小学数学公式大全 六年级数学下册 知识点归纳整理
(完整版)小学六年级数学概念和公式大全
小学六年级数学概念和公式大全一、分数乘法1、 分数乘整数,用分数的分子与整数相乘的积作分子,分母不变。
2、 分数乘分数,用分子相乘的积作分子,分母相乘的积作分母。
3、 求一个数的几分之几是多少用乘法计算(一个数×几几=具体量)。
能约分的先约分再乘。
二、分数除法1、 乘积是1的两个数 互为倒数。
2、分数除以整数(0除外),等于分数乘这个数的倒数。
3、整数除以分数,就是整数乘这个数的倒数。
4、甲数除以乙数(0除外),等于甲数乘乙数的倒数。
5、单位“1”(一个数)×几几=具体量 ⇒ 具体量÷单位“1”(一个数)=几几⇒ 【已知一个数的几分之几是多少,求这个数】 单位“1”(一个数)=具体量÷几几三、圆1、 画圆时固定的一点是圆心,圆心一般用字母o 表示。
2、 圆上任意一点到圆心的线段是半径,半径一般用字母r 表示。
通过圆心且两端都在圆上的线段是直径,直径一般用字母d 表示。
r=2dd=2 r 3、 圆的大小和半径有关,圆的位置和圆心有关。
4、 圆的周长总是直径的3倍多一些,圆的周长除以直径的商是一个固定的数,把它叫做圆周率,用字母∏(读p ài )表示。
计算时通常取它的近似值∏=3.14。
5、 周长C =πd =2πr ⇒ d= πC=C ÷π ⇒ r = π2C =C ÷2π=C ÷π÷2= C ÷2π6、 圆面积S =πr 2=π(2d )27、 扇形面积=大圆面积-小圆面积=πr 2大-πr 2小=π(r 2大-r 小2)8、 由圆心角的两条半径和圆心角所对的弧围成的图形叫做扇形。
在同一个圆内,扇形型的大小与这个扇形的圆心角的大小有关。
四、比和按比例分配1、 两个数相除又叫做这两个数的比。
2、比和除法、分数的区别:比 前 项 ∶ (比 号) 后项 比值是—种 相除关系。
除法被除数 ÷ (除 号) 除数 商是一种 运算。
小学六年级数学下册知识点归纳
小学六年级数学下册知识点归纳一、分数的进一步认识1. 分数的意义和性质- 分数的定义- 真分数与假分数- 带分数与假分数的互化- 分数的大小比较2. 分数的四则运算- 分数的加法和减法- 分数的乘法和除法- 分数的通分与约分- 混合运算法则3. 分数的应用题- 比例问题- 单位换算- 分数在实际问题中的应用二、小数的进一步认识1. 小数的意义和性质- 小数的定义- 小数与整数的关系- 小数的大小比较2. 小数的四则运算- 小数的加法和减法- 小数的乘法和除法- 小数的近似和有效数字3. 小数的应用题- 涉及货币的计算- 长度、重量和体积的计算 - 小数在实际问题中的应用三、几何图形的认识1. 平面图形- 点、线、面的基本性质 - 角的概念和分类- 三角形的性质和分类- 四边形的性质和分类2. 空间图形- 立体图形的基本概念- 长方体和正方体的性质 - 圆柱和圆锥的初步认识3. 图形的变换- 平移和旋转的概念- 轴对称和中心对称- 图形的放大和缩小四、数据的收集和处理1. 数据的收集- 调查和记录数据的方法 - 数据的整理和分类2. 数据的表示- 表格的制作和解读- 条形图、折线图和饼图的绘制和阅读3. 数据的分析- 计算平均数、中位数和众数- 极值和方差的初步理解五、初步的代数知识1. 代数表达式- 字母表示数的意义- 单项式和多项式的概念- 代数式的基本运算2. 简单的方程- 方程的概念和解法- 一元一次方程的解法- 方程在实际问题中的应用六、综合应用题1. 综合运用所学知识解决实际问题- 应用题的分析和解题步骤- 时间、速度和距离问题- 货币、比例和利率问题2. 数学思维的培养- 逻辑推理和证明- 数学问题的探索和创新以上是小学六年级数学下册的主要知识点归纳。
在学习过程中,学生应注重理解和掌握每个知识点的概念、性质和运算规则,同时通过大量的练习来提高解题能力和应用能力。
教师和家长应鼓励学生积极参与数学活动,培养其数学兴趣和思维能力,为以后的数学学习打下坚实的基础。
小学六年级(下册)数学重点知识点整理
•小学六年级下册数学重点知识点整理六年级上册知识点概念总结1.分数乘法:分数乘法的意义与整数乘法的意义相同,就是求几个相同加数和的简便运算.2.分数乘法的计算法那么:分数乘整数,用分数的分子和整数相乘的积作分子,分母不变;分数乘分数, 用分子相乘的积作分子,分母相乘的积作分母.但分子分母不能为零..3.分数乘法意义分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算.一个数与分数相乘,可以看作是求这个数的几分之几是多少.4.分数乘整数:数形结合、转化化归5.倒数:乘积是1的两个数叫做互为倒数.6.分数的倒数找一个分数的倒数,例如3/4把3/4这个分数的分子和分母交换位置,把原来的分子做分母,原来的分母做分子. 那么是4/3. 3/4是4/3的倒数,也可以说4/3是3/4的倒数.7.整数的倒数找一个整数的倒数,例如12,把12化成分数,即12/1 ,再把12/1这个分数的分子和分母交换位置,把原来的分子做分母,原来的分母做分子. 那么是1/12 ,12是1/12的倒数. 8.小数的倒数:普通算法:找一个小数的倒数,例如0.25 ,把0.25化成分数,即1/4 ,再把1/4这个分数的分子和分母交换位置,把原来的分子做分母,原来的分母做分子.那么是4/1 9.用1计算法:也可以用1去除以这个数,例如0.25 , 1/0.25 等于4 ,所以0.25的倒数4 ,由于乘积是1的两个数互为倒数.分数、整数也都使用这种规律.10.分数除法:分数除法是分数乘法的逆运算.11.分数除法计算法那么:甲数除以乙数〔0除外〕,等于甲数乘乙数的倒数.12.分数除法的意义:与整数除法的意义相同,都是两个因数的积与其中一个因数求另一个因数.13.分数除法应用题:先找单位1.单位1,求局部量或对应分率用乘法,求单位1用除法.14.比和比例:比和比例一直是学数学容易弄混的几大问题之一, 其实它们之间的问题完全可以用一句话概括:比,等同于算式中等号左边的式子,是式子的一种〔如:a:b 〕;比例,由至少两个称为比的式子由等号连接而成,且这两个比的比值是相同〔如:a:b=c:d 〕.所以,比和比例的联系就可以说成是:比是比例的一局部;而比例是由至少两个比值相等的比组合而成的.表示两个比相等的式子叫做比例,是比的意义.比例有4项,前项后项各2个.15.比的根本性质:比的前项和后项都乘以或除以一个不为零的数.比值不变.比的性质用于化简比.比表示两个数相除;只有两个项:比的前项和后项.3 :2-3 2- 1:::2・・■ ■ 箭证言tt工程项值比例是一个等式,表示两个比相等;有四个项:两个外项和两个内项.16.比例的性质:在比例里,两个外项的乘积等于两个内项的乘积.比例的性质用于解比例.17.比和比例的区别〔1〕意义、项数、各局部名称不同.比表示两个数相除;只有两个项:比的前项和后项. 如:a:b这是比比例是一个等式,表示两个比相等;有四个项:两个外项和两个内项.a:b=3:4 这是比例.(2)比的根本性质和比例的根本性质意义不同、应用不同.比的性质:比的前项和后项都乘或除以一个不为零的数.比值不变.比例的性质:在比例里,两个外项的乘积等于两个内项的乘积相等. 比例的性质用于解比例.联系:比例是由两个相等的比组成.18.比和比例的意义比的意义是两个数的除又叫做两个数的比,而比例的意义是表示两个比相等的式子是叫做比例.比是表示两个数相除,有两项;比例是一个等式,表示两个比相等,有四项.因此,比和比例的意义也有所不同. 而且,比号没有括号的含义而另一种形式,分数有括号的含义!19.比和比例的联系:比和比例有着密切联系. 