激光拉曼光谱的原理和应用及拉曼问答总结(整理完毕)
激光共聚焦拉曼光谱仪(raman)的工作原理及应用优势
激光共聚焦拉曼光谱仪(raman)的工作原理及应用优势
激光共聚焦拉曼光谱仪(Raman spectroscopy)利用拉曼散射现象来获得样品的信息。
其工作原理如下:
激光激发:激光光源照射在样品上,激发样品中的分子振动和转动。
拉曼散射:样品中的分子在受到激光激发后,会发生拉曼散射。
在这个过程中,一部分光子的能量被转移给样品分子,使得散射光子的能量发生改变,这种能量变化对应于样品分子的振动和转动能级差。
光谱测量:拉曼散射光子的能量变化被测量,生成拉曼光谱。
这个光谱提供了关于样品分子的结构、化学成分、晶体结构等信息。
激光共聚焦拉曼光谱仪的应用优势包括:
非破坏性分析:拉曼光谱是一种非破坏性的分析技术,可以直接对样品进行测试而无需破坏样品。
高灵敏度:拉曼光谱可以检测到样品中的微量成分,具有很高的灵敏度。
高空间分辨率:激光共聚焦技术结合在一起,可以提供高空间分辨率的拉曼光谱图像,对微区域样品的分析提供了可能。
无需或简化样品准备:拉曼光谱不需要复杂的样品准备过程,对样品的要求相对较低,可以节省时间和成本。
多领域应用:拉曼光谱在材料科学、药物研发、生命科学、环境监测等领域都有广泛应用,可以用于分析固体、液体、气体等不同类型的样品。
总的来说,激光共聚焦拉曼光谱仪因其非破坏性、高灵敏度、高空间分辨率等优势,在科学研究和工业领域具有重要的应用价值。
激光拉曼光谱的工作原理及应用
论文题目:激光拉曼光谱的工作原理及应用论文要求:激光拉曼光谱技术拥有广泛的应用及广阔的前景。
简要概述激光拉曼的工作原理及其应用,要求内容充实,论述详细透彻,不少于1000字。
教师评语:教师签字:年月日论文题目:激光拉曼光谱的工作原理及应用激光拉曼光谱的工作原理拉曼光谱通常采用的单色光源是激光,将分子激发到一种虚态,之后受激分子跃迁到与基态不相同的振动能量级,这时,散射辐射的频率对比入射频率将发生改变。
这种频率的改变和基态与终态的振动能量级差相同。
这样的非弹性散射光就叫做拉曼散射频率不发生变的散射称之为弹性散射,即瑞利散射。
如果拉曼散射频率一但低于入射频率时,称为斯托克散射。
相反,称为反斯托克散。
瑞利散射和拉曼散射的介绍当激发光的光子和散射中心的分子相互作用时,绝大部分的光子只是改变了传播方向,即发生了散射,而光的频率仍然和激发的光源相同,那么这种散射叫做瑞利散射。
但是同样也有很微量的光子改变光的传播方向,还改变了光波频率,这叫做拉曼散射。
它的散射光的强度大约占有总数的10-6 ~l0-10 。
产生拉曼散射的原因是光子和分子发生了能量的交换从而使光子的能量发生了改变。
拉曼散射的产生过程通过分析能级之间的跃迁可以知道光子和样品分子之间的相互作用。
将样品分子处于电子能量级与振动能量级的基态时,此时入射光子的能量数远远大干振动能量级跃迁时需要的能量数,但这些能量不能够将分子激发到电子能量级的激发状态。
样品分子吸收了这些光子后便到达了准激发状态,这叫做虚能态。
样品分子在这种准激发状态时非常不稳定,它将恢复到电子能量级的基态。
当分子恢复到这种状态时,光子的能量却没有发生改变,此时,发生瑞利散射。
如果样品分子恢复到能级基态中比较高的振动能级时,则入射光子的能量大于散射光子能量,它的波长将比入射光大。
这时在散射光谱的频率低的一侧瑞利散射谱线处将出现一根散射光的谱线,叫做Stokes线。
假如样品分子与入射光子发生反应前的一瞬间不处于最低振动能级的能级基态,而是处于电子能级基态的振动能级激发态时,则在入射光光子作用后它跃迁到准激发态,该分子退回到了电子振动能级基态,这样散射光的能量比入射光子能量大,这时谱线位于瑞利谱线的高频率一侧,称为anti-Stokes线。
激光拉曼光谱的发展历史、原理以及在催化领域的应用讲解
激光拉曼光谱的发展历史、原理以及在催化领域的应用作者:李帅鲜高启楠时间:2010-5-14 17:14:00论文关键词:激光拉曼光谱原理综述论文摘要:论文综述了激光拉曼光谱的发展历史、原理以及在催化领域的应用研究进展。
1拉曼光谱的发展历史印度物理学家拉曼于1928年用水银灯照射苯液体,发现了新的辐射谱线:在入射光频率ω0的两边出现呈对称分布的,频率为ω0-ω和ω0+ω的明锐边带,这是属于一种新的分子辐射,称为拉曼散射,其中ω是介质的元激发频率。
拉曼因发现这一新的分子辐射和所取得的许多光散射研究成果而获得了1930年诺贝尔物理奖。
与此同时,前苏联兰茨堡格和曼德尔斯塔报导在石英晶体中发现了类似的现象,即由光学声子引起的拉曼散射,称之谓并合散射。
法国罗卡特、卡本斯以及美国伍德证实了拉曼的观察研究的结果。
然而到1940年,拉曼光谱的地位一落千丈。
主要是因为拉曼效应太弱(约为入射光强的10-6),人们难以观测研究较弱的拉曼散射信号,更谈不上测量研究二级以上的高阶拉曼散射效应。
并要求被测样品的体积必须足够大、无色、无尘埃、无荧光等等。
所以到40年代中期,红外技术的进步和商品化更使拉曼光谱的应用一度衰落。
1960年以后,红宝石激光器的出现,使得拉曼散射的研究进入了一个全新的时期。
由于激光器的单色性好,方向性强,功率密度高,用它作为激发光源,大大提高了激发效率。
成为拉曼光谱的理想光源。
随探测技术的改进和对被测样品要求的降低,目前在物理、化学、医药、工业等各个领域拉曼光谱得到了广泛的应用,越来越受研究者的重视。
70年代中期,激光拉曼探针的出现,给微区分析注人活力。
80年代以来,美国Spex公司和英国Rr i ns how公司相继推出,位曼探针共焦激光拉曼光谱仪,由于采用了凹陷滤波器(notch filter)来过滤掉激发光,使杂散光得到抑制,因而不在需要采用双联单色器甚至三联单色器,而只需要采用单一单色器,使光源的效率大大提高,这样入射光的功率可以很低,灵敏度得到很大的提高。
