高等分离工程试题册-16化研
华东理工大学分离工程期末复习题及参考答案
华东理工大学网络教育学院(全部答在答题纸上,请写清题号,反面可用。
试卷与答题纸分开交)分离工程_202210_模拟卷1一、填空题(共10题,每题3分,共30分)1. 分离过程是________________的逆过程,因此需加入________________来达到分离目的。
(3分).2. 分离剂可以是____________________或____________________,有时也可两种同时应用。
(3分).3. 图解梯级法计算多组分吸收过程的理论板数,假定条件为____________________________________________________________________________ ________________________________________________________。
(3分).4. 萃取精馏塔在萃取剂加入口以上需设________________________。
(3分).5. 衡量分离的程度用________________表示,处于相平衡状态的分离程度是________________。
(3分).6. 设计变量与独立量之间的关系可用下式来表示________________________________。
(3分).7. 恒沸剂的沸点应显著比原溶液沸点________________以上。
(3分).8. 固有分离因子是根据____________________来计算的。
它与实际分离因子的差别用____________________来表示。
(3分).9. 三对角矩阵法沿塔流率分布假定为________________。
(3分).10. 吸收因子A________于平衡常数。
(3分).二、选择题(共5题,每题2分,共10分)1. 下列哪一个是速率分离过程()。
(2分)A.蒸馏B.吸收C.膜分离D.离心分离2. 下列哪一个不是均相恒沸物的特点()。
化工分离工程考试资料
天津大学试卷专用纸
学院 化工学院 专业 工程、工艺、分子
班 年级 2004 级 学号
3、某吸收塔原料气组成(mol%)如下:
组分
A
B
C
D
E
摩尔分率
0.14
0.20
0.04
0.49
0.13
相平衡常数
7.2
4.5
2.2
0.81
0.70
要求用吸收剂从原料气中回收 94%的组分 C。该吸收塔处理的气体量为 100 Kmol/h。试计算最小液
天津大学试卷专用纸
学院 化工学院 专业 工程、工艺、分子
班 年级 2004 级 学号
姓名
共4页 第1页
2007~2008 学年第一学期期末考试试卷
二、单项或多项选择题 页)
(考试时间:2008 年 1 月 9 日)
1、清晰分割法的基本假定是:馏出液中除了
一般主要在
一、填空题(共 28 分,每空 1 分)
靠近塔顶的几级被吸收,在其余级变化很小。
1、按所依据的物理化学原理,传质分离过程可以分为
分离过程和
分离过程,
A. key component;B. light non-key components;C. heavy non-key components
常见的平衡分离过程有
、
2、通常所说多组分精馏的 FUG 简捷计算法中,F 代表
U 代表
公式,用于计算
、
。
方程,用于计算
,
,G 代表
关联,用于确定
3、下列各单元中,
单元的可调设计变量数为 0,
A. 混合器;B. 分相器;C. 分配器;D. 再沸器
单元的可调设计变量数为 1。
专升本《分离工程》试卷答案
专升本《分离工程》一、 (共31题,共151分)1. 某三元理想混合物的组成为:系统的操作压力为0.1013MPa 。
计算混合物的泡点温度。
A 、B 、C 三个组分的饱和蒸汽压数据如下:(T :K ,pis :Pa )(10分)标准答案:2. 在环境状态下,将含有50%(摩尔)丙酮的水溶液分离成99%(摩尔)的丙酮和99%(摩尔)的水。
1、若丙酮和水被认为是理想溶液,计算以1 kmol 进料为单位的最小功;2、在环境状态下的液相活度系数用Van Laar 方程联立,其常数A12=2.0,A21 =1.7(丙酮组分为1),计算最小功。
(10分)标准答案:(1)由物料衡算解得n1 = n2 = 0.5 kmol/h= 1.58x106J/h3. 在环境状态下,将含有60%(摩尔)丙酮的水溶液分离成99%(摩尔)的丙酮和99%(摩尔)的水。
1、若丙酮和水被认为是理想溶液,计算以1 kmol 进料为单位的最小功;2、在环境状态下的液相活度系数用Van Laar 方程联立,其常数A12=2.0,A21 =1.7(丙酮组分为1),计算最小功。
(10分)标准答案:4. 苯酚精馏塔如附图所示:原料液含苯酚40%,水60%(分子分数)要求苯酚产品纯度99% 以上,操作压力101.3Kpa ,塔顶蒸汽冷凝后过冷到20,在分层器中分层,分层全部回流,水层去污水厂处理。
查20时苯酚—水的互溶度数据为:水层含苯酚1.68%(摩尔百分数),分层含水66.9%(摩尔百分数),苯酚—水系统在1atm 下的汽—液平衡数据为: 若回流比选用最小回流比的1.5倍,饱和液体进料,并认为 回流液过冷对塔内回流量的影响可忽略, 试求理论塔板数。
(10分)标准答案:5. 某三元理想混合物的组成为:系统的操作压力为0.1013MPa。
计算混合物的泡点温度。
A、B、C三个组分的饱和蒸汽压数据如下:(10分)标准答案:6. 在吸收塔设计中,当吸收剂用量趋于最小用量时,( )。
“化工分离过程”考资料资料精
