最大公因数与最小公倍数应用题(提高)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
最大公约数与最小公倍数
1)有一个自然数,被6除余1,被5除余1,被4除余1,这个自然数最小是几?2)把长120厘米,宽80厘米的铁板裁成面积相等,最大的正方形而且没有剩余,可以裁成多少块?
3)把长132厘米,宽60厘米,厚36厘米的木料锯成尽可能大的,同样大小的正方体木块,锯后不能有剩余,能锯成多少块?
4)用长120厘米,宽80厘米的长方形砖块去铺一块正方形地,最少需要多少块砖?
5)一盒钢笔可以平均分给2、3、4、5、6个同学,这盒钢笔最少有多少枝?7)每筐梨,按每份2个梨分多1个,每份3个梨分多2个,每份5个梨分4个,则筐里至少有多少个梨?
8)现在有香蕉42千克,苹果112千克,桔子70千克,平均分给幼儿园的几个班,每班分到的这三种水果的数量分别相等,那么最多分给了多少个班?每个班至少分到了三种水果各多少千克?
9)有三根铁丝,一根长54米,一根长72米,一根长36米,要把它们截成同样长的小段,不许剩余,每段最长是多少米?
10)有一级茶叶96克,二级茶叶156克,三级茶叶240克,价值相等.现将这三种茶叶分别等分装袋(均为整数克),每袋价值相等,要使每袋价值最低应如何装袋?
11)一次考试,参加的学生中有1
7得优,
1
3得良,
1
2得中,其余的得差,已知参加考试的
学生不满50人,那么得差的学生有多少人?
12)一次会餐供有三种饮料.餐后统计,三种饮料共用了65瓶;平均每2个人饮用一瓶A 饮料,每3人饮用一瓶B饮料,每4人饮用一瓶C饮料.问参加会餐的人数是多少人?
13)把20个梨和25个苹果平均分给小朋友,分完后梨剩下2个,而苹果还缺2个,一共最多有多少个小朋友?
14)因夜间施工需要,要把施工区的一条长120米的路边路灯有间隔6米改成间隔4米,除两端不需移动,中间还有几盏不需移动?
15)两个数的积是6912,最大公因数是24,求它们的最小公倍数?
16)甲、乙、丙三个学生定期向某老师求教,甲每4天去一次,乙每6天去一次,丙每9天去一次,如果这一次他们三人是3月23日都在这个老师家见面,那么下一次三人都在这个老师家见面的时间是几月几日?
17)求被5除余2,被6除余3,被7除4的大于1000、小于1500的所有自然数.
最大公因数与最小公倍数练习题
一、填空:
1、如果自然数A除以自然数B商是17,那么A与B的最大公因数是(),最小公倍数是()。
2、最小质数与最小合数的最大公因数是(),最小公倍数是()。
3、能被5、7、16整除的最小自然数是()。
4、(1)(7、8)最大公因数(),[7,8 ]最小公倍数()
(2)(25,15)最大公因数(),[25、15 ]最小公倍数()
(3)(140,35)最大公因数(),[140,35 ]最小公倍数()
(4)(24,36)最大公因数(),[24、36 ]最小公倍数()
(5)(3,4,5)最大公因数(),[3,4,5 ]最小公倍数()
(6)(4,8,16)最大公因数(),[4,8,16 ]最小公倍数()
5、5和12的最小公倍数减去()就等于它们的最大公因数。91和13的最小公倍数是它们最大公因数的()倍。
6、已知两个互质数的最小公倍数是153,这两个互质数是()和()。
7、甲数=2×3×5×7,乙数=2×3×11,甲乙两数的最大公因数是(),最小公倍数是()。
8、3个连续自然数的最小公倍数是60,这三个数是()、()和()。
9、被2、3、5除,结果都余1的最小整数是(),最小三位整数是()。
10、一筐苹果4个4个拿,6个6个拿,或者8个8个拿都正好拿完,这筐苹果最少有()个。
11、三个连续偶数的和是42,这三个数的最大公因数是()。
12、三个13、自然数m和n,n= m+1,m和n的最大公因数是(),最小公倍数是()。
14、把自然数a与b分解质因数,得到a=2×5×7×m,b=3×5×m,如果a与b 的最小公倍数是2730,那么m =()。
15、(273,231,117)最大公因数(),[273,231,117]最小公倍数()
16、三个数的和是312,这三个数分别能被7、8、9整除,而且商相同。这三个数分别是()、()和()。
17、已知(A,40)=8,[A,40]=80,那么A=()。
18、找一个与众不同的数(三个方法)并说明理由):1、2、3、5、7、9、15 1:选,因为
2:选,因为
3:选,因为
19、按要求写互质数
两个都是质数()和();两个都是合数()和();一个质数和一个奇数()和();一个偶数5和一个合数()和();一个质数和一个合数()和();一个偶数和一个合数()和()。
二、解决下列的问题:
1、有一行数:1,1,2,3,5,8,13,21,34,55……,从第三个数开始,每个数都是前两个数的和,在前100个数中,偶数有多少个?不同质数的最小公倍数是105,这三个质数是()、()和()。
2、一个长方形的长和宽都是自然数,面积是36平方米,这样的形状不同的长方形共有多少种?
3、一种长方形的地砖,长24厘米,宽16厘米,用这种砖铺一个正方形,至少需多少块砖?
4、有一个长80厘米,宽60厘米,高115厘米的长方体储冰容器,往里面装入大小相同的立方体冰块,这个容器最少能装多少数量冰块?
5、已知某小学六年级学生超过100人,而不足140人。将他们按每组12人分组,多3人;按每组8人分,也多3人。这个学校六年级学生多少?
6、有四个小朋友,他们的年龄一个比一个大一岁,四个人的年龄的乘积是360。他们中年龄最大是多少岁?
7、汽车站内每隔3分钟发一辆公交车,4分钟发一辆中巴车,1小时共发了几辆汽车?其中有几辆中巴车?