激光拉曼光谱的基本原理和应用
激光拉曼光谱的基本原理和应用概述激光拉曼光谱是一种分析化学技术,通过激光与物质相互作用产生拉曼散射,来研究物质的结构、组成和分子间相互作用。
它具有非破坏性、无需样品准备和实时性等优点,逐渐成为了化学、材料科学、生物科学等领域的重要工具。
基本原理1.激光激发:使用单色激光激发样品,激光光源通常采用连续激光或脉冲激光。
2.拉曼散射:激光与物质相互作用时,部分光子会发生能量改变,产生拉曼散射。
拉曼散射分为斯托克斯拉曼散射和反斯托克斯拉曼散射两种类型。
3.能量转移:拉曼散射中发生的能量转移可以反映样品的各种信息,包括化学成分、结构、晶格振动、分子动力学等。
4.光谱测量:将拉曼散射的频率和强度进行测量,得到拉曼光谱。
拉曼光谱可以通过光谱解析获得样品的详细信息。
应用领域1. 分析化学•定性分析:通过比对拉曼光谱数据库,可以鉴定物质的组成和结构,例如鉴别药品中的成分、研究有机化合物的结构等。
•定量分析:利用拉曼光谱与物质的浓度之间的关系,可以进行定量分析,例如测定食品中的添加剂含量、检测环境中的污染物等。
•微生物检测:拉曼光谱可以用于微生物的快速检测与鉴别,例如检测食品中的细菌、水质中的藻类等。
2. 材料科学•表征材料:激光拉曼光谱可以用于表征各种材料,包括无机材料、有机材料和生物材料等,例如研究催化剂的表面性质、分析聚合物的分子结构等。
•动态研究:拉曼光谱可以实时监测样品的变化过程,例如观察材料的相变、溶液的反应动力学等。
•薄膜制备:通过拉曼光谱的组成分析,可以优化薄膜的制备过程,提高其性能。
3. 生物科学•细胞研究:利用激光拉曼光谱,可以对细胞的化学成分进行非破坏性分析,例如观察细胞的代谢活性、鉴别癌细胞等。
•药物研发:拉曼光谱可以用于药物的研发过程中,以评估其结构、稳定性和溶解度等。
•生物分子结构解析:通过拉曼光谱,可以研究生物分子的结构和相互作用,例如蛋白质的折叠状态、核酸的结构等。
研究进展•激光技术的进步:随着激光技术的不断发展,激光拉曼光谱的应用范围和灵敏度得到了显著提高。
拉曼光谱分析的原理及应用
拉曼光谱分析的原理及应用1. 引言拉曼光谱分析是一种非常重要的光谱分析技术,可以用于物质的成分分析和结构表征。
本文将介绍拉曼光谱分析的基本原理,并探讨其在各个领域的应用。
2. 拉曼光谱分析的原理拉曼光谱分析基于拉曼散射效应,其原理可以简单概括为:物质受到激光照射后,光子与分子进行相互作用,一部分光子会被散射并改变频率,这个频率差称为拉曼散射频移。
通过测量拉曼散射光的频移,可以获取物质的结构信息和振动模式。
3. 拉曼光谱分析的步骤拉曼光谱分析包括以下几个步骤: - 选择适当的激光源和光谱仪,确保实验条件和仪器精度; - 将样品与激光束进行交互作用,通常采用激光聚焦技术,使激光与样品相互作用,产生拉曼散射光; - 使用光谱仪收集拉曼散射光,并对其进行光谱分析,包括频移的测量和峰谱分析; - 对光谱数据进行处理和解析,以获取样品的结构信息和振动模式。
4. 拉曼光谱分析的应用领域拉曼光谱分析在各个领域都有广泛的应用。
以下列举了几个典型的应用领域:4.1 材料科学•材料成分分析:通过拉曼光谱分析,可以对材料的成分进行快速、非破坏性的检测,如金属合金、聚合物材料等。
•相变研究:通过观察拉曼光谱中的频移和峰形变化,可以研究材料在不同温度和压力下的相变过程。
4.2 生物医学•药物分析:拉曼光谱可以用于药物的质量控制和表征,如药物的纯度、结晶形态等。
•细胞研究:通过拉曼光谱技术,可以对细胞内的分子成分和代谢物进行分析,以研究细胞的结构和功能。
4.3 环境监测•气体检测:拉曼光谱分析可以用于快速检测大气中的气体成分,如空气中的二氧化碳、甲烷等。
•水质检测:通过拉曼光谱分析,可以对水质进行快速、非破坏性的检测,如水中的重金属离子、有机物等。
4.4 犯罪科学•鉴定和分析:拉曼光谱分析可以被用于犯罪现场的样品分析和鉴定,如毒品、爆炸物等。
5. 拉曼光谱分析的优势和挑战拉曼光谱分析具有以下优势: - 非破坏性:样品不需要受到破坏或改变,可以进行多次分析。
拉曼光谱的原理及应用
拉曼光谱的原理及应用拉曼光谱由于近几年来以下几项技术的集中进展而有了更普遍的应用。
这些技术是:CCD 检测系统在近红外区域的高灵敏性,体积小而功率大的二极管激光器,与激发激光及信号过滤整合的光纤探头。
这些产品连同高口径短焦距的分光光度计,提供了低荧光本底而高质量的拉曼光谱和体积小、容易利用的拉曼光谱仪。
(一)含义光照射到物质上发生弹性散射和非弹性散射. 弹性散射的散射光是与激发光波长相同的成份.非弹性散射的散射光有比激发光波长长的和短的成份, 统称为拉曼效应当用波长比试样粒径小得多的单色光照射气体、液体或透明试样时,大部份的光会按原先的方向透射,而一小部份那么按不同的角度散射开来,产生散射光。
在垂直方向观看时,除与原入射光有相同频率的瑞利散射外,还有一系列对称散布着假设干条很弱的与入射光频率发生位移的拉曼谱线,这种现象称为拉曼效应。
由于拉曼谱线的数量,位移的大小,谱线的长度直接与试样分子振动或转动能级有关。
因此,与红外吸收光谱类似,对拉曼光谱的研究,也能够取得有关分子振动或转动的信息。
目前拉曼光谱分析技术已普遍应用于物质的鉴定,分子结构的研究谱线特点(二)拉曼散射光谱具有以下明显的特点:a.拉曼散射谱线的波数尽管随入射光的波数而不同,但对同一样品,同一拉曼谱线的位移与入射光的波长无关,只和样品的振动转动能级有关;b. 在以波数为变量的拉曼光谱图上,斯托克斯线和反斯托克斯线对称地散布在瑞利散射线双侧, 这是由于在上述两种情形下别离相应于取得或失去了一个振动量子的能量。
c. 一样情形下,斯托克斯线比反斯托克斯线的强度大。
这是由于Boltzmann散布,处于振动基态上的粒子数远大于处于振动激发态上的粒子数。
