2020高考数学专项复习《三角函数大题压轴题练习》

合集下载

专题12 三角函数(全题型压轴题)试题含解析

专题12 三角函数(全题型压轴题)试题含解析

专题12三角函数(全题型压轴题)目录①三角函数的图象与性质 (1)②函数sin()y A x ωϕ=+的图象变换 (2)③三角函数零点问题(解答题) (3)④三角函数解答题综合 (6)①三角函数的图象与性质②函数sin()y A x ωϕ=+的图象变换③三角函数零点问题(解答题)(1)求()f x 的解析式;(2)将()f x 图像向左平移12个单位得到123,,x x x ,求()()123tan 2x x x π++的值④三角函数解答题综合专题12三角函数(全题型压轴题)目录①三角函数的图象与性质 (1)②函数sin()y A x ωϕ=+的图象变换 (9)③三角函数零点问题(解答题) (12)④三角函数解答题综合 (20)①三角函数的图象与性质设()t f x =,则方程()()2220f x af x ⎡+⎣+⎦=⎤可化为由图象可得:当2t =时,方程()t f x =有2个实数根;当322t <<时,方程()t f x =有4个实数根;①当22m-=时,即②当3-=时,即t=m③当3->时,即t<m②函数sin()y A x ωϕ=+的图象变换③三角函数零点问题(解答题)由图可知,当1t =或12t -≤<当112t ≤<时,()h x 在区间⎡⎢⎣当21t <-或1t >时,()h x 在区间令ππ2πZ 62,x k k-=+∈故两个零点12,x x关于x故()122πcos cos3x x+=7.(2023春·江西·高一统考期末)已知函数由图可知,30a -≤≤,且21πt t +=,所以()12121ππsin sin 466x x t t ⎛⎫+=-+- ⎪⎝⎭故a 的取值范围为()123,0,sin x x ⎡⎤-+⎣⎦8.(2023春·湖北咸宁·高一统考期末)已知(1)求()f x 的解析式;(2)将()f x 图像向左平移12个单位得到123,,x x x ,求()()123tan 2x x x π++的值④三角函数解答题综合(2)当11π0,12x ⎡⎤∈⎢⎥⎣⎦时,不等式()π02f x kf x ⎛⎫++> ⎪⎝⎭恒成立,求实数k 的取值范围.【答案】(1)43310-(2)()3,1--【详解】(1)由题意得,向量()1,3ON = 的相伴函数为()sin 3cos f x x x =+,所以()13πsin 3cos 2sin cos 2sin 223f x x x x x x ⎛⎫⎛⎫=+=+=+ ⎪ ⎪ ⎪⎝⎭⎝⎭∵()85f x =,∴π4sin 35x ⎛⎫+= ⎪⎝⎭.∵ππ,36x ⎛⎫∈- ⎪⎝⎭,∴ππ0,32x ⎛⎫+∈ ⎪⎝⎭,∴23cos 1s πin 335πx x ⎛⎫⎛⎫+=-+= ⎪ ⎪⎝⎭⎝⎭所以ππ1π3π433sin sin sin cos 33232310x x x x ⎡⎤-⎛⎫⎛⎫⎛⎫=+-=+-+= ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦(2)向量()1,3ON = 的相伴函数为()πsin 3cos 2sin 3f x x x x ⎛⎫=+=+ ⎪⎝⎭当11π0,12x ⎡⎤∈⎢⎥⎣⎦时,()π2sin 2cos 03π2π3f x kf x x k x ⎛⎫⎛⎫⎛⎫++=+++> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,即ππsin cos 033x k x ⎛⎫⎛⎫+++> ⎪ ⎪⎝⎭⎝⎭,cos sin π3π3k x x ⎛⎫⎛⎫+>-+ ⎪ ⎪⎝⎭⎝⎭恒成立.所以①当π06x ≤<,即πππ332x ≤+<时,πcos 03x ⎛⎫+> ⎪⎝⎭,所以πsin π3tan π3cos 3x k x x ⎛⎫+ ⎪⎛⎫⎝⎭>-=-+ ⎪⎛⎫⎝⎭+ ⎪⎝⎭,即max πtan 3k x ⎡⎤⎛⎫>-+ ⎪⎢⎥⎝⎭⎣⎦,由于πππ332x ≤+<,所以πtan 3x ⎛⎫+ ⎪⎝⎭的最小值为πtan 33=,所以max πtan 33k x ⎡⎤⎛⎫>-+=- ⎪⎢⎥⎝⎭⎣⎦;②当π6x =,ππ32x +=,不等式ππsin cos 033x k x ⎛⎫⎛⎫+++> ⎪ ⎪⎝⎭⎝⎭化为10>成立.③当π11π612x <≤,ππ5π234x <+≤时,πcos 03x ⎛⎫+< ⎪⎝⎭,。

完整)上海高中数学三角函数大题压轴题练习

完整)上海高中数学三角函数大题压轴题练习

完整)上海高中数学三角函数大题压轴题练习三角函数大题压轴题练1.已知函数$f(x)=\cos(2x-\frac{\pi}{3})+2\sin(x-\frac{\pi}{4})\sin(x+\frac{\pi}{4})$。

Ⅰ)求函数$f(x)$的最小正周期和图象的对称轴方程。

解:(1)$f(x)=\cos(2x-\frac{\pi}{3})+2\sin(x-\frac{\pi}{4})\sin(x+\frac{\pi}{4})$frac{1}{3}\cos(2x-\frac{\pi}{3})+\frac{4}{3}\sin x\cos x$frac{1}{3}(\cos^2x-\sin^2x-\frac{1}{2})+\frac{4}{3}\sin x\cos x$frac{1}{6}(3\cos2x-1)+\frac{4}{3}\sin x\cos x$frac{1}{6}(3\cos2x+2\sin x\cos x-\frac{2}{3})$frac{1}{6}(3\cos2x+\sin(2x-\frac{\pi}{3})-\frac{2}{3})$frac{1}{6}(3\cos2x+\sin2x\cos\frac{\pi}{3}-\cos2x\sin\frac{\pi}{3}-\frac{2}{3})$frac{1}{6}(2\cos2x+\sqrt{3}\sin2x-\frac{2}{3})$frac{1}{3}(\cos2x+\frac{\sqrt{3}}{2}\sin2x)-\frac{1}{3}$frac{2}{3}\sin(2x+\frac{\pi}{3})-\frac{1}{3}$所以,函数$f(x)$的最小正周期为$\pi$,图象的对称轴方程为$x=k\pi+\frac{\pi}{3}$($k\in Z$)。

2)在区间$[-\frac{5\pi}{6},\frac{\pi}{2}]$上,$f(x)$单调递增,而在区间$[\frac{\pi}{2},\frac{7\pi}{6}]$上单调递减。