“化工分离过程”考资料1. 陈洪钫. 基本有机化工分离工程. 北京: 化学工业出版社, 1981.2. 陈洪钫, 刘家祺. 化工分离过程. 北京: 化学工业出版社, 1995.3. 刘家祺, 姜忠义, 王春艳. 分离过程与技术. 天津: 天津大学出版社, 2001.4. 刘家祺. 分离过程. 北京: 化学工业出版社, 2002.5. 李淑芬, 姜忠义. 高等制药分离工程. 北京: 化学工业出版社,2004.6. 刘家祺. 传质分离过程. 北京: 高等教育出版社, 2005.7. 刘家祺. 分离过程与模拟. 北京: 清华大学出版社, 2007.8. 史季芬. 多级分离过程——蒸馏、吸收、萃取、吸附. 北京: 化学工业出版社, 1991.9. 吴俊生, 邓修等. 分离工程. 上海: 华东化工学院出版社, 1992.10. 郁浩然. 化工分离工程. 北京: 中国石油出版社, 1992.11. 蒋维钧. 新型传质分离技术. 北京: 化学工业出版社, 1992.12. (日)大矢晴彦著,张瑾译. 分离的科学与技术. 北京: 中国轻工业出版社 1999.13. 邓修,吴俊生. 化工分离工程. 北京: 科学出版社, 2000.14. 耿信笃. 现代分离科学理论导引. 北京: 高等教育出版社, 2001.15. (美)塞德等,分离过程原理. 北京: 化学工业出版社,2002.16. 袁惠新. 分离工程. 北京: 中国石化出版社, 2002.17. 伍钦. 传质与分离工程. 广州: 华南理工大学出版社, 2005.18. 陈欢林. 新型分离技术. 北京: 化学工业出版社, 2005.19. 宋海华. 多级分离理论(一)精馏模拟. 天津: 天津大学出版社, 2005.20. 丁玉明. 现代分离方法与技术. 北京: 化学工业出版社, 2006.21. 郁浩然. 化工分离工程,北京: 中国石化总公司情报研究所出版社, 2006.22. 胡小玲, 管萍. 化学分离原理与技术. 北京: 化学工业出版社, 2006.23. 蒋维均, 余立新. 新型传质分离技术(第二版). 北京: 化学工业出版社, 2006.24. 西德尔, 亨利著; 朱开宏, 吴俊生译. 分离过程原理. 上海: 华东理工大学出版社, 2007.25. 袁惠新. 分离过程与设备. 北京: 化学工业出版社, 2008.26. 小岛和夫著; 傅良译. 化工过程设计的相平衡. 北京: 化学工业出版社, 1985.27. 张建侯, 许锡恩. 化工过程分析与计算机模拟. 北京: 化学工业出版社, 1989.28. 时钧, 汪家鼎, 余国琮, 陈敏恒. 化学工程手册. 第二版. 北京: 化学工业出版社, 1996.29. 倪进方. 化工过程设计, 北京: 化学工业出版社, 2001.30. 杨志才. 化工生产中的间歇过程-原料、工艺及设备. 北京: 化学工艺出版社, 2001.31. 武汉大学编写组. 化学工程基础, 北京: 高等教育出版社, 2002.32. 顾觉奋. 分离纯化工艺原理. 北京: 中国医药科技出版社, 2002.33. (美)吉科利斯著,齐鸣斋译. 传递过程与分离过程原理. 上海: 华东理工大学出版社, 2007.34. 刘茉娥. 膜分离技术. 北京: 化学工业出版社, 1998.35. 王湛. 膜分离技术基础. 北京: 化学工业出版社, 2000.36. 时钧, 袁权, 高从堦. 膜技术手册. 北京: 化学工业出版社, 2001.37. 徐南平, 邢卫红, 赵宜江. 无机膜分离技术与应用. 北京: 化学工业出版社, 2003.38. 任建新. 膜分离技术及其应用. 北京: 化学工业出版社,2003.39. 于丁一,宋澄章,李航宇. 膜分离工程及典型设计实例. 北京: 化学工业出版社, 2005.40. 许振良, 马炳荣. 微滤技术与应用. 北京: 化学工业出版社, 2005.41. 王湛, 周翀. 膜分离技术基础(第二版) . 北京: 化学工业出版社, 2006.42. 陈观文. 分离膜应用与工程案例. 北京: 国防工业出版社, 2007.43. 高自立, 孙思修, 沈静兰. 溶剂萃取化学. 北京: 科学出版社, 1991.44. 陈维枢. 超临界流体萃取的原理和应用. 北京: 化学工业出版社, 1998.45. 张镜 . 超临界流体萃取. 北京: 北京化学工业出版社, 2000.46. 朱自强. 超临界流体技术—原理和应用. 北京: 北京化学工业出版社, 2000.47. 汪家鼎, 陈家镛. 溶剂萃取手册. 北京: 北京化学工业出版社, 2001.48. 戴猷元. 新型萃取分离技术的发展及应用. 北京: 化学工业出版社, 2007.49. 孙彦. 生物分离工程. 北京: 化学工业出版社, 1998.50. 毛忠贵. 生物工业下游技术. 北京: 中国轻工业出版社, 1999.51. 欧阳平凯. 生物分离技术. 北京: 化学工业出版社, 1999.52. 严希康. 生化分离工程 . 北京: 化学工业出版社, 2000.53. 严希康. 生化分离工程. 北京: 化学工业出版社, 2001.54. 孙彦. 生物分离工程(第二版. 北京: 化学工业出版社, 2005.55. 卢鲜花. 中药有效成分提取分离技术. 北京: 化学工业出版社, 2005.56. 刘小平, 李湘南,徐海星. 中药分离工程. 北京: 化学工业出版社, 2005.57. 曹学君. 现代生物分离工程. 上海: 华东理工大学出版社, 2007.58. 谭天伟. 生物分离技术. 北京: 化学工业出版社, 2007.59. 辛秀兰. 生物分离与纯化技术. 北京: 科学出版社, 2008.60. 田瑞华. 生物分离工程. 北京: 科学出版社, 2008.61. 丁绪淮, 谈遒. 工业结晶. 北京: 化学工业出版社, 1985.62. 冯霄, 李勤凌. 化工节能原理与技术. 北京: 化学工业出版社, 1998.63. 褚良银等. 旋转流分离理论. 北京: 冶金工业出版社, 2002.65. 陈翠仙, 韩宾兵, 朗宁威 . 渗透蒸发和蒸气渗透. 北京: 化学工业出版社, 2004.66. (英])什顿,沃德, 霍尔迪奇著; 朱企新译. 固液两相过滤及分离技术(第2版) . 北京: 化学工业出版社, 2005.67. 蒋培华. 反应与分离工程基础. 北京: 中国石化出版社, 2008 .68. King C J. Separation Processes, 2nd. New York : McGraw Hill, 1980.69. Henley E J, Seader J D. Equilibrium Stage Separation in Chemical Engineering. New York : John Wiley&Sons, 1981.70. Rousseau R W. Handbook of Separation Process Technology. New York: John Wiley & Sons, 1987.71. Wankat P C. Equilibrium-Stage Separations in Chemical Engineering. New York : Elsevier, 1988.72. Wankat P C. Rate-Controlled