(三)拉曼光谱技术的优越性提供快速、简单、可重复、且更重要的是无损伤的定性定量分析,它无需样品预备,样品可直接通过光纤探头或通过玻璃、石英、和光纤测量。
另外1 由于水的拉曼散射很微弱,拉曼光谱是研究水溶液中的生物样品和化学化合物的理想工具。
激光拉曼光谱的原理和应用及拉曼问答总结(整理完毕)
激光拉曼光谱的原理和应用当用波长比试样粒径小得多的单色光照射气体、液体或透明试样时,大部分的光会暗原来的发现透射,而一小部分则按不同的角度散射开来,产生散射光。
在垂直方向观察时,除了与原入射光有相同频率的瑞利散射外,还有一系列对称分布着若干条很弱的与入射光频率发生位移的拉曼谱线,这种现象称为拉曼效应。
由于拉曼谱线的数目,位移的大小,谱线的长度直接与试样分子振动或转动能级有关。
因此,与红外吸收光谱类似,对拉曼光谱的研究,也可以得到有关分子振动或转动的信息。
目前拉曼光谱分析技术已广泛应用于物质的鉴定,分子结构的研究推荐激光拉曼光谱法是以拉曼散射为理论基础的一种光谱分析方法。
激光拉曼光谱法的原理是拉曼散射效应。
拉曼散射:当激发光的光子与作为散射中心的分子相互作用时,大部分光子只是发生改变方向的散射,而光的频率并没有改变,大约有占总散射光的10-10-10-6的散射,不公改变了传播方向,也改变了频率。
这种频率变化了的散射就称为拉曼散射。
对于拉曼散射来说,分子由基态E0被激发至振动激发态E1,光子失去的能量与分子得到的能量相等为△E反映了指定能级的变化。
因此,与之相对应的光子频率也是具有特征性的,根据光子频率变化就可以判断出分子中所含有的化学键或基团。
这就是拉曼光谱可以作为分子结构的分析工具的理论工具。
拉曼光谱仪的主要部件有:激光光源、样品室、分光系统、光电检测器、记录仪和计算机。
应用激光拉曼光谱法的应用有以下几种:在有机化学上的应用,在高聚物上的应用,在生物方面上的应用,在表面和薄膜方面的应用。
有机化学拉曼光谱在有机化学方面主要是用作结构鉴定的手段,拉曼位移的大小、强度及拉曼峰形状是碇化学键、官能团的重要依据。
利用偏振特性,拉曼光谱还可以作为顺反式结构判断的依据。
高聚物拉曼光谱可以提供关于碳链或环的结构信息。
在确定异构体(单休异构、位置异构、几何异构和空间立现异构等)的研究中拉曼光谱可以发挥其独特作用。
拉曼光谱知识点总结
拉曼光谱知识点总结一、拉曼光谱的基本原理拉曼光谱是拉曼效应的一种应用,其基本原理是当激发光子与分子或晶体相互作用时,会发生频率改变的散射,即拉曼散射。
在拉曼散射中,激发光子与分子或晶体相互作用后,会发生振动、转动、晶格等能级的跃迁,导致散射光的频率发生改变,从而产生拉曼谱线。
在拉曼光谱中,通常会出现两种散射光:一种是入射光的频率不变,称为斯托克斯线;另一种是入射光的频率改变,称为反斯托克斯线。
斯托克斯线的频率低于入射光,而反斯托克斯线的频率高于入射光。
通过测量拉曼光谱中斯托克斯线和反斯托克斯线的频率差和强度,就可以得到样品的拉曼光谱,进而分析样品的结构和化学成分。
二、拉曼光谱仪器为了进行拉曼光谱分析,我们需要使用拉曼光谱仪。
拉曼光谱仪通常由以下几个部分组成:激光器、样品台、光谱仪和检测器。
激光器用来提供单色激光光源,通常使用氦氖激光器、二极管激光器或固体激光器。
样品台用来支撑样品,并且通常具有微动装置,可以实现样品的旋转或者移动,以便对样品进行全方位的测量。
光谱仪用来分析散射光的频率,通常使用动蕉或平板光栅光谱仪。
检测器用来测量散射光的强度,常见的检测器包括光电二极管、CCD等。
除了上述基本组成部分外,拉曼光谱仪还可能配备激光聚焦透镜、样品定位装置、光纤耦合装置等附件,以满足不同实验需求。
例如,激光聚焦透镜可以提高激光光斑的聚焦效率,样品定位装备可以实现精确的样品定位,光纤耦合装置可以将散射光传输到光谱仪中进行分析。
这些附件能够提高拉曼光谱仪的性能,使其能够适用于更广泛的应用领域。
三、拉曼光谱的应用拉曼光谱具有非常广泛的应用领域,涉及化学、材料、生物、医学等领域。
在化学领域,拉曼光谱可以用来分析有机物、无机物、聚合物、生物大分子等化合物的结构和性质,例如用来鉴别和定量分析化合物、研究分子间的相互作用、探测反应中的中间体和产物等。
在材料领域,拉曼光谱可以用来研究晶体结构、纳米材料、全息材料、光子晶体等新型材料的光学性质和结构特征,例如用来研究晶体晶格振动、材料表面等离子体共振等。
拉曼光谱及其应用
拉曼光谱及其应用拉曼光谱是一种分析物质结构和化学组成的非侵入性技术,并广泛应用于许多领域,包括材料科学、生命科学和环境科学。
本文将介绍拉曼光谱的原理、仪器和一些常见的应用。
一、拉曼光谱的原理拉曼光谱是一种基于拉曼散射现象的光谱技术。
当激光等能量较高的光与物质相互作用时,光子会与物质中的分子相互作用,产生散射现象。
拉曼散射分为斯托克斯散射和反斯托克斯散射两种类型,它们分别与物质的低频和高频振动模式相对应。
根据拉曼散射现象,我们可以获得物质的拉曼光谱。
拉曼光谱是由于分子振动引起的光散射频移所产生的谱线,可以提供关于物质结构、键合性质和化学组成的信息。
每个物质都有独特的拉曼光谱,因此拉曼光谱可以用于研究和识别不同的物质。
二、拉曼光谱的仪器为了获取物质的拉曼光谱,我们需要使用拉曼光谱仪。
一般的拉曼光谱仪包括激光光源、样品台、光学系统和光谱仪。
首先,激光光源是产生高能量光束的关键组件。
常见的激光光源包括氩离子激光器、二极管激光器和红外激光器。
不同的激光光源可以提供不同的波长范围和功率输出,以适应不同样品的测量需求。
其次,样品台是用于支撑和定位样品的平台。
样品台需要具备良好的稳定性和精确度,以确保样品在测量期间的位置和姿态不变。
然后,光学系统包括镜头、滤光片和光纤等组件,用于操控和导引激光光束。
光学系统的设计和优化可以提高信号强度和降低背景噪音,从而提高拉曼信号的检测灵敏度。
最后,光谱仪用于测量和分析样品散射的光谱。
它通常包括光栅、光电二极管和数据采集系统等部分。
