高数空间解析几何学向量及其运算
向量与空间解析几何
向量与空间解析几何向量与空间解析几何是高等数学中的重要分支,它们是研究空间中点、直线、平面等几何对象的数学工具。
向量是空间中的一个重要概念,它可以用来表示空间中的位移、速度、加速度等物理量,同时也可以用来描述空间中的几何对象。
空间解析几何则是利用向量的概念,通过坐标系和代数方法来研究空间中的几何问题。
本文将从向量的定义、运算、坐标表示以及空间解析几何的基本概念和应用等方面进行详细介绍。
一、向量的定义和运算向量是空间中的一个重要概念,它可以用来表示空间中的位移、速度、加速度等物理量,同时也可以用来描述空间中的几何对象。
向量的定义如下:定义1:向量是具有大小和方向的量,用一个有向线段来表示。
向量的大小称为向量的模,用符号 a 表示,方向则由有向线段的方向确定。
向量的起点和终点分别称为向量的始点和终点,用符号a和b表示。
向量的表示方法有多种,如箭头表示法、坐标表示法、分量表示法等。
向量的运算包括加法、减法、数乘和点乘等。
其中,向量的加法和减法定义如下:定义2:向量的加法:设向量a和b的始点相同,则向量a+b的终点为向量a的终点和向量b的终点的连线的终点。
定义3:向量的减法:设向量a和b的始点相同,则向量a-b的终点为向量a 的终点和向量-b的终点的连线的终点。
向量的数乘定义如下:定义4:向量的数乘:设k为实数,则向量ka的模为k · a ,方向与向量a 的方向相同(当k>0时)或相反(当k<0时)。
向量的点乘定义如下:定义5:向量的点乘:设向量a=(a1,a2,a3)和向量b=(b1,b2,b3),则向量a·b=a1b1+a2b2+a3b3。
向量的点乘有很多重要的性质,如交换律、分配律、结合律等,这些性质在空间解析几何中有着重要的应用。
二、向量的坐标表示向量的坐标表示是空间解析几何中的重要概念,它将向量与坐标系联系起来,使得向量的运算可以通过代数方法来进行。
在三维空间中,我们通常采用右手坐标系来表示向量,其中x轴、y轴和z轴分别垂直于彼此,并且满足右手定则。
高数下册常用常见知识点
高数下册常用常见知识点高等数学下册常用知识点第八章:空间解析几何与向量代数一、向量及其线性运算1.向量的概念及基本性质:包括向量相等、单位向量、零向量、向量平行、共线、共面等基本概念。
2.向量的线性运算:包括加减法和数乘。
3.空间直角坐标系:包括坐标轴、坐标面、卦限和向量的坐标分解式等。
4.利用坐标进行向量的运算:设向量a=(ax。
ay。
az),向量b=(bx。
by。
bz),则a±b=(ax±bx。
ay±by。
az±bz),λa=(λax。
λay。
λaz)。
5.向量的模、方向角、投影:包括向量的模、两点间的距离公式、方向角、方向余弦和投影等。
二、数量积和向量积1.数量积:包括数量积的概念、性质和计算公式等。
2.向量积:包括向量积的概念、性质和计算公式等。
三、曲面及其方程1.曲面方程的概念:包括曲面方程的定义和基本性质等。
2.旋转曲面:包括旋转曲面的定义、方程和旋转后方程的计算等。
3.柱面:包括柱面的特点、方程和母线的概念等。
4.二次曲面:包括椭圆锥面的方程和图形等。
2.椭球面:$\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}=1$3.旋转椭球面:$\frac{x^2}{a^2}+\frac{y^2}{b^2}-\frac{z^2}{c^2}=1$4.单叶双曲面:$\frac{x^2}{a^2}+\frac{y^2}{b^2}-\frac{z^2}{c^2}=1$5.双叶双曲面:$\frac{x^2}{a^2}+\frac{y^2}{b^2}-\frac{z^2}{c^2}=-1$6.椭圆抛物面:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=z$7.双曲抛物面(马鞍面):$\frac{x^2}{a^2}-\frac{y^2}{b^2}=z$8.椭圆柱面:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$9.双曲柱面:$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$10.抛物柱面:$2x=ay^2$空间曲线及其方程:1.参数方程:$\begin{cases}x=x(t)\\y=y(t)\\z=z(t)\end{cases}$,如螺旋线:$\begin{cases}x=a\cos t\\y=a\sin t\\z=bt\end{cases}$2.一般方程:$F(x,y,z)=0$,消去$z$,得到曲线在面$xoy$上的投影。