Separations. New York : Elsevier Applied Science, 1990.73. Schweitzer P. Handbook of Separation Technique for Chemical Engineers, 3rd ed. New York : McGraw Hill, 1997.74. Seader J D, Henley E J. Separation Process Principles. New York : John Wiley & Sons, 1998.75. Clifton E. Meloan. Chemical Separations: Principles, Techniques and Experiments (Techniques in Analytical Chemistry) . Wiley-Interscience, 1999.76. Christie John Geankoplis. Transport Processes and Separation Process Principles (Includes Unit Operations) (4th Edition) . New Jersey, 2003.77. Phillip C. Wankat,Separation Process Engineering (2nd Edition). Prentice Hall PTR,2006.78. Michael E. Prudich, Huanlin Chen, Tingyue Gu, Ram B. Gupta, Keith P. Johnston, Herb Lutz, Guanghui Ma, Zhiguo Su . Perry's Chemical Engineers' Handbook 8/E Section 20:Alternative Separation Processes . McGraw-Hill Professional, 2007.79. Robinson C S, Gilliland E R. Elements of Fractional Distillation, 4th ed. New York : McGraW-Hi11, 1950.80. Smith B D. Design of Equilibrium Stage Processes. New York : McGraw-Hill, 1963.81. McCade W L, Smith J C. Unit Operation of Chemical Engineering. New York : McGram Hill, 1976.82. Broul M, Nyvlt K, Sohnel O. Solubilities in Binary Aqueous Solution. Prague : Academia, 1981.83. Lo T C, Baird M I, Hanson C. Handbook of Solvent Extraction. New York : John Wiley&Sons, 1983.84. Walas S M. Phase Equilibria in Chemical Engineering. Boston : Butterworths, 1985.85. Yang R T. Gas Separation by Adsorption Processes. Boston : Butterworths, 1987.86. Duong D D. Adsorption Analysis: Equilibria and Kineties. New York : Lmperial College Press, 1988.87. Myerson A S. Handbook of Industrial Crystallization. Boston : Butterworth-Heinemann, 1992.88. Thornton J D. The Science and Practice of Liquid-Liquid Extraction. Oxford : Oxford Press, 1992.89. Garside J. Separation Technology: The Next Ten Years. London : Institution of Chemical Engineers, 1994.90. Ruthven D M, Farooq S, Kanebel K S. Pressure Swing Adsorption. New York : VCH, 1994.91. Diwekar M U. Batch Distillation. US: Taylor&Francis, 1995.92. Michael C. Flickinger. Encyclopedia of bioprocess technology: fermentation, biocatalysis and bioseparation. New York : John Wiley&Sons, 1999.93. Antonio A. Garcia, Mathew R. Bonen. Bioseparation Process Science. Blackwell Science Inc, 1999.94. Seider W D, Seader J D, Lewin D R. Process design principles:synthesis, analysis,and evaluation. 