通信原理实验报告一

合集下载

通信原理大型实验课程设计实验报告

通信原理大型实验课程设计实验报告

通信原理⼤型实验课程设计实验报告通信原理⼤型实验课程设计实验报告实验⼀基于A律⼗三折和u律⼗五折的PCM编解码设计要求:1、掌握Matlab的使⽤,掌握Simulink中建⽴通信模型的⽅法。

2、了解PCM编码的原理及在Simulink中的具体实现模块。

3、掌握如何观察⽰波器,来分析仿真模型的误差实验内容:1、设计⼀个A律13折线近似的PCM编解码器模型,能够对取值在[-1;1] 内的归⼀化信号样值进⾏编码。

建⽴PCM串⾏传输模型,并在传输信道中加⼊指定错误概率的随机误码。

在解码端信道输出的码流经过串并转换后送⼊PCM解码,之后输出解码结果并显⽰波形。

仿真采样率必须是仿真模型中最⾼信号速率的整数倍,这⾥模型中信道传输速率最⾼,为64kbps,故设置仿真步进为1/64000 秒。

信道错误⽐特率设为0.01,以观察信道误码对PCM传输的影响。

仿真结果波形如图所⽰,传输信号为幅度是1,频率是200Hz正弦波,解码输出存在延迟。

2、设信道是⽆噪的。

压缩扩张⽅式为u 律的,参数u=255 。

试研究输⼊信号电平与PCM量化信噪⽐之间的关系。

以正弦波作为测试信号。

PCM解码输出信号与原信号相减得出量化噪声信号,采⽤⽅差统计模块统计输出量化噪声以及原信号的功率,计算出信噪⽐。

其中参数mu设置为255。

实验结果:1、PCM编解码的原理将模拟信号的抽样量化值变换成为代码称为脉冲编码调制(PCM)2、A律编码⽅式的原理⾮均匀量化等价为对输⼊信号进⾏动态范围压缩后再进⾏均匀量化。

PCM编码模块:PCM解码模块:仿真模型:主要参数设置:“Saturation”作为限幅器,将输⼊信号幅度值限制在PCM编码的定义范围内[-1,1];“Relay”模块的门限设置为0;零阶保持器采样时间间隔为1秒,量化器模块“Quantizer”的量化间隔为1。

可见,发送信号为常数18.6时,零阶保持器每隔1秒钟采样⼀次,量化器将采样输出结果进⾏四舍五⼊量化,得到整数值19,“Integer to Bit Converter”模块的转换⽐特数设置为8,进⾏8⽐特转换。

通信原理实验报告

通信原理实验报告

实验一、PCM编译码实验实验步骤1. 准备工作:加电后,将交换模块中的跳线开关KQ01置于左端PCM编码位置,此时MC145540工作在PCM编码状态。

2. PCM串行接口时序观察(1)输出时钟和帧同步时隙信号观测:用示波器同时观测抽样时钟信号(TP504)和输出时钟信号(TP503),观测时以TP504做同步。

分析和掌握PCM编码抽样时钟信号与输出时钟的对应关系(同步沿、脉冲宽度等)。

(2)抽样时钟信号与PCM编码数据测量:用示波器同时观测抽样时钟信号(TP504)和编码输出数据信号端口(TP502),观测时以TP504做同步。

分析和掌握PCM编码输出数据与抽样时钟信号(同步沿、脉冲宽度)及输出时钟的对应关系。

3. PCM编码器(1)方法一:(A)准备:将跳线开关K501设置在测试位置,跳线开关K001置于右端选择外部信号,用函数信号发生器产生一个频率为1000Hz、电平为2Vp-p的正弦波测试信号送入信号测试端口J005和J006(地)。

(B)用示波器同时观测抽样时钟信号(TP504)和编码输出数据信号端口(TP502),观测时以TP504做同步。

分析和掌握PCM编码输出数据与抽样时钟信号(同步沿、脉冲宽度)及输出时钟的对应关系。

分析为什么采用一般的示波器不能进行有效的观察。

(2)方法二:(A)准备:将输入信号选择开关K501设置在测试位置,将交换模块内测试信号选择开关K001设置在内部测试信号(左端)。

此时由该模块产生一个1KHz的测试信号,送入PCM编码器。

(B)用示波器同时观测抽样时钟信号(TP504)和编码输出数据信号端口(TP502),观测时以内部测试信号(TP501)做同步(注意:需三通道观察)。

分析和掌握PCM编码输出数据与帧同步时隙信号、发送时钟的对应关系。

4. PCM译码器(1)准备:跳线开关K501设置在测试位置、K504设置在正常位置,K001置于右端选择外部信号。

此时将PCM输出编码数据直接送入本地译码器,构成自环。

通信原理实验报告

通信原理实验报告

通信原理实验报告实验一抽样定理实验二 CVSD编译码系统实验实验一抽样定理一、实验目的所谓抽样。

就是对时间连续的信号隔一定的时间间隔T 抽取一个瞬时幅度值(样值),即x(t)*s(t)=x(t)s(t)。

在一个频带限制在(0,f h)内的时间连续信号f(t),如果以小于等于1/(2 f h)的时间间隔对它进行抽样,那么根据这些抽样值就能完全恢复原信号。

抽样定理告诉我们:如果对某一带宽有限的时间连续信号(模拟信号)进行抽样,且抽样速率达到一定数值时,那么根据这些抽样值就能准确地还原信号。

这就是说,若要传输模拟信号,不一定要传输模拟信号本身,可以只传输按抽样定理得到的抽样值。

二、功能模块介绍1.DDS 信号源:位于实验箱的左侧(1)它可以提供正弦波、三角波等信号,通过连接P03 测试点至PAM 脉冲调幅模块的32P010 作为脉冲幅度调制器的调制信号x(t)。