光谱仪的性能决定了拉曼光谱的分辨率和信噪比,因此选择合适的光谱仪非常重要。
三、拉曼光谱的应用1. 材料科学领域拉曼光谱在材料科学中具有广泛的应用。
通过测量材料的拉曼光谱,我们可以了解材料的晶格结构、键合状态和纳米尺度的相变等信息。
拉曼光谱还可以用于研究材料缺陷、应力分布和化学反应等过程。
因此,在材料设计、合成和评估中,拉曼光谱起到了重要的作用。
2. 生命科学领域在生命科学中,拉曼光谱被广泛应用于细胞学、生物医药等领域。
拉曼光谱原理与应用
拉曼光谱原理与应用光谱分析是一种通过测量物质与光的相互作用来研究物质性质的方法。
在光谱分析中,拉曼光谱因其独特的原理和广泛的应用而备受关注。
本文将全面介绍拉曼光谱的原理、仪器设备以及在不同领域中的应用。
一、拉曼光谱的原理拉曼光谱是指当光线与物质作用时,光的频率发生改变并散射的现象。
这种频率改变称为拉曼散射,其产生的原因是分子或晶体结构的振动或旋转。
具体来说,光与物质发生相互作用时,部分光子与物质的分子或晶格发生能量交换,使得被散射的光子频率发生改变。
而这种频率变化所携带的信息,可以用来研究物质的组成、结构以及状态。
二、拉曼光谱的仪器设备为了获得高质量的拉曼光谱数据,需要使用一些专门的仪器设备。
典型的拉曼光谱仪通常包括以下几个部分:1. 激光器:激光器是产生高强度和单色性光线的关键组成部分。
常用的激光器有氩离子激光器、固体激光器和半导体激光器等。
激光的选择应根据样品的特性和研究的目的来确定。
2. 光学系统:光学系统通常由透镜、准直器、滤光片等组成。
其主要功能是对光进行聚焦、准直和滤波,以保证光在样品表面的合适条件下进行相互作用。
3. 光谱仪:光谱仪是将散射光分离成不同频率的设备。
常用的光谱仪包括单色仪、衍射光栅、光电倍增管等。
光谱仪的性能决定了拉曼光谱信号的质量和分辨率。
三、拉曼光谱的应用拉曼光谱广泛应用于各个领域,如物理化学、材料科学、生物医学等,具有非常重要的意义。
1. 物理化学应用:拉曼光谱可以用于分析物质的结构和组成。
通过测量样品的拉曼光谱,可以获得有关物质分子振动状态的信息,帮助研究人员了解分子之间的相互作用和化学键的性质。
此外,拉曼光谱还可以用于表面增强拉曼光谱(SERS)的分析,提高灵敏度和检测限。
2. 材料科学应用:拉曼光谱在材料科学领域中具有广泛应用。
通过对材料的拉曼光谱分析,可以获得有关材料晶格振动和晶格结构的信息,揭示材料的物理特性和相变行为。
同时,拉曼光谱还可以用于研究材料的缺陷和应力状态,为材料设计和改进提供重要参考。
拉曼光谱技术的原理及应用
拉曼光谱技术的原理及应用拉曼光谱技术是一种分析样品中分子的非常有效的方法。
在该技术中,利用拉曼效应同样也可以识别特定的纳米颗粒和其他不透明的物质。
本文将详细阐述拉曼光谱技术的原理及应用。
1. 拉曼光谱技术的原理拉曼光谱技术是一种激光光谱技术,它利用样品的分子振动模式(横振动、伸缩和扭曲等模式),使分子发生光散射,并将散射的光收集起来进行分析。
在拉曼光谱技术中,将激光照射到样品上,样品分子中的大部分仍然是以核的振动模式存在。
但当激光的频率与分子的振动频率相同时,由于拉曼效应的作用,部分光子将分离并产生红移或蓝移。
这个现象就是拉曼散射现象。
拉曼效应的原理是,当光子入射到分子上时,分子表现出类似摆动的运动,这种运动随着时间的推移而释放出特定频率的光子,这样就形成了拉曼散射光谱特征峰。
拉曼光谱学中的光谱特征包括波数(公式1)和相对强度(公式2),如下所示:公式1:wavenumber(cm^-1)=1/wavelength(cm)公式2:Relative intensity(I/I0)在拉曼光谱图中,相对强度是指各个峰的高度比较,波数则表示各个峰所对应到的分子振动能量。
实验室中常用的拉曼光谱仪的波数精度一般在1 cm^-1左右。
2. 拉曼光谱技术的应用2.1 分子结构和化学成分的分析拉曼光谱技术可以为分子结构和化学成分的分析提供非常重要的信息。
如在红外光谱技术中,只有具有矢量性的分子振动模式才能产生吸收峰,因此该技术对于分析非常规的分子结构并不适用。
而拉曼光谱技术可以用于任何分子结构的振动分析,可以检测出如异构体、杂质或药物的不同形式等信息。
由于拉曼光谱可以通过常压、接触以及非接触的方法进行采集,因此这使得样品的限制条件相对较少。
2.2 生物检测和药品品质检测拉曼光谱技术在生物医学分析领域中也得到广泛应用。
在这个领域中,拉曼光谱技术可以用于检测血液中的各种生物分子,如细胞、蛋白质、DNA、荷尔蒙、抗生素和维生素等。
拉曼光谱的工作原理与化学分析应用
拉曼光谱的工作原理与化学分析应用拉曼光谱是一种用于分析物质的非破坏性技术,通过测量物质与入射光发生散射后所产生的频移来获取物质的结构和成分信息。
它具有许多优点,如高分辨率、高灵敏度和非接触式测量等,因此在化学领域中被广泛应用于物质表征和化学分析。
本文将介绍拉曼光谱的工作原理,并探讨其在化学分析中的应用。
一、拉曼光谱的工作原理拉曼光谱基于拉曼散射现象,该现象是指入射光与物质分子或晶格相互作用后发生频移而产生的散射光。
具体来说,当入射光与物质相互作用时,部分光子与物质分子或晶格之间发生能量交换,导致光子频率的微小改变,进而形成散射光。
拉曼光谱仪通常由光源、样品、光谱仪和探测器等部分组成。
首先,光源会产生一束单色光,并通过光学系统照射到样品上。
样品中的分子或晶格会吸收部分入射光,并重新辐射出来,形成散射光。
其中,大部分散射光与入射光具有相同的频率,称为Rayleigh散射;而少部分光子频率发生微小改变,称为拉曼散射。
接下来,散射光通过光谱仪进行分析。
光谱仪根据光的频率将散射光分解成不同波长的光,然后由探测器接收并将其转化为电信号。
最终,我们可以通过分析这些电信号的强度和频率变化来获取样品的拉曼光谱图。
二、拉曼光谱的化学分析应用拉曼光谱在化学分析中具有广泛的应用,下面将重点介绍几个常见的应用领域。