比是研究两个量之间的关系,所以它有两项;比例是研究相关联的两种量中两组相对应数的关系,所以比例是由四项组成. 比例是由比组成的,如果没有两种量的比,比例就不会存在.比例是比的开展,如果把比例式中右边的比看成一个数,比和比例此时又可以统一起来. 如果两个比相等,那么这两个比就可以组成比例.成比例的两个比的比值一定相等.20.圆:平面上到定点的距离等于定长的所有点组成的图形叫做圆.21.圆心:圆任意两条对称轴的交点为圆心. 注:圆心一般符号O表示22.直径:通过圆心,并且两端都在圆上的线段叫做圆的直径.直径一般用字母d表示.23.半径:连接圆心和圆上任意一点的线段,叫做圆的半径.半径一般用字母r表不圆的直径和半径都有无数条.圆是轴对称图形,每条直径所在的直线是圆的对称轴.在同圆或等圆中:直径是半径的2倍,半径是直径的二分之一.d=2r或r=d/2 .圆的半径或直径决定圆的大小,圆心决定圆的位置.24.圆的周长:围成圆的曲线的长度叫做圆的周长,用字母C表示.25.圆周率:圆的周长与直径的比值叫做圆周率.圆的周长除以直径的商是一个固定的数,把它叫做圆周率,它是一个无限不循环小数(无理数),用字母兀表示.计算时,通常取它的近似值,兀〜 3.14.直径所对的圆周角是直角. 90.的圆周角所对的弦是直径.26.圆的面积公式:圆所占平面的大小叫做圆的面积.兀r A2;,用字母S表示.一条弧所对的圆周角是圆心角的二分之一.在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦心距也相等.在同圆或等圆中,如果两条弧相等,那么他们所对的圆心角相等, 所对的弦相等, 所对的弦心距也相等.27.周长计算公式(1)直径:C=Tt d(2)半径:C=2兀r(3)周长:D=c/兀(4)圆周长的一半:1/2周长(曲线)(5)半圆的周长:1/2周长+直径(兀+ 2+1)28.面积计算公式:(1)半径:S=TT r2(2)直径:S=兀(d/2) 22(3)周长:S=TT [c +(2兀)]29.百分数与分数的区别(1)意义不同.百分数是“表示一个数是另一个数的百分之几的数.〞它只能表示两数之间的倍数关系,不能表示某一具体数量.因此,百分数后面不能带单位名称.分数是“把单位’1 '平均分成假设干份,表示这样一份或几份的数〞.分数还可以表示两数之间的倍数关系.(2)应用范围不同.百分数在生产、工作和生活中,常用于调查、统计、分析与比较.而分数常常是在测量、计算中,得不到整数结果时使用.(3)书写形式不同.百分数通常不写成分数形式,而采用百分号“%来表示.因此,不管百分数的分子、分母之间有多少个公约数,都不约分;百分数的分子可以是自然数,也可以是小数.而分数的分子只能是自然数,它的表示形式有:真分数、假分数、带分数,计算结果不是最简分数的一般要通过约分化成最简分数,是假分数的要化成带分数.任何一个百分数都可以写成分母是100的分数,而分母是100的分数并不都具有百分数的意义.(4)百分数不能带单位名称;当分数表示具体数时可带单位名称.30.百分数应用百分数一般有三种情况:①100%以上,如:增长率、增产率等. ②100%以下, 如:发芽率、成长率等. ③刚好100%,如:正确率,合格率等.31.百分数的意义百分数只可以表示分率,而不能表示具体量,所以不能带单位.百分数概念的形成应以学生实际生活中的事例或工农业生产中的事例引入.32.日常应用每天在电视里的天气预报节目中,都会报出当天晚上和明天白天的天气状况、降水概率等,提示大家提前做好准备,就像今天的夜晚的降水概率是20%,明天白天有五~六级大风,降水概率是10%早晚应增加衣服. 20% 10%让人一目了然,既清楚又简练.知识点扩展1.圆的定义几何说:平面上到定点的距离等于定长的所有点组成的图形叫做圆.定点称为圆心,定长称为半径.轨迹说:平面上一动点以一定点为中央, 一定长为距离运动一周的轨迹称为圆周,简称圆.集合说:到定点的距离等于定长的点的集合叫做圆.2.圆弧和弦:圆上任意两点间的局部叫做圆弧,简称弧.大于半圆的弧称为优弧,小于半圆的弧称为劣弧,半圆既不是优弧,也不是劣弧.连接圆上任意两点的线段叫做弦.圆中最长的弦为直径.3.圆心角和圆周角:顶点在圆心上的角叫做圆心角.顶点在圆周上,且它的两边分别与圆有另一个交点的角叫做圆周角.4.内心和外心:和三角形三边都相切的圆叫做这个三角形的内切圆, 其圆心称为内心.过三角形的三个顶点的圆叫做三角形的外接圆,其圆心叫做三角形的外心.5.扇形:在圆上,由两条半径和一段弧围成的图形叫做扇形.圆锥侧面展开图是一个扇形.这个扇形的半径称为圆锥的母线.6.圆的种类:〔1〕整体圆形,〔2〕弧形圆,〔3〕扁圆,〔4〕椭形圆,〔5〕缠丝圆,〔6〕螺旋圆,〔7〕圆中圆、圆外圆, 〔8〕重圆,〔9〕横圆,〔10〕竖圆,〔11〕斜圆.7.圆和其他图形的位置关系:圆和点的位置关系:以点P与圆O的为例〔设P是一点,那么PO是点到圆心的距离〕, P在.O外,PO>r; P在.O上,PO=r; P在.0内,0WPO<r.8.百分数的由来200多年前,瑞士数学家欧拉,在?通用算术?一书中说,要想把7米长的一根绳子分成三等份是不可能的,由于找不到一个适宜的数来表示它.如果我们把它分成三等份,每份是7/3米,就是一种新的数,我们把它叫做分数.而后,人们在分数的根底上又以100做基数,创造了百分数.六年级下册知识点归纳总结1.负数:负数是数学术语,指小于0的实数,如-3.任何正数前加上负号都等于负数.在数轴线上,负数都在0的左侧,所有的负数都比自然数小.负数用负号“―〞标记,如-2, - 5.33, - 45, - 0.6等.2.正数:大于0的数叫正数〔不包括0〕假设一个数大于零〔>0〕,那么称它是一个正数.正数的前面可以加上正号“+〞来表示.正数有无数个,其中分正整数,正分数和正无理数.3.正数的几何意义:数轴上0右边的数叫做正数4.数轴:规定了原点,正方向和单位长度的直线叫数轴.所有的实数都可以用数轴上的点来表示.也可以用数轴来比拟两个实数的大小.a C E DA—A--- 1 --- A---- 1—•—------ A---- ----- 1 ---- 1 --- --5 —4 -3 -2 7 0 1 2 35.数轴的三要素:原点、单位长度、正方向.6.圆柱:以矩形的一边所在直线为旋转轴,其余三边旋转形成的面所围成的旋转体即AG矩形的一条边为轴,旋转360°所得的几何体就是圆柱.其中AG叫做圆柱的轴, AG的长度叫做圆柱的高, 所有平彳T于AG的线段叫做圆柱的母线,DA和D'G旋转形成的两个圆叫做圆柱的底面, DD'旋转形成的曲面叫做圆柱的侧面.7.圆柱的体积:圆柱所占空间的大小,叫做这个圆柱体的体积.设一个圆柱底面半径为r,高为h,那么体积V: V=TI r2h ;如S为底面积,高为h,体积为V: V=Sh8.圆柱的侧面积:圆柱的侧面积=底面的周长*高,$侧=加〔注:c为兀d〕圆柱的两个圆面叫做底面〔又分上底和下底〕;圆柱有一个曲面,叫做侧面;两个底面之间的距离叫做高〔高有无数条〕.特征:圆柱的底面都是圆,并且大小一样.9.圆锥解析几何定义:圆锥面和一个截它的平面〔满足交线为圆〕组成的空间几何图形叫圆锥.10.圆锥立体几何定义:以直角三角形的一条直角边所在直线为旋转轴,其余两边旋转形成的面所围成的旋转体叫做圆锥.该直角边叫圆锥的轴11.圆锥的体积:一个圆锥所占空间的大小,叫做这个圆锥的体积.一个圆锥的体积等于与它等底等高的圆柱的体积的1/3.根据圆柱体积公式V=Sh 〔 V=rr兀h〕,得出圆锥体积公式:V=1/3ShS是圆锥的底面积, h是圆锥的高,r是圆锥的底面半径12.