抽样脉冲信号则是通过P09 测试点连至PAM 脉冲调幅模块。

(2)按下复合式按键旋钮SS01,可切换不同的信号输出状态,例如D04D03D02D01=0010对应的是输出正弦波,每种LED 状态对应一种信号输出,具体实验板上可见。

(3)旋转复合式按键旋钮SS01,可步进式调节输出信号的频率,顺时针旋转频率每步增加100Hz,逆时针减小100Hz。

(4)调节调幅旋钮W01,可改变P03 输出的各种信号幅度。

2.抽样脉冲形成电路模块它提供有限高度,不同宽度和频率的抽样脉冲序列,可通过P09 测试点连线送到PAM 脉冲调幅模块32P02,作为脉冲幅度调制器的抽样脉冲s(t)。

P09 测试点可用于抽样脉冲的连接和测量。

该模块提供的抽样脉冲频率可通过旋转SS01 进行调节,占空比为50%。

3.PAM 脉冲调幅模块它采用模拟开关CD4066 实现脉冲幅度调制。

抽样脉冲序列为高电平时,模拟开关导通,有调制信号输出;抽样脉冲序列为低电平,模拟开关断开,无信号输出。

《通信原理实验报告》实验报告

《通信原理实验报告》实验报告

《通信原理实验报告》内容:实验一、五、六、七实验一数字基带信号与AMI/HDB3编译码一、实验目的1、掌握单极性码、双击行码、归零码、非归零码等基带信号波形特点。

2、掌握AMI、HDB3码的编码规则。

3、掌握从HDB3码信号中提取位同步信号的方法。

4、掌握集中插入帧同步码同步时分复用信号的帧结构特点。

二、实验内容及步骤1、用开关K1产生代码X1110010,K2,K3产生任意信息代码,观察NRZ码的特点为不归零型且为原码的表示形式。

2、将K1,K2,K3置于011100100000110000100000态,观察对应的AMI码和HDB3码为:HDB3:0-11-1001-100-101-11001-1000-10AMI :01-1100-1000001-100001000003、当K4先置左方AMI端,CH2依次接AMI/HDB3模拟的DET,BPF,BS—R和NRZ,观察它们的信号波形分别为:BPF为方波,占空比为50%,BS—R为三角波,NRZ为不归零波形。

DET是占空比等于0.5的单极性归零信号。

三、实验思考题1、集中插入帧同步码同步时分复用信号的帧结构有何特点?答:集中插入法是将标志码组开始位置的群同步码插入于一个码组的前面。

接收端一旦检测到这个特定的群同步码组就马上知道了这组信息码元的“头”。

所以这种方法适用于要求快速建立同步的地方,或间断传输信息并且每次传输时间很短的场合。

检测到此特定码组时可以利用锁相环保持一定的时间的同步。

为了长时间地保持同步,则需要周期性的将这个特定的码组插入于每组信息码元之前。

2、根据实验观察和纪录回答:(1)不归零码和归零码的特点是什么?(2)与信源代码中的“1”码相对应的AMI 码及HDB3 码是否一定相同?答:1)不归零码特点:脉冲宽度τ等于码元宽度Ts归零码特点:τ<Ts2)与信源代码中的“1”码对应的AMI 码及HDB3 码不一定相同。

因信源代码中的“1”码对应的AMI 码“1”、“-1”相间出现,而HDB3 码中的“1”,“-1”不但与信源代码中的“1”码有关,而且还与信源代码中的“0”码有关。

通信原理信号源实验报告(共五篇)

通信原理信号源实验报告(共五篇)

通信原理信号源实验报告(共五篇)第一篇:通信原理信号源实验报告信号源实验实验报告(本实验包括CPLD 可编程数字信号发生器实验与模拟信号源实验,共两个实验。

)一、实验目的1、熟悉各种时钟信号的特点及波形。

2、熟悉各种数字信号的特点及波形。

3、熟悉各种模拟信号的产生方法及其用途。

4、观察分析各种模拟信号波形的特点。

二、实验内容 1、熟悉 CPLD 可编程信号发生器各测量点波形。

2、测量并分析各测量点波形及数据。

3、学习CPLD 可编程器件的编程操作。

4、测量并分析各测量点波形及数据。

5、熟悉几种模拟信号的产生方法,了解信号的来源、变换过程与使用方法。

三、实验器材 1、信号源模块一块 2、连接线若干 3、20M 双踪示波器一台四、实验原理((一))D CPLD 可编程数字信号发生器实验实验原理CPLD 可编程模块用来产生实验系统所需要的各种时钟信号与各种数字信号。

它由 CPLD可编程器件 ALTERA 公司的 EPM240T100C5、下载接口电路与一块晶振组成。

晶振JZ1 用来产生系统内的32、768MHz 主时钟。

1、CPLD 数字信号发生器包含以下五部分: 1)时钟信号产生电路将晶振产生的32、768MH Z 时钟送入CPLD内计数器进行分频,生成实验所需的时钟信号。

通过拨码开关 S4 与 S5 来改变时钟频率。

有两组时钟输出,输出点为“CLK1”与“CLK2”,S4控制“CLK1”输出时钟的频率,S5 控制“CLK2”输出时钟的频率。

2)伪随机序列产生电路通常产生伪随机序列的电路为一反馈移存器。

它又可分为线性反馈移存器与非线性反馈移存器两类。

由线性反馈移存器产生出的周期最长的二进制数字序列称为最大长度线性反馈移存器序列,通常简称为 m 序列。

以 15 位 m 序列为例,说明 m 序列产生原理。

在图 1-1 中示出一个 4 级反馈移存器。

若其初始状态为(0 1 2 3, , ,a a a a)=(1,1,1,1),则在移位一次时 1 a 与 0 a 模 2 相加产生新的输入41 1 0 a =⊕=,新的状态变为(1 2 3 4, , , a a a a)=(0,1,1,1),这样移位15 次后又回到初始状态(1,1,1,1)。