1. 有机化学拉曼光谱能够提供有机化合物的结构信息,如键振动模式和分子对称性信息。
通过分析样品的拉曼光谱图,我们可以确定化合物的官能团、键的类型、取代基的位置等。
因此,拉曼光谱在有机化学中被广泛用于化合物的鉴定和结构分析。
2. 焦炭和无机材料拉曼光谱对于研究焦炭和无机材料中的晶格振动模式具有重要意义。
通过测量这些材料的拉曼光谱,可以获得晶格结构、杂质和缺陷等信息。
对于焦炭来说,拉曼光谱可以用于确定其结晶度、形貌和石墨化程度,对于无机材料来说,可以用于分析其晶体结构和化学成分。
3. 生物医学在生物医学领域,拉曼光谱被广泛应用于分析细胞和组织中的化学成分。
拉曼光谱的原理与应用
拉曼光谱的原理与应用拉曼光谱是一种非常重要的光谱技术,可用于研究物质的结构、功能和相互作用等方面。
它以拉曼散射现象为基础,利用光与物质相互作用而产生的散射光谱来分析物质的化学结构。
本文将详细介绍拉曼光谱的原理、测量方法和应用。
一、拉曼光谱的原理拉曼光谱的原理源于拉曼散射现象,即当入射光线照射到物质上时,部分光线会被物质吸收,部分会经过物质后发生散射。
如果散射光比入射光具有不同的波长,称之为拉曼散射。
在拉曼散射中,散射光的波长可以比原光谱长或短,这种现象称为拉曼效应。
拉曼效应是由于散射光与物质所产生的迈耳振动相互作用而导致的。
当入射光线与物质相互作用时,物质分子的化学键会发生伸缩和扭曲等变形,导致分子内部的原子发生迈耳振动。
这种振动会导致散射光发生波长偏移,即产生拉曼散射。
而这种波长偏移的大小与物质的分子结构和化学键种类等因素有关。
二、拉曼光谱的测量方法拉曼光谱的测量方法通常采用激光散射光谱仪测量。
这种仪器主要由激光器、样品池、光谱仪和探测器等组成。
下面是具体的测量步骤:1. 准备样品。
样品准备是拉曼光谱测量的非常重要的一步。
样品的制备应该避免填充杂质和提高位移的材料。
制备时应进行必要的纯化、淘汰和处理等。
2. 调整仪器。
首先需要调整激光器的出射功率,使其适当。
此外,需要调整样品池和准直器,以保证激光光束斜射物体面上时角度恰当,即使散射光进入探测器。
3. 开始测量。
当准备好样品并调整好仪器后,即可进行拉曼光谱的测量。
在测量前,需要对样品进行预热处理,以确保在测量过程中保持稳定状态。
4. 分析光谱数据。
测量完成后,需要对数据进行分析和处理。
此时应使用适当的软件来处理光谱数据,以确定样品的化学组成、分子结构和功能等信息。
三、拉曼光谱的应用拉曼光谱在材料科学、化学、生命科学、环境科学、地球科学等领域都有广泛的应用。
它可以用于研究各种不同的物质样品,包括有机物、无机物、高分子材料、药物、金属材料、纳米材料等等。
激光拉曼光谱的发展历史、原理以及应用
激光拉曼光谱的发展历史、原理以及应用2.5、拉曼散射的选择定则外加交变电磁场作用于分子内的原子核和核外电子,可以使分子电荷分布的形状发生畸变,产生诱导偶极矩。
极化率是分子在外加交变电磁场作用下产生诱导偶极矩大小的一种度量。
极化率高,表明分子电荷分布容易发生变化。
如果分子的振动过程中分子极化率也发生变化,则分子能对电磁波产生拉曼散射,称分子有拉曼活性。
有红外活性的分子振动过程中有偶极矩的变化,而有拉曼活性的分子振动时伴随着分子极化率的改变。
因此,具有固有偶极矩的极化基团,一般有明显的红外活性,而非极化基团没有明显的红外活性。
拉曼光谱恰恰与红外光谱具有互补性。
凡是具有对称中心的分子或基团,如果有红外活性,则没有拉曼活性;反之,如果没有红外活性,则拉曼活性比较明显。
一般分子或基团多数是没有对称中心的,因而很多基团常常同时具有红外和拉曼活性。
当然,具体到某个基团的某个振动,红外活性和拉曼活性强弱可能有所不同。
有的基团如乙烯分子的扭曲振动,则既无红外活性又无拉曼活性。
3、激光拉曼光谱在催化研究中的应用应用激光光源的拉曼光谱法,由于激光具有单色性好、方向性强、亮度高、相干性等特性,因此,激光拉曼光谱与傅里叶变换红外光谱相配合,已成为分子结构研究的主要手段。
激光拉曼光谱应用于催化领域的研究已经有几十年的历史,并在负载型金属氧化物、分子筛、原位反应和吸附等研究中取得了丰富的成果。
激光拉曼光谱在分子筛研究中的应用:分子筛的骨架振动、杂原子分子筛的表征、分子筛的合成。
催化剂表面吸附的研究:目前拉曼光谱在催化剂表面吸附行为研究中的主要用途之一就是以吡啶为吸附探针对催化剂的表面酸性进行研究。
催化剂表面物种的研究:拉曼光谱在负载型金属氧化物的研究中发挥了很重要的作用,不但能够得到表面物种的结构信息,而且能将结构与反应活性和选择性进行很好地关联,这在催化研究中是非常重要的但是,由于载体一般有很强的荧光干扰,使一些氧化物,特别是低负载量氧化物的常规拉曼光谱研究遇到了很大的困难。
激光拉曼光谱的原理及应用
激光拉曼光谱的原理及应用1. 激光拉曼光谱简介激光拉曼光谱是一种非损伤性、非接触性的光谱分析技术,通过测量样品散射光与激光光源相比较发生的Raman散射,得到样品的结构和成分信息。
激光拉曼光谱具有高灵敏度、快速测量、高准确性等优点,在材料科学、生物化学、环境监测等领域有广泛应用。
2. 激光拉曼光谱原理激光拉曼光谱的原理基于拉曼散射现象,当激光与物质相互作用时,部分光子发生能量的转移,散射光中频移与分子振动或晶格振动的能量差相对应,这种频移即为拉曼散射。
拉曼光谱是通过记录样品散射光的频移和强度,来研究物质结构和成分的一种手段。
3. 激光拉曼光谱的基本步骤激光拉曼光谱的测量过程可以分为以下几个步骤:• 3.1 激光照射:选择合适的激光源,将激光光束聚集到样品上。
• 3.2 散射光收集:收集由样品散射的光,包括弹性散射光和Raman 散射光。
• 3.3 光谱检测:使用光谱仪检测、记录散射光的频移和强度。
• 3.4 数据分析:对测量到的光谱进行数据处理和分析,提取所需的结构和成分信息。