圆锥体展开图的绘制: 圆锥体展开图由一个扇形〔圆锥的侧面〕和一个圆〔圆锥的底面〕组成.〔如右图〕在绘制指定圆锥的展开图时,一般知道 面直径〕展开图绘制方法13 .圆锥的外表积: 一个圆锥外表的面积叫做这个圆锥的外表积圆锥的外表积由侧面积和底面积两局部组成.S=Tt R (n/360)+ r r 2或(1/2) a R+兀 r 2(此 n 为角度制,a 为弧度制,a =兀(n/180) 14 .圆柱与圆锥的关系:与圆柱等底等高的圆锥体积是圆柱体积的三分之一.体积和高相等的圆锥与圆柱(等低等高)之间,圆锥的底面积是圆柱的三倍. 体积和底面积相等的圆锥与圆柱(等低等高)之间,圆锥的高是圆柱的三倍. 底面积和高不相等的圆柱圆锥不相等.15 .生活中的圆锥: 生活中经常出现的圆锥有:沙堆、漏斗、帽子.圆锥在日常生活中也是不可或缺的.16 .比的意义(1)两个数相除又叫做两个数的比(2) “: 〞是比号,读作“比〞.比号前面的数叫做比的前项,比号后面的数叫做比的后项.比的前项除以后项所得的商,叫做比值.(3)同除法比拟,比的前项相当于被除数,后项相当于除数,比值相当于商. (4)比值通常用分数表示,也可以用小数表示,有时也可能是整数. (5)比的后项不能是零.a 〔母线长〕和 d 〔底〔6〕根据分数与除法的关系,可知比的前项相当于分子, 后项相当于分母,比值相当于分数值.17.比的性质:比的前项和后项同时乘上或者除以相同的数〔0除外〕,比值不变,这叫做比的根本性质.18.求比值和化简比:求比值的方法:用比的前项除以后项,它的结果是一个数值可以是整数,也可以是小数或分数.根据比的根本性质可以把比化成最简单的整数比.它的结果必须是一个最简比,即前、后项是互质的数.19.比例尺:图上距离:实际距离=比例尺要求会求比例尺;图上距离和比例尺求实际距离;实际距离和比例尺求图上距离.线段比例尺:在图上附有一条注有数目的线段,用来表示和地面上相对应的实际距离.20.按比例分配:在农业生产和日常生活中, 常常需要把一个数量根据一定的比来进行分配. 这种分配的方法通常叫做按比例分配.方法:首先求出各局部占总量的几分之几,然后求出总数的几分之几是多少.21.比例的意义:比例的意义表示两个比相等的式子叫做比例.组成比例的四个数,叫做比例的项.两端的两项叫做外项,中间的两项叫做内项.22.比例的性质:在比例里,两个外项的积等于两个两个内向的积. 这叫做比例的根本性质.23.解比例:根据比例的根本性质,如果比例中的任何三项,就可以求出这个数比例中的另外一个未知项.求比例中的未知项,叫做解比例.24.成正比例的量:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值〔也就是商〕一定,这两种量就叫做成正比例的量, 他们的关系叫做正比例关系.用字母表示y/x=k〔一定〕25.成反比例的量:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定, 这两种量就叫做成反比例的量, 他们的关系叫做反比例关系. 用字母表示x x y=k( 一定)26.统计表:把统计数据填写在一定格式的表格内,用来反映情况、说明问题,这样的表格就叫做统计表.27.统计组成局部:一般分为表格外和表格内两局部.表格外局部包括标的名称,单位说明和制表日期;表格内部包括表头、横标目、纵标目和数据四个方面.28.统计种类:单式统计表:只含有一个工程的统计表.复式统计表:含有两个或两个以上统计工程的统计表.百分数统计表:不仅说明各统计工程的具体数量, 而且说明比拟量相当于标准量的百分比的统计表.29.统计表制作步骤:(1)搜集数据(2)整理数据:要根据制表的目的和统计的内容,对数据进行分类.(3)设计草表:要根据统计的目的和内容设计分栏格内容、分栏格画法,规定横栏、竖栏各需几格,每格长度.(4)正式制表:把核对过的数据填入表中,并根据制表要求,用简单、明确的语言写上统计表的名称和制表日期.30.统计图:用点线面积等来表示相关的量之间的数量关系的图形叫做统计图.31.条形统计图(1)用一个单位长度表示一定的数量, 根据数量的多少画成长短不同的直条, 然后把这些直线按一定的顺序排列起来.(2)优点:很容易看出各种数量的多少.注意:画条形统计图时,直条的宽窄必须相同.(3)取一个单位长度表示数量的多少要根据具体情况而确定(4)复式条形统计图中表示不同工程的直条, 要用不同的线条或颜色区别开, 并在制图日期下面注明图例.(5)制作条形统计图的一般步骤:a)根据图纸的大小,画出两条互相垂直的射线.b)在水平射线上,适当分配条形的位置,确定直线的宽度和间隔.c)在与水平射线垂直的深线上根据数据大小的具体情况,确定单位长度表示多少.d)根据数据的大小画出长短不同的直条,并注明数量.32.折线统计图(1)用一个单位长度表示一定的数量, 根据数量的多少描出各点, 然后把各点用线段顺次连接起来.(2)优点:不但可以表示数量的多少, 而且能够清楚地表示出数量增减变化的情况. 注意:折线统计图的横轴表示不同的年份、月份等时间时,不同时间之间的距离要根据年份或月份的间隔来确定.(3)制作折线统计图的一般步骤:a)根据图纸的大小,画出两条互相垂直的射线.b)在水平射线上,适当分配折线的位置,确定直线的宽度和间隔.c)在与水平射线垂直的深线上根据数据大小的具体情况,确定单位长度表示多少.d)根据数据的大小描出各点,再用线段顺次连接起来,并注明数量.33.扇形统计图(1)用整个圆的面积表示总数,用扇形面积表示各局部所占总数的百分数.(2)优点:很清楚地表示出各局部同总数之间的关系.(3)制扇形统计图的一般步骤:a)先算出各局部数量占总量的百分之几.b)再算出表示各局部数量的扇形的圆心角度数.c)取适当的半径画一个圆,并根据上面算出的圆心角的度数,在圆里画出各个扇形.d)在每个扇形中标明所表示的各局部数量名称和所占的百分数,并用不同颜色或条纹把各个扇形区别开.。
六年级数学下册总复习知识点整理版
六年级数学下册总复习知识点整理版常用的数量关系式:1.每份数×每份数=总数;总数÷每份数=份数;总数÷份数=每份数。
2.速度×时间=路程;路程÷速度=时间;路程÷时间=速度。
3.单价×数量=总价;总价÷单价=数量;总价÷数量=单价。
4.工作效率×工作时间=工作总量;工作总量÷工作效率=工作时间;工作总量÷工作时间=工作效率。
5.加数+加数=和;和-一个加数=另一个加数。
6.被减数-减数=差;被减数-差=减数;差+减数=被减数。
7.因数×因数=积;积÷一个因数=另一个因数。
8.被除数÷除数=商;被除数÷商=除数;商×除数=被除数。
小学数学图形计算公式:1.正方形(C:周长;S:面积;a:边长):周长=边长×4;C=4a;面积=边长×边长;S=a×a。
2.正方体(V:体积;a:棱长):表面积=棱长×棱长×6;S表=a×a×6;体积=棱长×棱长×棱长;V=a×a×a。
3.长方形(C:周长;S:面积;a:边长):周长=(长+宽)×2;C=2(a+b);面积=长×宽;S=ab。
4.长方体(V:体积;S:面积;a:长;b:宽;h:高):表面积=(长×宽+长×高+宽×高)×2;S=2(ab+ah+bh);体积=长×宽×高;V=abh。
5.三角形(S:面积;a:底;h:高):面积=底×高÷2;S=ah÷2;三角形高=面积×2÷底;三角形底=面积×2÷高。
6.平行四边形(S:面积;a:底;h:高):面积=底×高;S=ah。
北师大版小学数学六年级下册总复习公式大全