北京: 化学工业出版社, 2002.95. Jones A G. Crystallization Process Systems. Boston : Butterworth-Heinemann, 2002.96. David Baldacci ,Split Second,艺州出版社, 2004.97. J.M. Smith, Hendrick C Van Ness, Michael Abbott. Introduction to Chemical Engineering Thermodynamics. McGraw-Hill, 2004.98. Richard M. Felder, Ronald W. Rousseau. Elementary Principles of Chemical Processes. Wiley, 2004.99. F. B. Petlyuk. Distillation Theory and its Application to Optimal Design of Separation Units . Cambridge University Press, 2004.100. J. D. Seader , Ernest J. Henley. Separation Process Principles,Wiley, 2005.101. Wallace,Woon-Fong Leung. Centrifugal Separations in Biotechnology. Academic Press, 2007.102. Henry Z. Kister, Paul Mathias, D. E. Steinmeyer, W. R. Penney, B. B. Crocker,James R. Fair. Equipment for Distillation, Gas Absorption, Phase Dispersion, and Phase Separation . McGraw-Hill Professional, 2007.网上资源:1. 泡露点及闪蒸过程计算Free Software about bubble point and dew point1.1 Flash Calculator/chemsim.htm#FTTech("FLSC") is a self-contained, easy-to-use product for getting single flash solutions and bubble or dew points. It contains Digital Analytics' vapor-liquid equilibrium database and modelling methodology which includes Peng-Robinson EOS, UNIFAC, and Wilson methods.1.2 ThermoSolver/education/Thermosolver/ThermoSolver is a software program which accompanies the textbook Engineering and Chemical Thermodynamics by Milo Koretsky. This software allows students to perform complex thermodynamics calculations, and explore thermodynamics for systems which would be impossible to solve without a significant investment in programming.•Thermodynamic properties for 350+ compounds are provided.•Saturation pressure calculator can be used with 338 species in the database. •Solver for the Peng-Robinson and Lee-Kesler equations of state is provided. •Fugacity coefficients can be solved for pure species or mixtures.•Models for Gibbs energy can be fit to isobaric or isothermal vapor-liquid equilibrium data. Sample data sets are provided. The results can be plotted.•Bubble-point and dew-point calculations can be made.•Equilibrium constant (KT) solver is provided.•General chemical reaction equilibria solver is provided.•Equations used in the calculation process can be viewed.1.3 BR AET Calculation Shareware/fractional-distillation/shareware.htmlThis program is a useful utility when estimating boiling points at reduced pressures. It allows the calculation of AET (Atmospheric Equivalent Temperature) by entering the actual temperature and pressure. The actual temperature can be calculated by entering the AET and the actual pressure.2.精馏过程计算2. Free Software about distillation2.1 /McCabe-Thiele.html2.2 Online Calculation of a Binary Distillation Column2.3 Pressure Swing Adsorption Calculator by James Ritter at the University of South CarolinaAdsorption and Chromatography Software at the University of Bath Basic programs and MS Excel spreadsheets employing the tanks in series modelNumerical Simulation of Nonlinear Multicomponent Chromatography Quattro Pro spreadsheet developed by D. D. Frey at UMBC. It's more sophisticated and accurate than the U. of Bath and UMCP software. Assorted online calculators for engineering problems3.