4. 激光拉曼光谱的应用领域4.1 材料科学•纳米材料研究:激光拉曼光谱可以用于表征纳米材料的结构、形貌等,帮助研究者了解纳米材料的性质和行为。
•材料质量控制:通过对材料进行激光拉曼光谱分析,可以判断材料的纯度、杂质含量等,提高材料的质量控制水平。
•化学反应研究:激光拉曼光谱可以实时监测化学反应过程中的物质转化和结构变化,为反应机理的研究提供详细信息。
4.2 生物化学•药物研发:激光拉曼光谱可以用于药物分子结构的表征和药物与靶标的相互作用研究,加速药物研发过程。
•生物分析:激光拉曼光谱可以用于分析生物样品中的蛋白质、核酸等生物大分子,实现快速、无损伤的分析。
•病理诊断:激光拉曼光谱可以鉴定组织和细胞中的分子组成,提供快速的病理诊断手段。
4.3 环境监测•污染物检测:激光拉曼光谱可以快速检测环境中的化学污染物,如有机物、重金属等,有助于环境监测和治理。
拉曼光谱解答总结[整理版]
汇总:拉曼光谱百问解答总结!一、测试了一些样品,得到的是Ramanshift,但是文献是wavenumber,不知道它们之间的转换公式是怎么样的?激光波长632.8nm。
1. 两者是一回事。
ramanshift即为拉曼位移或拉曼频移,频率的增加或减小常用波数差表示,拉曼光谱仪得到的谱图横坐标就是波数wavenumber,单位cm-1。
2.两者一回事。
拉曼频移ramanshift指频率差,但通常用波数wavenumber表示,单位cm-1,可以说某个谱峰拉曼位移是??波数,或??cm-1。
3.在Raman谱中,wavenumber有两种理解,一种是相对波数,这时就等于Ramanshift;另一种是绝对波数(这在荧光光谱中用的比较多),这个绝对波数是与激发波长有关,不同的激发波长得到的绝对波数是不一样的,这时Ramanshift等于(10000000/激发波长减去Raman 峰的绝对波数)。
所以通常在Raman谱中,wavenumber一般可理解为Ramanshift。
二、如何用拉曼光谱仪测透明的有机物液体,测试时放到了玻璃片上测出来的结果是玻璃的光谱。
1. 我今天还在用激光拉曼测聚苯乙烯,没有出现你说的情况啊是不是玻璃管被污染的厉害?2. 你测出的玻璃的信号,有没有可能们焦点位置不对?3. 应该是聚焦位置不对,聚在玻璃上了,我以前也犯过同样的错误。
4. 用凹面载玻片,液体量会比较多,然后用显微镜聚焦好就可以了,如果液体有挥发性,最好液体上用盖玻片,然后焦点聚焦到盖玻片以下。
如果还不行,你可以查一下“液芯光纤”这个东东5.建议:(1)有机液体里面的分析物质浓度多大? Raman测定的是散射光,所以在溶液中的强度相对比较底,故分析物浓度要大些。
(2)你用的是共聚焦Raman吗?聚焦点要在毛细管的溶液里面才好。
可以在溶液中放点“杂物”方便聚焦。
(3)玻璃是无定形态物质,应该Raman信号比较弱才对。
三、我们这里有做生物样品的拉曼光谱的,在获得的图里面有很强的荧光,有的说,如果拉曼得不到就用其荧光谱。
拉曼光谱的基本原理与应用
拉曼光谱的基本原理与应用拉曼光谱是一种非破坏性分析技术,由印度物理学家拉曼开创并发展而来。
它通过分析样品所散发的光谱来确定分子结构、化学成分和材料特性等信息。
拉曼光谱具有许多优点,例如不需要样品前处理、非接触式测量、快速、灵敏、精确、可适用于多种材料和环境等,因此广泛应用于化学、生物、材料、环境等领域。
一、拉曼光谱的基本原理拉曼光谱的基本原理是当光通过样品时,与分子间的化学键产生相互作用,部分光子的频率发生差异,即发生频移。
这个频移实际上代表着分子所包含信息的变化,可以通过光谱仪进行解析。
这个过程被称为拉曼散射,是通过散射光的波长来分析物质性质和结构的一种手段。
拉曼光谱的频移称为拉曼位移,它的大小取决于样品分子的种类和化学结构。
对于化学键为单键的分子而言,拉曼位移通常在200~2000 cm-1的范围内。
而对于无规共聚物、芳香化合物和配合物等复杂体系,则有更多不同的频移区域。
这些频移区域被称为谱带或谱线,不同的谱带或谱线对应着不同的化学键和分子振动模式。
二、拉曼光谱的应用1. 化学分析拉曼光谱先进的分析能力使其成为化学分析的理想选择。
它可以快速、非破坏地测量复杂的样品,例如药品、化妆品、有机材料等,并能够提供详细的化学信息,包括分子组成、配位情况、晶格结构等。
拉曼光谱还可用于表征污染物、生物分子、纳米材料等,这些样品对其他技术来说可能难以处理或测量。
2. 生物医学拉曼光谱在生物医学中的应用颇具前景。
生物分子的拉曼光谱曲线能够反映其精细的结构和组成。
例如,蛋白质、脂类、核酸等生物大分子的不同区域都有独特的拉曼光谱表征,可以用来诊断肿瘤、糖尿病、心血管疾病等疾病,同时还可以鉴别不同种类的微生物,提高了生物样品检测和诊疗的准确度。
3. 材料科学由于拉曼光谱可以直接探测化学成分和结构,因此在材料研究领域中应用广泛。
例如,拉曼光谱可以用来表征多种材料的提纯度、结构、形貌等特征,推进制备技术的发展,例如复合材料、微纳米材料、薄膜等。
激光拉曼光谱法的原理和应用实例
激光拉曼光谱法的原理和应用实例1. 原理激光拉曼光谱法是通过激发样品中的分子振动使其发生光散射,进而通过分析散射光子的能量变化来确定样品的组成和结构。
其原理主要涉及以下几个方面:1.1 拉曼散射拉曼散射是光与分子相互作用产生的光散射现象。
当光与样品分子相互作用时,部分光子的能量会发生改变,这种能量变化即为拉曼散射。
拉曼散射分为斯托克斯拉曼散射和反斯托克斯拉曼散射两种,其中斯托克斯拉曼散射的光子能量减小,反斯托克斯拉曼散射的光子能量增大。
1.2 激发光源激光是产生拉曼散射的关键光源。
激光具有单色性、高亮度和狭窄线宽等特点,能够提供足够的功率和光子密度。
常用的激光光源包括氦氖激光器、固体激光器和半导体激光器等。
1.3 散射光子激发样品后,样品发射出的散射光子包含了拉曼散射光子。
这些散射光子的能量在激发光子的基础上发生了变化,通过测量散射光子的能量变化可以推断出样品的振动模式和化学成分。