高等数学-第8章空间解析几何与向量代数
b a b≤+,向量与数的乘法a ,方向与、向量与数量乘法的性质(运算律和方向,所以在数学上我们研究与起点无关的向量,并称这种向量为自由向量(以后简称向量),即只考虑向量的大小和方向,而不论它的起点在什么地方。
当遇到与起点有关的向量时(例如,谈到某一质点的运动速向量A B ''在轴上的投影,记为投影AB 。
向量在轴上的投影性质:性质1(投影定理)=cos AB ϕ与向量AB 的夹角。
)=Prj 1a +Prj 2a 。
性质可推广到有限个向量的情形。
:向量a 在坐标轴上的投影向量向量a 在三条坐标轴上的投影由向量在轴上的投影定义,a 在直角坐标系Oxyz 中的坐标{,,x y z a a a 量的投影具有与坐标相同的性质。
利用向量的坐标,可得向量的加法、减法以及向量与数的乘法的运算如下:利用向量加法的交换律与结合律,以及向量与数乘法的结合律与分配律,有{,x y a a a λλλ=由此可见,对向量进行加、2x a a a =+acos a b cos a b (,)a b =为向量之间的夹角并且0θπ≤≤。
2a =,因此我们可以把a a ∙简记为x y z z 由向量的坐标还可以计算两个向量之间的夹角, cos ab θ所以2cos xa b a ba θ∙==+两个向量垂直的充分必要条件是sin a b θ,它的方向是垂直于。
a b ⨯=sin a b b 为两边的平行四边形的面积。
如果向量a ={,,a a a },{,}b b =则a b ⨯=..........x y zi j a a b b b 两向量平行的充分必要条件为也就是说两向量共线,其对应坐标成比例。
决;在求向量,特别是求垂直向量问题时常用向量积。
注意向量的平行、垂直关系及角度。
利。
高等数学向量代数与空间解析几何总结 ppt课件
( p与q同号 )
3、空间曲线
[1] 空间曲线的一般方程
F(x, y,z) 0 G(x, y,z) 0
[2] 空间曲线的参数方程
x x(t)
y
y(t)
z z ( t )
如图空间曲线 一般方程为
z 1 x2 y2
(x
1)2 2
y2
(1)2 2
x
1 cos 2
t 1 2
参数方程为
右 手 系 .
向量积的坐标表达式
ab(aybzazby)i (azbxaxbz)j
(axbyaybx)k
i j k ab ax ay az
bx by bz
a // b
ax ay az bx by bz
请归纳向量的数量积和向量积
在几何中的用途
(①求1)向数量量的积模(1 :)a a |a |2.
f (x, y2 z2 ) 0
(2) 曲线L绕 y 轴旋转所成的旋转曲 方面 程为
f ( x2 z2, y) 0
(1)球面 (2)圆锥面 (3)旋转双曲面
x2y2z21 x2y2z2
x2 y2 z2 a2 a2 c2 1
[2] 柱面
定义:平行于定直线并沿定曲线C移动的直线 L所形成的曲面称之.
a { a x ,a y ,a z} b { b x ,b y ,b z}
a b { a x b x , a y b y , a z b z }
( a x b x ) i ( a y b y ) j ( a z b z ) k a b { a x b x , a y b y , a z b z }
[4] 两直线的夹角
直线 L1 : 直线 L2 :
《高等数学》第七章 空间解析几何与向量代数
首页
上页
返回
下页
结束
关于向量的投影定理(2)
两个向量的和在轴上的投影等于两个向量在 该轴上的投影之和. (可推广到有限多个)
Pr j(a1 a2 ) Pr ja1 Pr ja2 .