膜分离过程计算3. Free Software about Membrane Separation3.1 Membrane Simulator Version 2.0/koros/index.php?do=resources3.2 Membrane Simulation 2.0/Default.asp?Category=Simulation4. 美国麻省理工学院“分离”开放课程网站(1) /OcwWeb/Chemical-Engineering/10-32Spring-2005/CourseHome/(2)/OcwWeb/Chemical-Engineering/10-445Summer-2005/CourseHome/。
分离工程_华东理工大学中国大学mooc课后章节答案期末考试题库2023年
分离工程_华东理工大学中国大学mooc课后章节答案期末考试题库2023年1.以下萃取设备中,哪些是没有外加机械能量输入的?参考答案:喷淋塔2.闪蒸是单级蒸馏过程,所能达到的分离程度。
参考答案:较低3.下列哪一个过程不是闪蒸分离过程。
参考答案:纯组分的蒸发4.Gilliland关联图,关联了四个物理量之间的关系,下列哪个不是其中之一?参考答案:压力5.某连续精馏塔的进料、馏出液、釜液组成以及平均条件下各组分对重关键组分的平均相对挥发度如下:【图片】进料为饱和液体进料。
通过计算判断,所需最少理论板数Nm最接近以下哪一项?参考答案:106.等温闪蒸过程计算,是针对【图片】和【图片】的混合进料而进行的。
参考答案:错误7.采用特殊精馏的目的在于实现分离、降低能耗?参考答案:正确8.溶剂的关键作用是引起了待分离的两关键组分间活度系数的变化。
参考答案:正确9.根据从同系物中选择的原则,萃取溶剂最好与塔釜组分形成理想溶液,也就是说,应该选择沸点较高的关键组分对应的同系物。
参考答案:错误10.恒沸精馏可用于________操作,萃取精馏可用于________操作。
参考答案:连续和间歇、连续11.萃取精馏中,溶剂浓度越高,则?参考答案:分离效果越好_生产能力下降12.多组分精馏料液中,含有非分布的重组分和轻、重关键组分,塔在最小回流比操作时,塔中将只出现一个加料板恒浓区,即加料板恒浓区。
参考答案:错误13.在萃取精馏中,所选的萃取剂希望与塔顶馏出组份形成具有_____偏差的非理想溶液,与塔釜馏出组份形成具有_____偏差的溶液。
参考答案:正、负或无14.加盐精馏的原理与哪种特殊精馏最为类似?参考答案:萃取精馏15.膜分离过程中,浓差极化有时是有利的。
参考答案:错误16.对于超滤等膜分离过程,可以用截留率表征其分离效率。
参考答案:正确17.现在工业实用中的反渗透膜,其微观结构是以下哪些种类?参考答案:复合膜_不对称膜18.以下哪些是过滤式的膜分离过程?参考答案:微滤19.M-V近似解法求解扩散模型时,将轴向混合的影响归类到传质单元高度的变化上,表观传质单元高度分为“真实”传质高度和分散单元高度两部分。
化学分离工程分离工程试卷(练习题库)(2023版)
化学分离工程分离工程试卷(练习题库)1、分离作用是由于加入()而引起的,因为分离过程是()的逆过程。
2、衡量分离的程度用()表示,处于相平衡状态的分离程度是()。
3、分离过程是()的逆过程,因此需加入()来达到分离目的。
4、工业上常用()表示特定物系的分离程度,汽液相物系的最大分离程度又称为()。
5、固有分离因子是根据()来计算的。
它与实际分离因子的差别用()来表示。
6、汽液相平衡是处理()过程的基础。
相平衡的条件是()。
7、萃取精馏塔在萃取剂加入口以上需设()。
8、低恒沸物,压力降低是恒沸组成中汽化潜热()的组分增加。
9、对一个具有四块板的吸收塔,总吸收量的80%是在()合成的。
10、吸收剂的再生常采用的是(),(),()。
11、精馏塔计算中每块板由于()改变而引起的温度变化,可用()确定。
12、用于吸收过程的相平衡关系可表示为()。
13、多组分精馏根据指定设计变量不同可分为()型计算和()型计算。
14、在塔顶和塔釜同时出现的组分为()。
15、吸收过程主要在()完成的。
16、吸收有()关键组分,这是因为()的缘故。
17、恒沸剂的沸点应显著比原溶液沸点()以上。
18、吸收过程只有在()的条件下,才能视为恒摩尔流。
19、吸收过程计算各板的温度采用()来计算,而其流率分布则用()来计算。
20、对多组分吸收,当吸收气体中关键组分为重组分时,可采用()的流程。
21、非清晰分割法假设各组分在塔内的分布与在()时分布一致。
22、采用液相进料的萃取精馏时,要使萃取剂的浓度在全塔内为一恒定值,所以在()23、当原溶液为非理想型较强的物系,则加入萃取剂起()作用。
24、要提高萃取剂的选择性,可()萃取剂的浓度。
25、在多组分精馏计算中为了给严格计算初值,通常用()或()方法进行物料预分布。
26、对宽沸程的精馏过程,其各板的温度变化由()决定,故可由()计算各板的温度。
27、对窄沸程的精馏过程,其各板的温度变化由()决定,故可由()计算各板的温度。
化工类研究生高等分离工程课程的教学改革与实践
科技、 人才 、 教育 这三 个纲 要 的要求 , 到2 0 2 0年 我 国要跻 身创 新型 国家 行 列 , 进 入 人 力 资源 强 国行
[ 作 者 简 介]周 彩 荣 ( 1 9 5 8 一 ) , 女, 教授 , 博士 ; 詹 自力 ( 1 9 6 5 一 ) , 男, 副教授 , 博 士。
Ke y wo r d s:A d va nc e d Se pa r a t i o n Pr o c e s s e s ; Te a c hi ng r e f o r m Gr a du a t e e du c a t i on
建 设创 新 型 国家 , 科技 是 支 撑 , 教 育 是基 础 , 人 才 是关键 。人 才 强 国 战 略与 科 教 兴 国 战 略 、 可
Te a c h i n g Re f o r m a n d Pr a c t i c e f o r Co u r s e Ad v a n c e d