通信原理实验报告

通信原理实验报告

通信原理实验报告实验1 DDS信号源实验一、实验目的1.了解DDS信号源的组成及工作原理;2.掌握DDS信号源使用方法;3.掌握DDS信号源各种输出信号的测试。

二、实验器材1.DDS信号源(位于大底板左侧,实物图片如下)2. 20M双踪示波器1台三、实验原理直接数字频率合成(DDS—Digital Direct Frequency Synthesis),是一种全数字化的频率合成器,由相位累加器、波形ROM、D/A转换器和低通滤波器构成。

时钟频率给定后,输出信号的频率取决于频率控制字,频率分辨率取决于累加器位数,相位分辨率取决于ROM的地址线位数,幅度量化噪声取决于ROM 的数据位字长和D/A转换器位数。

DDS信号源模块硬件上由cortex-m3内核的ARM芯片(STM32)和外围电路构成。

在该模块中,我们用到STM32芯片的一路AD采集(对应插孔调制输入)和两路DAC输出(分别对应插孔P03、P04)。

PWM信号由STM32时钟配置PWM模式输出,调幅、调频信号通过向STM32写入相应的采样点数组,由时钟触发两路DAC同步循环分别输出其已调信号与载波信号。

对于外加信号的AM调制,由STM32的AD对外加音频信号进行采样,在时钟触发下当前采样值与载波信号数组的相应值进行相应算法处理,并将该值保存输出到DAC,然后循环进行这个过程,就实现了对外部音频信号的AM调制。

实验箱的DDS信号源能够输出脉宽调制波(PWM)、正弦波、三角波、方波、扫频信号、调幅波(AM)、双边带(DSB)、调频波(FM)及对外部输入信号进行AM 调制输出。

四、各测量点的作用调制输入:外部调制信号输入铆孔(注意铆孔下面标注的箭头方向。

若箭头背离铆孔,说明此铆孔点为信号输出孔;若箭头指向铆孔,说明此铆孔点为信号输入孔)。

P03:DDS各种信号输出铆孔。

P04:20KHZ载波输出铆孔。

P09:抽样脉冲输出铆孔。

SS01:复合式按键旋纽,按键用来选择输出信号状态;旋纽用来改变信号频率。

通信原理实验报告一

通信原理实验报告一

通信原理实验报告一实验一信号源实验一、实验目的1、了解通信系统的一般模型及信源在整个通信系统中的作用。

2、掌握信号源模块的使用方法。

二、实验内容1、对应液晶屏显示,观测DDS信源输出波形。

2、观测各路数字信源输出。

3、观测正弦点频信源输出。

4、模拟语音信源耳机接听话筒语音信号。

三、实验仪器1、信号源模块一块2、20M双踪示波器一台四、实验原理信号源模块大致分为DDS信源、数字信源、正弦点频信源和模拟语音信源几部分。

1、DDS信源DDS直接数字频率合成信源输出波形种类、频率、幅度及方波B占空比均可通过“DDS信源按键”调节(具体的操作方法见“实验步骤”),并对应液晶屏显示波形信息。

正弦波输出频率范围为1Hz~200KHz,幅度范围为200mV~4V。

三角波输出频率范围为1Hz~20KHz,幅度范围为200mV~4V。

锯齿波输出频率范围为1Hz~20KHz,幅度范围为200mV~4V。

方波A输出频率范围为1Hz~50KHz,幅度范围为200mV~4V,占空比50%不变。

方波B输出频率范围为1Hz~20KHz,幅度范围为200mV~4V,占空比以5%步进可调。

输出波形如下图1-1所示。

正弦波:1Hz-200KHz三角波:1Hz-20KHz锯齿波:1Hz-20KHz方波A:1Hz-50KHz(占空比50%)方波B:1Hz-20KHz(占空比0%-100%可调)图1-1 DDS信源信号波形2、数字信源(1)数字时钟信号24.576M:钟振输出时钟信号,频率为24.576MHz。

2048K:类似方波的时钟信号输出点,频率为2048 KHz。

64K:方波时钟信号输出点,频率为64 KHz。

32K:方波时钟信号输出点,频率为32KHz。

8K:方波时钟信号输出点,频率为8KHz。

输出时钟如下图1-2所示。

10t64K 10t32K10t8K图1-2 数字时钟信号波形(2)伪随机序列PN15:N=15位的m序列输出点,码型为1111 0101 1001 000,15位一周期循环。

通信原理实验报告

通信原理实验报告

实验一基带信号的常见码型变换一、实验目的1.熟悉NRZ,BNRZ,RZ,BRZ,曼彻斯特,CMI,密勒,PST码型变换原理及工作过程。

2.观测数字基带信号的码型变换测量点波形。

二、实验原理在实际的基带传输系统中,传输码的结构应具有以下主要特性:1).相应的基带信号无直流分量,且低频分量少。

2).便于从信号中提取定时信息。

3).信号中高频分量尽量少,以节省传输频带并减少码间串扰。

4).以上特性不受信息源统计特性的影响,即适应信息源的变化。

5).编译码设备要尽可能简单。

1.单极性不归零码(NRZ码)单极性不归零码中,二进制代码“1”用幅度为E的正电平表示,“0”用零电平表示,单极性码中含有直流成分,而且不能直接提取同步信号。

2.双极性不归零码(BNRZ码)二进制代码“1”、“0”分别用幅度相等的正负电平表示,当二进制代码“1”和“0”等概出现时无直流分量。

3.单极性归零码(RZ码)单极性归零码与单极性不归零码的区别是码元宽度小于码元间隔,每个码元脉冲在下一个码元到来之前回到零电平。

单极性码可以直接提取定时信息,仍然含有直流成分。

4.双极性归零码(BRZ码)它是双极性码的归零形式,每个码元脉冲在下一个码元到来之前回到零电平。

5.曼彻斯特码曼彻斯特码又称为数字双相码,它用一个周期的正负对称方波表示“0”,而用其反相波形表示“1”。

编码规则之一是:“0”码用“01”两位码表示,“1”码用“10”两位码表示。

例如:消息代码: 1 1 0 0 1 0 1 1 0…曼彻斯特码:10 10 01 01 10 01 10 10 01…曼彻斯特码只有极性相反的两个电平,因为曼彻斯特码在每个码元中期的中心点都存在电平跳变,所以含有位定时信息,又因为正、负电平各一半,所以无直流分量。