A a1 B a2
C
u
A
B
C
首页
上页
返回
下页
结束
关于向量的投影定理(3)
Pr
ju a
M 2M 3 (5 7)2 (2 1)2 (3 2)2 6
M1M3 (5 4)2 (2 3)2 (3 1)2 6
M 2M3 M1M3
M1
M3
即 M1M 2M3 为等腰三角形 .
M2
首页
上页
返回
下页
结束
2. 方向角与方向余弦
设有两非零向量
M B
o
A
中点公式:
B
x1
2
x2
,
y1
2
y2
,
z1 z2 2
M
首页
上页
返回
下页
结束
五、向量的模、方向角、投影
1. 向量的模与两点间的距离公式
设 r (x , y , z ), 作 OM r, 则有 r OM OP OQ OR
由勾股定理得
r OM
z R
解 a 4m 3n p
4(3i 5 j 8k ) 3(2i 4 j 7k )
(5i j 4k ) 13i 7 j 15k,
在x 轴上的投影为ax
13,
(完整版)第八章向量代数及空间解析几何教学案(同济大学版高数)
第八章向量代数与空间解析几何第一节向量及其线性运算教学目的:将学生的思维由平面引导到空间,使学生明确学习空间解析几何的意义和目的。
使学生对(自由)向量有初步了解,为后继内容的学习打下基础。
教学重点:1.空间直角坐标系的概念2.空间两点间的距离公式3.向量的概念4.向量的运算教学难点:1.空间思想的建立2.向量平行与垂直的关系教学内容:一、向量的概念1.向量:既有大小,又有方向的量。
在数学上用有向线段来表示向量,其长度表示向量的大小,其方向表示向量的方向。
在数学上只研究与起点无关的自由向量(以后简称向量)。
2.量的表示方法有: a、i、F、OM等等。
a=:如果两个向量大小相等,方向相同,则说(即经过平移后能完全3.向量相等b重合的向量)。
4.量的模:向量的大小,记为a。
模为1的向量叫单位向量、模为零的向量叫零向量。
零向量的方向是任意的。
a//:两个非零向量如果它们的方向相同或相反。
零向量与如何向量都平5.量平行b行。
-6.负向量:大小相等但方向相反的向量,记为a二、向量的线性运算1.加减法c b a =+: 加法运算规律:平行四边形法则(有时也称三角形法则),其满足的运算规律有交换率和结合率见图7-42.c b a =- 即c b a =-+)(3.向量与数的乘法a λ:设λ是一个数,向量a 与λ的乘积a λ规定为0)1(>λ时,a λ与a 同向,||||a a λλ= 0)2(=λ时,0a =λ0)3(<λ时,a λ与a 反向,||||||a a λλ=其满足的运算规律有:结合率、分配率。
设0a 表示与非零向量a 同方向的单位向量,那么aa a 0=定理1:设向量a ≠0,那么,向量b 平行于a 的充分必要条件是:存在唯一的实数λ,使b =a λ例1:在平行四边形ABCD 中,设a =AB ,b =AD ,试用a 和b 表示向量MA 、MB 、MC 和MD ,这里M 是平行四边形对角线的交点。
空间解析几何.pdf
第一章 高等数学 第一节 空间解析几何一、向量代数(一)向量及其线性运算既有大小又有方向的量,如位移、速度、力等这类量,称为向量,向量 a 的大小称为向量 a 的模,记作| a |。
模等于1的向量叫做单位向量,向量的加减法、向量与数的乘法统称为向量的线性运算。
向量a 与向量 b 的和 a + b 是一个向量 c ,利用平行四边形法则或三角形法则可得向量c ,如图 1-1-1 ,图 1-1-2 所示。
向量的加法符合下列运算规律: ① 交换律 a + b = b + a② 结合律(a + b)+c= a +(b+c)向量 b 与向量 a 的差 b - a 定义为向量 b 与 a 的负向量-a 的和,即b - a = b + (-a)由向量加法的三角形法则可知:() |a| = |-a|向量 a 与实数λ的积记作λa ,它是一个向量,它的模它的方向当λ> 0 时,与向量 a 相同;当λ< 0 时,与向量 a 相反。