Se p a r a t i o n Pr oc e s s e s
Zh ou Ca i r o n g,Zha n Zi Adv a nc e d s e p a r a t i on e ngi n e e r i n g c ou r s e i s a c o ur s e w hi c h c om b i n e s t he o r y wi t h e n gi ne e r i n g
p r a c t i c e .I t i s n e c e s s a r y f o r s t u d e n t s t o h a v e s t r o n g ma t h e ma t i c a l s k i l l s ,d a t a p r o c e s s i n g a b i l i t y a n d e n g i —
化工分离工程试卷资料
一、填空题(31*1)1、化工分离过程按照被分离物系的性状可分为机械分离和传质分离,传质分离过程根据物理化学原理的不同可分为平衡分离和速率控制分离两大类。
2、吸附全过程包括外扩散、内扩散、吸附、脱附和反应等五个过程,影响吸附速率的主要因素是体系性质、操作条件和两相组成。
3、常用的极性吸附剂有硅胶、活性氧化铝、有机树脂等几种,非极性吸附剂主要有活性炭和炭分子筛,目前选择性最好的是吸附树脂。
4、离子交换树脂主要有强酸型阳离子交换树脂、弱酸型阳离子交换树脂、强碱型阴离子交换树脂、弱碱型阴离子交换树脂和复合型离子交换树脂等几类(按活性基团性质),大孔型的树脂主要是用于吸附和分离纯化。
具有解盐能力的树脂是强碱型阴离子交换树脂和强酸型阳离子交换树脂。
~5、进行反渗透的两个必要条件是压差和半透膜;而进行电渗析的两个必要条件是直流电场和离子交换膜。
6、超临界流体具有近似于液体的密度与溶解能力和近似于气体的粘度与扩散性能。
7,反渗透是利用反渗透膜选择性的只透过溶剂的性质,对溶液施加压力,克服溶剂的渗透压,是一种用来浓缩溶液的膜分离过程。
8. 超滤是以压力差为推动力,按粒径不同选择分离溶液中所含的微粒和大分子的膜分离操作。
9,分离作用是由于加入(分离剂)而引起的,因为分离过程是(混合过程)的逆过程。
10,泡沫分离技术是根据(表面吸附)原理来实现的,而膜分离是根据(膜的选择渗透作用)原理来实现的。
11,新型的节能分离过程有(膜分离)、(吸附分离)。
12,分离剂可以是(能量)和(物质)。
}13,超临界流体具有类似液体的(溶解能力)和类似气体的(扩散能力)。
14,常用吸附剂有(硅胶),(活性氧化铝),(活性炭)。
15,物理吸附一般为(多层)吸附。
16,化学吸附一般为(单层)吸附。
17,化学吸附选择性(强)。
18,物理吸附选择性(不强)19,吸附负荷曲线是以(距床层入口的距离)横坐标绘制而成。
20,吸附负荷曲线是以(吸附剂中吸附质的浓度)为纵坐标绘制而成。
《分离工程》课程试卷6
《分离工程》课程试卷6《分离工程》课程试卷6本试卷用于生物与化学工程系2005级化学工程与工艺专业(精化方向)本科学生(时量:120分钟总分100分)注意:1、答案必须填写在答题纸上,填写在试卷上的无效。
2、答卷必须写明题目序号,并按题号顺序答题。
3.请保持行距,保持卷面整洁。
一、填空(本大题共9小题,每空1分,共25分)1、分离的作用有、、。
2、传质分离过程可分为、两大类。
3、液液萃取中萃取剂的选择方法有、、。
4、传质分离过程中的严格模拟计算方法主要有、、、。
其中的MESH方程指、、、。
5、物理吸附中温度对吸附的影响为、压力影响为。
6、结晶过程包括和两个主要步骤。
7、溶液结晶的主要方法有、。
8、对于四组分物系,采用精馏分离时有种分离顺序。
9、闪蒸温度必须介于物系的与之间。
二、简述题(本大题共5小题,每题5分,共25分)1、平衡常数与组成有关的泡点温度计算过程。
2、平衡常数与组成无关的露点温度计算过程。
3、萃取精馏中提高塔顶产品含量的方法有哪些。
4、简述泡点法计算精馏过程的迭代过程。
5、变温吸附的原理是什么?(以图示表示)。
三、名词解释(本大题共4小题,每小题4分,共16分)1、分离因子2、重关键组分3、清晰分割4、物理吸附四、计算题(本大题共3小题,共34分)《分离工程》课程试卷6参考答案及评分细则一、 填空(本大题共9小题,每空1分,共25分)(每填对一空给一分)1、去除原料中的杂质、分离得到产品、处理“三废”净化环境。
2、平衡分离过程、速率分离过程。
3、同系物法、罗宾斯表、极性选择法。
4、泡点法、流率加和法、等温流率加和法、同时校正法。
物料平衡方程、相平衡方程、组分加和归一化方程、能量平衡方程。
5、温度升高不利于吸附进行,加压有利于吸附进行。
6、晶核形成、晶核生长。
7、冷却结晶、蒸发浓缩结晶。
8、6。
9、露点、泡点。
二、简述题(本大题共5小题,每题5分,共25分)1、平衡常数与组成有关的泡点温度计算过程。
分离过程例题与习题集及答案
exp
ij
ii
RT
12
v2L exp v1L
12 11
RT
117.55 103 100.91 10 3
exp
1035 .33
8.314
378.47
=1.619
21
v1L v2L
exp
21 22
RT
100 .91 10 3 117.55 103
exp
977.83
0.854
23
v
L 2
v3L
exp(
苯: ln P1s 20.7936 2788.51 T 52.36 ; 甲苯: ln P2s 20.9065 3096.52 T 53.67; 对二甲苯: ln P3s 20.9891 3346.65 T 57.84;( Ps : Pa;T : K )
解
1:由
Wilson 参数方程 ij
5
根据安托尼方程:
P1s 0.2 0 7M5 P a ; P2s 8.693 104 Pa ; P3s 3.823 104 Pa 由式(2-38)计算得:
K1 1.88 ; K2 0.834 ; K3 0.375 如视为完全理想系,根据式(2-36)计算得:
K1 2.0 4 8 ; K2 0.858 ; K3 0.377 解 2:在 T=378.47K 下
离时,就要考虑采用萃取精馏(MSA),但萃取精馏需要加入大量萃取剂,
萃取剂的分离比较困难,需要消耗较多能量,因此,分离混合物优先选择能
量媒介(ESA)方法。
3. 气体分离与渗透蒸发这两种膜分离过程有何区别?