北师大版小学数学六年级下册总复习公式大全一、平面图形1.长方形的周长和面积长方形的周长=(长+宽)×2 c=(a+b)×2 长方形的周长÷2-长=宽c÷2-a=b 长方形的周长÷2-宽=长c÷2-b=a长方形的面积=长×宽S=ab 长方形的面积÷长=宽S÷a=b 长方形的面积÷宽=长S÷b=b2.正方形的周长和面积正方形的周长=边长×4 c=4a 正方形的周长÷4=边长c÷4=a 正方形的面积=边长×边长S=a.a= a23.平行四边形的面积平行四边形的面积=底×高S=ah平行四边形的面积÷底=高S÷a=h 平行四边形的面积÷高=底S÷h=a4.三角形(具有稳定性)三角形的面积=底×高÷2S=ah÷2 三角形的面积×2÷底=高S×2÷a=h 三角形的面积×2÷高=底S×2÷h=a 三角形的内角和=180度。
三角形三边的关系:三角形任意两条边的和要大于第三条边,任意一条边的长要大于其它两边的差,小于两边的和。
5.梯形的面积梯形的面积=(上底+下底)×高÷2 S=(a+b)h÷2 6.圆形直径=半径×2 d=2r半径=直径÷2 r= d÷2 2 直径=圆的周长÷圆周率d=c÷π半径=圆的周长÷圆周率÷2 r=c÷π÷2 圆的周长=直径×圆周率c=πd圆的周长==半径×2×圆周率c =2πr半圆的周长=周长的一半+直径半圆的周长=半径×5.14 (π+2=5.14)圆的面积=圆周率×半径2S=πr2 *圆的面积=周长的一半×半径二、立体图形1.长方体:长方体的周长=(长+宽+高)×4 C=4(a+b+h)长方体的周长÷4-宽-高=长C÷4-b -h=a 长方体的周长÷4-长-高=宽C÷4-a-h=b 长方体的周长÷4-长-宽=高C÷4-a-b=h 长方体的体积=长×宽×高公式:V=abh 长方体的体积÷宽÷高=长V÷b÷h=a 长方体的体积÷长÷高=宽V÷a÷h=b 长方体的体积÷长÷宽=高V÷a÷b=h 长方体(或正方体)的体积÷底面积=高V÷S=h 长方体(或正方体)的体积÷高=底面积V÷h=S 正方体的体积=棱长×棱长×棱长公式:V=aaa圆的周长=直径×π公式:l=πd=2πr圆的面积=半径×半径×π公式:S=πr2圆柱的表(侧)面积:圆柱的表(侧)面积等于底面的周长乘高。
六年级数学公式大全
一、基础公式1. 一元一次方程: ax + b = c 的解为 x = (c - b) / a。
2. 一元一次方程: ax + b = 0 的解为 x = -b / a。
3.分数的运算:- 加法: a/b + c/d = (ad + bc) / bd。
- 减法: a/b - c/d = (ad - bc) / bd。
- 乘法: a/b × c/d = ac / bd。
- 除法: (a/b) ÷ (c/d) = ad / bc。
4.百分数的运算:-百分数转小数:a%=a/100。
-小数转百分数:0.01a=a%。
-百分数转分数:a%=a/100。
-分数转百分数:a/b=(a/b)×100%。
5.速度的计算公式:速度=路程/时间。
二、几何公式1.周长和面积计算:-矩形的周长:P=2×(长+宽)。
-矩形的面积:S=长×宽。
-正方形的周长:P=4×边长。
-正方形的面积:S=边长²。
-三角形的周长:P=边1+边2+边3-三角形的面积:S=(底边×高)/2-圆的周长:C=2πr(π取3.14)。
-圆的面积:S=πr²。
2.三角形的角度计算:-三角形内角和:180°。
-直角三角形的两个锐角之和为90°。
-等边三角形的三个角都为60°。
三、分数运算公式1. 分数的相加: a/b + c/d = (ad + bc) / bd。
2. 分数的相减: a/b - c/d = (ad - bc) / bd。
3. 分数的相乘: a/b × c/d = ac / bd。
4. 分数的相除: (a/b) ÷ (c/d) = ad / bc。
5.分数的化简:计算a/b的最大公约数,然后a除以最大公约数,b除以最大公约数。
四、比例公式1.比例的定义:a:b=c:d,可以表示为a/b=c/d。
2.求比例中一些数:已知a:b=c:d,求比例中的b,可用b=(d×a)/c。
数学六年级下册的公式
数学六年级下册的公式数学六年级下册的公式随着学生们步入六年级下册,数学学科的难度也在逐渐加深。
这一阶段的数学学习涉及的知识点也更加全面,其中公式是数学学习中必不可少的一部分。
在六年级下册中,有许多重要的公式需要学生认真掌握和灵活运用。
以下是数学六年级下册的公式列表:一、数的性质公式:1.整数加减法运算性质:(1)加法结合律:(a+b)+c=a+(b+c)(2)加法交换律:a+b=b+a(3)加法的逆元:a+(-a)=0(4)减法的逆元:a-(-a)=a2.实数四则运算公式:(1)加法公式:(a+b)+(c+d)=a+c+b+d(2)减法公式:(a-b)-(c-d)=a-b-c+d(3)乘法公式:(a+b)×(c+d)=ac+ad+bc+bd(4)除法公式:(a+b)÷c=a÷c+b÷c二、图形公式:1.平行四边形面积公式:S=底×高2.矩形面积公式:S=长×宽3.正方形面积公式:S=a×a4.三角形面积公式:S=(底×高)÷25.梯形面积公式:S=(上底+下底)×高÷2三、比例和百分数公式:1.比例公式:a∶b=c∶d,即ad=bc2.百分比与小数的互换公式:百分数÷100=小数;小数×100=百分数3.百分数之间的运算公式:百分数的加减运算法则,将百分数转化成小数后进行计算,最后再将结果转化为百分数。
四、三角函数公式:1.正弦函数公式:sinA=对边÷斜边2.余弦函数公式:cosA=邻边÷斜边3.正切函数公式:tanA=对边÷邻边以上公式是数学六年级下册重要的公式列表。
学生们应该认真学习,掌握每个公式的应用方法,逐步提高数学的能力,为下一阶段的学习做好准备。
六年数学上下公式大全
下面是六年级数学上下册内容的公式总结:一、四则运算公式:1.加法公式:a+b=b+a2.减法公式:a-b≠b-a(减法不满足交换律)3.乘法公式:a×b=b×a4.除法公式:a÷b≠b÷a(除法不满足交换律)5.加法与乘法结合律:(a+b)+c=a+(b+c)6.乘法与除法结合律:(a×b)÷c=a×(b÷c)二、数的性质公式:1.0的性质:0+a=a,0×a=0,a-0=a2.1的性质:1×a=a3.分配律:(a+b)×c=a×c+b×c三、倍数公式:1.a是b的倍数的判定:a÷b=n,其中n为整数2.a是b的倍数的性质:若a是b的倍数,那么a×c也是b的倍数四、约数公式:1.a是b的约数的判定:b÷a=n,其中n为整数2.a是b的约数的性质:若a是b的约数,那么a×c也是b的约数五、奇偶性公式:1.偶数的性质:可以被2整除,例如2、4、6、8等2.奇数的性质:不能被2整除,例如1、3、5、7等3.偶数与奇数相加:偶数+奇数=奇数4.偶数与偶数相加:偶数+偶数=偶数5.奇数与奇数相加:奇数+奇数=偶数六、分数公式:1.分数的性质:分数是有理数的一种表现形式,由分子和分母组成,分母不能为02.分数的相等性:若a/b=c/d,其中a、b、c、d为整数,b、d不等于0,那么分数a/b与c/d相等3.分数的乘法:(a/b)×(c/d)=(a×c)/(b×d)4.分数的除法:(a/b)÷(c/d)=(a×d)/(b×c)5.分数的加法:(a/b)+(c/d)=(a×d+b×c)/(b×d)6.分数的减法:(a/b)-(c/d)=(a×d-b×c)/(b×d)7.分数的化简:将分数表示为最简形式,即分子和分母没有公约数七、小数公式:1.数字表示法:整数和分数可以用小数形式表示2.小数的加法减法:小数的加法和减法与整数的运算规律一致3.小数的乘法:小数乘法时,先按整数乘法规则计算,再计算小数点的位置4.小数的除法:小数除法时,先按整数除法规则计算,再计算小数点的位置八、面积和周长公式:1.矩形的面积:长×宽2.矩形的周长:2×(长+宽)3.正方形的面积:边长×边长4.正方形的周长:4×边长5.三角形的面积:1/2×底×高6.平行四边形的面积:底×高7.圆的面积:π×半径×半径8.圆的周长:2×π×半径。