高考数学压轴专题2020-2021备战高考《三角函数与解三角形》难题汇编及答案解析

高考数学压轴专题2020-2021备战高考《三角函数与解三角形》难题汇编及答案解析

【高中数学】单元《三角函数与解三角形》知识点归纳一、选择题1.已知πππsin()cos()0,322ααα++-=-<<则2πcos()3α+等于( )A B .35-C .45D .35【答案】C 【解析】 【分析】首先根据等式化简,得到4sin 65πα⎛⎫+=- ⎪⎝⎭,再利用诱导公式化简2cos 3πα⎛⎫+ ⎪⎝⎭求值. 【详解】解析:∵ππsin cos 32αα⎛⎫⎛⎫++-= ⎪ ⎪⎝⎭⎝⎭13sin sin sin 22225ααααα++=+=-65πα⎛⎫=+=-⎪⎝⎭ ∴π4sin 65()α+=-.又2ππππcos cos sin 32()())6(6ααα+=++=-+, ∴2π4co (s 35)α+=. 故选:C 【点睛】本题考查三角恒等变换,化简求值,重点考查转化与变形,计算能力,属于基础题型.2.已知函数()sin 26f x x π⎛⎫=-⎪⎝⎭,若方程()23f x =的解为12,x x (120x x π<<<),则()21sin x x -=( )A .23B .49C D 【答案】C 【解析】 【分析】 由已知可得2123x x π=-,结合x 1<x 2求出x 1的范围,再由()121122236sin x x sin x cos x ππ⎛⎫⎛⎫-=-=-- ⎪ ⎪⎝⎭⎝⎭求解即可. 【详解】因为0<x π<,∴112666x πππ⎛⎫-∈- ⎪⎝⎭,, 又因为方程()23f x =的解为x 1,x 2(0<x 1<x 2<π), ∴1223x x π+=,∴2123x x π=-, ∴()121122236sin x x sin x cos x ππ⎛⎫⎛⎫-=-=-- ⎪ ⎪⎝⎭⎝⎭, 因为122123x x x x π=-<,,∴0<x 13π<,∴12662x πππ⎛⎫-∈- ⎪⎝⎭,,∴由()112263f x sin x π⎛⎫=-= ⎪⎝⎭,得126cos x π⎛⎫-= ⎪⎝⎭,∴()12sin x x -=,故()21sin x x -故选C . 【点睛】本题考查了三角函数的恒等变换及化简求值和三角函数的图象与性质,属中档题.3.设当x θ=时,函数()sin 2cos f x x x =-取得最大值,则cos θ=()A .5-B .CD 【答案】B 【解析】 【分析】由辅助角公式可确定()max f x =sin 2cos θθ-=平方关系可构造出方程组求得结果. 【详解】()()sin 2cos f x x x x ϕ=-=+Q ,其中tan 2ϕ=- ()max f x ∴sin 2cos θθ-=又22sin cos 1θθ+= cos θ∴=【点睛】本题考查根据三角函数的最值求解三角函数值的问题,关键是能够确定三角函数的最值,从而得到关于所求三角函数值的方程,结合同角三角函数关系构造方程求得结果.4.已知函数()()πsin 06f x x ωω⎛⎫=-> ⎪⎝⎭,若()π02f f ⎛⎫=- ⎪⎝⎭在π0,2⎛⎫⎪⎝⎭上有且仅有三个零点,则ω= ( ) A .23B .2C .143D .263【答案】C 【解析】∵函数()()sin 06f x x πωω⎛⎫=-> ⎪⎝⎭,()02f f π⎛⎫=-⎪⎝⎭∴1sin()sin()6262πππω-=--=- ∴2266k πππωπ-=+或52,266k k Z πππωπ-=+∈ ∴243k ω=+或42,k k ω=+∈Z ∵函数()f x 在0,2π⎛⎫⎪⎝⎭上有且仅有三个零点 ∴(,)6626x ππωππω-∈-- ∴2326ωππππ<-≤∴131933ω<≤ ∴143ω=或6ω= 故选C.5.在ABC ∆中,角A 、B 、C 所对的边分别为a 、b 、c ,且222b c a bc +=+若2sin sin sin B C A ⋅=,则ABC ∆的形状是()A .等腰三角形B .直角三角形C .等边三角形D .等腰直角三角形【答案】C 【解析】 【分析】直接利用余弦定理的应用求出A 的值,进一步利用正弦定理得到:b =c ,最后判断出三角形的形状. 【详解】在△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c , 且b 2+c 2=a 2+bc .则:2221222b c a bc cosA bc bc +-===,由于:0<A <π,故:A 3π=.由于:sin B sin C =sin 2A , 利用正弦定理得:bc =a 2, 所以:b 2+c 2﹣2bc =0, 故:b =c ,所以:△ABC 为等边三角形. 故选C . 【点睛】本题考查了正弦定理和余弦定理及三角形面积公式的应用,主要考查学生的运算能力和转化能力,属于基础题型.6.将函数()()sin 0,π2f x x ϕωϕω⎛⎫=+>< ⎪⎝⎭的图象向右平移6π个单位长度后,所得图象关于y 轴对称,且1π2f ω⎛⎫=- ⎪⎝⎭,则当ω取最小值时,函数()f x 的解析式为( )A .()sin 26f x x π⎛⎫=+⎪⎝⎭B .()sin 2π6f x x ⎛⎫=- ⎪⎝⎭C .()sin 4π6f x x ⎛⎫=+ ⎪⎝⎭D .()sin 4π6f x x ⎛⎫=- ⎪⎝⎭【答案】C 【解析】 【分析】由题意利用函数()sin y A x ωφ=+的图象变换规律,可得所得函数的解析式,由12f πω⎛⎫=- ⎪⎝⎭,求出φ,再根据所得图象关于y 轴对称求出ω,可得()f x 的解析式.【详解】解:将函数()()sin (0,)2f x x πωφωφ=+><的图象向右平移6π个单位长度后,可得sin 6y x ωπωφ⎛⎫=-+ ⎪⎝⎭的图象;∵所得图象关于y 轴对称,∴62k ωππφπ-+=+,k Z ∈.∵()1sin sin 2f ππφφω⎛⎫=-=+=- ⎪⎝⎭,即1sin 2φ=,26ππφφ<=,. ∴63k ωπππ-=+,620k ω=-->, 则当ω取最小值时,取1k =-,可得4ω=, ∴函数()f x 的解析式为()sin 46f x x π⎛⎫=+ ⎪⎝⎭. 故选C . 【点睛】本题主要考查函数()sin y A x ωφ=+的图象变换规律,正弦函数的性质,属于中档题.7.已知函数()()03f x x πωω⎛⎫=-> ⎪⎝⎭的最小正周期为π,若()()122f x f x ⋅=-,则12x x -的最小值为( )A .2π B .3π C .πD .4π【答案】A 【解析】 【分析】由正弦型函数的最小正周期可求得ω,得到函数解析式,从而确定函数的最大值和最小值;根据()()122f x f x ⋅=-可知1x x =和2x x =必须为最大值点和最小值点才能够满足等式;利用整体对应的方式可构造方程组求得()12122x x k k ππ-=-+,12,k k Z ∈;从而可知120k k -=时取最小值. 【详解】由()f x 最小正周期为π可得:2ππω= 2ω∴= ()23f x x π⎛⎫∴=- ⎪⎝⎭()max f x ∴,()min f x =()()122f x f x ⋅=-Q 1x x ∴=和2x x =分别为()f x 的最大值点和最小值点设1x x =为最大值点,2x x =为最小值点()1112222232,2232x k k k Z x k ππππππ⎧-=+⎪⎪∴∈⎨⎪-=-⎪⎩()12122x x k k ππ∴-=-+,当120k k -=时,12min2x x π-=本题正确选项:A 【点睛】本题考查正弦型函数性质的综合应用,涉及到正弦型函数最小正周期和函数值域的求解;关键是能够根据函数的最值确定1x 和2x 为最值点,从而利用整体对应的方式求得结果.8.在ABC ∆中,060,A BC D ∠==是边AB上的一点,CD CBD =∆的面积为1,则BD 的长为( )A .32B .4C .2D .1【答案】C 【解析】1sin 1sin 2BCD BCD ∠=∴∠=2242BD BD ∴=-=∴=,选C9.在ABC ∆中,60B ∠=︒,AD 是BAC ∠的平分线交BC 于D,BD =,1cos 4BAC ∠=,则AD =( ) A .2 BCD.2【答案】A 【解析】 【分析】先求出sin 4BAD ∠=,再利用正弦定理求AD. 【详解】∵21cos 12sin 4BAC BAD ∠=-∠=,∴sin BAD ∠=.在ABD ∆中,sin sin AD BD B BAD =∠,∴sin 2sin BAD BD BAD =⋅==∠. 【点睛】本题主要考查二倍角的余弦和正弦定理解三角形,意在考查学生对这些知识的理解掌握水平和分析推理能力.10.如图,在等腰直角ABC ∆中,D ,E 分别为斜边BC 的三等分点(D 靠近点B ),过E 作AD 的垂线,垂足为F ,则AF =u u u v( )A .3155AB AC +u u uv u u u vB .2155AB AC +u u uv u u u vC .481515AB AC +u u uv u u u v D .841515AB AC +u u uv u u u v 【答案】D 【解析】 【分析】设出等腰直角三角形ABC 的斜边长,由此结合余弦定理求得各边长,并求得cos DAE ∠,由此得到45AF AD =u u u r u u u r,进而利用平面向量加法和减法的线性运算,将45AF AD =u u u r u u u r 表示为以,AB AC u u u r u u u r为基底来表示的形式.【详解】设6BC =,则32,2AB AC BD DE EC =====,22π2cos4AD AE BD BA BD BA ==+-⋅⋅10=,101044cos 2105DAE +-∠==⨯, 所以45AF AF AD AE ==,所以45AF AD =u u u r u u u r . 因为()1133AD AB BC AB AC AB =+=+-u u u r u u u r u u u r u u u r u u u r u u u r 2133AB AC =+u u ur u u u r , 所以421845331515AF AB AC AB AC ⎛⎫=⨯+=+ ⎪⎝⎭u u u r u u u r u u u r u u u r u u u r. 故选:D 【点睛】本小题主要考查余弦定理解三角形,考查利用基底表示向量,属于中档题.11.已知函数()sin 3(0)f x x x ωωω=+>的图象关于直线8x π=对称,则ω的最小值为( )A .13B .23C .43D .83【答案】C 【解析】 【分析】利用辅助角公式将函数()y f x =的解析式化简为()2sin 3f x x πω⎛⎫=+⎪⎝⎭,根据题意得出()832k k Z πππωπ+=+∈,可得出关于ω的表达式,即可求出正数ω的最小值.【详解】()sin 2sin 3f x x x x πωωω⎛⎫=+=+ ⎪⎝⎭Q ,由于该函数的图象关于直线8x π=对称,则()832k k Z πππωπ+=+∈,得()483k k Z ω=+∈, 0ω>Q ,当0k =时,ω取得最小值43.故选:C. 【点睛】本题考查利用正弦型函数的对称性求参数,解题时要将三角函数的解析式利用三角恒等变换思想化简,并通过对称性列出参数的表达式求解,考查计算能力,属于中等题.12.若函数()y f x =同时满足下列三个性质:①最小正周期为π;②图象关于直线3x π=对称;③在区间,63ππ⎡⎤-⎢⎥⎣⎦上单调递增,则()y f x =的解析式可以是( ) A .sin 26y x π⎛⎫=- ⎪⎝⎭B .sin 26x y π⎛⎫=-⎪⎝⎭ C .cos 26y x π⎛⎫=- ⎪⎝⎭D .cos 23y x π⎛⎫=+⎪⎝⎭【答案】A 【解析】 【分析】利用性质①可排除B ,利用性质②可排除C ,利用性质③可排除D ,通过验证选项A 同时满足三个性质. 