6.CMI码CMI码是传号反转码的简称,与曼彻斯特码类似,也是一种双极性二电平码,其编码规则:“1”码交替的用“11“和”“00”两位码表示;“0”码固定的用“01”两位码表示。

通信原理网上实验一

通信原理网上实验一

实验报告(一)实验日期:2020 年4 月26 日;时间:19:00实验项目:信源编码技术实验使用仪器及装置:仪器:示波器,连接线,装置:主控&信号源模块、3号、21号模块(各一块)实验内容:一、抽样定理实验1、实验目的(1)了解抽样定理在通信系统中的重要性。

(2)掌握自然抽样及平顶抽样的实现方法。

(3)理解低通采样定理的原理。

(4)理解实际的抽样系统。

(5)理解低通滤波器的幅频特性对抽样信号恢复的影响。

(6)理解低通滤波器的相频特性对抽样信号恢复的影响。

(7)理解带通采样定理的原理。

2、实验原理(1)实验原理框图抽样定理实验框图(2)实验框图说明抽样信号由抽样电路产生。

将输入的被抽样信号与抽样脉冲相乘就可以得到自然抽样信号,自然抽样的信号经过保持电路得到平顶抽样信号。

平顶抽样和自然抽样信号是通过开关S1切换输出的。

抽样信号的恢复是将抽样信号经过低通滤波器,即可得到恢复的信号。

这里滤波器可以选用抗混叠滤波器(8阶3.4kHz的巴特沃斯低通滤波器)或FPGA数字滤波器(有FIR、IIR两种)。

反sinc滤波器不是用来恢复抽样信号的,而是用来应对孔径失真现象。

3、实验步骤实验项目一抽样信号观测及抽样定理验证概述:通过不同频率的抽样时钟,从时域和频域两方面观测自然抽样和平顶抽样的输出波形,以及信号恢复的混叠情况,从而了解不同抽样方式的输出差异和联系,验证抽样定理。

1、登录e-Labsim仿真系统,创建实验文件,选择实验所需模块和示波器。

2、运行仿真,开启所有模块的电源开关。

3、开电,设置主控菜单,选择【主菜单】→【通信原理】→【抽样定理】。

调节主控模块的W1使A-out输出峰峰值为3V。

4、此时实验系统初始状态为:被抽样信号MUSIC为幅度4V、频率3K+1K正弦合成波。

抽样脉冲A-OUT为幅度3V、频率9KHz、占空比20%的方波。

5、实验操作及波形观测。

(1)调用示波器观测自然抽样前后的信号波形:设置开关S13#为“自然抽样”档位,用示波器CH1和CH2分别接MUSIC主控&信号源和抽样输出3#。

通信原理:实验一 信号源实验

通信原理:实验一 信号源实验

实验一信号源实验一、实验目的1、了解通信原理实验箱的基本结构。

2、熟练掌握主控&信号源模块的使用方法。

3、熟练掌握数字存储示波器的基本使用方法。

4、理解帧同步信号与位同步信号在整个通信系统中的作用。

二、实验内容1、观察频率连续可变正弦信号输出波形。

2、观察128KHZ和256KHZ正弦信号输出波形3、观察位同步信号和帧同步信号的输出。

4、观察PN序列的输出。

三、实验仪器1、主控&信号源模块一块2、数字存储双踪示波器一台3、连接线若干四、实验介绍1、信号源模块在实验箱中名称为---- 主控&信号源模块。

其按键及接口说明如图1-1所示:2、主控&信号源模块功能说明A.模拟信号源功能模拟信号源菜单由“模拟信号源”按键进入,该菜单下按“选择/确定”键可以依次设置:“输出波形” ~ “输出频率” 一 “调节步进” → “音乐输出”-“占空比”(只有在图图1-2模拟信号源菜单示意图注意:上述设置是有顺序的。

例如,从“输出波形”设置切换到“音乐输出”需要按3 次“选择/确定”键。

下面对每一种设置进行详细说明:a. “输出波形”设置输出方波模式下才出现)。

在设置状态下, 选择“选择/确定”就可以设置参数了。

菜单如模拟信号源输出波形:正弦波 输出频率:OOOLOOKHz 调节步进:IOHz 音乐输出:音乐1 模拟信号源 输出波形:方波 输出频率:000 LOOKHz 调节步进:10HZ 音乐输出:音乐1 占空比:50% (a)输出正弦波时没有占空比选项 (b)输出方波时有占空比选项图1-1 主控&信号源按键及接口说明一共有6种波形可以选择:正弦波:输出频率IOHZ~2MHz方波:输出频率IOHZ~200KHz三角波:输出频率IOHZ~200KHzDSBFC (全载波双边带调幅):由正弦波作为载波,音乐信号作为调制信号。

输出全载波双边带调幅。

DSBSC (抑制载波双边带调幅):由正弦波作为载波,音乐信号作为调制信号。

通信原理实验报告(8份)

通信原理实验报告(8份)

通信原理实验报告(8份)姓名:学号:通信原理实验报告姓名:姓名:学号:实验一HDB3码型变换实验一、实验目的了解几种常用的数字基带信号的特征和作用。

掌握HDB3码的编译规则。

了解滤波法位同步在的码变换过程中的作用。

二、实验器材主控&信号源、2号、8号、13号模块双踪示波器连接线三、实验原理1、HDB3编译码实验原理框图各一块一台若干姓名:学号:HDB3编译码实验原理框图2、实验框图说明我们知道AMI编码规则是遇到0输出0,遇到1则交替输出+1和-1。