新课标人教版小学六年级下册数学毕业总复习知识点概括归纳
【常用的数量关系】1、每份数×份数=总数;总数÷每份数=份数;总数÷份数=每份数2、1倍数×倍数=几倍数;几倍数÷1倍数=倍数;几倍数÷倍数=1倍数3、速度×时间=路程;路程÷速度=时间;路程÷时间=速度4、单价×数量=总价;总价÷单价=数量;总价÷数量=单价5、工作效率×工作时间=工作总量;工作总量÷工作效率=工作时间;工作总量÷工作时间=工作效率;6、加数+加数=和;和-一个加数=另一个加数7、被减数-减数=差;被减数-差=减数;差+减数=被减数8、因数×因数=积;积÷一个因数=另一个因数9、被除数÷除数=商;被除数÷商=除数;商×除数=被除数【小学数学图形计算公式】1、正方形(C:周长, S:面积, a:边长)周长=边长×4; C=4a面积=边长×边长; S=a×a2、正方体(V:体积, a:棱长)表面积=棱长×棱长×6; S表=a×a×6体积=棱长×棱长×棱长; V= a×a×a3、长方形(C:周长, S:面积, a:边长, b:宽)周长=(长+宽)×2; C=2(a+b)面积=长×宽; S=a×b4、长方体(V:体积, S:面积, a:长, b:宽, h:高)(1)表面积=(长×宽+长×高+宽×高)×2; S=2(ab+ah+bh)(2)体积=长×宽×高; V=abh5、三角形(S:面积, a:底, h:高)面积=底×高÷2 ; S=ah÷2三角形的高=面积×2÷底三角形的底=面积×2÷高6、平行四边形(S:面积, a:底, h:高)面积=底×高; S=ah7、梯形(S:面积, a:上底, b:下底, h:高)面积=(上底+下底)×高÷2; S=(a+b)×h÷28、圆形(S:面积, C:周长,π:圆周率, d:直径, r:半径)(1)周长=π×直径π=2×π×半径; C=πd=2πr(2)面积=π×半径×半径; S= πr29、圆柱体(V:体积, S:底面积, C:底面周长, h:高, r:底面半径)(1)侧面积=底面周长×高=Ch=πdh=2πrh(2)表面积=侧面积+底面积×2(3)体积=底面积×高10、圆锥体(V:体积, S:底面积, h:高, r:底面半径)体积=底面积×高÷311、总数÷总份数=平均数12、和差问题的公式:已知两数的和及它们的差,求这两个数各是多少的应用题,叫做和差应用题,简称和差问题。
数学背熟48个公式六年级
数学背熟48个公式六年级六年级学生们通常会接触到更复杂的数学概念和公式,这些公式对他们建立数学基础和解决问题至关重要。
下面列举的48个数学公式是六年级学生需要背熟并熟练运用的,这些公式涵盖了各个数学领域,包括代数、几何和数字运算。
代数公式1.二元一次方程:ax+by=c2.二元一次不等式:ax+by>c3.四则运算规则:加减乘除4.求整数和:1+2+3+⋯+n=n×(n+1)25.平均数:平均数=总和个数×100%6.百分数:百分数=部分整体7.负数运算法则几何公式1.面积计算:•矩形面积:A=l×w•三角形面积:A=1×b×ℎ2•圆的面积:A=πr22.周长计算:•矩形周长:P=2l+2w•三角形周长:P=a+b+c•圆的周长:C=2πr3.体积计算:•长方体体积:V=l×w×ℎ• 圆柱体积:V =πr 2×ℎ• 球体积:V =43πr 3 数字运算公式1. 平方数和:12+22+32+⋯+n 2=n×(n+1)×(2n+1)6 2. 立方数和:13+23+33+⋯+n 3=(n×(n+1)2)23. 奇数和:1+3+5+⋯+(2n −1)=n 24. 偶数和:2+4+6+⋯+2n =n ×(n +1)5. 素数:只能被1和自身整除的数通过熟练掌握以上公式,六年级的学生们能够更高效地解决各种数学问题,提升他们的数学能力和应试能力。
同时,深入理解这些公式背后的数学原理,有助于培养学生的逻辑思维和解决问题的能力。
希望学生们能够充分利用这些公式,不断提升自己的数学水平,为未来的学习和发展打下坚实的基础。
小学数学公式大全 六年级数学下册 知识点归纳整理
小学数学公式大全1、长方形的周长=(长+宽)×2 C=(a+b)×22、正方形的周长=边长×4 C=4a3、长方形的面积=长×宽S=ab4、正方形的面积=边长×边长S=a.a= a5、三角形的面积=底×高÷2 S=ah÷26、平行四边形的面积=底×高S=ah7、梯形的面积=(上底+下底)×高÷2 S=(a+b)h÷28、直径=半径×2 d=2r 半径=直径÷2 r= d÷29、圆的周长=圆周率×直径=圆周率×半径×2 c=πd =2πr10、圆的面积=圆周率×半径×半径?=πr11、长方体的表面积=(长×宽+长×高+宽×高)×212、长方体的体积=长×宽×高V =abh13、正方体的表面积=棱长×棱长×6 S =6a14、正方体的体积=棱长×棱长×棱长V=a.a.a= a15、圆柱的侧面积=底面圆的周长×高S=ch16、圆柱的表面积=上下底面面积+侧面积S=2πr +2πrh=2π(d÷2) +2π(d÷2)h=2π(C÷2÷π) +Ch17、圆柱的体积=底面积×高V=ShV=πr h=π(d÷2) h=π(C÷2÷π) h18、圆锥的体积=底面积×高÷3V=Sh÷3=πr h÷3=π(d÷2) h÷3=π(C÷2÷π) h÷319、长方体(正方体、圆柱体)的体1、每份数×份数=总数总数÷每份数=份数总数÷份数=每份数2、1倍数×倍数=几倍数几倍数÷1倍数=倍数几倍数÷倍数=1倍数3、速度×时间=路程路程÷速度=时间路程÷时间=速度4、单价×数量=总价总价÷单价=数量总价÷数量=单价5、工作效率×工作时间=工作总量工作总量÷工作效率=工作时间工作总量÷工作时间=工作效率6、加数+加数=和和-一个加数=另一个加数7、被减数-减数=差被减数-差=减数差+减数=被减数8、因数×因数=积积÷一个因数=另一个因数9、被除数÷除数=商被除数÷商=除数商×除数=被除数小学数学图形计算公式1 、正方形C周长S面积a边长周长=边长×4 C=4a 面积=边长×边长S=a×a2 、正方体V:体积a:棱长表面积=棱长×棱长×6 S表=a×a×6 体积=棱长×棱长×棱长V=a×a×a3 、长方形C周长S面积a边长周长=(长+宽)×2C=2(a+b)面积=长×宽S=ab4 、长方体V:体积s:面积a:长b: 宽h:高(1)表面积(长×宽+长×高+宽×高)×2S=2(ab+ah+bh)(2)体积=长×宽×高V=abh5 三角形s面积a底h高面积=底×高÷2s=ah÷2三角形高=面积×2÷底三角形底=面积×2÷高6 平行四边形s面积a底h高面积=底×高s=ah7 梯形s面积a上底b下底h高面积=(上底+下底)×高÷2s=(a+b)× h÷28 圆形S面积C周长∏ d=直径r=半径(1)周长=直径×∏=2×∏×半径C=∏d=2∏r(2)面积=半径×半径×∏圆柱体v:体积h:高s;底面积r:底面半径c:底面周长(1)侧面积=底面周长×高(2)表面积=侧面积+底面积×2(3)体积=底面积×高(4)体积=侧面积÷2×半径10 圆锥体v:体积h:高s;底面积r:底面半径体积=底面积×高÷3总数÷总份数=平均数和差问题(和+差)÷2=大数(和-差)÷2=小数和倍问题和÷(倍数-1)=小数小数×倍数=大数(或者和-小数=大数)差倍问题第一部分:概念1、加法交换律:两数相加交换加数的位置,和不变。
小学数学公式大全(1-6年级完整版,全部知识点归纳,替孩子收藏!)