2. 应用实例激光拉曼光谱法在许多领域中都有广泛的应用,下面列举了几个典型的应用实例。
2.1 材料科学激光拉曼光谱法在材料科学中被用于材料的组成和结构分析。
通过测量散射光子能量的变化,可以得到材料中不同化学键的振动信息,从而确定其组成和结构。
这对于材料的研发和分析具有重要意义。
2.2 生物医学激光拉曼光谱法在生物医学领域中被广泛应用于生物分子的定量和定性分析。
通过测量生物样品中的拉曼散射光子能量变化,可以获得样品中不同化学物质的信息,包括蛋白质、核酸和脂类等。
这对于研究疾病的发生机制和诊断具有重要意义。
2.3 环境监测激光拉曼光谱法在环境监测中可用于检测和分析土壤、水和大气等环境样品中的化学物质。
通过测量散射光子的能量变化,可以确定样品中的有机物、无机物和污染物等成分,从而评估环境污染状况。
2.4 食品安全激光拉曼光谱法在食品安全检测中起到重要作用。
利用激光拉曼技术可以检测食品中的农药残留、添加剂和污染物等有害物质,确保食品的质量和安全。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
激光拉曼光谱的原理和应用当用波长比试样粒径小得多的单色光照射气体、液体或透明试样时,大部分的光会暗原来的发现透射,而一小部分则按不同的角度散射开来,产生散射光。
在垂直方向观察时,除了与原入射光有相同频率的瑞利散射外,还有一系列对称分布着若干条很弱的与入射光频率发生位移的拉曼谱线,这种现象称为拉曼效应。
由于拉曼谱线的数目,位移的大小,谱线的长度直接与试样分子振动或转动能级有关。
因此,与红外吸收光谱类似,对拉曼光谱的研究,也可以得到有关分子振动或转动的信息。
目前拉曼光谱分析技术已广泛应用于物质的鉴定,分子结构的研究推荐激光拉曼光谱法是以拉曼散射为理论基础的一种光谱分析方法。
激光拉曼光谱法的原理是拉曼散射效应。
拉曼散射:当激发光的光子与作为散射中心的分子相互作用时,大部分光子只是发生改变方向的散射,而光的频率并没有改变,大约有占总散射光的10-10-10-6的散射,不公改变了传播方向,也改变了频率。
这种频率变化了的散射就称为拉曼散射。
对于拉曼散射来说,分子由基态E0被激发至振动激发态E1,光子失去的能量与分子得到的能量相等为△E反映了指定能级的变化。
因此,与之相对应的光子频率也是具有特征性的,根据光子频率变化就可以判断出分子中所含有的化学键或基团。
这就是拉曼光谱可以作为分子结构的分析工具的理论工具。
拉曼光谱仪的主要部件有:激光光源、样品室、分光系统、光电检测器、记录仪和计算机。
应用激光拉曼光谱法的应用有以下几种:在有机化学上的应用,在高聚物上的应用,在生物方面上的应用,在表面和薄膜方面的应用。
有机化学拉曼光谱在有机化学方面主要是用作结构鉴定的手段,拉曼位移的大小、强度及拉曼峰形状是碇化学键、官能团的重要依据。
利用偏振特性,拉曼光谱还可以作为顺反式结构判断的依据。
高聚物拉曼光谱可以提供关于碳链或环的结构信息。
在确定异构体(单休异构、位置异构、几何异构和空间立现异构等)的研究中拉曼光谱可以发挥其独特作用。
电活性聚合物如聚毗咯、聚噻吩等的研究常利用拉曼光谱为工具,在高聚物的工业生产方面,如对受挤压线性聚乙烯的形态、高强度纤维中紧束分子的观测,以及聚乙烯磨损碎片结晶度的测量等研究中都彩了拉曼光谱。
生物拉曼光谱是研究生物大分子的有力手段,由于水的拉曼光谱很弱、谱图又很简单,故拉曼光谱可以在接近自然状态、活性状态下来研究生物大分子的结构及其变化。
拉曼光谱在蛋白质二级结构的研究、DNA和致癌物分子间的作用、视紫红质在光循环中的结构变化、动脉硬化操作中的钙化沉积和红细胞膜的等研究中的应用均有文献报道。
利用FT-Raman消除生物大分子荧光干扰等,有许多成功的示例。
表面和薄膜拉曼光谱在材料的研究方面,在相组成界面、晶界等课题中可以做很多我作。
最近,对于拉曼光谱在金刚石和类金刚石薄膜的研究工作中的应用,国内外学者的兴趣有增无减。
拉曼光谱已成CVD(化学气相沉积法)制备薄膜的检测和鉴定手段。
另外,LB膜的拉曼光谱研究、二氧化硅薄膜氮化的拉曼光谱研究都已见报道。
尽管拉曼散射很弱,拉曼光谱通常不够灵敏,但利用工振或表面增强拉曼技术就可以大大加强拉曼光谱的灵敏度。
表面增强拉曼光谱学(SERS)已成为拉曼光谱研究中活跃的一个领域。
发展传统的光栅分光拉曼光谱仪,彩的是逐点扫描,单道记录的方法,十分浪费时间。
而且激光拉曼光谱仪所用的激光很容易激发出荧光来,影响测定。
为避免传统激光光谱仪的弊端近来研制出了两种新型的光谱仪:傅里叶变换近红外激光拉曼光谱仪和共焦激光光谱仪。
傅里叶拉曼光谱仪由激光光源、试样室、迈克尔逊干淑仪、特殊滤光器、检测器组成。
傅里叶拉曼光谱仪和光路与傅里叶红外光谱仪的光路比较相象。
检测到的信号经放大器由计算机收集处理。
瑞利散射与拉曼散射的区别.分子的外层电子在辐射能的照射下,吸收能量使电子激发至基态中较高的振动能级,在10-12s 左右跃回原能级并产生光辐射,这种发光现象称为瑞利散射.分子的外层电子在辐射能的照射下,吸收能量使电子激发至基态中较高的振动能级,在10-12s 左右跃回原能级附近的能级并产生光辐射,这种发光现象称为拉曼散射.两者皆为光子与物质的分子碰撞时产生的,瑞利散射基于碰撞过程中没有能量交换,故其发光的波长仅改变运动的方向,产生的光辐射与入射光波长相同称为弹性碰撞.拉曼散射基于非弹性碰撞,光子不仅改变运动的方向,而且有能量交换,故其发光的波长与入射光波长不同.拉曼小常识拉曼是一种光散射过程Raman Effect = Light Scattering激光能量- 振动谱能量= 拉曼散射光能量(振动谱能量对应分子结构)激光能量- 拉曼散射光能量= 振动谱能量(所得拉曼谱即为分子的指纹)拉曼光谱系统常用激光波长拉曼光谱系统组成部分拉曼光谱的优点和特点• Fin gerprint for Qualitative identification 指纹性振动谱•No sample preparation 不用样品制备• Fast and non destructive 快速,无损• Highly selective technique 高选择度北为何使用微区拉曼高空间分辨率;所须样品量少拉曼散射光谱应用拉曼光谱是直接联系于分子结构的振动谱,可对物质进行指纹性认证。