【详解】逐一验证,由函数()f x 的最小正周期为π,而B 中函数最小正周期为2412ππ=,故排除B ;又cos 2cos 0362πππ⎛⎫⨯-== ⎪⎝⎭,所以cos 26y x π⎛⎫=- ⎪⎝⎭的图象不关于直线3x π=对称,故排除C ; 若63x ππ-≤≤,则023x ππ≤+≤,故函数cos 23y x π⎛⎫=+ ⎪⎝⎭在,63ππ⎡⎤-⎢⎥⎣⎦上单调递减,故排除D ; 令2262x πππ-≤-≤,得63x ππ-≤≤,所以函数sin 26y x π⎛⎫=- ⎪⎝⎭在,63ππ⎡⎤-⎢⎥⎣⎦上单调递增.由周期公式可得22T ππ==,当3x π=时,sin(2)sin 1362πππ⨯-==, 所以函数sin 26y x π⎛⎫=- ⎪⎝⎭同时满足三个性质.故选A . 【点睛】本题考查了三角函数的周期性,对称性,单调性,属于中档题.13.在OAB ∆中,已知OB =u u u v 1AB u u u v=,45AOB ∠=︒,点P 满足(),OP OA OB λμλμ=+∈R u u u v u u u v u u u v ,其中λ,μ满足23λμ+=,则OP u u u v的最小值为( )ABCD.2【答案】A 【解析】 【分析】根据OB =u u u r,1AB =uu u r ,45AOB ∠=︒,由正弦定理可得OAB ∆为等腰直角三角形,进而求得点A 坐标.结合平面向量的数乘运算与坐标加法运算,用λ,μ表示出OP u u u r.再由23λμ+=,将OP u u u r 化为关于λ的二次表达式,由二次函数性质即可求得OP u u u r的最小值.【详解】在OAB ∆中,已知OB =u u u r,1AB =uu u r ,45AOB ∠=︒由正弦定理可得sin sin AB OBAOB OAB=∠∠u u u r u u u r代入22=,解得sin 1OAB ∠=即2OAB π∠=所以OAB ∆为等腰直角三角形以O 为原点,OB 所在直线为x 轴,以OB 的垂线为y 轴建立平面直角坐标系如下图所示:则点A 坐标为22,22⎛ ⎝⎭所以22OA =⎝⎭u u u r ,)2,0OB =u u u r因为(),OP OA OB λμλμ=+∈R u u u r u u u r u u u r则)222,022OP λμ⎛ =+ ⎝⎭u u u r 222,22λμλ⎛⎫⎪ ⎪⎝⎭= 则2222222OP λμλ⎛⎫=++⎛⎫⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭u u u r2222λλμμ=++因为23λμ+=,则32μλ=- 代入上式可得()()22322232λλλλ+-+-218518λλ-=+299555λ⎛⎫=-+ ⎪⎝⎭所以当95λ=时, min9355OP ==u u u r故选:A 【点睛】本题考查了平面向量基本定理的应用,正弦定理判断三角形形状,平面向量的坐标运算,属于中档题.14.直线y a =与函数()tan (0)4f x x πωω⎛⎫=+> ⎪⎝⎭的图象的相邻两个交点的距离为2π,若()f x 在()(),0m m m ->上是增函数,则m 的取值范围是( )A .(0,]4πB .(0,]2πC .3(0,]4π D .3(0,]2π 【答案】B 【解析】 【分析】根据直线y a =与函数()f x 的图象的相邻两个交点的距离为一个周期,得到12ω=,则()1tan 24f x x π⎛⎫=+ ⎪⎝⎭,然后求得其单调增区间,再根据()f x 在()(),0m m m ->上是增函数,由(,)m m -是增区间的子集求解. 【详解】因为直线y a =与函数()f x 的图象的相邻两个交点的距离为一个周期, 所以12ω=,()1tan 24f x x π⎛⎫=+ ⎪⎝⎭,由12242k x k πππππ-<+<+,得322()22k x k k ππππ-<<+∈Z , 所以()f x 在3,22ππ⎛⎫-⎪⎝⎭上是增函数, 由3(,),22m m ππ⎛⎫-⊆- ⎪⎝⎭, 解得02m π<≤.故选:B 【点睛】本题主要考查正切函数的图象和性质,还考查了运算求解的能力,属于中档题15.我国古代数学家秦九韶在《数书九章》中记述了“三斜求积术”,用现代式子表示即为:在ABC ∆中,角,,A B C 所对的边分别为,,a b c ,则ABC ∆的面积S =根据此公式,若()cos 3cos 0a B b c A ++=,且2222a b c --=,则ABC ∆的面积为( )AB.CD.【答案】A 【解析】 【分析】根据()cos 3cos 0a B b c A ++=,利用正弦定理边化为角得sin cos cos sin 3sin cos 0A B A B C A ++=,整理为()sin 13cos 0C A +=,根据sin 0C ≠,得1cos 3A =-,再由余弦定理得3bc =,又2222a b c --=,代入公式=S . 【详解】由()cos 3cos 0a B b c A ++=得sin cos cos sin 3sin cos 0A B A B C A ++=, 即()sin 3sin cos 0A B C A ++=,即()sin 13cos 0C A +=, 因为sin 0C ≠,所以1cos 3A =-, 由余弦定理22222cos 23a b c bc A bc --=-==,所以3bc =, 由ABC ∆的面积公式得S ===故选:A 【点睛】本题主要考查正弦定理和余弦定理以及类比推理,还考查了运算求解的能力,属于中档题.16.函数()22sin 3cos 2f x x x =+-,2,36x ππ⎡⎤∈-⎢⎥⎣⎦的值域为( ) A .40,3⎡⎤⎢⎥⎣⎦B .41,3⎡⎤⎢⎥⎣⎦C .51,4⎡⎤⎢⎥⎣⎦D .50,4⎡⎤⎢⎥⎣⎦【答案】A 【解析】 【分析】化简得到()23sin 2sin 1f x x x =-++,设sin t x =,利用二次函数性质得到答案. 【详解】根据22sin cos 1x x +=,得()23sin 2sin 1f x x x =-++,2,36x ππ⎡⎤∈-⎢⎥⎣⎦, 令sin t x =,由2,36x ππ⎡⎤∈-⎢⎥⎣⎦,得1sin 1,2x ⎡⎤∈-⎢⎥⎣⎦, 故[]0,1t ∈,有2321y t t =-++,[]0,1t ∈,二次函数对称轴为13t =, 当13t =时,最大值43y =;当1t =时,最小值0y =, 综上,函数()f x 的值域为40,3⎡⎤⎢⎥⎣⎦. 故选:A . 【点睛】本题考查了三角函数值域,换元可以简化运算,是解题的关键.17.已知1F 、2F 分别为双曲线22146x y -=的左、右焦点,M 为双曲线右支上一点且满足120MF MF ⋅=u u u u v u u u u v ,若直线2MF 与双曲线的另一个交点为N ,则1MF N ∆的面积为( )A .12B .C .24D .【答案】C 【解析】 【分析】设1MF m =,2MF n =,根据双曲线的定义和12MF MF ⊥,可求出6m =,2n =,再设2NF t =,则14NF t =+根据勾股定理求出6t =即可求出三角形的面积. 【详解】解:设1MF m =,2MF n =,∵1F 、2F 分别为双曲线22146x y -=的左、右焦点,∴24m n a -==,122F F c ==∵120MF MF ⋅=u u u u v u u u u v,∴12MF MF ⊥,∴222440m n c +==, ∴()2222m n m n mn -=+-, 即2401624mn =-=, ∴12mn =, 解得6m =,2n =,设2NF t =,则124NF a t t =+=+, 在1Rt NMF ∆中可得()()222426t t +=++, 解得6t =, ∴628MN =+=, ∴1MF N ∆的面积111862422S MN MF =⋅=⨯⨯=. 故选C .【点睛】本题考查了双曲线的定义和向量的数量积和三角形的面积,考查了运算能力和转化能力,属于中档题.18.函数()sin()3)f x x x ωϕωϕ=+++(ω>0)的图像过点(1,2),若f (x )相邻的两个零点x 1,x 2满足|x 1-x 2|=6,则f (x )的单调增区间为( ) A .[-2+12k ,4+12k](k ∈Z ) B .[-5+12k ,1+12k](k ∈Z ) C .[1+12k ,7+12k](k ∈Z ) D .[-2+6k ,1+6k](k ∈Z )【答案】B 【解析】 【分析】由题意得()23f x sin x πωϕ⎛⎫=++⎪⎝⎭,根据相邻两个零点满足126x x -=得到周期为12T =,于是可得6π=ω.再根据函数图象过点()1,2求出2()k k Z ϕπ=∈,于是可得函数的解析式,然后可求出单调增区间. 【详解】由题意得()()()323f x sin x cos x sin x πωϕωϕωϕ⎛⎫=++=++ ⎪⎝⎭, ∵()f x 相邻的两个零点1x ,2x 满足126x x -=, ∴函数()f x 的周期为12T =,∴6π=ω, ∴()263f x sin x ππϕ⎛⎫=++⎪⎝⎭.又函数图象过点()1,2,∴2222632sin sin cos πππϕϕϕ⎛⎫⎛⎫++=+== ⎪ ⎪⎝⎭⎝⎭, ∴cos 1ϕ=, ∴2()k k Z ϕπ=∈, ∴()263f x sin x ππ⎛⎫=+ ⎪⎝⎭.由22,2632k x k k Z ππππππ-+≤+≤+∈,得512112,k x k k Z -+≤≤+∈,∴()f x 的单调增区间为[]()512,112k k k Z -++∈. 故选B . 【点睛】解答本题的关键是从题中所给的信息中得到相关数据,进而得到函数的解析式,然后再求出函数的单调递增区间,解体时注意整体代换思想的运用,考查三角函数的性质和应用,属于基础题.19.已知函数()sin()f x x ωϕ=+(0>ω,2πω<)的最小正周期为π,且其图象向左平移3π个单位后,得到函数()cos g x x ω=的图象,则函数()f x 的图象( ) A .关于直线12x π=对称B .关于直线512x π=对称 C .关于点(,0)12π对称D .关于点5(,0)12π对称 【答案】C 【解析】试题分析:依题意()()2,sin 2f x x ωϕ==+,平移后为2sin 2cos 2,36x x ππϕϕ⎛⎫++==- ⎪⎝⎭,()sin 26f x x π⎛⎫=- ⎪⎝⎭,关于,012π⎛⎫⎪⎝⎭对称.考点:三角函数图象与性质.20.在函数:①cos |2|y x =;②|cos |y x =;③cos 26y x π⎛⎫=+ ⎪⎝⎭;④tan 24y x π⎛⎫=- ⎪⎝⎭中,最小正周期为π的所有函数为( ) A .①②③ B .①③④C .②④D .①③【答案】A 【解析】逐一考查所给的函数:cos 2cos2y x x == ,该函数为偶函数,周期22T ππ== ; 将函数cos y x = 图象x 轴下方的图象向上翻折即可得到cos y x = 的图象,该函数的周期为122ππ⨯= ; 函数cos 26y x π⎛⎫=+ ⎪⎝⎭的最小正周期为22T ππ== ; 函数tan 24y x π⎛⎫=-⎪⎝⎭的最小正周期为22T ππ==;综上可得最小正周期为π的所有函数为①②③. 本题选择A 选项.点睛:求三角函数式的最小正周期时,要尽可能地化为只含一个三角函数的式子,否则很容易出现错误.一般地,经过恒等变形成“y =A sin(ωx +φ),y =A cos(ωx +φ),y =A tan(ωx +φ)”的形式,再利用周期公式即可.。