小学数学公式大全(1-6年级完整版,全部知识点归纳,替孩子收藏!)小学数学全部知识点归纳,替孩子收藏!常用计算公式表:1.长方形面积:S=ab(=长×宽)2.正方形面积:S=a×a=A²(=边长×边长)3.长方形周长:C=(a+b)×2(=(长+宽)×2)4.正方形周长:C=4a(=边长×4)5.平行四边形面积:S=ah(=底×高)6.三角形面积:S=a×h÷2(=底×高÷2)7.梯形面积:S=(a+b)×h÷2(=(上底+下底)×高÷2)8.长方体体积:V=abh(=长×宽×高)9.圆的面积:V=πr²(=圆周率×半径²)10.正方体体积:V=a³(=棱长×棱长×棱长)11.长方体和正方体的体积:V=sh(=底面积×高)12.圆柱的体积:V=sh(=底面积×高)小学数学量的计算单位及进率归类:长度计量单位及进率:千米(公里)、米、分米、厘米、毫米1千米=1公里=1000米1米=10分米=100厘米1厘米=10毫米面积计量单位及进率:平方千米、公顷、平方米、平方分米、平方厘米1平方千米=100公顷1平方千米=xxxxxxx平方米1公顷=平方米1平方米=100平方分米1平方分米=100平方厘米体积容积计量单位及进率:立方米、立方分米、立方厘米、升、毫升1立方米=1000立方分米1立方分米=1000立方厘米1立方分米=1升1立方厘米=1毫升质量单位及进率:吨、千克、公斤、克1吨=1000千克1千克=1公斤1千克=1000克时间单位及进率:世纪、年、月、日、小时、分、秒1世纪=100年1年=12月1天=24小时1小时=60分1分=60秒31天的月份有1、3、5、7、8、10、12月份,30天的月份有4、6、9、11月份,平年2月28天,闰年2月29天)小学数学口诀定义归类:1.什么是图形的周长?围成一个图形所有边长的总和就是这个图形的周长。
小学六年级数学公式总结
小学六年级数学知识点总结1.每份数×份数=总数总数÷每份数=份数总数÷份数=每份数2 、1倍数×倍数=几倍数几倍数÷1倍数=倍数几倍数÷倍数=1倍数3、速度×时间=路程路程÷速度=时间路程÷时间=速度4 、单价×数量=总价总价÷单价=数量总价÷数量=单价5、工作效率×工作时间=工作总量工作总量÷工作效率=工作时间工作总量÷工作时间=工作效率6、加数+加数=和和-一个加数=另一个加数7 、被减数-减数=差被减数-差=减数差+减数=被减数8、因数×因数=积积÷一个因数=另一个因数9、被除数÷除数=商被除数÷商=除数商×除数=被除数小学数学图形计算公式1 正方形C周长S面积a边长周长=边长×4 C=4a面积=边长×边长S=a×a2 正方体V:体积a:棱长表面积=棱长×棱长×6 S表=a×a×6体积=棱长×棱长×棱长V=a×a×a3 长方形C周长S面积a边长周长=(长+宽)×2 C=2(a+b)面积=长×宽S=ab4 长方体V:体积s:面积a:长b: 宽h:高(1)表面积(长×宽+长×高+宽×高)×2 S=2(ab+ah+bh)(2)体积=长×宽×高V=abh5 三角形s面积a底h高面积=底×高÷2 s=ah÷2三角形高=面积×2÷底三角形底=面积×2÷高6 平行四边形s面积a底h高面积=底×高s=ah7 梯形s面积a上底b下底h高面积=(上底+下底)×高÷2 s=(a+b)× h÷28 圆形S面积C周长∏ d=直径r=半径(1)周长=直径×∏=2×∏×半径C=∏d=2∏r(2)面积=半径×半径×∏ S=∏rr9 圆柱体v:体积h:高s;底面积r:底面半径c:底面周长(1)侧面积=底面周长×高(2)表面积=侧面积+底面积×2(3)体积=底面积×高(4)体积=侧面积÷2×半径10 圆锥体v:体积h:高s;底面积r:底面半径体积=底面积×高÷3总数÷总份数=平均数和差问题的公式(和+差)÷2=大数(和-差)÷2=小数和倍问题和÷(倍数-1)=小数小数×倍数=大数(或者和-小数=大数)差倍问题差÷(倍数-1)=小数小数×倍数=大数(或小数+差=大数)小学奥数公式和差问题的公式(和+差)÷2=大数(和-差)÷2=小数和倍问题的公式和÷(倍数-1)=小数小数×倍数=大数(或者和-小数=大数)差倍问题的公式差÷(倍数-1)=小数小数×倍数=大数(或小数+差=大数)植树问题的公式1 非封闭线路上的植树问题主要可分为以下三种情形:⑴如果在非封闭线路的两端都要植树,那么:株数=段数+1=全长÷株距-1 全长=株距×(株数-1)株距=全长÷(株数-1)⑵如果在非封闭线路的一端要植树,另一端不要植树,那么:株数=段数=全长÷株距全长=株距×株数株距=全长÷株数⑶如果在非封闭线路的两端都不要植树,那么:株数=段数-1=全长÷株距-1 全长=株距×(株数+1)株距=全长÷(株数+1)2 封闭线路上的植树问题的数量关系如下株数=段数=全长÷株距全长=株距×株数株距=全长÷株数盈亏问题的公式(盈+亏)÷两次分配量之差=参加分配的份数(大盈-小盈)÷两次分配量之差=参加分配的份数(大亏-小亏)÷两次分配量之差=参加分配的份数相遇问题的公式相遇路程=速度和×相遇时间相遇时间=相遇路程÷速度和速度和=相遇路程÷相遇时间追及问题的公式追及距离=速度差×追及时间追及时间=追及距离÷速度差速度差=追及距离÷追及时间流水问题顺流速度=静水速度+水流速度逆流速度=静水速度-水流速度静水速度=(顺流速度+逆流速度)÷2 水流速度=(顺流速度-逆流速度)÷2 浓度问题的公式溶质的重量+溶剂的重量=溶液的重量溶质的重量÷浓度=溶液的重量溶质的重量÷溶液的重量×100%=浓度溶液的重量×浓度=溶质的重量利润与折扣问题的公式利润=售出价-成本涨跌金额=本金×涨跌百分比利润率=利润÷成本×100%=(售出价÷成本-1)×100%折扣=实际售价÷原售价×100%(折扣<1) 利息=本金×利率×时间税后利息=本金×利率×时间×(1-20%)(一)数的读法和写法1.整数的读法:从高位到低位,一级一级地读。
数学六年级下册公式大总结
数学六年级下册公式大总结一、负数。
1. 正数和负数表示相反意义的量。
2. 0既不是正数也不是负数。
二、百分数(二)1. 折扣。
- 几折就表示十分之几,也就是百分之几十。
例如:七五折就是75%。
- 现价 = 原价×折扣。
- 原价 = 现价÷折扣。
- 折扣 = 现价÷原价。
2. 成数。
- 成数表示一个数是另一个数的十分之几。
例如:一成就是10%。
3. 税率。
- 应纳税额 = 各种收入×税率。
- 税率=应纳税额÷各种收入×100%4. 利率。
- 利息 = 本金×利率×存期。
- 本金 = 利息÷(利率×存期)- 利率=利息÷本金÷存期×100%三、圆柱与圆锥。
1. 圆柱。
- 圆柱的侧面积。
- S_侧=Ch(C是底面周长,h是圆柱的高),C = 2π r或C=π d(r是底面半径,d是底面直径),所以S_侧=2π rh=π dh。
- 圆柱的表面积。
- S_表=S_侧+2S_底,S_底=π r^2,所以S_表=2π rh + 2π r^2。
- 圆柱的体积。
- V=π r^2h。
2. 圆锥。
- 圆锥的体积。
- V=(1)/(3)π r^2h。
四、比例。
1. 比例的意义和基本性质。
- 比例:表示两个比相等的式子叫做比例。
如a:b = c:d,也可写成(a)/(b)=(c)/(d)。
- 比例的基本性质:在比例里,两个外项的积等于两个内项的积。
即ad = bc。
- 解比例:根据比例的基本性质,如果已知比例中的任何三项,就可以求出这个比例中的另外一个未知项。
求比例中的未知项,叫做解比例。
2. 正比例和反比例。
- 正比例。
- 两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值一定,这两种量就叫做成正比例的量,它们的关系叫做正比例关系。
y/x = k(k一定)。
六年级下册数学公式最全整理版
六年级下册数学公式整理版第一单元负数0既不是正数也不是负数。
规定了原点、正方向和单位长度的直线叫做数轴。
所有的负数都在0的左边,负数都小于0;所有的正数都在0的右边,正数都大于0。