向量与数的乘积符合下列运算规律:由向量与数的乘积的定义,可得以下定理:定理 设向量 a≠0 ,那么,向量 b 与向量 a 平行的充分必要条件是:存在惟一的实数λ,使 b =λa 。
(二)向量的坐标设有空间直角坐标系 O - xyz , i、 j、 k 分别表示沿 x 、 y 、 z 轴正向的单位向量, 12a M M是以1111(,,)M x y z 为起点,2222(,,)M x y z 为终点的向量,则向量a 可表示为其中212121x x y y z z ---、、称为向量 a 的坐标。
利用向量的坐标,可得向量的加法、减法以及向量与数的乘法运算如下:非零向量 a 与三条坐标轴正向的夹角αβγ、、称为它的方向角。
向量的模、方向角与坐标之间关系:其中cos cos cos αβγ、、称为向量 a 的方向余弦。
利用向量的坐标可得向量的模与方向余弦如下:(三)数量积 向量积设向量a 和向量 b 的夹角为θθπ≤≤(0),向量 a 和向量 b 的数量积为一个数量,记作a b ⋅ ,其大小为||||cos a b θ,即a ⊥b 的充分必要条件是 a .b =0向量 a 在轴u 上的投影(记作 Prj u a )等于向量 a 的模乘以轴与向量a 的夹角φ的余弦,即利用向量在轴上的投影,可将数量积表为向量 a 和向量 b 的向量积为一个向量 c ,记作 a × b ,即c = a × b ,c 的模c 的方向垂直于 a 与 b 所决定的平面, c 的指向按右手法则确定。
高数A第八章 空间解析几何和向量PPT课件
3.向量的线性运算
加法:平行四边形法则 数乘:大小与方向
4. 空间两向量的夹角的概念:
向 量 aa 与 0向 , 量 bb 的 0,夹 角
b
a
(a ,b )(b,a)
(0)
二、向量坐标及坐标线性运算
设a是以 M1( x1 , y1 , z1 )为起点、 M2 ( x2 , y2 , z2 )
1.球心在点 M0 ( x0 , y0 , z0 )、半径为R的球面方程:
x x 0 2 y y 0 2 z z 0 2 R 2
2. 旋转曲面:
如图 设M(x,y,z),
(1) zz1
(2)点M 到z轴的距离
dx2y2 |y1| x
z
d M 1(0,y1,z1)
M f(y,z)0
(5)
a//
b
ax
ay
az
bx by bz
例2
求与a
3i
2
j
4k ,b
i
j
2k 都垂
直的单位向量.
解
i
jki
j
c ab ax ay az 3 2
bx by bz 1 1
|c |1 2 0 5 2 55 ,
c0 c
|c|
2
j
5
15k.
k
4 1j0 5k, 2
第八章 空间解析几何与向量代数
一、向量及其线性运算
1. 空间的点 1 1有序数组(x,y,z)
2. 空间两点间的距离
设 M1( x1 , y1 , z1 )、M2 ( x2 , y2 , z2 )为空间两点,则
M 1 M 2 x 2 x 1 2 y 2 y 1 2 z 2 z 1 2 .
高等数学第八章空间解析几何与向量代数
|
c
|
102 52 5 5,
c0
|
c c
|
2
j
5
1 5
k
.
k
4 10 j 5k, 2
作业 P23习题8-2
1(1)、(3),3,4,9
第三节 平面及其方程
一、平面的点法式方程
z
如果一非零向量垂直于一
平面,这向量就叫做该平
面的法线向量.
o
y
x
法线向量的特征: 垂直于平面内的任一向量.
定的平面, 指向符合右手系。
定义
向量
a
与
b
的向量积为
c
a
b
(其中
为a
与b
的夹角)
c 的方向既垂直于a,又垂直于b ,
指向符合右手系。
向量积也称为“叉积”、“外积”。
1、关于向量积的说明:
(1)
a
a
0.
( 0 sin 0)
(2) a//b
a b 0.
(a
0,
b
,
ab .
()
ab,
,
2
cos 0,
ab
|
a
|| b
2
| cos
0.
2、数量积符合下列运算规律:
(1) 交换律:
a
b
b
a
(2) 分配律:
(a b) c a c b c
(3) 若 为常数:
若 、 为常数:
(a)
b
a
(b)
(a
(a)
( b )
(a
b ).