高考数学压轴专题2020-2021备战高考《三角函数与解三角形》专项训练及解析答案

高考数学压轴专题2020-2021备战高考《三角函数与解三角形》专项训练及解析答案

【高中数学】数学高考《三角函数与解三角形》试题含答案一、选择题1.已知函数f (x )=sin 2x +sin 2(x 3π+),则f (x )的最小值为( ) A .12B .14CD【答案】A 【解析】 【分析】先通过降幂公式和辅助角法将函数转化为()11cos 223f x x π⎛⎫=-+ ⎪⎝⎭,再求最值. 【详解】已知函数f (x )=sin 2x +sin 2(x 3π+), =21cos 21cos 2322x x π⎛⎫-+⎪-⎝⎭+,=1cos 2111cos 22223x x π⎛⎛⎫-=-+ ⎪ ⎝⎭⎝⎭, 因为[]cos 21,13x π⎛⎫+∈- ⎪⎝⎭, 所以f (x )的最小值为12. 故选:A 【点睛】本题主要考查倍角公式及两角和与差的三角函数的逆用,还考查了运算求解的能力,属于中档题.2.在ABC ∆中,角,,A B C 所对的边分别为,,a b c 满足,222b c a bc +-=,0AB BC ⋅>u ur u u r u u,a =b c +的取值范围是( ) A .31,2⎛⎫ ⎪⎝⎭B.32⎫⎪⎪⎝⎭C .13,22⎛⎫⎪⎝⎭D .31,2⎛⎤ ⎥⎝⎦【答案】B 【解析】 【分析】利用余弦定理222cos 2b c a A bc+-=,可得3A π=,由|||cos()|0AB BC AB BC B π⋅=⋅->u u u u u u u u r u ur u r u r,可得B为钝角,由正弦定理可得sin sin(120)30)o o b c B B B ∴+=+-=+,结合B 的范围,可得解【详解】由余弦定理有:222cos 2b c a A bc+-=,又222b c a bc +-=故2221cos 222b c a bc A bc bc +-===又A 为三角形的内角,故3A π=又a=sin sin sin(120)ob c c B C B ==- 又|||cos()|0AB BC AB BC B π⋅=⋅->u u u u u u u u r u ur u r u r故cos 0B B <∴为钝角3sin sin(120)sin 30)22o o b c B B B B B ∴+=+-=+=+(90,120)o o B ∈Q ,可得130(120150)sin(30)(2o o o o B B +∈∴+∈,330))22o b c B ∴+=+∈ 故选:B 【点睛】本题考查了正弦定理、余弦定理和向量的综合应用,考查了学生综合分析,转化划归,数学运算能力,属于中档题3.函数()[]()cos 2,2f x x x ππ=∈-的图象与函数()sin g x x =的图象的交点横坐标的和为( ) A .53π B .2πC .76π D .π【答案】B 【解析】 【分析】根据两个函数相等,求出所有交点的横坐标,然后求和即可.【详解】令sin cos2x x =,有2sin 12sin x x =-,所以sin 1x =-或1sin 2x =.又[],2x ππ∈-,所以2x π=-或32x π=或6x π=或56x π=,所以函数()[]()cos 2,2f x x x ππ=∈-的图象与函数()sin g x x =的图象交点的横坐标的和3522266s πππππ=-+++=,故选B. 【点睛】本题主要考查三角函数的图象及给值求角,侧重考查数学建模和数学运算的核心素养.4.已知函数()()πsin 06f x x ωω⎛⎫=-> ⎪⎝⎭,若()π02f f ⎛⎫=- ⎪⎝⎭在π0,2⎛⎫⎪⎝⎭上有且仅有三个零点,则ω= ( ) A .23B .2C .143D .263【答案】C 【解析】∵函数()()sin 06f x x πωω⎛⎫=-> ⎪⎝⎭,()02f f π⎛⎫=-⎪⎝⎭∴1sin()sin()6262πππω-=--=- ∴2266k πππωπ-=+或52,266k k Z πππωπ-=+∈ ∴243k ω=+或42,k k ω=+∈Z ∵函数()f x 在0,2π⎛⎫⎪⎝⎭上有且仅有三个零点∴(,)6626x ππωππω-∈-- ∴2326ωππππ<-≤∴131933ω<≤ ∴143ω=或6ω= 故选C.5.在ABC ∆中,角A 、B 、C 所对的边分别为a 、b 、c ,且222b c a bc +=+若2sin sin sin B C A ⋅=,则ABC ∆的形状是()A .等腰三角形B .直角三角形C .等边三角形D .等腰直角三角形【答案】C 【解析】 【分析】直接利用余弦定理的应用求出A 的值,进一步利用正弦定理得到:b =c ,最后判断出三角形的形状. 【详解】在△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c , 且b 2+c 2=a 2+bc .则:2221222b c a bc cosA bc bc +-===,由于:0<A <π,故:A 3π=.由于:sin B sin C =sin 2A , 利用正弦定理得:bc =a 2, 所以:b 2+c 2﹣2bc =0, 故:b =c ,所以:△ABC 为等边三角形. 故选C . 【点睛】本题考查了正弦定理和余弦定理及三角形面积公式的应用,主要考查学生的运算能力和转化能力,属于基础题型.6.已知πππsin()cos()0,322ααα++-=-<<则2πcos()3α+等于( )A B .35-C .45D .35【答案】C 【解析】 【分析】首先根据等式化简,得到4sin 65πα⎛⎫+=- ⎪⎝⎭,再利用诱导公式化简2cos 3πα⎛⎫+ ⎪⎝⎭求值. 【详解】解析:∵ππsin cos 32αα⎛⎫⎛⎫++-= ⎪ ⎪⎝⎭⎝⎭13sin sin sin 22225ααααα++=+=-433sin 6πα⎛⎫=+=-⎪⎝⎭∴π4sin 65()α+=-.又2ππππcos cos sin 32()())6(6ααα+=++=-+, ∴2π4co (s 35)α+=. 故选:C 【点睛】本题考查三角恒等变换,化简求值,重点考查转化与变形,计算能力,属于基础题型.7.小赵开车从A 处出发,以每小时40千米的速度沿南偏东40︒的方向直线行驶,30分钟后到达B 处,此时,小王发来微信定位,显示他自己在A 的南偏东70︒方向的C 处,且A 与C 的距离为153千米,若此时,小赵以每小时52千米的速度开车直线到达C 处接小王,则小赵到达C 处所用的时间大约为( )()7 2.6≈A .10分钟B .15分钟C .20分钟D .25分钟【答案】B 【解析】 【分析】首先根据题中所给的条件,得到30BAC ∠=︒,20AB =,153AC =,两边和夹角,之后应用余弦定理求得5713BC =≈(千米),根据题中所给的速度,进而求得时间,得到结果. 【详解】根据条件可得30BAC ∠=︒,20AB =,153AC =, 由余弦定理可得2222cos30175BC AB AC AB AC ︒=+-⋅⋅=, 则5713BC =≈(千米), 由B 到达C 所需时间约为130.2552=(时)15=分钟. 故选:B . 【点睛】该题是一道关于解三角形的实际应用题,解题的关键是掌握余弦定理的应用,属于简单题目.8.已知角α的终边与单位圆交于点34(,)55P -,则cos α的值为( ) A .35B .35-C .45D .45-【答案】B 【解析】 【分析】根据已知角α的终边与单位圆交于点34(,)55P -,结合三角函数的定义即可得到cos α的值. 【详解】因为角α的终边与单位圆交于点34(,)55P -, 所以34,,155x y r =-==, 所以3cos 5α=-, 故选B. 【点睛】该题考查的是有关已知角终边上一点求其三角函数值的问题,涉及到的知识点有三角函数的定义,属于简单题目.9.若函数()y f x =同时满足下列三个性质:①最小正周期为π;②图象关于直线3x π=对称;③在区间,63ππ⎡⎤-⎢⎥⎣⎦上单调递增,则()y f x =的解析式可以是( )A .sin 26y x π⎛⎫=- ⎪⎝⎭B .sin 26x y π⎛⎫=-⎪⎝⎭ C .cos 26y x π⎛⎫=- ⎪⎝⎭D .cos 23y x π⎛⎫=+⎪⎝⎭【答案】A 【解析】 【分析】利用性质①可排除B ,利用性质②可排除C ,利用性质③可排除D ,通过验证选项A 同时满足三个性质. 【详解】逐一验证,由函数()f x 的最小正周期为π,而B 中函数最小正周期为2412ππ=,故排除B ;又cos 2cos 0362πππ⎛⎫⨯-== ⎪⎝⎭,所以cos 26y x π⎛⎫=- ⎪⎝⎭的图象不关于直线3x π=对称,故排除C ; 若63x ππ-≤≤,则023x ππ≤+≤,故函数cos 23y x π⎛⎫=+ ⎪⎝⎭在,63ππ⎡⎤-⎢⎥⎣⎦上单调递减,故排除D ; 令2262x πππ-≤-≤,得63x ππ-≤≤,所以函数sin 26y x π⎛⎫=- ⎪⎝⎭在,63ππ⎡⎤-⎢⎥⎣⎦上单调递增.由周期公式可得22T ππ==,当3x π=时,sin(2)sin 1362πππ⨯-==, 所以函数sin 26y x π⎛⎫=- ⎪⎝⎭同时满足三个性质.故选A . 【点睛】本题考查了三角函数的周期性,对称性,单调性,属于中档题.10.已知函数()3cos(2)2f x x π=+,若对于任意的x ∈R ,都有12()()()f x f x f x 剟成立,则12x x -的最小值为( ) A .4 B .1C .12D .2【答案】D 【解析】 【分析】由题意得出()f x 的一个最大值为()2f x ,一个最小值为()1f x ,于此得出12x x -的最小值为函数()y f x =的半个周期,于此得出答案. 【详解】对任意的x ∈R ,()()()12f x f x f x 剟成立. 所以()()2min 3f x f x ==-,()()2max 3f x f x ==,所以12min22Tx x -==,故选D . 【点睛】本题考查正余弦型函数的周期性,根据题中条件得出函数的最值是解题的关键,另外就是灵活利用正余弦型函数的周期公式,考查分析问题的能力,属于中等题.11.ABC V 中,角A 、B 、C 的对边分别为a ,b ,c ,且tanC 3cos 3cos c a B b A =+,若27c =,4a =,则b 的值为( )A .6B .2C .5D .2【答案】A 【解析】 【分析】由正弦定理,两角和的正弦公式化简已知等式可得sin tan 3sin C C C =,结合sin 0C ≠,可求得tan 3C =,结合范围()0,C π∈,可求C ,从而根据余弦定理24120b b --=,解方程可求b 的值. 【详解】解:∵tan 3cos 3cos c C a B b A =+, ∴由正弦定理可得:()()sin tan 3sin cos sin cos 3sin 3sin C C A B B A A B C =+=+=,∵sin 0C ≠, ∴可得tan 3C =, ∵()0,C π∈, ∴3C π=,∵27c =,4a =,∴由余弦定理2222cos c a b ab C =+-,可得212816242b b =+-⨯⨯⨯,可得24120b b --=,∴解得6b =,(负值舍去). 故选:A . 【点睛】本题考查正弦定理、余弦定理的综合应用,其中着重考查了正弦定理的边角互化、余弦定理的解三角形,难度一般.利用边角互化求解角度值时,注意三角形内角对应的角度范围.12.若θ是第二象限角,则下列选项中能确定为正值的是( ) A .sin B .cosC .tanD .cos2θ【答案】C 【解析】 【分析】直接利用三角函数象限角的三角函数的符号判断即可. 【详解】由θ是第二象限角可得为第一或第三象限角,所以tan >0.故选C 【点睛】本题考查三角函数值的符号的判断,是基础题.13.在ABC V 中,角A ,B ,C 的对边分别为a ,b ,c ,若1b =,3c =,且2sin()cos 12cos sin B C C A C +=-,则ABC V 的面积是( )A 3B .12C 33D .14或12【答案】C 【解析】 【分析】根据已知关系求出1sin 2B =,根据余弦定理求出边a ,根据面积公式即可得解. 【详解】因为2sin()cos 12cos sin B C C A C +=-,所以2sin cos 12cos sin A C A C =-, 所以2sin cos 2cos sin 1A C A C +=,所以2sin()1A C +=,所以2sin 1B =,即1sin 2B =,因为b c <,所以B C <,所以角B 为锐角,所以23cos 1sin B B =-=, 由余弦定理2222cos b a c ac B =+-得231323a a =+-⨯, 整理可得2320a a -+=,解得1a =或2a =. 当1a =时,ABC V 的面积是1113sin 13222S ac B ==⨯=当2a =时,ABC V 的面积是1113sin 232222S ac B ==⨯=. 故选:C. 【点睛】此题考查根据余弦定理解三角形,关键在于熟练掌握定理公式,结合边角关系解方程,根据面积公式求解.14.在ABC ∆中,角A ,B ,C 所对的边分别为,,,3,3,sin a b c a c b A ===cos ,6a B b π⎛⎫+= ⎪⎝⎭则( )A .1B 2C 3D 5【答案】C 【解析】 【分析】将sin b A = cos 6a B π⎛⎫+ ⎪⎝⎭结合正弦定理化简,求得B ,再由余弦定理即可求得b . 【详解】因为sin b A = cos 6a B π⎛⎫+⎪⎝⎭,展开得sin b A =1?cos sin 2B a B -,由正弦定理化简得sin sinB A =1?cos sin 2B sinA B -= cos B即3tanB =,而三角形中0<B<π,所以π 6B =由余弦定理可得2222cos b a c ac B =+- ,代入(2223236b π=+-⨯⨯解得b =所以选C 【点睛】本题考查了三角函数式的化简,正弦定理与余弦定理的应用,属于基础题.15.在∆ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .则“sin >sin A B ”是“a b >”的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件【答案】C 【解析】由正弦定理得sin sin 22a bA B a b R R>⇔>⇔> ,所以“sin sin A B >”是“a b >”的充要条件,选C.16.已知函数()()sin x f x x R ωφ+=∈,,其中0ωπφπ>-<,≤.若函数()f x 的最小正周期为4π,且当23x π=时,()f x 取最大值,是( ) A .()f x 在区间[]2ππ--,上是减函数 B .()f x 在区间[]0π-,上是增函数 C .()f x 在区间[]0π,上是减函数 D .()f x 在区间[]02π,上是增函数【答案】B【解析】【分析】先根据题目所给已知条件求得()f x 的解析式,然后求函数的单调区间,由此得出正确选项.【详解】由于函数()f x 的最小正周期为4π,故2π14π2ω==,即()1sin 2f x x φ⎛⎫=+ ⎪⎝⎭,2ππsin 1,33π6f φφ⎛⎫⎛⎫=+= ⎪ ⎪⎝⎭=⎭⎝.所以()1πsin 26f x x ⎛⎫=+ ⎪⎝⎭.由π1ππ2π2π2262k x k -≤+≤+,解得4π2π4π4π33k x k -≤≤+,故函数的递增区间是4π2π4π,4π33k k ⎡⎤-+⎢⎥⎣⎦,令0k =,则递增区间为4π2π,33⎡⎤-⎢⎥⎣⎦,故B 选项正确.所以本小题选B.【点睛】本小题主要考查三角函数解析式的求法,考查三角函数单调区间的求法,属于基础题.17.某船开始看见灯塔A 时,灯塔A 在船南偏东30o 方向,后来船沿南偏东60︒的方向航行45km 后,看见灯塔A 在船正西方向,则这时船与灯塔A 的距离是( )A .152kmB .30kmC .15kmD .153km 【答案】D【解析】【分析】如图所示,设灯塔位于A 处,船开始的位置为B ,船行45km 后处于C ,根据题意求出BAC ∠与BAC ∠的大小,在三角形ABC 中,利用正弦定理算出AC 的长,可得该时刻船与灯塔的距离.【详解】设灯塔位于A 处,船开始的位置为B ,船行45km 后处于C ,如图所示,可得60DBC ∠=︒,30ABD ∠=︒,45BC =30ABC ∴∠=︒,120BAC ∠=︒在三角形ABC 中,利用正弦定理可得:sin sin AC BC ABC BAC =∠∠, 可得sin 1153sin 23BC ABC AC km BAC ∠==⨯=∠ 故选D【点睛】本题主要考查的是正弦定理,以及特殊角的三角函数值,熟练掌握正弦定理是解决本题的关键,属于基础题.18.在ABC V 中,角A 的平分线交边BC 于D ,4AB =,8AC =,2BD =,则ABD △的面积是( )A .15B .315C .1D .3【答案】A【解析】【分析】先根据正弦定理求得DC ,再结合余弦定理求得cos B ,进而求出ABD S V ,即可求得结论.【详解】如图:()sin sin sin ADC ADB ADB π∠=-∠=∠,在ABD △中,由正弦定理得sin sin BD AB BAD ADB=∠∠,同理可得sin sin CD AC CAD ADC=∠∠, 因为ABC V 中,角A 的平分线交边BC 于D ,上述两个等式相除得BD AB CD AC =, 4AB =Q ,8AC =,2BD =,8244AC BD CD AB ⋅⨯∴===,6BC ∴=. 2222224681cos 22464AB BC AC B AB BC +-+-∴===-⋅⨯⨯,2115sin 144B ⎛⎫=--= ⎪⎝⎭. 1sin 152ABD S AB BD B ∴=⋅⋅=V故选:A .【点睛】本题考查三角形面积的求法以及角平分线的性质应用,是中档题,解题时要注意余弦定理的合理运用,考查计算能力,属于中等题.19.在函数:①cos |2|y x =;②|cos |y x =;③cos 26y x π⎛⎫=+ ⎪⎝⎭;④tan 24y x π⎛⎫=-⎪⎝⎭中,最小正周期为π的所有函数为( ) A .①②③B .①③④C .②④D .①③【答案】A【解析】逐一考查所给的函数: cos 2cos2y x x == ,该函数为偶函数,周期22T ππ== ; 将函数cos y x = 图象x 轴下方的图象向上翻折即可得到cos y x = 的图象,该函数的周期为122ππ⨯= ; 函数cos 26y x π⎛⎫=+⎪⎝⎭的最小正周期为22T ππ== ; 函数tan 24y x π⎛⎫=- ⎪⎝⎭的最小正周期为22T ππ== ;综上可得最小正周期为π的所有函数为①②③.本题选择A 选项.点睛:求三角函数式的最小正周期时,要尽可能地化为只含一个三角函数的式子,否则很容易出现错误.一般地,经过恒等变形成“y =A sin(ωx +φ),y =A cos(ωx +φ),y =A tan(ωx +φ)”的形式,再利用周期公式即可.20.在极坐标系中,曲线4sin 6πρθ⎛⎫=+⎪⎝⎭关于( ) A .直线3πθ=对称 B .直线6πθ=对称 C .点2,6π⎛⎫ ⎪⎝⎭对称 D .极点对称 【答案】A【解析】【分析】由4sin 6πρθ⎛⎫=+ ⎪⎝⎭,得直角坐标方程:2220x x y -+-= ,圆心为( ,又因为直线3πθ=即:y = 过点(,由此便可得出答案. 【详解】 由曲线4sin 6πρθ⎛⎫=+ ⎪⎝⎭,即:24sin 6πρρθ⎛⎫=+ ⎪⎝⎭,又因为cos sin x y ρθρθ=⎧⎨=⎩,化简得曲线的直角坐标方程:2220x x y -+-= ,故圆心为( .又因为直线3πθ=,直角坐标方程为:y = ,直线y =过点(,故曲线关于直线3πθ=对称故选:A.【点睛】本题主要考查曲线及直线的极坐标方程与直角坐标方程的转化,以及圆关于过圆心的直线对称的知识,属于中等难度题目.。