第二单元百分数1.折扣几折表示十分之几,也就是百分之几十。
现价=原价×折扣原价=现价÷折扣折扣=现价÷原价2.成数成数表示一个数是另一个数的十分之几。
3.税率税率=应纳税额÷各种收入×100%应纳税额=各种收入×税率各种收入=应纳税额÷税率4.利率利息=本金×利率×存期本金=利息÷利率÷存期利率=利息÷本金÷存期存期=利息÷本金÷利率本息和=本金+利息本息和=本金×(1+利率×存期)第三单元圆柱与圆锥1.圆柱体(1)圆柱的侧面积=底面周长×高S侧=Ch=πdh=2πrh(2)求圆柱表面积的步骤:①圆柱侧面积 S 侧=Ch=πdh=2πrh ②圆柱的底面积 S 底=πr ² ③圆柱表面积 S 表=S 侧+2S 底(3)圆柱体积公式圆柱的体积=底面积×高 V 柱=Sh=πr ²h 圆柱的高=体积÷底面积 h=V 柱÷S 底 圆柱的底面积=体积÷高 S 底=V 柱÷h 2.圆锥体圆锥的体积等于与它等底等高圆柱体积的31 V 锥=31V 柱=31Sh=31πr ²h圆锥的高=体积÷底面积×3 h=V 锥÷S 底×3 圆锥的底面积=体积÷高×3 S 底=V 锥÷h ×3 第四单元 比例1.在比例里,两个外项的积等于两个内项的积。
这叫做比例的基本性质。
2.已知X ×Y=Z ,如果X 一定,则Z 和Y 成正比例,即Z ÷Y=X(一定); 如果Y 一定,则Z 和X 成正比例,即Z ÷X=Y(一定); 如果Z 一定,则X 和Y 成反比例,即X ×Y=Z(一定)。
六年级数学下册必背公式
六年级数学下册公式1、圆的周长公式:(1)已知直径求周长:C = π d(2)已知半径求周长:C = 2 π r2、圆的面积公式:(1) 已知半径求圆的面积:S = π r 2(2) 已知直径求圆的面积:S = π(d÷2)2(3) 已知周长求圆的面积:S = π ( c÷π÷2 )23、圆柱的侧面积公式:(1)已知底面周长和高求侧面积:S = c h(2)已知底面半径和高求侧面积:S = 2 π r h(3)已知底面直径和高求侧面积:S = π d h4、圆柱的表面积公式:S = S侧+ 2 S底(1)已知半径和高求圆柱的表面积:S = 2 π r h + 2 π r2(2)已知直径和高求圆柱的表面积:S = π d h + 2 π ( d÷2)2 (3)已知底面周长和高求圆柱的表面积:S = c h + 2 π ( c÷π÷2)2 5、圆柱的体积公式:V = s h(1)已知半径和高求圆柱的体积:V = π r 2 h(2)已知直径和高求圆柱的体积:V = π ( d÷2 )2h(3)已知底面周长和高求圆柱的体积:V = π ( c÷π÷2)2 h1s h6、圆锥的体积公式:V =31π r 2 h(1)已知半径和高求圆锥的体积:V =31π ( d÷2 )2 h(2)已知直径和高求圆锥的体积:V =31π ( c÷π÷2 )2 h (3)已知底面周长和高求圆锥的体积:V =37、复习要用公式:(1)长方体体积公式:V = a b hV = s h(2)正方体体积公式:V = a 3(3)长方形的周长公式:C = ( a + b )×2(4)正方形的周长公式:C = 4 a(5)平行四边形面积公式:S = a h1a h(6) 三角形面积公式:S =21( a + b )×h(7)梯形面积公式:S =2(8)环形面积公式:S = π R2-π r 2。
北师大版小学六年级数学下册总复习公式大全
北师大版小学六年级数学下册总复习公式大全北师大版小学六年级数学下册总复习公式大全一、小学数学几何形体周长面积体积计算公式长方形的周长=(长+宽)×2 c=(a+b)×2正方形的周长=边长×4 c=4a长方形的面积=长×宽s=ab正方形的面积=边长×边长s=a.a= a三角形的面积=底×高÷2 s=ah÷2平行四边形的面积=底×高s=ah梯形的面积=(上底+下底)×高÷2 s=(a+b)h÷2直径=半径×2 d=2r 半径=直径÷2 r= d÷2圆的周长=圆周率×直径=圆周率×半径×2 c=πd =2πr圆的面积=圆周率×半径×半径三角形的面积=底×高÷2。
公式s= a×h÷2 正方形的面积=边长×边长公式s= a×a长方形的面积=长×宽公式s= a×b平行四边形的面积=底×高公式s= a×h梯形的面积=(上底+下底)×高÷2 公式s=(a+b)h÷2内角和:三角形的内角和=180度。
长方体的体积=长×宽×高公式:v=abh长方体(或正方体)的体积=底面积×高公式:v=abh正方体的体积=棱长×棱长×棱长公式:v=aaa 圆的周长=直径×π公式:l=πd=2πr圆的面积=半径×半径×π公式:s=πr2圆柱的表(侧)面积:圆柱的表(侧)面积等于底面的周长乘高。
公式:s=ch=πdh=2πrh圆柱的表面积:圆柱的表面积等于底面的周长乘高再加上两头的圆的面积。
公式:s=ch+2s=ch+2πr2圆柱的体积:圆柱的体积等于底面积乘高。
六年级下册数学素材应用题常用公式大全|通用版
小学数学应用题常用公式大全1、【和差问题公式】(和+差)÷2=较大数;(和-差)÷2=较小数。
2、【和倍问题公式】和÷(倍数+1)=一倍数;一倍数×倍数=另一数,或和-一倍数=另一数。
3、【差倍问题公式】差÷(倍数-1)=较小数;较小数×倍数=较大数,或较小数+差=较大数。
4、【平均数问题公式】总数量÷总份数=平均数。
5、【一般行程问题公式】平均速度×时间=路程;路程÷时间=平均速度;路程÷平均速度=时间。
6、【反向行程问题公式】反向行程问题可以分为“相遇问题”(二人从两地出发,相向而行)和“相离问题”(两人背向而行)两种。
这两种题,都可用下面的公式解答:(速度和)×相遇(离)时间=相遇(离)路程;相遇(离)路程÷(速度和)=相遇(离)时间;相遇(离)路程÷相遇(离)时间=速度和。
7、【同向行程问题公式】追及(拉开)路程÷(速度差)=追及(拉开)时间;追及(拉开)路程÷追及(拉开)时间=速度差;(速度差)×追及(拉开)时间=追及(拉开)路程。
8、【列车过桥问题公式】(桥长+列车长)÷速度=过桥时间;(桥长+列车长)÷过桥时间=速度;速度×过桥时间=桥、车长度之和。
9、【行船问题公式】(1)一般公式:静水速度(船速)+水流速度(水速)=顺水速度;船速-水速=逆水速度;(顺水速度+逆水速度)÷2=船速;(顺水速度-逆水速度)÷2=水速。
(2)两船相向航行的公式:甲船顺水速度+乙船逆水速度=甲船静水速度+乙船静水速度(3)两船同向航行的公式:后(前)船静水速度-前(后)船静水速度=两船距离缩小(拉大)速度。
(求出两船距离缩小或拉大速度后,再按上面有关的公式去解答题目)。
10、【工程问题公式】(1)一般公式:工效×工时=工作总量;工作总量÷工时=工效;工作总量÷工效=工时。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