3、向量积的坐标表达式
设
a
axi
高等数学第九章 向量与空间解析几何
点的向量
uuuuuur uuuuur uuuur M1M2 =OM 2 OM1
(x2i y2 j z2k ) (x1i y1 j z1k ) (x2 x1)i ( y2 y1) j (z2 z1)k ,
即 以 M1(x1, y1, z1) 为 起 点 , 以 M 2 (x2 , y2 , z2 ) 为 终 点 的 向 量 uuuuuur M1M2 的坐标表达式为
解 因为a 2i 2 j k ,所以
a 22 22 12 9 3,故 a 2 i 2 j 1 k 是与
a3 3 3
a 2i 2 j k 同向平行的单位向量.
例6 已知向量a {1 , 2, 4} 与向量b { ,t ,8}
平行,求 和t 的值.
解 因为a // b,所以 1 2 4 1 ,故 2 ,t 4 .
d (M1M 2 )=| M1M 2 | (x2 x1)2 ( y2 y1)2 (z2 z1)2 . 例3 (1)写出点 A(1,2,1)的向径;
(2)写出起点为 A(1,2,1) ,终点为 B(3,3,0) 的向量
的坐标表达式; (3)计算 A, B 两点间的距离. uuur
解 (1)OA i 2 j k ; uuur
(2)a a1i a2 j a3k ;
(3) a b (a1 b1)i (a2 b2 ) j (a3 b3 )k ; (4) a b a1 b1, a2 b2 , a3 b3; (5) a // b a1 a2 a3 .
b1 b2 b3
例 5 求与a 2i 2 j k 同向平行的单位向量.
(2) AB (31)i (3 2) j (0 1)k
2i j k ;
uuur (3)d ( AB) | AB | 22 12 (1)2 6 .
向量与空间解析几何知识点总结
向量与空间解析几何知识点总结一、向量。
1. 向量的概念。
- 既有大小又有方向的量称为向量。
在空间直角坐标系中,向量可以用坐标表示,如→a=(a_x,a_y,a_z),其中a_x、a_y、a_z分别是向量在x、y、z轴上的投影。
- 向量的模(长度):对于向量→a=(a_x,a_y,a_z),其模|→a|=√(a_x^2)+a_y^{2+a_z^2}。
2. 向量的运算。
- 加法。
- 几何方法:平行四边形法则或三角形法则。
- 坐标运算:若→a=(a_x,a_y,a_z),→b=(b_x,b_y,b_z),则→a+→b=(a_x + b_x,a_y + b_y,a_z + b_z)。
- 减法。
- 几何方法:三角形法则。
- 坐标运算:→a-→b=(a_x - b_x,a_y - b_y,a_z - b_z)。
- 数乘向量。
- 设λ为实数,→a=(a_x,a_y,a_z),则λ→a=(λ a_x,λ a_y,λ a_z)。
- 数乘向量的模|λ→a|=|λ||→a|,方向当λ>0时与→a相同,当λ < 0时与→a 相反。
- 向量的数量积(点积)- 定义:→a·→b=|→a||→b|cosθ,其中θ为→a与→b的夹角。
- 坐标运算:若→a=(a_x,a_y,a_z),→b=(b_x,b_y,b_z),则→a·→b=a_xb_x + a_yb_y+a_zb_z。
- 向量垂直的充要条件:→a⊥→bLeftrightarrow→a·→b=0。
- 向量的向量积(叉积)- 定义:→a×→b是一个向量,其模|→a×→b|=|→a||→b|sinθ,方向遵循右手螺旋法则。
- 坐标运算:若→a=(a_x,a_y,a_z),→b=(b_x,b_y,b_z),则→a×→b=<=ftbegin{array}{ccc}→i→j→k a_xa_ya_z b_xb_yb_zend{array}right=(a_yb_z - a_zb_y)→i+(a_zb_x - a_xb_z)→j+(a_xb_y - a_yb_x)→k。
高等数学向量代数与空间解析几何总结
{m,
n,
p}
36
[4] 两直线的夹角
直线 L1 : 直线 L2 :
x x1 y y1 z z1
m1
n1
p1
x x2 y y2 z z2
m2
n2
p2
^ cos(L1, L2 )
| m1m2 n1n2 p1 p2 | m12 n12 p12 m22 n22 p22
x2 y2 z2
27
3、空间曲线
[1] 空间曲线的一般方程
F(x, y,z) 0 G( x, y, z) 0
[2] 空间曲线的参数方程
x x(t)
y
y(t )
z z(t)
28
如图空间曲线 一般方程为
z 1 x2 y2
( x
1)2 2
y2
(1)2 2
x
1 cos t 2
1 2
(1) 曲面S 上任一点的坐标都满足方程; (2) 不在曲面S 上的点的坐标都不满足方程; 那么,方程F ( x, y, z) 0就叫做曲面S 的方程,而 曲面S 就叫做方程的图形.
