课题的主要思路,就是从二次回路方面着手,通过对二次回路设计的改进,来避免由于机械原因造成合闸线圈烧毁的情况。

下面是九35开关的简要的操作回路图纸
当欲使断路器合闸时,计算机发出了合闸脉冲,合闸出口继电器HJ动作,HJ常开触点闭合,形成了以下的通路:
KM+→RD1→HJ触点→HJ(I)线圈→LP2→TBJ2触点→DL1触点→HC线圈→RD2→KM-使合闸接触器HC动作,其两对常开主触头闭合,接通了以下通路:
HM+→RD3→HC触点→HQ线圈→HC触点→RD4→HM-
使合闸线圈通电,将断路器合闸。

如果断路器因机械或其它原因拒绝合闸时,DL-1触点就不会断开,HJ的自保持就不能解除,致使合闸接触器HC线圈和断路器合闸线圈HQ长期通电,而HC和HQ也是按短时通电设计的,长期通电线圈就会过热烧毁。

还有一种情况,断路器虽然完成了跳合闸操作,但其辅助触点因调整不当等原因,并未随着断路器的状态转换而转换,仍然处在操作前的通断状态,也会导致断路器跳合闸线圈长期通电烧毁。

为了防止断路器操作中辅助触点不切换而烧毁跳合闸线圈的事故,可以在发出断路器跳合闸脉冲后,延时断开跳合闸回路。

实现的方案之一如图所示。

在TJ(I)和HJ(I)后面通过二极管D1、D2接一个时间继电器SJ,SJ的延时闭合触点接一个中间继电器ZJ,ZJ的两对常闭触点分别串接在合闸回路中。

当断路器操作脉冲使TJ、HJ闭合的同时,起动时间继电器SJ,经一定延时后起动中间继电器ZJ,使其常闭触点断开,切断跳合闸回路。

一般断路器跳合闸时间不会大于0.2秒,SJ的整定时间应不大于0.5秒。

最终结论:
我们更改图纸设计,并做了现场试验,开关动作正确,未发现合闸线圈烧毁现象,我们达到了既定的目标。

通过这次活动,成功解决了现场实际问题,提高了供电可靠性,同时大量节约了生产成本,同时大量节约了由于故障停电而造成的损失。

[科]。

相关文档
最新文档