而HDB3编码由于需要插入破坏位B,因此,在编码时需要缓存3bit的数据。

当没有连续4个连0时与AMI编码规则相同。

当4个连0时最后一个0变为传号A,其极性与前一个A的极性相反。

若该传号与前一个1的极性不同,则还要将这4个连0的第一个0变为B,B的极性与A相同。

实验框图中编码过程是将信号源经程序处理后,得到HDB3-A1和HDB3-B1两路信号,再通过电平转换电路进行变换,从而得到HDB3编码波形。

同样AMI译码只需将所有的±1变为1,0变为0即可。

而HDB3译码只需找到传号A,将传号和传号前3个数都清0即可。

传号A的识别方法是:该符号的极性与前一极性相同,该符号即为传号。

实验框图中译码过程是将HDB3码信号送入到电平逆变换电路,再通过译码处理,得到原始码元。

四、实验步骤姓名:学号:实验项目一HDB3编译码(256KHz归零码实验)概述:本项目通过选择不同的数字信源,分别观测编码输入及时钟,译码输出及时钟,观察编译码延时以及验证HDB3编译码规则。

1、关电,按表格所示进行连线。

2、开电,设置主控菜单,选择【主菜单】→【通信原理】→【HDB3编译码】→【256K归零码实验】。

将模块13的开关S3分频设置拨为0011,即提取512K同步时钟。

姓名:学号:3、此时系统初始状态为:编码输入信号为256K的PN序列。

4、实验操作及波形观测。

通信原理实验报告实验一

通信原理实验报告实验一

实验一模拟线性调制系统仿真实验1实验目的掌握常规AM调制、DSB调制、单边带调制(SSB)的原理和方法,并验证这三种方法的可行性。

并掌握Commsim的常用使用方法。

2实验内容和结果2.1模拟线性调制系统(AM)2.2抑制载波双边带调制(DSB)2.3单边带调制(SSB)3 实验分析3.1模拟线性调制系统(AM)的分析:任意AM 已调信号可以表示为Sam(t)=c(t)m(t)当)()(0t f A t m +=,)cos()(0θω+=t t c c 且A0不等于0时称为常规调幅,其时域表达式为:)cos()]([)()()(00θω++==t t f A t m t c t s c am 3.2抑制载波双边带调制(DSB ):任意DSB 已调信号都可以表示为DSB S )()()(t m t c t =当)()(0t f A t m +=;)cos()(0θω+=t t c c 且A 0等于0时称为抑制载波双边带调制。

其时域表达式为t t f t m t c t s c DSB ωcos )()()()(==;频域表达式为:C DSB F t s ωω+=([)(C F ωω-+()2)]÷3.3单边带调制(SSB ):设调制信号为单边带信号f(t)=A m cosωm t ,载波为c(t)=cosωc t 则调制后的双边带时域波形为:2/])cos()cos([cos cos )(t A t A t t A t S m c m m c m c m m DSB ωωωωωω-++==保留上边带,波形为:2/)sin sin cos (cos 2/])cos([)(t t t t A t A t S m c m c m m c m USB ωωωωωω-=+=保留下边带,波形为:2/)sin sin cos (cos 2/])cos([)(t t t t A t A t S m c m c m m c m LSB ωωωωωω+=-=4 实验体会通过此次实验我进一步理解了AM 、DSB 、SSB 的调制方法的原理和方法,以及如何通过Commsim 软件来模拟这一调制的过程。

通信原理实验报告一

通信原理实验报告一

通信原理实验报告一、CPLD可编程数字信号发生器实验实验目的:1、熟悉各种时钟信号的特点及波形。

2、熟悉各种数字信号的特点及波形。

实验内容:1、熟悉CPLD可编程信号发生器各测量点波形。

2、测量并分析各测量点波形及数据。

3、学习CPLD可编程器件的编程操作。

实验结果:1、观测时钟信号输出波形①CLK1的输出波形:拨码开关为0000 拨码开关为0100 拨码开关为0111②CLK2的输出波形:拨码开关为1000 拨码开关为1010 拨码开关为1100根据实验现象可知,CLK1与CLK2的波形是一样的2、观测帧同步信号输出波形,即FS输出波形S4为0100时,FS波形为:S4为0111时FS波形为:由波形的变化可知,改变S4,波形上部分频率发生改变,随着时钟频率的减小而减小,下部分频率则保持不变。

3、用示波器观测伪随机信号输出波形伪随机码码型为111100010011010,已知码速率和第一组时钟速率相同,当S4为1111时,码速率为1K,当示波器TIME/DIV旋钮转到2ms时,即近似半格代表代表0.5K, 则可从示波器中观测到的输出波形中读出码型正好为111100010011010。

4.观测NRZ码输出波形⑴将拨码开关S1,S2,S3设置为“01110010 11001100 10101010”,S5设为“1010”,示波器观测“NRZ”输出波形为:⑵保持码型不变,改变码速率(改变S5设置值),将S5设置为1110,NRZ波形为:⑶保持码速率不变,改变码型,持码速率不变,改变码型,S1设为“11110011”,S2设为“11101100”,S3设为“11011010”,示波器观测到的输出波形为分析:码型保持不变,改变S5,S5越小,输出波形周期越短;S5越大,输出波形周期越长S5保持不变,改变S1,S2,S3,码型改变,并且为S1 S2 S3的集合。

二、模拟信号源实验实验目的1、熟悉各种模拟信号的产生方法及其用途。

通信原理实验报告(河南农业大学理学院)

通信原理实验报告(河南农业大学理学院)