答:气体分离与渗透蒸发式两种正在开发应用中的膜技术。气体分离更成熟些,
渗透蒸发是有相变的膜分离过程,利用混合液体中不同组分在膜中溶解与扩
化工分离过程题库(超全版本)
分离工程试题库目录第一部分填空题 0第二部分选择题 (3)第三部分简答题 (7)第四部分计算题 (9)第一部分填空题1. 传质分离可分为和。
2 分离过程常见的开发方法有和。
3.相平衡关系的表示方法有、、。
4.精馏的数学模型有、、、。
5.产生恒沸物的原因是,二元恒沸物的判别式为。
6.在萃取精馏中,为使分离效果较好,所选溶剂与塔顶产品形成,与塔釜产品形成,常用的方法是。
7.常用的解吸方法有、、。
8.与物理吸收相比较,化学吸收平衡分压,推动力,溶解度,传质系数。
9.解吸操作中,解吸因数S 解吸分率β,解吸操作方能进行,当S增加时,β,理论板数。
10.在液流主体进行缓慢化学反应的吸收过程,传质速率由决定。
11. 衡量分离的程度用表示,处于相平衡状态的分离程度是。
12. 汽液相平衡是处理过程的基础,相平衡的条件是。
13. 当混合物在一定的温度、压力下,满足条件即处于两相区,可通过计算求出其平衡汽液相组成。
14.萃取精馏塔在萃取剂加入口以上需设。
15. 最低恒沸物,压力降低是恒沸组成中汽化潜热的组分增加。
16.吸收因子为,其值可反应吸收过程的。
17. 吸收剂的再生常采用的是,,。
18. 精馏塔计算中每块板由于改变而引起的温度变化,可用确定。
19. 用于吸收过程的相平衡关系可表示为。
20. 多组分精馏根据指定设计变量不同可分为型计算和型计算。
21. 在塔顶和塔釜同时出现的组分为。
22. 吸收的相平衡表达式为,在操作下有利于吸收,吸收操作的限度是。
23. 解吸收因子定义为,由于吸收过程的相平衡关系为。
24. 精馏有个关键组分,这是由于的缘故25. 采用液相进料的萃取精馏时,要使萃取剂的浓度在全塔内为一恒定值,所以在进料。
26.原溶液为非理想型较强的物系,则加入萃取剂起作用。
27.提高萃取剂的选择性,可萃取剂的浓度。
28.在多组分精馏计算中为了给严格计算提供初值,通常用或方法进行物料预分布。
29.通过精馏多级平衡过程的计算,可以决定完成一定分离任务所需的,为表示塔实际传质效率的大小,则用加以考虑。
中国石油大学(华东)智慧树知到“化学工程与工艺”《分离工程》网课测试题答案1
中国石油大学(华东)智慧树知到“化学工程与工艺”《分离工程》网课测试题答案(图片大小可自由调整)第1卷一.综合考核(共15题)1.随着构成共沸物的各组分的纯组分的蒸气压差的增大,共沸组成变化规律为最低共沸物向含低沸点组分多的浓度区移动,最高共沸物向含高沸点组分多的浓度区移动。
()A.错误B.正确2.工业上为提高分离或反应效果,常把不同的过程进行组合,例如在精馏塔里进行由甲醇和醋酸制备醋酸甲酯的过程,属于反应过程与分离过程的耦合。
()A.错误B.正确3.当板上液体达到完全混合时,点效率与板效率的关系为()A.AB.BC.C4.与板式塔相比,填料塔效率较高且稳定。
()A.错误B.正确5.汽液两相均可视为理想溶液时,其汽液相平衡关系为()A.AB.BC.CD.D 6.一定温度下压缩气体混合物,当开始冷凝产生第一个液滴时的压力叫露点压力。
()A.错误B.正确7.下列哪一个不是机械分离过程()A.重力沉降分离过程B.过滤C.离心分离D.吸收8.多组分精馏过程,最少理论级数Nm值与进料组成和进料状态均无关。
()A、错误B、正确9.简单(常规)精馏塔是指()。
A.设有中间再沸换热设备的精馏分离装置B.有多股进料的精馏分离装置C.仅有一股进料且无侧线出料和中间换热设备的精馏分离装置D.设有中间冷凝换热设备的精馏分离装置10.在临界点附近很小的压力和温度的变化都会引起超临界流体密度和溶解能力的极大改变。
()A.错误B.正确11.等温下将同样组成的二元混合物分离为纯组分,最小功值最小的是()A.分离理想气体B.分离理想溶液C.溶液为正偏差时D.溶液为负偏差时12.采用简单精馏塔将5个组分所组成的溶液分离成5个产品需要几个塔()A.3B.4C.5D.213.当精馏塔的回流比小于最小的回流比时()A、液相不能气化B、不能完成给定的分离任务C、气相不能冷凝D、无法操作14.在萃取精馏中,当进料为饱和液体进料时,精馏段液相中溶剂浓度可近似看为不变。
分离工程题库
第一章绪论填空题:1、分离技术的特性表现为其(重要性)、(复杂性)和(多样性)。
2、分离过程是(混合过程)的逆过程,因此需加入(分离剂)来达到分离目的。
3、分离过程分为(机械分离)和(传质分离)两大类4、分离剂可以是(能量)或(物质),有时也可两种同时应用。
5、若分离过程使组分i及j之间并没有被分离,则(a s ij = 1 )。
6、可利用分离因子与1的偏离程度,确定不同分离过程分离的(难易程度)。
7、平衡分离的分离基础是利用两相平衡(组成不相等)的原理,常采用(平衡级)作为处理手段,并把其它影响归纳于(级效率)中。
8、传质分离过程分为(平衡分离)和(速率分离)两类。