19
研究空间曲面的两个基本问题: (1)已知曲面作为点的轨迹时,求曲面方程. (2)已知坐标间的关系式,研究曲面形状.
bx by bz
a//
b
ax ay az bx by bz
10
请归纳向量的数量积和向量积
在几何中的用途
(①1求)向数量量的积模(1:) a
a
|
a
|2
.
②求两向量的 夹 角: a b | a ||
b
|
cos
cos
a
b
,
| a || b |
《高等数学》向量代数和空间解析几何
a∥ b
运算律
(1) ab ba (2) 分配律 (ab)cacbc
(3) 结合律 (a)ba(b)(ab)
向量积的坐标表达式
ab ( a y b z a z b y ) i ( a z b x a x b z ) j ( a x b y a y b x ) k
i j k a b ax ay az
例5. 求通过 x 轴和点( 4, – 3, – 1) 的平面方程.
解: 因平面通过 x 轴 , 故 AD0 设所求平面方程为 ByCz0
代入已知点 (4,3,1)得 C3B
化简,得所求平面方程 y3z0
空间直线
一般式 A A 21xx B B 2 1y y C C 1 2zz D D 12 00
从柱面方程看柱面的特征:
只含 x, y而缺z的方程F(x, y) 0,在 空间直角坐标系中表示母线平行于 z 轴的柱 面,其准线为 xoy面上曲线C .
(3) 二次曲面
椭球面
a x2 2b y2 2cz2 21 (a,b,c为正 ) 数 z
x
y
抛物面
z
椭圆抛物面
x2 y2 z ( p , q 同号) 2p 2q
n (0 ,B ,C ) i,平面平行于 x 轴; • A x+C z+D = 0 表示 平行于 y 轴的平面; • A x+B y+D = 0 表示 平行于 z 轴的平面; • C z + D = 0 表示平行于 xoy 面 的平面; • A x + D =0 表示平行于 yoz 面 的平面; • B y + D =0 表示平行于 zox 面 的平面.
o
y
3、空间曲线 (1) 空间曲线的一般方程
高等数学 第七章 向量代数与空间解析几何
第四节 空间直线及其方程
一、空间直线的一般方程 二、空间直线的对称式方程与参数方程
三、两直线的夹角 四、直线与平面的夹角
一、空间直线的一般方程
空间直线可以看作是两个平面的交线.
设直线L是平面1和2的交线, 平面的方程分别为
A1xB1yC1zD10和A2xB2yC2zD20, 那么直线L可以用方程组
设α=x1i+y1j+z1k=(x1 , y1 ,z1), 则有:β=x2i+y2j+z2k= (x2,y2,z2).
α+β =(x1+x2 )i +(y1+y2)j +(z1+z2) k
=(x1+x2 , y1+y2 , z1+z2 ). α-β=(x1-x2) i+ (y1-y2 ) j+ (z1-z2)k
一方向向量s(m, n, p)为已知时, 直线L 的位置就完全确定了.
❖直线的对称式方程
求通过点M0(x0, y0, x0), 方向向量为s(m, n, p)的直线的方 程.