通信原理实验报告班级:姓名:学号:指导老师:完成日期:实验一AMI码型变换实验一、实验目的1、了解几种常用的数字基带信号的特征和作用。

2、掌握AMI码的编译规则。

3、了解滤波法位同步在的码变换过程中的作用。

二、实验器材1、主控&信号源、2号、8号、13号模块各一块2、双踪示波器一台3、连接线若干三、实验原理1、AMI编译码实验原理框图AMI编译码实验原理框图2、实验框图说明AMI编码规则是遇到0输出0,遇到1则交替输出+1和-1。

实验框图中编码过程是将信号源经程序处理后,得到AMI-A1和AMI-B1两路信号,再通过电平转换电路进行变换,从而得到AMI 编码波形。

AMI译码只需将所有的±1变为1,0变为0即可。

实验框图中译码过程是将AMI码信号送入到电平逆变换电路,再通过译码处理,得到原始码元。

四、实验步骤实验项目一AMI编译码(256KHz归零码实验)概述:本项目通过选择不同的数字信源,分别观测编码输入及时钟,译码输出及时钟,观察编译码延时以及验证AMI编译码规则。

1、关电,按表格所示进行连线。

2、开电,设置主控菜单,选择【主菜单】→【通信原理】→【AMI编译码】→【256K 归零码实验】。

将模块13的开关S3分频设置拨为0011,即提取512K同步时钟。

3、此时系统初始状态为:编码输入信号为256K的PN序列。

(1)用示波器分别观测编码输入的数据TH3和编码输出的数据TH11(AMI输出),观察记录波形,有数字示波器的可以观测编码输出信号频谱,验证AMI编码规则。

注:观察时注意码元的对应位置。

(2)用示波器对比观测编码输入的数据和译码输出的数据,观察记录AMI译码波形与输入信号波形。

思考:译码过后的信号波形与输入信号波形相比延时多少?编译码延时小于3个码元宽度实验项目二AMI编译码(256KHz非归零码实验)概述:本项目通过观测AMI非归零码编译码相关测试点,了解AMI编译码规则。

通信原理实验(1-8)

通信原理实验(1-8)

通信原理实验报告学院:信息工程学院专业:通信工程学号:6姓名:李瑞鹏实验一 带通信道模拟及眼图实验一、实验目的1、 了解眼图与信噪比、码间干扰之间的关系及其实际意义;2、 掌握眼图观测的方法并记录研究。

二、实验器材1、 主控&信号源、9号、13号、17号模块 各一块2、 双踪示波器 一台3、 连接线 若干三、实验原理1、实验原理框图带通信道模拟框图2、实验原理框图带通信道是将直接调制的PSK 信号和经过升余弦滤波后调制的PSK 信号送入带通信道,比较两种状况的眼图。

然后,改变带通信道的带宽重复观测。

四、实验步骤概述:该项目是通过分别改变噪声幅度和带通信道频率范围,观测信道的眼图输出变化情况,了解和分析信道输出原因.1、关电,按表格所示进行连线。

2PSK 调制信号加升余弦滤波的带通信道模拟【250KHz~262KHz带通信道】。

3、此时系统初始状态为:PN15为8K。

4、实验操作及波形观测。

(1)以CLK时钟信号为触发源对比观测LPF-BPSK观测点,观察输出眼图波形。

(2)调节17号板W1噪声幅度调节,调节噪声幅度,观察眼图波形变化。

17号模块测试点TP4可以观察添加的白噪声。

(3)在主控菜单中改变带通信道频率范围,观察输出眼图变化,并分析原因。

五、实验报告1、完成实验并思考实验中提出来的问题。

2、分析实验电路工作原理,简述其工作过程。

3、整理信号在传输过程中的各点波形。

实验二 HDB3码型变换实验一、实验目的1、了解几种常用的数字基带信号的特征和作用。

2、掌握HDB3码的编译规则。

3、了解滤波法位同步在的码变换过程中的作用。

二、实验器材1、主控&信号源、2号、8号、13号模块各一块2、双踪示波器一台3、连接线若干三、实验原理1、HDB3编译码实验原理框图HDB3编译码实验原理框图2、实验框图说明我们知道AMI编码规则是遇到0输出0,遇到1则交替输出+1和-1。

而HDB3编码由于需要插入破坏位B,因此,在编码时需要缓存3bit的数据。

通信原理实验报告

通信原理实验报告

实验一:标准调幅(AM )系统电子c121班 姓名 学号一.实验目的1.学习使用SYSTEMVIEW 构建简单的仿真系统。

2.掌握调幅信号产生和解调的过程及实现方法。

3.研究信道噪声对调幅信号的影响。

二.实验原理1.调制幅度调制是无线电通信中最常用的调制方式之一。

普通的调幅广播就是它的典型应用。

幅度调制的基本原理是用基带信号(调制信号)控制高频载波的幅度,使其携带基带信号信息,从而实现信息的传输。

调制的基本作用是频谱搬移,其目的是进行频率变换,使信号能够有效的传输(辐射)或实现信道的多路复用。

根据频谱特性的不同,通常可将调幅分为标准调幅(AM ),抑制载波双边带调幅(DSB ),单边带调幅(SSB )和残留边带调幅(VSB )等。

2.调制信号的实现方法设f (t )为调制信号,高频载波为C (t )=A 0cos (ω0t +θ0)(1)标准调幅AM 信号可以表示为:S AM (t )=[A 0+f (t )]cos (ω0t +θ0)已调信号的频谱为(设θ。

=0)S AM (ω)=πA o [δ(ω-ωo )+δ(ω+ω0)]+1/2[F (ω-ωo )+F (ω+ωo )]标准调幅的数学模型如图1-1所示。

图1-l 标准调幅的数学模型(2)抑制载波双边带调幅DSB 信号可以表示为: S DSB (t )=f (t )cos (ω0t +θ0)已调信号的频谱为S DSB (ω)= 1/2[F (ω-ω0)+F (ω+ω0)] (设θ0=0) 抑制载波双边带调幅的数学模型如图1-4所示。