(完整)2019-2020年高考数学大题专题练习——三角函数(一)(含解析).doc

(完整)2019-2020年高考数学大题专题练习——三角函数(一)(含解析).doc

2019-2020 年高考数学大题专题练习 —— 三角函数(一)1. 【山东肥城】 已知函数 f ( x) 2sin 2 x 2sin 2 ( x) , x R .( 1)求函数 yf ( x) 的对称中心;6( 2)已知在 △ABC 中,角 A 、B 、C 所对的边分别为 a , b , c ,且f (B6 ) b c, ABC 的外接圆半径为 3 ,求 △ABC 周长的最大值 . 22a【解析】f ( x) 1 cos2 x1 cos2( x) cos(2 x) cos2 x6313 sin 2x cos 2xcos2x223sin 2x1cos2x sin(2 x 6 ) . 22(1)令 2xk ( k Z ),则 xk( kZ ),6212所以函数 yf ( x) 的对称中心为 (k,0) k Z ;212(2)由 f (B)b c,得 sin( B ) bc ,即 3 sin B 1cos B b c ,262a6 2a 2 2 2a整理得 3a sin B a cos B b c ,由正弦定理得:3 sin A sin B sin A cos B sin B sin C ,化简得 3 sin A sin B sin B cos Asin B ,又因为 sin B0 ,所以 3 sin A cos A1,即sin( A1 ,6 )2由 0A,得A5 ,6 66所以 A,即 A3 ,6 6又 ABC 的外接圆的半径为3 ,所以 a 2 3 sin A 3 ,由余弦定理得222222232(b c) 2abc2bc cos A bcbc (b c)3bc (b c)(b c)44,即 ,当且仅当 bc 时取等号,所以周长的最大值为 9.2.【河北衡水】 已知函数 f x2a sin x cosx2b cos 2 x c a 0,b 0 ,满足 f 0 ,且当 x0,时, f x 在 x 取得最大值为 5.26 2( 1)求函数 f x 在 x0, 的单调递增区间;( 2)在锐角 △ABC 的三个角 A ,B ,C 所对的边分别为 a ,b ,c ,且2 22 f C3,求a2b 2c 2 的取值范围 .2ab c【解析】(1)易得 f x5sin 2x 5,整体法求出单调递增区间为0, , 2 ,;3 666 3 (2)易得 C,则由余弦定理可得 a2b 2c 2 2a 2 2b 2 ab2 b a 1,3a 2b 2c 2aba bbsin 2 A3 1 1由正弦定理可得sin B 3,所以asin Asin A2tan A2 ,22a 2b 2c 23,4 .a2b2c2rcos x, 1 r( 3 sin x,cos 2x) , xR ,设函数3.【山东青岛】 已知向量 a, b 2r rf ( x) a b .( 1)求 f(x)的最小正周期;( 2)求函数 f(x)的单调递减区间;( 3)求 f(x)在 0,上的最大值和最小值 . 2【解析】f (x) cos x, 1( 3 sin x,cos 2x) 23 cos x sin x 1cos2x 23sin 2 x 1cos 2x2 2cos sin 2x sin cos 2x6 6sin 2x.6(1)f ( x)的最小正周期为T 2 2,即函数f ( x) 的最小正周期为.2(2)函数y sin(2 x ) 单调递减区间:62k 2x 32k , k Z ,2 6 2得:k x 5 k , k Z ,63∴所以单调递减区间是3 k ,5k , k Z .6(3)∵0 x ,2∴2x 5.6 6 6 由正弦函数的性质,当 2x6 2 ,即 x 时, f (x) 取得最大值1.3当x x 0 f (0) 1,即时,,6 6 2当 2x6 5 ,即 x2时, f21 ,6 2∴ f (x) 的最小值为1. 2因此, f (x) 在 0, 上的最大值是1,最小值是1 .2 224.【浙江余姚】已知函数 f ( x) sin x sin x cos( x ) .( 1)求函数 f(x)的最小正周期;( 2)求 f(x)在 0,上的最大值和最小值.2【解析】( 1) 由题意得 f ( x) sin 2 x sin x cos x6sin 2 xsin x( 3 cos x 1sin x)2 23sin 2x3sin x cos x223(1 cos 2x)3sin 2x443 ( 1sin 2x3cos2x)3 2 2243sin( 2x) 32 34f (x) 的最小正周期为( 2) x0, ,22x23 3 3当 2x,即 x0时, f ( x) min0 ;33当 2x5 时, f ( x) max2 3 33,即 x4212综上,得 x0时, f ( x) 取得最小值,为 0;当 x5 2 3 3时, f ( x) 取得最大值,为4125.【山东青岛】 △ABC 的内角 A ,B ,C 的对边分别为a ,b ,c ,已知 b cos A 3a c .3( 1)求 cosB ;( 2)如图, D 为 △ABC 外一点,若在平面四边形ABCD中, D 2 B ,且 AD 1, CD3 , BC 6 ,求 AB 的长.【解析 】解:( 1)在ABC 中,由正弦定理得 sin B cos A3sin Asin C ,3又 C( A B) ,所以 sin B cos A3sin Asin( A B) ,3故 sin B cos A3sin Acos B cos Asin B ,sin A3所以 sin Acos B3sin A ,3又 A(0, ) ,所以 sin A30 ,故 cos B3(2) QD 2 B , cos D2cos 2 B 113又在ACD 中, AD 1, CD 3∴由余弦定理可得 AC2AD2CD22AD CD cosD 19 2 3 ( 1) 12 ,3∴ AC2 3 ,在 ABC 中, BC6 , AC 2 3 , cosB3,3∴由余弦定理可得 AC2AB 2 BC 2 2 AB BCcosB ,即 12 AB 2 6 2 AB63 ,化简得 AB 2 2 2 AB 6 0 ,解得 AB 3 2 .3故 AB 的长为 32 .6. 【江苏泰州】如图,在△ABC 中,ABC,2ACB, BC 1.P 是△ ABC 内一点,且BPC.3 2(1)若ABP,求线段AP的长度;6(2)若APB 2,求△ ABP 的面积 .3【解析】(1)因为PBC ,所以在 Rt PBC 中,6BPC , BC 1,PBC3 ,所以 PB 1 ,2 2在 APB 中,ABP , BP 13 ,所以, AB6 2AP2 AB 2 BP2 2AB BP cos PBA3 1 2 13 37,所以 AP 7 ;4 2 2 4 2(2)设PBA ,则PCB ,在 Rt PBC 中,BPC , BC 1,2PCB ,所以 PB sin ,在 APB 中,ABP , BP sin , AB 3 ,APB 2,3由正弦定理得:sin 3 1sin3cos1sinsin sin 2 2 2 23 3sin 3 cos ,又 sin 2 cos2 1 sin2 32 7SABP 1AB BP sin ABP 1 3 sin 2 3 3 .2 2 148.【辽宁抚顺】已知向量m sin x,1 , n cos x,3, f x m n4 4( 1)求出 f(x)的解析式,并写出f(x)的最小正周期,对称轴,对称中心;( 2)令 h xf x6,求 h(x)的单调递减区间;( 3)若 m // n ,求 f(x)的值.【解析】(1) f xm nsin x4cos x341sin 2 x4 3 1sin 2x231cos2x 3222所以 f x 的最小正周期 T ,对称轴为 xk , kZ2对称中心为k ,3 , kZ42(2) h xf x1 cos2 x 32 36令2k2x32k , kZ 得k x6k ,k Z3所以 h x 的单调减区间为3k ,k ,k Z6(3)若 m // n ,则 3sinxcos x即 tan x13444tan x 2f x1cos2x 3 1sin 2 x231 sin2 x cos 2 xcos x2 sin 2 xcos 2 322 x1 tan2 x 1 332 tan 2 x 31109.【辽宁抚顺】已知函数 f x 2 3 sin x cos x 2cos 2 x 1 , x R .( 1)求函数 f x 的最小正周期及在区间0,2 上的最大值和最小值;( 2)若 f x 06,x 0, 2 ,求 cos 2x 0 的值.54【解析】( 1) 由 f(x)= 2 3 sin xcos x + 2cos 2x - 1,得 f(x)= 3 (2sin xcos x)+(2cos2x-1)= 3 sin 2x+cos 2x=2sin 2x ,6所以函数 f(x)的最小正周期为π0 x , 2 x6 7 , 1 sin 2 x 12 6 6 2 6所以函数 f(x)在区间 0, 上的最大值为2,最小值为- 12( 2)由(1)可知f(x0)=2sin 2 x6又因为 f(x0 )=6,所以 sin 2 x6=3 .5 5由 x0∈, ,得 2x0+∈ 2,74 2 6 3 6从而 cos 2 x0 = 1 sin 2 2 x06 =-46 5所以 cos 2x0= cos 2 x06 6 = cos 2x0 cos + sin 2x06sin6 6 6=3 4 31010.【广西桂林】已知f x 4sin 24 x sin x cosx sin x cosx sin x 1 . 2( 1)求函数 f x 的最小正周期;( 2)常数0 ,若函数 y f x 在区间, 2上是增函数,求的取值2 3范围;( 3)若函数 g x 1 f 2 x af x af x a 1在,的最大值为2 2 4 22,求实数的值 .【解析】(1)f x 2 1 cos x sin x cos2 x sin 2 x 1 22 2sin x sin x 1 2sin 2 x 1 2sin x .∴ T 2 .(2) f x 2sinx .由 2kx 2k2kx2k2 得, k Z ,222 ∴ fx 的递增区间为2k2, 2k, k Z2∵ fx 在,2上是增函数,23∴当 k0 时,有2, 22,.320,∴, 解得 03242 22 ,3∴ 的取值范围是0,3.4(3) gx sin 2x a sin xa cos x 1 a 1.2 令 sin xcos x t ,则 sin 2x1 t2 .112a21 2att2aa∴ y 1 ta 1at2 t4a .222∵ t sin x cos x2 sin x,由x 得x,4 42244∴ 2 t 1 .①当a2 ,即 a2 2 时,在 t2 处 y max2 1 a 2 .22由21 a2 2 ,解得 a8 8 2 2 12 2 (舍去 ).22 2 1 7②当2 a 1,即2 2 a2 时, y maxa 21 a ,由 a 21a 22424 2得 a 2 2a 8 0 解得 a2 或 a 4 (舍去) .③当a1,即a 2 时,在 t 1处y max a 1 ,由a1 2 得a 6.2 2 2综上, a 2 或 a 6 为所求.11.【江苏无锡】如图所示,△ ABC 是临江公园内一个等腰三角形形状的小湖.....(假设湖岸是笔直的),其中两腰CA CB 60 米,cos CAB 2.为了给市民3营造良好的休闲环境,公园管理处决定在湖岸AC,AB 上分别取点E,F(异于线段端点),在湖上修建一条笔直的水上观光通道EF(宽度不计),使得三角形AEF 和四边形 BCEF 的周长相等 .(1)若水上观光通道的端点 E 为线段 AC 的三等分点(靠近点 C),求此时水上观光通道 EF 的长度;(2)当 AE 为多长时,观光通道 EF 的长度最短?并求出其最短长度 .【解析】(1)在等腰ABC 中,过点 C 作 CH AB 于 H ,在 Rt ACH 中,由 cosAH AH 240 , AB 80 ,CAB ,即,∴ AHAC 60 3∴三角形 AEF 和四边形 BCEF 的周长相等.∴ AE AF EF CE BC BF EF ,即 AE AF 60 AE 60 80 AF ,∴AE AF 100.∵ E 为线段 AC 的三等分点(靠近点 C ),∴ AE 40, AF 60,在AEF 中,EF 2 AE 2 AF 2 2 AE AF cos CAB 402 602 2 40 60 2 200 ,3∴ EF 2000 20 5 米.即水上观光通道EF 的长度为20 5米.(2)由( 1)知,AE AF 100 ,设 AE x ,AF y ,在AEF 中,由余弦定理,得EF 2 x2 y2 2x y cos CAB x2 y 24xy x y10xy .23 3∵ xy x y 2 1002 10 502 2 502 .502,∴EF22 3 350 6∴EF,当且仅当x y取得等号,3所以,当 AE 50 米时,水上观光通道EF 的长度取得最小值,最小值为50 6米.312.【江苏苏州】如图,长方形材料ABCD 中,已知AB 2 3 , AD4 .点P为材料ABCD 内部一点,PE AB 于 E , PF AD 于 F ,且 PE1 ,PF 3 .现要在长方形材料ABCD中裁剪出四边形材料AMPN,满足MPN 150 ,点M、N分别在边AB,AD上.( 1)设FPN,试将四边形材料AMPN 的面积表示为的函数,并指明的取值范围;(2)试确定点 N 在 AD 上的位置,使得四边形材料 AMPN 的面积 S 最小,并求出其最小值 .【解析】(1)在直角NFP 中,因为 PF 3 ,FPN ,所以 NF 3 tan ,所以 S NAP 1NA PF 1 1 3 tan 3 ,2 2在直角 MEP 中,因为 PE 1,EPM3,所以MEtan,3所以 S AMP1AM PE 1 3 tan31,2 2所以 SSNAPSAMP3tan1tan33 ,0, .2 23(2)因为S 3 1 tan33 tan3,tan2 33tan2 13 tan22令 t 13 tan,由0, ,得 t1,4,3所以S3 3t24t 4 3 t 43 3 t4 3 23 ,2 3t 2 3t 323t33当且仅当t2 3233 时,即 tan时等号成立,3此时,AN 2 3233,Smin3 ,答:当AN 2 3AMPN 的面积 S 最小,最小值为 233 时,四边形材料.313.【江苏苏州】 如图,在平面四边形ABCD 中, ABC3AD ,, AB4AB=1.uuur uuur3 ,求 △的面积;( 1)若 AB BCABCg( 2)若 BC 2 2 , AD 5 ,求 CD 的长度 .【解析】uuur uuur3 ,所以 uuur uuur,(1)因为 AB BCBAgBC 3guuur uuurABC3 ,即 BA BC cosABC 3 , AB 1 ,所以 1 uuur3 uuur3 2 ,又因为BC cos 3,则 BC44 1 uuur uuur ABC 3所以 S ABC AB BC sin .2 2(2)在 ABC 中,由余弦定理得:AC 2AB 2 BC 2 2 AB BC cos31 8 21 2 22 13 ,42解得: AC 13 ,在ABC 中,由正弦定理得:ACBC2 13sin ABC sin,即sin BAC,BAC13所以 cos CADcosBACsin BAC2 13 ,213在ACD 中,由余弦定理得:CD 2AD 2 AC 2 2AD AC cos CAD ,即 CD3 2 .14.【山东栖霞】 已知函数 f xA sin xA 0,0,的部分图象222如图所示, B , C 分别是图象的最低点和最高点,BC4 .4(1)求函数 f(x)的解析式; (2)将函数y f x 的图象向左平移个单位长度,再把所得图象上各点横坐标伸长到3原来的 2 倍(纵坐标不变)得到函数 yg x 的图象,求函数 yg 2 x 的单调递增区间 .13【解析】(1)由图象可得:3 T 5 ( ) ,所以 f (x) 的周期 T .4 12 3于是2,得2 ,C 524 A 22又 B, A , , A ∴ BC 4 ∴ A 1,12 1224又将 C (5,1) 代入 f (x)sin(2 x) 得, sin(2 5) 1,1212所以 25=2k,即=2k( k R ) ,1223由2 得, ,23∴ f (x)sin(2 x) .3(2)将函数 yf (x) 的图象沿 x 轴方向向左平移个单位长度,3得到的图象对应的解析式为:y sin(2 x) ,3再把所得图象上各点横坐标伸长到原来的 2 倍(纵坐标不变),得到的图象对应的解析式为 g( x)sin( x3 ) ,cos(2x2 )22(x13y g ( x) sin 3 )22由 2k22k, kZ 得, kx k , k Z ,2x336∴函数 yg 2 ( x) 的单调递增区间为 k,k (kZ ) .3615.【山东滕州】 已知函数 f ( x)Asin( x ) ( A 0, 0,) 的部分图象如 2图所示 .( 1)求函数 f (x) 的解析式;( 2)把函数 y f ( x) 图象上点的横坐标扩大到原来的 2 倍(纵坐标不变),再向左平移个单位,得到函数y g (x) 的图象,求611关于 x 的方程 g ( x) m(0 m 2) 在 x [,] 时3 3所有的实数根之和 .【解析】2(1)由图象知,函数 f ( x) 的周期T,故 2 .T点 (, A) 在函数图象上,6∴ Asin(26) A,∴ sin(3) 1,解得:3 2k2, k Z ,即2k6, k Z ,又2 ,从而.6点 (0,1) 在函数图象上,可得:Asin(2 0 ) 1 ,6∴ A 2 .故函数 f (x) 的解析式为: f ( x) 2sin(2 x ) .6 (2)依题意,得g (x) 2sin( x ) .3∵ g( x) 2sin( x ) 的周期T ,3∴ g( x) 2sin( x ) 在 x [11] 内有2个周期. ,3 3 3令x3 k , k Z ,2解得 x k , k Z ,6即函数 g (x) 2sin( x ) 的对称轴为 x k , k Z .3 6又 x [3 ,11 ] ,则 x3[0,4 ] ,3所以 g(x) m(0 m 2) 在 x [ , 11 ] 内有4个实根,3 3不妨从小到大依次设为x i (i 1,2,3, 4) .则x1x2 , x3 x4 13 ,2 6 2 6故 g( x) m(0 m 2) 在x [3 ,11 ] 时所有的实数根之和为:3x1 x2 x3 x4 14. 3。