9、速率分离的机理是利用溶液中不同组分在某种(推动力)作用下经过某种介质时的(传质速率)差异而实现分离。
10、分离过程是将一混合物转变为组成(互不相等)的两种或几种产品的哪些操作。
11、工业上常用(分离因子)表示特定物系的分离程度,汽液相物系的最大分离程度又称为(固有分离因子)。
12、速率分离的机理是利用传质速率差异,其传质速率的形式为(透过率)、(迁移率)和(迁移速率)。
13、绿色分离工程是指分离过程(绿色化的工程)实现。
14、常用于分离过程的开发方法有(逐级经验放大法)、(数学模型法)选择题:1、分离过程是一个( A )a.熵减少的过程;b.熵增加的过程;c.熵不变化的过程;d. 自发过程2、组分i、j之间不能分离的条件是(C )a.分离因子大于1;b.分离因子小于1;c.分离因子等于13、平衡分离的分离基础是利用两相平衡时(A )实现分离。
a. 组成不等;b. 速率不等;c. 温度不等4、当分离因子( C )表示组分i及j之间能实现一定程度的分离。
a. aij = 1 b. a sij= 1 c.aij<15.下述操作中,不属于平衡传质分离过程的是( C )a. 结晶;b. 吸收;c. 加热;d. 浸取。
6、下列分离过程中属机械分离过程的是(D ):a.蒸馏;b. 吸收;c. 膜分离;d.离心分离。
分离工程答案
高等分离技术复习题(2016)1.判断萃取剂萃取能力强弱顺序并分析原因:(1)(C4H9O)3 P O;(C4H9O)2(C4H9)PO;(C4H9O)(C4H9)2 PO;(C4H9)3 PO;(2)(C4H9O)2P(O)OH;(C4H9O)(C4H9)P(O)OH;(C4H9)2P(O)OH;(3)(C8H17)3N;(C8H17)2NH;(C8H17)NH2;1、判断萃取剂萃取能力强弱顺序并分析原因:(1)中性含磷萃取剂:以上萃取剂其萃取作用的关键是磷酰基(≡P=O),磷酰基(≡P=O)中O原子上的电荷密度越大,其萃取能力越强。
因为C4H9O-的电负性大于C4H9-,故C4H9O-的吸引电子能力大于C4H9-,C4H9-一般看做给电子基团。
故萃取能力为:(C4H9O)3 P O<(C4H9O)2(C4H9)PO<(C4H9O)(C4H9)2 PO<(C4H9)3 PO;(2)酸性含磷萃取剂:对于含有=PO(OH)磷(膦)酸萃取剂来说,酸性含磷萃取剂的pKa(离解常数Ka的负对数)是一个重要的参数,pKa越小,萃取剂的酸性越强,萃取剂的萃取能力就越大。
由于酸性(C4H9O)2P(O)OH>(C4H9O)(C4H9)P(O)OH>(C4H9)2P(O)OH,故其萃取能力为(C4H9O)P(O)OH>(C4H9O)(C4H9)P(O)OH>(C4H9)2P(O)OH。
2(3)胺类萃取剂:在胺类萃取剂的分子结构中,起萃取作用的活性基团是能够给出电子、具有相当“碱性”的氮原子。
胺类萃取剂的结构对萃取能力的影响,不仅要考虑分子中烷基的诱导效应,也要考虑由于取代烷基造成的空间效应。
靠近氮原子的烷基出现支链,由于空间效应会降低胺类萃取能力。
伯胺和仲胺的分子结构中,既有亲电子的氢原子,又有亲核的氮原子。
机胺的碱性强度可用pKb(碱的离解常数Kb的负对数)表示,其值愈小,碱性愈强,则萃取能力愈大。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
湖北工业大学研究生考试试题
考试科目高等分离工程
任课教师唐强
年级16化研
一,简答题
1.根据自己的理解,用自己的语言阐述分离与分析两个概念的区别和联系(10分)
2.根据自己的理解阐述流水相互作用的机理?(5分)
3.吸收过程设计中,吸收剂的选择原则是什么?(5分)
4.对于混合液体的分离,什么情况下选择萃取精馏,而不选择精馏操作(5分)
5.在吸收过程中,塔中每级气液流量为什么不能视为恒摩尔流(5分)
6.在精馏塔的操作中,若F,V维持不变,而Xf由于某种原因降低,问可用哪些措施使Xd 维持不变?并比较这些方法的优缺点。
(10分)
7.精馏塔中气相浓度,液相浓度以及温度沿塔高有何变化规律,原因是什么?在精馏塔中设中间换热器为什么会提高热力学效率?(10分)
二,计算题
1,以烃类蒸汽混合物含有甲烷5%,乙烷10%,丙烷30%及异丁烷55%,试求混合物在25度时的露点压力与泡点压力,并确定在t=25度,P=1Mpa时的气相分率(10分)
2.某精馏塔用以分离A 组分和水的混合物,已知Xf=0.5,Xd=0.95,Xw=0.1,回流比为1.5,泡点回流,饱和液体进料,塔顶采用全凝器,塔底用饱和水蒸气直接加热,物系相对挥发度a=2.25,试求1,离开塔顶第二块板的气相浓度,2,塔顶采出率D/F。
(20分)
1.3,在环境温度下,将含有35%丙酮的水溶液分离成99%的丙酮和98%的水,1.若丙酮和水被认为是理想溶液,计算以1mol进料为单位的最小功,
2. 在环境状态下的液相活度系数用Van Laar 方程联立,其常数A12 =2.0 ,A21 =1.7 (丙酮组分为 1 ), 计算最小功(20分)。