图1-4 抑制载波双边带调幅的数学模型3)单边带调制00000)cos(ω0t +θ0)SSB 信号可以表示为:S SSB (t ) = f (t )cos ω0t ± f ^(t )sin ω0t已调信号的频谱为S SSB (ω) = l /2[F (ω-ω0)+F (ω+ω0)]H SSB (ω)SSB 的数学模型如图41-7所示。

通信原理实验报告

通信原理实验报告

通信原理实验报告实验一、信号源实验一所遇问题和解决方法以示波器测量的信号的周期和振幅,应该注意哪些事项,才能得到准确的数据解决方法:在实验之前做好示波器校正二结果三心得体会通过本次试验了解到了实验箱上模拟信号以及数字信号如何调节输出,同时观察示波器中各种输出波形,对于两种信号的特点与区别有了更进一步的理解.同时认识到了帧的概念以及帧同步信号与位同步信号的区别以及各自的作用.信道模拟实验一所遇问题和解决方法由于系统传输特性的影响,可能使相邻码元的脉冲波形相互重叠,从而影响正确判决。

这种相邻码元间的互相重叠成为码间串扰;码间串扰产生的原因是系统总传输特性H(f)不良。

二结果三心得体会通过本次实验使我了解了白噪声产生原因;了解了多径干扰对信号的影响,达到了语预期的实验目的。

本次实验内容较少,相对来说比较容易,在助教指导帮助下,按照实验说明书的操作步骤,通过自己的测量观察,最终得到了较理想的实验结果,实验误差也在实验允许范围之内。

本次实验让我进一步熟悉了白噪声信道的相关知识,加深了我对课本知识的掌握程度,为我接下来的相关实验顺利进行具有很大帮助。

实验五码型变换实验一所遇问题和解决方法1.AMI码译码和时延测量数据延时量测量应考虑的因素应考虑数据周期的长短,采样周期性的短序列测量到的时延都是不准确的,因为很可能此时的延时,但是用示波器测量到的延时仅为t1,因此示波器的延时是不准确的,而实际当中传输的数据都具有随机性,而且周期都很长,测量时不会出现上述情况。

2具有长连0码格式的数据在AMI译码系统中传输会带来问题当原信码出现长连“0”串时,信号的电平长时间不跳变,造成提取定时信号的困难。

解决的方法是采用HDB3码。

3.AMI译码位定时恢复测量为什么在实际传输系统中使用HDB3码用其他方法行吗(如扰码)HDB3码具有良好的抗连“0”特性。

从而有利于收端位定时的提取。

用扰码亦可。

4.HDB3编码信号中同步时钟分量定性观测HDB3编码信号转换为双极性和单极性码中哪一种码型时钟分量丰富。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验一信号源实验
一、实验目的
1、了解通信系统的一般模型及信源在整个通信系统中的作用。

2、掌握信号源模块的使用方法。

二、实验内容
1、对应液晶屏显示,观测DDS信源输出波形。

2、观测各路数字信源输出。

3、观测正弦点频信源输出。

4、模拟语音信源耳机接听话筒语音信号。

三、实验仪器
1、信号源模块一块
2、20M双踪示波器一台
四、实验原理
信号源模块大致分为DDS信源、数字信源、正弦点频信源和模拟语音信源几部分。

1、DDS信源
DDS直接数字频率合成信源输出波形种类、频率、幅度及方波B占空比均可通过“DDS信源按键”调节(具体的操作方法见“实验步骤”),并对应液晶屏显示波形信息。

正弦波输出频率范围为1Hz~200KHz,幅度范围为200mV~4V。

三角波输出频率范围为1Hz~20KHz,幅度范围为200mV~4V。

锯齿波输出频率范围为1Hz~20KHz,幅度范围为200mV~4V。

方波A输出频率范围为1Hz~50KHz,幅度范围为200mV~4V,占空比50%不变。

方波B输出频率范围为1Hz~20KHz,幅度范围为200mV~4V,占空比以5%步进可调。

输出波形如下图1-1所示。

正弦波:1Hz-200KHz
三角波:1Hz-20KHz
锯齿波:1Hz-20KHz
方波A:1Hz-50KHz(占空比50%)
方波B:1Hz-20KHz(占空比0%-100%可调)
图1-1 DDS信源信号波形
2、数字信源
(1)数字时钟信号
24.576M:钟振输出时钟信号,频率为24.576MHz。

2048K:类似方波的时钟信号输出点,频率为2048 KHz。

64K:方波时钟信号输出点,频率为64 KHz。

32K:方波时钟信号输出点,频率为32KHz。

8K:方波时钟信号输出点,频率为8KHz。

输出时钟如下图1-2所示。

1
0t
64K
1
0t
32K
1
0t
8K
图1-2 数字时钟信号波形
(2)伪随机序列
PN15:N=15位的m序列输出点,码型为1111 0101 1001 000,15位一周期循环。

PN31:N=31位的m序列输出点,码型为1111 1001 1010 0100 0010 1011 1011 000,31位一周期循环。

PN511:N=511位的m序列输出点,511位一周期循环。

(3)24位NRZ码信源
24位NRZ码型由“NRZ码型选择”拨码开关SW01、SW02、SW03任意设置;
码速率由“码速率选择”拨码开关SW04、SW05任意设置。

拨码开关SW04、SW05的作用是改变分频器的分频比。

每4位对应BCD码的1位,来分别表示分频比的千位、百位、十位、个位。

用于分频的主频是768KHz,4位BCD码最大表示为“9”,大于“9”的均认为是“9”。

例如:SW04、SW05设置为00000001 00101000,表示对768KHz主频128分频,此时测试点“BS”输出位同步频率为6 KHz,“NRZ”码速率为6Kbps。