高考数学压轴专题2020-2021备战高考《三角函数与解三角形》真题汇编及答案

高考数学压轴专题2020-2021备战高考《三角函数与解三角形》真题汇编及答案

数学高考《三角函数与解三角形》试题含答案一、选择题1.已知()0,απ∈,3sin 35πα⎛⎫+= ⎪⎝⎭,则cos 26πα⎛⎫+= ⎪⎝⎭( ) A .2425B .2425-C .725D .725-【答案】B 【解析】 【分析】根据余弦的二倍角公式先利用sin 3πα⎛⎫+ ⎪⎝⎭求得2cos 23πα⎛⎫+ ⎪⎝⎭.再由诱导公式求出sin 26πα⎛⎫+ ⎪⎝⎭,再利用同角三角函数关系中的平方关系求得cos 26πα⎛⎫+ ⎪⎝⎭.根据角的取值范围,舍去不合要求的解即可. 【详解】 因为3sin 35πα⎛⎫+= ⎪⎝⎭ 由余弦二倍角公式可得22237cos 212sin 1233525ππαα⎛⎫⎛⎫⎛⎫+=-+=-⨯= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ 而2cos 2cos 2sin 23626ππππααα⎛⎫⎛⎫⎛⎫+=++=-+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭所以27sin 2cos 26325ππαα⎛⎫⎛⎫+=-+=- ⎪⎪⎝⎭⎝⎭由同角三角函数关系式可得24cos 2625πα⎛⎫+==± ⎪⎝⎭ 因为()0,απ∈ 则4,333πππα⎛⎫+∈ ⎪⎝⎭,而3sin 035πα⎛⎫+=>⎪⎝⎭ 所以,33ππαπ⎛⎫+∈ ⎪⎝⎭则,33ππαπ⎛⎫+∈ ⎪⎝⎭所以22,233ππαπ⎛⎫⎛⎫+∈ ⎪ ⎪⎝⎭⎝⎭32,3262ππππα⎛⎫⎛⎫+-∈ ⎪ ⎪⎝⎭⎝⎭,即32,662πππα⎛⎫+∈ ⎪⎝⎭又因为7sin 20625πα⎛⎫+=-< ⎪⎝⎭,所以32,62ππαπ⎛⎫+∈ ⎪⎝⎭故cos 206πα⎛⎫+< ⎪⎝⎭所以24cos 2625πα⎛⎫+=- ⎪⎝⎭ 故选:B 【点睛】本题考查了同角三角函数关系式及诱导公式的化简应用,三角函数恒等变形及角的范围确定,综合性较强,属于中档题.2.如图,直三棱柱ABC A B C '''-的侧棱长为3,AB BC ⊥,3AB BC ==,点E ,F 分别是棱AB ,BC 上的动点,且AE BF =,当三棱锥B EBF '-的体积取得最大值时,则异面直线A F '与AC 所成的角为( )A .2πB .3π C .4π D .6π 【答案】C 【解析】 【分析】设AE BF a ==,13B EBF EBFV S B B '-'=⨯⨯,利用基本不等式,确定点E ,F 的位置,然后根据//EF AC ,得到A FE '∠即为异面直线A F '与AC 所成的角,再利用余弦定理求解. 【详解】设AE BF a ==,则()()23119333288B EBFa a V a a '-+-⎡⎤=⨯⨯⨯-⨯≤=⎢⎥⎣⎦,当且仅当3a a =-,即32a =时等号成立, 即当三棱锥B EBF '-的体积取得最大值时,点E ,F 分别是棱AB ,BC 的中点, 方法一:连接A E ',AF ,则352A E '=352AF =2292A F AA AF ''=+=,1322EF AC ==,因为//EF AC ,所以A FE '∠即为异面直线A F '与AC 所成的角,由余弦定理得222819452424cos 93222222A F EF A E A FE A F EF +-''+-'∠==='⋅⋅⨯⨯, ∴4A FE π'∠=.方法二:以B 为坐标原点,以BC 、BA 、BB '分别为x 轴、y 轴、z 轴建立空间直角坐标系,则()0,3,0A ,()3,0,0C ,()0,3,3A ',3,0,02F ⎛⎫ ⎪⎝⎭, ∴3,3,32A F ⎛⎫'=--⎪⎝⎭,()3,3,0AC =-, 所以9922cos ,92322A F AC A F AC A F AC +'⋅'==='⋅⨯,所以异面直线A F '与AC 所成的角为4π. 故选:C 【点睛】本题主要考查异面直线所成的角,余弦定理,基本不等式以及向量法求角,还考查了推理论证运算求解的能力,属于中档题.3.函数()[]()cos 2,2f x x x ππ=∈-的图象与函数()sin g x x =的图象的交点横坐标的和为( ) A .53π B .2πC .76π D .π【答案】B 【解析】 【分析】根据两个函数相等,求出所有交点的横坐标,然后求和即可. 【详解】令sin cos2x x =,有2sin 12sin x x =-,所以sin 1x =-或1sin 2x =.又[],2x ππ∈-,所以2x π=-或32x π=或6x π=或56x π=,所以函数()[]()cos 2,2f x x x ππ=∈-的图象与函数()sin g x x =的图象交点的横坐标的和3522266s πππππ=-+++=,故选B. 【点睛】本题主要考查三角函数的图象及给值求角,侧重考查数学建模和数学运算的核心素养.4.函数sin 26y x π⎛⎫=+ ⎪⎝⎭的图象可由函数2cos 2y x x =-的图象( ) A .向右平移3π个单位,再将所得图象上所有点的纵坐标伸长到原来的2倍,横坐标不变得到 B .向右平移6π个单位,再将所得图象上所有点的纵坐标伸长到原来的2倍,横坐标不变得到 C .向左平移3π个单位,再将所得图象上所有点的纵坐标缩短到原来的12,横坐标不变得到 D .向左平移6π个单位,再将所得图象上所有点的纵坐标缩短到原来的12,横坐标不变得到 【答案】D 【解析】 【分析】合并cos2y x x =-得:2sin 26y x π⎛⎫=- ⎪⎝⎭,利用平移、伸缩知识即可判断选项。

2020高考数学专项复习《三角函数10道大题》(带答案)

2020高考数学专项复习《三角函数10道大题》(带答案)