小学数学公式大全1、长方形的周长=(长+宽)×2 C=(a+b)×22、正方形的周长=边长×4 C=4a3、长方形的面积=长×宽S=ab4、正方形的面积=边长×边长S=a.a= a5、三角形的面积=底×高÷2 S=ah÷26、平行四边形的面积=底×高S=ah7、梯形的面积=(上底+下底)×高÷2 S=(a+b)h÷28、直径=半径×2 d=2r半径=直径÷2 r= d÷29、圆的周长=圆周率×直径=圆周率×半径×2 c=πd =2πr10、圆的面积=圆周率×半径×半径?=πr11、长方体的表面积=(长×宽+长×高+宽×高)×212、长方体的体积=长×宽×高V =abh13、正方体的表面积=棱长×棱长×6 S =6a14、正方体的体积=棱长×棱长×棱长V=a.a.a= a15、圆柱的侧面积=底面圆的周长×高S=ch16、圆柱的表面积=上下底面面积+侧面积S=2πr +2πrh=2π(d÷2) +2π(d÷2)h=2π(C÷2÷π) +Ch17、圆柱的体积=底面积×高V=ShV=πr h=π(d÷2) h=π(C÷2÷π) h18、圆锥的体积=底面积×高÷3V=Sh÷3=πr h÷3=π(d÷2) h÷3=π(C÷2÷π) h÷319、长方体(正方体、圆柱体)的体1、每份数×份数=总数总数÷每份数=份数总数÷份数=每份数2、1倍数×倍数=几倍数几倍数÷1倍数=倍数几倍数÷倍数=1倍数3、速度×时间=路程路程÷速度=时间路程÷时间=速度4、单价×数量=总价总价÷单价=数量总价÷数量=单价5、工作效率×工作时间=工作总量工作总量÷工作效率=工作时间工作总量÷工作时间=工作效率6、加数+加数=和和-一个加数=另一个加数7、被减数-减数=差被减数-差=减数差+减数=被减数8、因数×因数=积积÷一个因数=另一个因数9、被除数÷除数=商被除数÷商=除数商×除数=被除数小学数学图形计算公式1、正方形C周长S面积a边长周长=边长×4 C=4a面积=边长×边长S=a×a2、正方体V:体积a:棱长表面积=棱长×棱长×6S表=a×a×6体积=棱长×棱长×棱长V=a×a×a3、长方形C周长S面积a边长周长=(长+宽)×2C=2(a+b)面积=长×宽S=ab4、长方体V:体积s:面积a:长b:宽h:高(1)表面积(长×宽+长×高+宽×高)×2 S=2(ab+ah+bh)(2)体积=长×宽×高V=abh5三角形s面积a底h高面积=底×高÷2s=ah÷2三角形高=面积×2÷底三角形底=面积×2÷高6平行四边形s面积a底h高面积=底×高s=ah7梯形s面积a上底b下底h高面积=(上底+下底)×高÷2s=(a+b)×h÷28圆形S面积C周长∏ d=直径r=半径(1)周长=直径×∏=2×∏×半径C=∏d=2∏r(2)面积=半径×半径×∏圆柱体v:体积h:高s;底面积r:底面半径c:底面周长(1)侧面积=底面周长×高(2)表面积=侧面积+底面积×2(3)体积=底面积×高(4)体积=侧面积÷2×半径10圆锥体v:体积h:高s;底面积r:底面半径体积=底面积×高÷3总数÷总份数=平衡数和差问题(和+差)÷2=大数(和-差)÷2=小数和倍问题和÷(倍数-1)=小数小数×倍数=大数(或者和-小数=大数)差倍问题第一部分:概念1、加法交换律:两数相加交换加数的位置,和不变。
2、加法结合律:三个数相加,先把前两个数相加,或先把后两个数相加,再同第三个数相加,和不变。
3、乘法交换律:两数相乘,交换因数的位置,积不变。
4、乘法结合律:三个数相乘,先把前两个数相乘,或先把后两个数相乘,再和第三个数相乘,它们的积不变。
5、乘法分配律:两个数的和同一个数相乘,可以把两个加数分别同这个数相乘,再把两个积相加,结果不变。
如:(2+4)×5=2×5+4×56、除法的性质:在除法里,被除数和除数同时扩大(或缩小)相同的倍数,商不变。
O除以任何不是O的数都得O。
简易乘法:被乘数、乘数末尾有O的乘法,可以先把O前面的相乘,零不参加运算,有几个零都落下,添在积的末尾。
7、什么叫等式?等号左边的数值与等号右边的数值相等的式子叫做等式。
等式的基本性质:等式两边同时乘以(或除以)一个相同的数,等式仍然成立。
8、什么叫方程式?答:含有未知数的等式叫方程式。
9、什么叫一元一次方程式?答:含有一个未知数,并且未知数的次数是一次的等式叫做一元一次方程式。
学会一元一次方程式的例法及计算。
即例出代有χ的算式并计算。
10、分数:把单位“1”平衡分成若干份,表示这样的一份或几分的数,叫做分数。
11、分数的加减法则:同分母的分数相加减,只把分子相加减,分母不变。
异分母的分数相加减,先通分,然后再加减。
12、分数大小的比较:同分母的分数相比较,分子大的大,分子小的小。
异分母的分数相比较,先通分然后再比较;若分子相同,分母大的反而小。
13、分数乘整数,用分数的分子和整数相乘的积作分子,分母不变。
14、分数乘分数,用分子相乘的积作分子,分母相乘的积作为分母。
15、分数除以整数(0除外),等于分数乘以这个整数的倒数。
16、真分数:分子比分母小的分数叫做真分数。
17、假分数:分子比分母大或者分子和分母相等的分数叫做假分数。
假分数大于或等于1。
18、带分数:把假分数写成整数和真分数的形式,叫做带分数。
19、分数的基本性质:分数的分子和分母同时乘以或除以同一个数0除外),分数的大小不变。
20、一个数除以分数,等于这个数乘以分数的倒数。
21、甲数除以乙数(0除外),等于甲数乘以乙数的倒数。
分数的加、减法则:同分母的分数相加减,只把分子相加减,分母不变。
异分母的分数相加减,先通分,然后再加减。
分数的乘法则:用分子的积做分子,用分母的积做分母。
22、什么叫比:两个数相除就叫做两个数的比。
如:2÷5或3:6或比的前项和后项同时乘以或除以一个相同的数(0除外),比值不变。
23、什么叫比例:表示两个比相等的式子叫做比例。
如3:6=9:1824、比例的基本性质:在比例里,两外项之积等于两内项之积。
25、解比例:求比例中的未知项,叫做解比例。
如3:χ=9:1826、正比例:两种相关联的量,一种量变化,另一种量也随着化,如果这两种量中相对应的的比值(也就是商k)一定,这两种量就叫做成正比例的量,它们的关系就叫做正比例关系。
如:y/x=k( k一定)或kx=y27、反比例:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,它们的关系就叫做反比例关系。
如:x×y= k( k一定)或k / x = y28、百分数:表示一个数是另一个数的百分之几的数,叫做百分数。
百分数也叫做百分率或百分比。
29、把小数化成百分数,只要把小数点向右移动两位,同时在后面添上百分号。
其实,把小数化成百分数,只要把这个小数乘以100%就行了。
30、把百分数化成小数,只要把百分号去掉,同时把小数点向左移动两位。
31、把分数化成百分数,通常先把分数化成小数(除不尽时,通常保留三位小数),再把小数化成百分数。
其实,把分数化成百分数,要先把分数化成小数后,再乘以100%就行了。
32、把百分数化成分数,先把百分数改写成分数,能约分的要约成最简分数。
33、要学会把小数化成分数和把分数化成小数的化发。
34、最大公约数:几个数都能被同一个数一次性整除,这个数就叫做这几个数的最大公约数。
(或几个数公有的约数,叫做这几个数的公约数。
其中最大的一个,叫做最大公约数。
)35、互质数:公约数只有1的两个数,叫做互质数。
36、最小公倍数:几个数公有的倍数,叫做这几个数的公倍数,其中最小的一个叫做这几个数的最小公倍数。
37、通分:把异分母分数的分别化成和原来分数相等的同分母的分数,叫做通分。
(通分用最小公倍数)38、约分:把一个分数化成同它相等,但分子、分母都比较小的分数,叫做约分。
(约分用最大公约数)39、最简分数:分子、分母是互质数的分数,叫做最简分数。
40、分数计算到最后,得数必须化成最简分数。
41、个位上是0、2、4、6、8的数,都能被2整除,即能用2进行42、约分。
个位上是0或者5的数,都能被5整除,即能用5进行约分。
在约分时应注意利用。
43、偶数和奇数:能被2整除的数叫做偶数。
不能被2整除的数叫做奇数。
44、质数(素数):一个数,如果只有1和它本身两个约数,这样的数叫做质数(或素数)。
45、合数:一个数,如果除了1和它本身还有别的约数,这样的数叫做合数。
1不是质数,也不是合数。
46、利息=本金×利率×时间(时间大凡以年或月为单位,应与利率的单位相对应)47、利率:利息与本金的比值叫做利率。
一年的利息与本金的比值叫做年利率。
一月的利息与本金的比值叫做月利率。
48、自然数:用来表示物体个数的整数,叫做自然数。
0也是自然数。
49、循环小数:一个小数,从小数部分的某一位起,一个数字或几个数字依次不断的重复出现,这样的小数叫做循环小数。
如3. 14141450、不循环小数:一个小数,从小数部分起,没有一个数字或几个数字依次不断的重复出现,这样的小数叫做不循环小数。
如圆周率:3. 14159265451、无限不循环小数:一个小数,从小数部分起到无限位数,没有一个数字或几个数字依次不断的重复出现,这样的小数叫做无限不循环小数。