NRZ:24位NRZ码输出点,码速率数值上等于位同步信号BS的频率,码型可通过拨码开关SW01、SW02、SW03改变,24位一周期循环。

BS:24位NRZ码的位同步信号输出点,方波,频率由“码速率选择”拨码开关确定。

2BS:对应2倍位同步信号频率值的方波输出点。

FS:帧同步信号输出点,窄脉冲,高电平对应24位NRZ码第一位码元的前半位。

NRZ、BS、2BS、FS输出如下图1-3所示。

2BS T S 10
t
BS T S 0
t
T S 10t FS 1S NRZ T 0
t
1
图1-3 NRZ 码信源输出信号波形
3、正弦点频信源
1K 正弦基波:1KHz 正弦波输出点,波形关于地对称,Vp-p =1V ±0.3V 。

2K 正弦基波:2KHz 正弦波输出点,波形关于地对称,调节“2K 调幅”旋转电位器P03,幅度范围:200mV ±200mV ~5V ±1V 。

192K 正弦载波:192KHz 正弦波输出点,波形关于地对称,Vp-p =3.6V ±0.4V 。

384K 正弦载波:384KHz 正弦波输出点,波形关于地对称,调节“384K 调幅”旋转电位器P04,幅度范围:200mV ±200mV ~5V ±1V 。

4、模拟语音信源
话筒语音信号先进入音频放大电路,然后从“T -OUT ”测试点输出。

接收到的语音信号从“R -IN ”测试点输入,经音频放大电路送入耳机中接听。

两个旋转电位器“T 音量调节”和“R 音量调节”调节两个音频放大电路的放大倍数。

五、实验步骤
1、将模块小心地固定在主机箱中,确保电源接触良好。

2、插上电源线,打开主机箱右侧的交流开关,再按下信号源模块中的电源开关,对应的发光二极管灯亮,信号源模块开始工作。

(注意,此处只是验证通电是否成功,在实验中均是先连线,后打开电源做实验,不要带电连线)
3、DDS 信源
(1)按键“波形选择”,“DDS-OUT”测试点输出波形种类在正弦波、三角波、锯齿波、方波A、方波B间循环切换。

(2)按键“步进选择”,“DDS-OUT”测试点输出波形频率步进值在1KHz、10KHz、1Hz、50Hz间循环切换。

(3)按键“+1”或“-1”,“DDS-OUT”测试点输出波形频率增加或减少相应的步进值。

(4)当输出波形选择“方波B”时,按键“功能切换”,此时液晶屏显示“步进”切换为“占空比”。

再按键“+1”或“-1”,方波B占空比由0%开始,每次增加或减少5%。

再次按键“功能切换”,此时液晶屏显示“占空比”切换回“步进”。

(5)按键“复位”,“DDS”测试点输出波形2KHz正弦波,频率步进值为1KHz。

说明:按“复位”键后,设置的方波B的占空比信息仍保存;若断电后再开电,方波B的占空比还原为0%。

(6)“DDS-OUT”的波形信息应与液晶屏显示对应。

(7)“DDS-OUT”测试点输出波形幅度可由“DDS调幅”旋转电位器P05调节,波谷值为0,波峰值在200mV~4V间变化。

(8)对应液晶屏显示,示波器观测“DDS-OUT”测试点波形,掌握DDS信源的使用方法。

4、数字信源
(1)示波器观测各路数字时钟信号。

(2)示波器观测各路伪随机序列。

(3)任意设置“NRZ码型选择”拨码开关和“码速率选择”拨码开关,示波器观测24位NRZ 码信源信号。

5、正弦点频信源
调节两个“调幅”旋转电位器,示波器观测四路正弦点频信源信号波形。

6、模拟语音信源
连接测试点“T-OUT”与“R-IN”,将耳机和话筒插入相应的音频插座,一边说话一边调节两个“音量调节”旋转电位器P01、P02,直至耳机能听到清晰的说话声音。

六、课后扩展题
什么是“DDS直接数字频率合成信源”?它的基本原理是什么?
有兴趣的同学可以查阅相关资料,搭建硬件电路,编写软件程序,自主开发,实现一个简单的DDS信源。

或在实验箱配套的CPLD二次开发模块、DSP二次开发模块的硬件平台上,完成“直接数字频率合成实验”。

直接数字频率合成是采用数字化技术,通过控制相位的变化速度,直接产生各种不同频率信号的一种频率合成方法。

DDS的基本结构如图1所示,它主要由相位累加器、正弦ROM表、D/A 转换器和低通滤波器构成。

参考时钟fr由一个稳定的晶体振荡器产生。

相位累加器由N位加法器与N位相位寄存器级联构成,类似于一个简单的加法器。

每来一个时钟脉冲,加法器将频率控制数据与相位寄存器输出的累积相位数据相加,把相加后的结果送至相位寄存器的数据输入端。

相位寄存器将加法器在上一个时钟作用后所产生的新相位数据反馈到加法器的输入端,以使加法器在下一个时钟的作用下继续与频率控制数据相加。

这样,相位累加器在参考时钟的作用下,进行线性相位累加,当相位累加器累积满量时就会产生一次溢出,完成一个周期性的动作,这个周期就是DDS合成
信号的一个频率周期,累加器的溢出频率就是DDS输出的信号频率。

在参考时钟fr的控制下,频率控制字由累加器累加以得到相应的相位数据,把此数据作为取样地址,来寻址正弦ROM表进行相位-幅度变换,即可在给定的时间上确定输出的波形幅值。

DAC将数字量形式的波形幅值转换成所要求合成频率的模拟量形式信号,低通滤波器用于滤除不需要的取样分量,这样即可得到由频率控制字决定的连续变化的输出正弦波。

DDS的输出频率f0和参考时钟fr、相位累加器长度N以及频率控制字FSW的关系为:; DDS 的频率分辨率为:;由于DDS的输出最大频率受奈奎斯特抽样定理限制,所以DDS 的最高输出频率为fr/2,但在实际设计的DDS系统中,由于输出滤波器的非理想性,一般输出信号的最大频率只能达到参考时钟频率fr的40%左右。

相关文档
最新文档