设M(x, y, z)为直线上的任一点,
则从M0到M的向量平行于方向向量:
从而有
(xx0, yy0, zz0)//s ,
>>>注
λ >0
由性质1, Prj(λα)=|λα|cos(φ1)
α φ1 = φ
=λ|α|cosφ
λα φ1=π- φ
=λPrjlα
λ<0
当λ<0时 φ1=π-φ
λα
Prj(λα)=|λ|.|α|cos(φ1) =-λ|α|(-cosφ)
λ >0 α
=λPrjlα; 当λ=0时
高等数学向量代数与空间解析几何总结
高等数学向量代数与空间解析几何总结高等数学是大学数学学科的一门重要基础课程,其中向量代数与空间解析几何是其重要的内容之一、本文将对向量代数与空间解析几何的主要内容进行总结,让我们一起来了解一下吧!向量代数是研究向量的代数性质和运算法则的数学分支,旨在通过研究向量的各种运算进行分析与求解问题。
空间解析几何则是研究点、线、面等几何对象在三维空间中的位置关系和几何性质的学科。
首先,我们先来了解一下向量代数的基本概念和运算法则。
在向量代数中,向量是具有大小和方向的量,通常用一个有向线段表示。
向量的加法是指两个向量相加,得到一个新的向量,其结果是由两个向量的平行四边形法则确定的。
向量的乘法有数量乘法和点乘法两种形式。
数量乘法是指数与向量相乘,得到一个新的向量,其长度与原向量的长度相乘,方向与原向量相同或相反。
点乘法是指两个向量进行点乘,得到一个实数结果,其大小等于两个向量的长度相乘再乘以它们的夹角的余弦值,方向与夹角为锐角的原向量相同,为钝角时与原向量相反。
向量代数的运算法则包括交换律、结合律和分配律。
接下来,我们来了解一下空间解析几何的基本内容。
空间解析几何主要研究三维空间中的点、直线和平面的位置关系和几何性质。
其中,点是空间中没有大小、没有方向的对象,用坐标表示。
直线是由无数个点组成的无限延伸的几何对象,可以通过两点确定一条直线,也可以通过点和方向向量确定一条直线。
平面是由无数个点组成的无限延伸的几何对象,可以通过三个点确定一个平面,也可以通过点和法向量确定一个平面。
空间解析几何要求我们掌握点与点之间的距离、点与直线之间的关系、直线与直线之间的关系、点与平面之间的关系、直线与平面之间的关系等内容。
对于这些关系,我们可以通过向量的性质和运算进行解决。
在向量代数与空间解析几何中,还有一些重要的概念与定理需要了解。
例如,向量的模长是指向量的长度,可以通过向量的坐标和勾股定理求得。
向量的单位向量是指长度为1的向量,可以通过将向量的坐标除以其模长得到。
高等数学第7章 向量代数与空间解析几何
30
31
32
7.2.4 向量线性运算的坐标表示
33
34
35
36
7.2.5 向量数量积的坐标表达式 设有两个向量
37
38
39
40
41
42
43
44
习题7.2 A组 1.在空间直角坐标系中,指出下列各点在哪个卦 限.A(1,-2,3),B(2,3,-4),C(2,-3,-4), D( -2,-3,1)。 2.求点p( -3,2,-1)关于坐标面与坐标轴对称点 的坐标。 3.求点A( -4,3,5)在坐标面与坐标轴上的投影 点的坐标。
21
22
23
7.2 空间直角坐标系与向量的坐标表示
7.2.1 空间直角坐标系 在空间中任意选定一点O,过O点作三条相互垂直 且具有相同单位长度的数轴,分别称为x轴、y轴和z轴.x 轴、y轴和z轴要满足右手定则,即右手握住z轴,大拇 指指向z轴的正向,其余四个手指从x轴的正方向。
24
25
7.2.2 向量的坐标表示 设x轴、y轴、z轴正向的单位向量依次为i,j,k,如 图7.17所示。
第7章 向量代数与空间解析几何
空间解析几何是通过点与坐标的对应,把抽象的数 与空间的点统一起来,从而使得人们可以用代数的方法 研究几何问题,也可以用几何的方法解决代数问题.本章 首先介绍向量及其代数运算,然后以向量为工具研究空 间的直线与平面,最后讨论空间曲面与曲线的一般方程 和特点.
1
7.1 向量及其运算
12
13
(6)向量的数量积 1)数量积的概念在物理学中,如果物体受到恒力F 的作用,沿直线发生的位移s,设力F 与位移s的夹角为 θ,则力F对物体所做的功为 W =|F|·|s|·cosθ