物质结构的任何微小变化会非常敏感反映在拉曼光谱中,因而可用来研究物质的物理化学等各方面性质随结构的变化。
广泛的应用领域:* 高分子聚合物* 纳米材料* 电化学* 半导体* 薄膜* 矿物学* 生物* 医学药品* 碳化物* 在线过程监测* 质量控制* 刑侦:- 玻璃材料- 氧化物- 油漆和颜料- 氢氧化物- 高分子- 硫化物- 爆炸- 碳酸盐- 纤维- 硫酸盐- 化学残留物- 磷酸盐- 颗粒性包裹体- 麻醉剂和可控制物质等等……红外和拉曼红外拉曼•分子振动谱•吸收,直接过程,发展较早•平衡位置附近偶极矩变化不为零•与拉曼光谱互补•实验仪器是以干涉仪为色散元件•测试在中远红外进行,不受荧光干扰,•低波数(远红外)困难,•微区测试较难,光斑尺寸约10微米,空间分辨率差•红外探测器须噪声高,液氮冷却,且灵敏度较低•多数须制备样品•水对红外光的吸收?•分子振动谱•散射,间接过程,自激光后才发展•平衡位置附近极化率变化不为零•与红外光谱互补•实验仪器是以光栅为色散元件•测试在可见波段进行,有时受样品荧光干扰,可采用近红外激发•低波数没有问题,•共焦显微微区测试,光斑尺寸可小到1微米,空间分辨率好•CCD探测器噪声低,热电冷却,灵敏度高,•无须制备样品,且可远距离测试•没有水对红外光吸收的干扰拉曼光谱仪的主要部件有:激光光源、样品室、分光系统、光电检测器、记录仪和计算机。
应用激光拉曼光谱法的应用有以下几种:在有机化学上的应用,在高聚物上的应用,在生物方面上的应用,在表面和薄膜方面的应用。
有机化学拉曼光谱在有机化学方面主要是用作结构鉴定的手段,拉曼位移的大小、强度及拉曼峰形状是碇化学键、官能团的重要依据。
利用偏振特性,拉曼光谱还可以作为顺反式结构判断的依据。
高聚物拉曼光谱可以提供关于碳链或环的结构信息。
在确定异构体(单休异构、位置异构、几何异构和空间立现异构等)的研究中拉曼光谱可以发挥其独特作用。
电活性聚合物如聚毗咯、聚噻吩等的研究常利用拉曼光谱为工具,在高聚物的工业生产方面,如对受挤压线性聚乙烯的形态、高强度纤维中紧束分子的观测,以及聚乙烯磨损碎片结晶度的测量等研究中都彩了拉曼光谱。
生物拉曼光谱是研究生物大分子的有力手段,由于水的拉曼光谱很弱、谱图又很简单,故拉曼光谱可以在接近自然状态、活性状态下来研究生物大分子的结构及其变化。
拉曼光谱在蛋白质二级结构的研究、DNA和致癌物分子间的作用、视紫红质在光循环中的结构变化、动脉硬化操作中的钙化沉积和红细胞膜的等研究中的应用均有文献报道。
利用FT-Raman消除生物大分子荧光干扰等,有许多成功的示例。
表面和薄膜拉曼光谱在材料的研究方面,在相组成界面、晶界等课题中可以做很多我作。
最近,对于拉曼光谱在金刚石和类金刚石薄膜的研究工作中的应用,国内外学者的兴趣有增无减。
拉曼光谱已成CVD(化学气相沉积法)制备薄膜的检测和鉴定手段。
另外,LB膜的拉曼光谱研究、二氧化硅薄膜氮化的拉曼光谱研究都已见报道。
尽管拉曼散射很弱,拉曼光谱通常不够灵敏,但利用工振或表面增强拉曼技术就可以大大加强拉曼光谱的灵敏度。
表面增强拉曼光谱学(SERS)已成为拉曼光谱研究中活跃拉曼光谱仪的主要部件有:激光光源、样品室、分光系统、光电检测器、记录仪和计算机。
应用激光拉曼光谱法的应用有以下几种:在有机化学上的应用,在高聚物上的应用,在生物方面上的应用,在表面和薄膜方面的应用。
有机化学拉曼光谱在有机化学方面主要是用作结构鉴定的手段,拉曼位移的大小、强度及拉曼峰形状是碇化学键、官能团的重要依据。
利用偏振特性,拉曼光谱还可以作为顺反式结构判断的依据。
高聚物拉曼光谱可以提供关于碳链或环的结构信息。
在确定异构体(单休异构、位置异构、几何异构和空间立现异构等)的研究中拉曼光谱可以发挥其独特作用。
电活性聚合物如聚毗咯、聚噻吩等的研究常利用拉曼光谱为工具,在高聚物的工业生产方面,如对受挤压线性聚乙烯的形态、高强度纤维中紧束分子的观测,以及聚乙烯磨损碎片结晶度的测量等研究中都彩了拉曼光谱。
生物拉曼光谱是研究生物大分子的有力手段,由于水的拉曼光谱很弱、谱图又很简单,故拉曼光谱可以在接近自然状态、活性状态下来研究生物大分子的结构及其变化。
拉曼光谱在蛋白质二级结构的研究、DNA和致癌物分子间的作用、视紫红质在光循环中的结构变化、动脉硬化操作中的钙化沉积和红细胞膜的等研究中的应用均有文献报道。
利用FT-Raman消除生物大分子荧光干扰等,有许多成功的示例。
表面和薄膜拉曼光谱在材料的研究方面,在相组成界面、晶界等课题中可以做很多我作。
最近,对于拉曼光谱在金刚石和类金刚石薄膜的研究工作中的应用,国内外学者的兴趣有增无减。
拉曼光谱已成CVD(化学气相沉积法)制备薄膜的检测和鉴定手段。
另外,LB膜的拉曼光谱研究、二氧化硅薄膜氮化的拉曼光谱研究都已见报道。
尽管拉曼散射很弱,拉曼光谱通常不够灵敏,但利用工振或表面增强拉曼技术就可以大大加强拉曼光谱的灵敏度。
表面增强拉曼光谱学(SERS)已成为拉曼光谱研究中活跃的一个领域。
发展传统的光栅分光拉曼光谱仪,彩的是逐点扫描,单道记录的方法,十分浪费时间。
而且激光拉曼光谱仪所用的激光很容易激发出荧光来,影响测定。
为避免传统激光光谱仪的弊端近来研制出了两种新型的光谱仪:傅里叶变换近红外激光拉曼光谱仪和共焦激光光谱仪。
傅里叶拉曼光谱仪由激光光源、试样室、迈克尔逊干淑仪、特殊滤光器、检测器组成。
傅里叶拉曼光谱仪和光路与傅里叶红外光谱仪的光路比较相象。