4 2 ) 三角函数1.已知函数 f (x ) = 4 c os x s in(x +(Ⅰ)求 f (x ) 的最小正周期;) -1.6(Ⅱ)求 f (x ) 在区间[- , ] 上的最大值和最小值.6 42、已知函数 f (x ) = sin(2x + ) 3+ sin(2x - 3 + 2 cos 2 x - 1, x ∈ R .(Ⅰ)求函数 f (x ) 的最小正周期;(Ⅱ)求函数 f (x ) 在区间[- , ] 上的最大值和最小值.4 43、已知函数 f (x ) = tan(2x +),4(Ⅰ)求 f (x ) 的定义域与最小正周期;⎛ ⎫(II )设∈ 0, ⎪ ,若 f ( ) = 2 cos 2, 求的大小⎝ ⎭4、已知函数 f (x ) =(sin x - cos x ) sin 2x.sin x(1) 求 f (x ) 的定义域及最小正周期;(2) 求 f (x ) 的单调递减区间.5、 设函数 f (x ) = cos(2x + + sin 2x .24(I )求函数 f (x ) 的最小正周期;( II ) 设 函 数 1g (x ) 对 任 意 x ∈ R , 有g (x + 2 = g (x ) , 且 当x ∈[0, ] 时 , 2g (x ) = - f (x ) ,求函数 g (x ) 在[-, 0] 上的解析式.22 ) )3 + = 6、函数 f (x ) = A sin(x -称轴之间的距离为 ,2) +1(A > 0,> 0 )的最大值为 3, 其图像相邻两条对 6(1)求函数 f (x ) 的解析式;(2)设∈(0, ) ,则 f ( ) = 2 ,求的值.2 27、设 f ( x ) = 4cos( ωx -π)sin ωx + cos 2ωx ,其中> 0.6(Ⅰ)求函数 y = f ( x ) 的值域(Ⅱ)若 y = f ( x ) 在区间⎡- 3π ,π⎤上为增函数,求 的最大值.⎣⎢ 2 2 ⎥⎦8、函数 f (x ) = 6 cos 2x + 23 cos x - 3(> 0) 在一个周期内的图象如图所示, A 为 图象的最高点, B 、C 为图象与 x 轴的交点,且∆ABC 为正三角形.(Ⅰ)求的值及函数 f (x ) 的值域;8 3 (Ⅱ)若 f (x 0 ) 5,且 x 0 ∈(- 10 2, ) ,求 f (x 0 1) 的值.3 39、已知 a , b , c 分别为∆ABC 三个内角 A , B , C 的对边, a cos C + 3a sin C - b - c = 0(1)求 A ;(2)若 a = 2 , ∆ABC 的面积为 ;求b , c .10、在 ∆ ABC 中,内角 A ,B ,C 的对边分别为 a ,b ,c .已知 cos A cos C .= 2,sin B = 53(Ⅰ)求 tan C 的值; (Ⅱ)若 a = 2 ,求∆ ABC 的面积.3 2 2 ) max+ = - (x )答案1、【思路点拨】先利用和角公式展开,再利用降幂公式、化一公式转化为正弦型函数,最后求周期及闭区间上的最值.【精讲精析】(Ⅰ)因为 f (x ) = 4 cos x sin(x + 1) -1 = 4 cos x ( sin x + cos x ) -1622= 3 sin 2x + 2 cos 2 x -1 = 3 sin 2x + cos 2x = 2 s in(2x +,所以 f (x ) 的最小正周期为.62(Ⅱ)因为- ≤ x ≤ 6 4 ,所以- ≤ 2x + ≤ 6 6 3 .于是,当2x + = 6 2 ,即 x =6时, f (x ) 取得最大值 2;当2x + = - 6 6 ,即 x = - 时, f (x ) 取得最小值-1.62、【解析】 (1)2f (x )= sin (2x + )+sin(2x - )+2cos x -1 = 2 s in 2x cos + cos 2x = 2 sin(2x + )3 3 3 42函数 f (x ) 的最小正周期为T = =23 (2) - ≤ x ≤ ⇒ - ≤ 2x + ≤ ⇒ - ≤ sin(2x +4 4 4 4 4 2 4) ≤ 1 ⇔ -1 ≤ f (x ) ≤当 2x + = (x = ) 时 , 4 2 8 f (x )min = -1f (x ) = , 当 2x = - 时 , 4 4 4【点评】该试题关键在于将已知的函数表达式化为 y =A sin (x +) 的数学模型,再根据此三角模型的图像与性质进行解题即可.3、【思路点拨】1、根据正切函数的有关概念和性质;2、根据三角函数的有关公式进行变换、化简求值.k【精讲精析】(I)【解析】由2x +≠ + k , k ∈ Z , 得 x ≠ + , k ∈ Z . 4 2 8 2k为 .2所以 f (x ) 的定义域为{x ∈ R | x ≠ + 8 2, k ∈ Z } , f (x ) 的最小正周期(II)【解析】由 f ( ) = 2 cos 2, 得tan(+2) = 2 cos 2,42) ) )1 sin(+ 4 = 2(cos2 - s in 2 ), cos(+整理得4 sin + coscos - sin= 2(cos + sin )(cos - sin ). 21 1 因为∈(0, ) ,所以sin + cos ≠ 0.因此(cos - s in ) 4= ,即sin 2= .2 2由∈(0, ) ,得2∈(0, ) .所以2= ,即= .4 2 6 124、解(1): sin x ≠ 0 ⇔ x ≠ k(k ∈ Z ) 得:函数 f (x ) 的定义域为{x x ≠ k , k ∈ Z }f (x ) =(sin x - cos x ) sin 2x= (sin x - cos x ) ⨯ 2 cos xsin x= sin 2x - (1+ cos 2x ) = 2 sin(2x --14 2得: f (x ) 的最小正周期为T = = ;2(2)函数 y = sin x 的单调递增区间为[2k - , 2k + 2 2](k ∈ Z )3则2k - ≤ 2x - ≤ 2k + ⇔ k - ≤ x ≤ k +2 4 2 8 8得: f (x ) 的单调递增区间为[k - , k ),(k , k + 3](k ∈ Z )8 85、本题考查两角和与差的三角函数公式、二倍角公式、三角函数的周期等性质、分段函数解析式等基础知识,考查分类讨论思想和运算求解能力.【 解 析 】1 1f (x ) = cos(2x + + sin 2 x = 1 cos 2x - 1 sin 2x + 1 (1- cos 2x )2 4 2 2 2= - sin 2x , 2 22(I )函数 f (x ) 的最小正周期T = =21 1(II )当 x ∈[0, ] 时, g (x ) = - f (x ) = sin 2x2 当 x ∈[-2 21 1 sin 2x 当 x ∈[-, - ) 时, (x +) ∈[0, )2 2 g (x ) = g (x +) = sin 2(x +) = 2 2sin 2x⎧- 1 sin 2x (x ≤ 0) - ≤ ⎪ 22 得函数 g (x ) 在[-, 0] 上的解析式为 g (x ) = ⎨ .⎪ sin 2x (-≤ x <⎩⎪ 2 22 ) ) , 0] 时, (x + ) ∈[0, ] g (x ) = g (x + ) = 1 sin 2(x + ) = - 1 2 2 2 2 2 2 23 ⎢ ⎥ 6、【解析】(1)∵函数 f ( x ) 的最大值是 3,∴ A +1 = 3,即 A = 2 .∵函数图像的相邻两条对称轴之间的距离为 ,∴最小正周期T =,∴= 2 .2故函数 f ( x ) 的解析式为 f (x ) = 2 s in(2x -) +1.61(2)∵ f ( ) = 2 s in(- 2) +1 = 2 ,即sin(- 6 ) = ,6 2∵ 0 << ,∴ - <- < ,∴- = ,故= .2 6 63 6 6 3⎛ 3 1⎫ 7、解:(1) f ( x ) = 4 2 cos x + 2 sin x ⎪⎪s in x + cos 2x ⎝ ⎭= 2 3 sin x cos x + 2 sin 2 x + cos 2 x - sin 2 x =3 sin 2x +1因-1 ≤ sin 2x ≤ 1,所以函数 y = f ( x ) 的值域为⎡1- 3,1+ 3⎤⎣⎦⎡ ⎤(2)因 y = sin x 在每个闭区间 ⎢⎣2k - 2 , 2k + 2 ⎥⎦ (k ∈ Z ) 上为增函数,故 f ( x ) = 3 sin 2x +1 (> 0) 在每个闭区间⎡ k - 4 , k + ⎤(k ∈ Z ) 上 4为增函数.⎡ 3 ⎤⎡ kk ⎤⎣⎦依题意知⎢- , ⎥ ⊆ ⎢ -, + ⎥ 对某个 k ∈ Z 成立,此时必有 k = 0 ,于是 ⎣ 2 2 ⎦ ⎣ 4 4⎦⎧- 3≥ -⎪ 2 41 1⎨⎪ ≤⎩ 2 4,解得≤ ,故的最大值为 . 6 6 8. 本题主要考查三角函数的图像与性质、同角三角函数的关系、两角和差公式,倍角公式等基础知识,考查基本运算能力,以及数形结合思想,化归与转化思想. [解析](Ⅰ)由已知可得: f (x ) = 6 cos2x+ 23 cos x - 3(> 0)=3cosωx+ 3 sin x = 2 3 s in(x + )3又由于正三角形 ABC 的高为 2 ,则 BC=42 所以,函数 f (x )的周期T = 4 ⨯ 2 = 8,即= 8,得= 4所以,函数 f (x )的值域为[-2 3,2 3] .......................... 6 分 (Ⅱ)因为 f (x 0 ) =853,由(Ⅰ)有1 - ( 4)2 57 6 53 1 c os 2A5 561f (x ) = x 08 3x 0 42 3sin( 4 + ) =3 , 即sin( 54 + ) = 35 由 x 0∈(- 10 2x 0 + ∈ (-,),得( ) , )3 34 3 2 2所以,即 x 0 3 cos( 4 + ) = =3 5 故 f (x + 1) = x 0= x 0 + + 02 3sin( = 4 x 0 + + ) 2 4 33sin[( ) ] 4 3 4x 0 2 3[sin( 4 + ) cos 3 4 + cos( 4 + ) s in3 4 = 2 3( 4⨯ 2 + 3 ⨯ 2 )5 2 5 2=12 分9..解:(1)由正弦定理得:a cos C + 3a sin C -b -c = 0 ⇔ sin A c os C - 3 sin A sin C = sin B + sin C⇔ sin A cos C + 3 sin A sin C = sin(a + C ) + sin C⇔ 3 sin A - cos A = 1 ⇔ sin( A - 30︒ ) = 12⇔ A - 30︒ = 30︒ ⇔ A = 60︒(2) S = bc sin A = ⇔ bc = 4 , 2a 2 =b 2 +c 2 - 2bc cos A ⇔ b + c = 410. 本题主要考查三角恒等变换,正弦定理,余弦定理及三角形面积求法等知识点.(Ⅰ)∵cos A 2 0,∴sin A = ,= >33又2 sin C .35 cos C =sin B =sin(A +C )=sin A cos C +sin C cos A =5 cos C +3整理得:tan C = 5 .(Ⅱ) 由图辅助三角形知: sin C =. 又由正弦定理知:a sin A c ,sin C故c 3 . (1)b 2c 2 a 2 2对角 A 运用余弦定理:cos A =2bc . (2) 3 解(1) (2)得: b 3 or b = 3 (舍去). ∴∆ ABC 的面积为:S = 5. 3 2。

浙江专用2020版高考数学三轮冲刺抢分练压轴大题突破练一三角函数与解三角形

浙江专用2020版高考数学三轮冲刺抢分练压轴大题突破练一三角函数与解三角形

(一)三角函数与解三角形1xfxxx.)+1.(2019·余高、缙中、长中模拟)已知函数(cos)=cos-(sin2xf求函数)(的单调增区间;(1)ππ32????f,,求cos2αα),=α∈(2)若的值.(??886x1+cos211xfx+=(1)解 sin2(-)222π2??x??+2 ,sin=??42πππkkxk∈2,π≤2Z+≤+2,得π由-+2423π??kk??kfxπ-π++π,.函数,(Z)的单调增区间是∈??88π21????f+α2 =由(2)sin(α),=得??463ππ3????,因为α∈,??88ππ????π,∈,所以2α+??24π22????+α2 所以cos=-,??43ππ42-??????+α2??-.所以cos2α=cos=??4??46πππ2xxxxf. )=sincos)已知函数(-3sin2.(2019·杭州二中高考热身考444xfx的值;求(1))(的最大值及此时fff (2019)++…+(2)的值.(2)求(1)ππ311xfxx (1)(sin)=-cos-解22222ππ1??x??+,-=sin??262πππkkx,Zπ,∈2=-令++2264kxk-Z4,,∈=得334xfxkk.时,)∈(4=∴当-Z(=)max23.31fT,,(1)=(2)由(1)知函数的周期-=422131111fff(4)=,-,(2)=+,=(3)+2222221131kfkf+2)∴=(4++1)=-,,(422221113kkff+3)=+(4,+4)=,-(42222kfkfkfkf,++2)+4)(4=+∴3)(4++1)+2(4(4fff(2019) ++…+∴(2)(1)fff1010.(3)(2)=504×2++(1)+=ACabcbABCAB sin,,且,,,3.(2019·余高等三校联考)设△所对边的长分别是的内角Ba0. cos3=-B (1)求角的大小;ACca=3(2)若,求+边上中线长的最小值.BBAA sincossin,=-3sin0解 (1)由正弦定理得,A∵sin≠0,B∴tan3,=B是三角形的内角,∵B=60°.∴bb??222??AccBAEACEBE+··cos-,在△中,由余弦定理得,2方法一(2) 设=边上的中点为,??22222acb-+222acbAac,+=2·cos60°-又cos,=bc2ca+??2??-92222222222??2acacacbccaabaaccb--+?-?2+2+-9++22cBE=+∴====≥=-442444427 ,16ca时取到“=”,当且仅当=33AC. 边上中线长的最小值为∴4ACE,设边上的中点为方法二1→→→BCBEBA+(,)=222acca++1→→→22BCBEBA ||=,=+||44.以下同方法一.π??2x??xxxfxx+.-·cos+已知3sin()=2cossin·sin4.(2019·浙大附中考试)??6xxyf的单调递增区间;(1)求函数<=π())(0<→→ADBCABAfAACABC满足边上的高()=2的内角,而,求·长的最大值.=(2)设△3πππ??????xxx??????xxxf++2+.+解 (1)2sin()=2cos=·sin·cos2sin??????666πππkkxkπ≤2∈+≤+2Z π,,由-+2226ππkxkk.≤∈π+π-≤,Z解得63ππ2????????xxyfπ0,,.∴当0<<π时,函数)=的单调递增区间是(和????36Af(2)(2)∵=,ππ??A??A+2 =,∴,∴2sin=2??66→→ACAB·=3∵,bcbcA=3,∴,=∴2·cos11AbcS sin∴,==ABC△2222cbcbbcbca=,当且仅当2≥?时等号成立-3?)=而3-=+1(-313+ADBC,∴所求≤边上的高213+AD. 即的最大值为2ABcCCABCABab. 3sin,,,已知的对边分别为sin,=,5.在△+中,角sin222BBBCAAA的值;+sinsin+,求sin(1)若cossin=sin+cos ABCc面积的最大值.2(2)若,求△=222BABCA,+解 (1)∵cossin=sin+cossin222BABAC sin+,+1-sinsin ∴1-sinsin=222BBACA sin∴sin+sinsin-,=-sin222abcba=--∴由正弦定理,得,+222cba1-+C==-cos,∴由余弦定理,得ab222πCC=,π0<又<,∴3.32πCAB.==3sin∴sin3sin+sin=23ccab=33(2)若2=,则=+,222222cbcababa4-?-++2-?C===-1∴cos,ababab224??22??CC1-=1-cos1∴sin-=ab??48??2??=,-+ab??ab4811??2??ababCS sin-=∴+=ab??ab221ab. -168=+2abba≥2,=2∵3+baab=≤3,当且仅当3时等号成立,即0<=11abS 2+8,≤-∴16=+8×3=-1622ABC2.∴△面积的最大值为1m·nfxx m xx n xx且(-,cos,-ω))(ω>0,=∈6.已知(=3sinωR,cos ω),)=(cosω2πxf.(的图象上相邻两条对称轴之间的距离为)2xf (的单调递增区间;)(1)求函数afBCAABCaABCbcb,,若△中内角)=,0,sin的对边分别为,,求,=且7=,3sin((2)ABCc的值及△的面积.1m·nfx-解) (1)=(212xxx-ω-cosωcosω=3sin231xx-1 cos2sin2ωω=-22π??x??-ω2-1.=sin??6πfx)的图象上相邻两条对称轴之间的距离为(,∵2π2π??x??xTf-2-1sin)1ωπ∴==,∴=,∴(=,??6ω2.πππkkkx,,≤2∈-≤2Zπ令2+π-262ππkkkx,∈≤Zπ+,则≤π-36xf )的单调递增区间为∴(ππ??kk??k+,ππ-.,Z∈??36π??B??Bf-2 知,0(,)=sin-1=(2)由(1)??6ππ11πBB <2,-∵0<<<π,∴-666πππBB,∴,∴2=-=326cACa=3sin3及正弦定理,得,由sin=ABC在△中,由余弦定理,可得222222cbaccc19710-+-7+-B,==cos ==22ccac2266ac,1,=∴3=31133BSac.=×3×1×==∴sin ABC△4222。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

3 三角函数大题压轴题练习1.已知函数 f (x ) = cos(2x - ) + 2 s in(x - ) sin(x + )3 4 4(Ⅰ)求函数 f (x ) 的最小正周期和图象的对称轴方程(Ⅱ)求函数 f (x ) 在区间[- , ] 上的值域12 2解:(1)Q f (x ) = cos(2x - ) + 2 s in(x - ) sin(x + )3 4 4= 1 cos 2x + 3sin 2x + (sin x - cos x )(sin x + cos x ) 2 2= 1 cos 2x + 3sin 2x + sin 2 x - cos 2 x 2 2= 1 cos 2x + 3sin 2x - cos 2x 2 2= sin(2x -∴周 周6 T = 2 = 2 k由2x - = k + (k ∈ Z ), 周 x = + (k ∈ Z )6 2 2 3∴函数图象的对称轴方程为 x = k + ∈ Z )35(2)Q x ∈[- , ],∴ 2x - ∈[- , ]12 2 6 3 6因为 f (x ) = sin(2x - ) 在区间[- , ] 上单调递增,在区间[ , ] 上单调递减,6 12 3 3 2所以 当 x = 时, f (x ) 取最大值 13 1 又 Q f (- ) = - < f ( ) = ,当 x = - 时, f (x ) 取最小值- 12 2 2 2 12 2所以 函数 f (x ) 在区间[- , ] 上的值域为[-12 2 ,1]22. 已知函数 f (x ) = sin 2x +3 sin x sin ⎛x + π ⎫ (> 0 )的最小正周期为π .2 ⎪ ⎝ ⎭(Ⅰ)求的值;3 3 )(k⎥ ⎝ ⎭ 2(Ⅱ)求函数 f (x ) 在区间⎡0 2π ⎤ 上的取值范围.⎢ , ⎥⎣3 ⎦1- cos 2x 解:(Ⅰ) f (x ) =+ sin 2x = sin 2x - 1cos 2x + 1 2 2= sin ⎛ 2x - π ⎫ + 1 .22 26 ⎪ 2 ⎝⎭因为函数 f (x ) 的最小正周期为π ,且> 0 ,2π所以= π ,解得= 1 .2(Ⅱ)由(Ⅰ)得 f (x ) = sin ⎛2x - π ⎫ + 1 .6 ⎪ 2 ⎝⎭因为0 ≤ x ≤2π,3π π 7π 所以- ≤ 2x - ≤ ,6 6 6 所以- 1 ≤sin ⎛2x - π ⎫≤1,2 6⎪ ⎝ ⎭因此0 ≤sin ⎛2x - π ⎫ + 1 ≤ 3 ,即 f (x ) 的取值范围为⎡03 ⎤ .6 ⎪ 2 2 ⎣⎢ , ⎥⎦3. 已知向量 m =(sin A ,cos A ),n = ( 3, -1) ,m ·n =1,且 A 为锐角.(Ⅰ)求角 A 的大小;(Ⅱ)求函数 f (x ) = cos 2x + 4 cos A sin x (x ∈ R ) 的值域.π π 1解:(Ⅰ) 由题意得 m g n = 3 sin A - cos A = 1, 2 s in( A - ) = 1, s in( A - ) = .6 6 2由 A 为锐角得 A - = , A =6 6 3 1(Ⅱ) 由(Ⅰ)知cos A = ,2所以 f (x ) = cos 2x + 2 sin x = 1- 2 sin 2x + 2 sin s = -2(sin x - 1 )2 + 3 .2 2因为 x ∈R ,所以sin x ∈[-1,1],因此,当sin x = 1 3 时,f (x )有最大值 . 2 2当sin x = -1时, f (x ) 有最小值-3,所以所求函数 f (x ) 的值域是⎡-3 3 ⎤, ⎣ 2 ⎦33 ⎢(0, ) g g ⎝4. 已知函数 f (x ) = A sin(x +)( A > 0,0 << π) , x ∈ R 的最大值是 1 ,其图像经过点M ⎛ π 1 ⎫⎛ π ⎫3, ⎪ .( 1 ) 求 f (x ) 的解析式; ( 2 ) 已知 ,∈ 0, ⎪ ,且 f () = , ⎝ 3 2 ⎭ f () = 12,求 f (- ) 的值.13⎝ 2 ⎭5 1【 解 析 】( 1 ) 依 题 意 有 A = 1 , 则 f (x ) = sin(x +) , 将 点 M ( , ) 代 入 得3 21 sin( +) = , 而 0 << , 5∴ += , ∴= , 故3 2 f (x ) = sin(x += cos x ;3 6 22 ( 2 ) 依 题 意 有 cos =3 , cos = 12, 而 5 13 ,∈ , 2∴sin == 4,sin = 5 = 5 , 13 f (-) = cos(-) = coscos+ sinsin = 3 ⨯ 12 + 4 ⨯ 5 = 56。

5. 已知函数 f (t ) =5 13 5 13 65, g (x ) = cos x ⋅ f (sin x ) + sin x ⋅ f (cos x ), x ∈ (, 1712(Ⅰ)将函数 g (x ) 化简成 A sin(x +) + B ( A > 0 ,> 0 ,∈[0, 2) )的形式;(Ⅱ)求函数 g (x ) 的值域.解.本小题主要考查函数的定义域、值域和三角函数的性质等基本知识,考查三角恒等变换、代数式的化简变形和运算能力.(满分 12 分)1- sin x1- cos x解:(Ⅰ) g (x ) = cos x g1+ sin x+ sin x g1+ cos x= cos x g (1- sin x )2 cos 2 x + sin x g(1- cos x )2sin 2 x= cos x 1- sin x + sin x 1- cos x .cos x sin xQ x ∈⎛ π, 17π⎤,∴ cos x = -cos x , sin x = -sin x ,12 ⎥⎦∴ g (x ) = cos x 1- sin x + sin x 1- cos xg -cos x g -sin x1-(3)2 5 1-() 13 12 2 1- t 1+ t ) ).2 2 2 4 ⎣ = sin x + cos x - 2⎛ π ⎫= 2 sin x + ⎪ - 2.⎝ ⎭ 17π 5π π 5π(Ⅱ)由π周 x ≤ 周得 周 x + ≤ .12 4 4 3⎛ 5π 3π⎤ ⎛ 3π 5π⎤Q sin t 在 4 , 2 ⎥ 上为减函数,在 2 , 3 ⎥ 上为增函数,⎝ ⎦ ⎝ ⎦5π 5π 3π π 5π ⎛ 17π⎤又sin 周 3 sin ,∴sin 4 2 ≤ sin(x + )周4 sin 4 (当 x ∈ π, 2 ⎥ ), ⎝ ⎦π π即-1 ≤ sin(x + )周 - 周∴- - 2 ≤ 2 sin(x + ) - 2周- 3周 4 2 4 故 g (x )的值域为⎡- - 2, -3). 6.(本小题满分 12 分)在∆ABC 中,角 A , B , C 所对应的边分别为 a , b , c , a = 22 sin B cos C = sin A ,求 A , B 及b , c,tanA +B + tan C2 2= 4,解:由tan A + B + tan C 2 2= 4 得cot C + tan C= 4 2 2cos C sin C ∴ 2 + 2 = 4 ∴ 1 = 4 sin C cos C sin C cos C2 2 2 2 1∴ s in C =,又C ∈(0,)25 ∴ C = ,或C =6 6由2 sin B cos C = sin A 得 2 sin B cos B = sin(B + C )即sin(B - C ) = 0 B = C =6∴ B = CA =- (B + C ) = 23 a b c 由正弦定理sin A = = sin B 得 sin C 33 3 2 3 3 ⎩b =c = a sin B= 2 3 ⨯ sin A 12 = 2327.在△ABC 中,内角 A , B , C 对边的边长分别是 a , b , c .已知c = 2, C = .3⑴若△ABC 的面积等于 ,求 a , b ;⑵若sin C + sin(B - A ) = 2 sin 2 A ,求△ABC 的面积.说明:本小题主要考查三角形的边角关系,三角函数公式等基础知识,考查综合应用三角函数有关知识的能力.满分 12 分.解析:(Ⅰ)由余弦定理及已知条件得, a 2+ b 2- ab = 4 ,1又因为△ABC 的面积等于 ,所以⎧a 2 + b 2 - ab = 4,ab sin C = 2 ,得 ab = 4 .∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙4 分联立方程组⎨ab = 4, 解得 a = 2 , b = 2 . ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙6 分(Ⅱ)由题意得sin(B + A ) + sin(B - A ) = 4 sin A cos A ,即sin B cos A = 2 s in A c os A , ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙8 分当cos A = 0 时, A = π ,B = 2 π, a = 6, b = , 3 3当cos A ≠ 0 时,得sin B = 2 sin A ,由正弦定理得b = 2a ,⎧a 2 + b 2 - ab = 4, 2 3 4 3联立方程组⎨ ⎩b = 2a ,解得 a = , b = . 3 3所以△ABC 的面积 S = 1ab sin C =.∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙12 分2 31. 已知函数 f (x ) = sin(x + ) + sin(x - 6 6) + cos x + a (a ∈ R , a 为常数) .(Ⅰ)求函数 f (x ) 的最小正周期;(Ⅱ)若函数 f (x ) 在[- , ]上的最大值与最小值之和为 ,求实数 a 的值.2 解:(Ⅰ)∵ f (x ) = 2 s in x cos2+ cos x + a = 63 sin x + cos x + a= 2 s in ⎛ x + ⎫ + a ............................................................. 5 分6 ⎪ ⎝ ⎭∴函数 f (x ) 的最小正周期T = 2 .................................. 7 分3 4 3 2 333 3 3 3 ⎪⎡ ⎤2 (Ⅱ)∵ x ∈ ⎢- , ⎥ ,∴ - ≤ x + ≤⎣ 2 2 ⎦3 6 3f ( x ) = f ⎛ -⎫= - + a ……9 分min 2 ⎪f max (x ) = ⎝ ⎭f ⎛⎫= 2 + a ........................ 11 分 ⎝ ⎭由题意,有(- + a ) + (2 + a ) =∴ a = -1 ................................................................ 12 分2.(本小题 12 分)已知函数 f (x ) = 2a cos 2 x + b sin x cos x -3,且f (0) = = 1 ., f ( )2 2 4 2(1)求 f (x ) 的最小正周期;(2)求 f (x ) 的单调增区间;⎧ 3⎪ f (0) = 2⎧⎪a = 解:(1)由⎨1 得⎨2 ...................3 分 ⎪ f ( ) = ⎩4 2⎪⎩b = 1 f (x ) = 3 cos 2 x + sin x cos x - = 3 cos 2x + 1sin 2x = sin(2x + ……6 分2 2 2 3故最小正周期T =(2)由2k - 2 5≤ 2x + ≤ 2k + 3 (k ∈ Z )2 得 k -12≤ x ≤ k + 12 (k ∈ Z ) 5故 f (x ) 的单调增区间为[k - 122, k + ](k ∈ Z ) 12 …………12 分→3. 已知 f (x ) = -4 cosx + 4 3a sin x cos x ,将 f (x ) 的图象按向量 b = (- ,2) 平移后,4图象关于直线 x = 对称. 12(Ⅰ)求实数 a 的值,并求 f (x ) 取得最大值时 x 的集合;(Ⅱ)求 f (x ) 的单调递增区间.→解:(Ⅰ) f (x ) = 2 3a sin 2x - 2 cos 2x - 2 ,将 f (x ) 的图象按向量 b = (-,2) 平移后4的解析式为 g (x ) = f (x + ) + 2 = 2 s in 2x + 2 43a cos 2x .… ................... 3 分333⎪ )4 + 4 c os ⎛+ ⎫ 4 ⎪ ⎝ ⎭2 ⎛ ⎫ (2 8 ) ⎝ ⎭ ⎛ ⎫ = ⎝ ⎭周 g (x ) 的图象关于直线 x =对称,12 ∴有 g (0) =,即2 3a = + 3a ,解得 a = 1 . ........................ 5 分 g ( )6则 f (x ) = 2 3 sin 2x - 2 cos 2x - 2 = 4 s in(2x - ) - 2 ......................... 6 分 6 当2x -6 = 2k + ,即 x = k + 2 时, f (x ) 取得最大值 2.… ................7 分 3因此, f (x ) 取得最大值时 x 的集合是{x x = k + , k ∈ Z }.… ............... 8 分3(Ⅱ)由2k-≤ 2x - ≤ 2k + ,解得 k - ≤ x ≤ k + . 2 6 2 6 3因此, f (x ) 的单调递增区间是[k - , k + 6 ] (k ∈ Z ) .… ................... 12 分 34. 已知向量 m = ( cos , sin ) 和 n =( (1) 求| m + n | 的最大值;(2)当| m + n | = 8- sin , cos ),∈[π,2π].时,求cos + 的值.4.解:(1) u r r m + n =u r rm + n = cos - sin+ ⎪⎝ ⎭ 2, cos + sin)=(2 分)= = 2 (4 分)∵θ∈[π,2π],∴ 5 ≤+ ≤ 9 ,∴ cos(+≤14444| m + n | max =2 2 .(6 分)u r r 8 2 ⎛ ⎫ 7 (2) 由已知 m + n = 5 , , 得 cos + 4 ⎪ = 25(8 分 )又cos + = 2+ -1 ∴ 2+16 (10 分)4 ⎪ 2 c os ( ) 2 8 cos ( ) 2 8 25 ⎝ ⎭5 9⎛ ⎫ 4 ∵θ∈[π,2π]∴ 8 ≤ + ≤ 2 8 8 ,∴ cos 2 + 8 ⎪ = - 5 .(12 分)。

相关文档
最新文档