(完整版)高考真题:复数(最新整理)

合集下载

复数(2012-2021)高考数学真题

复数(2012-2021)高考数学真题

复数【2021年】1.(2021年全国高考乙卷数学(文)试题)设i 43i z =+,则z =( ) A .–34i -B .34i -+C .34i -D .34i +2.(2021年全国高考乙卷数学(理)试题)设()()2346z z z z i ++-=+,则z =( ) A .12i -B .12i +C .1i +D .1i -3.(2021年全国高考甲卷数学(理)试题)已知2(1)32i z i -=+,则z =( ) A .312i --B .312i -+C .32i -+D .32i --4.(2021年全国新高考Ⅰ卷数学试题)已知2i z =-,则()i z z +=( ) A .62i - B .42i - C .62i + D .42i +【2012年——2020年】1.(2020年全国统一高考数学试卷(文科)(新课标Ⅰ))若312i i z =++,则||=z ( ) A .0 B .1 CD .22.(2020年全国统一高考数学试卷(理科)(新课标Ⅰ))若z=1+i ,则|z 2–2z |=( ) A .0B .1CD .23.(2020年全国统一高考数学试卷(文科)(新课标Ⅱ))(1–i )4=( ) A .–4 B .4 C .–4iD .4i .4.(2020年全国统一高考数学试卷(文科)(新课标Ⅲ))若()11+=-z i i ,则z =( ) A .1–iB .1+iC .–iD .i5.(2020年全国统一高考数学试卷(理科)(新课标Ⅲ))复数113i -的虚部是( ) A .310-B .110-C .110D .3106.(2019年全国统一高考数学试卷(文科)(新课标Ⅰ))设3i12iz -=+,则z =A .2BC D .17.(2019年全国统一高考数学试卷(理科)(新课标Ⅰ))设复数z 满足=1i z -,z 在复平面内对应的点为(x ,y ),则A .22+11()x y +=B .22(1)1x y -+=C .22(1)1y x +-=D .22(+1)1y x +=8.(2019年全国统一高考数学试卷(文科)(新课标Ⅱ))设z =i(2+i),则z = A .1+2i B .–1+2i C .1–2iD .–1–2i9.(2019年全国统一高考数学试卷(理科)(新课标Ⅱ))设z =-3+2i ,则在复平面内z 对应的点位于 A .第一象限 B .第二象限 C .第三象限D .第四象限10.(2019年全国统一高考数学试卷(文科)(新课标Ⅲ))若(1i)2i z +=,则z = A .1i --B .1+i -C .1i -D .1+i11.(2018年全国普通高等学校招生统一考试理科数学(新课标I 卷))设1i2i 1iz -=++,则||z = A .B .12C .1 D12.(2018年全国普通高等学校招生统一考试文数(全国卷II ))()i 23i +=A .32i -B .32i +C .32i --D .32i -+13.(2018年全国普通高等学校招生统一考试理数(全国卷II ))12i12i +=- A .43i 55--B .43i 55-+C .34i 55--D .34i 55-+14.(2018年全国卷Ⅲ文数高考试题)(1)(2)i i +-= A .3i --B .3i -+C .3i -D .3i +15.(2017年全国普通高等学校招生统一考试文科数学(新课标1卷))下列各式的运算结果为纯虚数的是 A .(1+i)2B .i 2(1-i)C .i(1+i)2D .i(1+i)16.(2017年全国普通高等学校招生统一考试理科数学(新课标1卷))设有下面四个命题1p :若复数z 满足1R z∈,则z R ∈;2p :若复数z 满足2z ∈R ,则z R ∈; 3p :若复数12,z z 满足12z z R ∈,则12z z =; 4p :若复数z R ∈,则z R ∈.其中的真命题为 A .13,p p B .14,p p C .23,p pD .24,p p17.(2017年全国普通高等学校招生统一考试文科数学(新课标2卷))(1i)(2i)++= A .1i - B .13i + C .3i +D .33i +18.(2017年全国普通高等学校招生统一考试理科数学)31ii++=( )A .1+2iB .1-2iC .2+iD .2-i19.(2017年全国普通高等学校招生统一考试文科数学(新课标3卷))复平面内表示复数z=i(–2+i)的点位于 A .第一象限B .第二象限C .第三象限D .第四象限20.(2017年全国普通高等学校招生统一考试理科数学(新课标3卷))设复数z 满足(1+i)z =2i ,则∣z ∣=A .12B CD .221.(2016年全国普通高等学校招生统一考试文科数学(新课标1卷))设()()12i a i ++的实部与虚部相等,其中a 为实数,则a =A .−3B .−2C .2D .322.(2016年全国普通高等学校招生统一考试理科数学(新课标1卷))设,其中x ,y 是实数,则i =x y +A .1BC D .223.(2016年全国普通高等学校招生统一考试文科数学(新课标2卷))设复数z 满足3z i i +=-,则z = A .12i -+B .12i -C .32i +D .32i -24.(2016年全国普通高等学校招生统一考试理科数学(新课标2卷))已知(3)(1)z m m i =++-在复平面内对应的点在第四象限,则实数m 的取值范围是 A .(31)-, B .(13)-, C .(1,)+∞ D .(3)-∞-,25.(2016年全国普通高等学校招生统一考试理科数学)若43z i =+,则z z =A .1B .1-C .4355i +D .4355i -26.(2016年全国普通高等学校招生统一考试理科数学(全国3卷))若12z i =+,则41izz =- A .1 B .-1 C .i D .-i27.(2015年全国普通高等学校招生统一考试理科数学)已知复数z 满足(1)1z i i -=+,则z =A .2i --B .2i -+C .2i -D .2i +28.(2015年全国普通高等学校招生统一考试理科数学(新课标Ⅰ))设复数z 满足1+z1z-=i ,则|z|=A .1BCD .229.(2015年全国普通高等学校招生统一考试文科数学(新课标Ⅱ))若a 为实数,且2i3i 1ia +=++,则a = A .4- B .3- C .3 D .430.(2015年全国普通高等学校招生统一考试理科数学(新课标Ⅱ))若a 为实数且(2)(2)4ai a i i +-=-,则a = A .1-B .0C .1D .231.(2014年全国普通高等学校招生统一考试文科数学(新课标Ⅰ))设,则A .B .C .D .2.32.(2014年全国普通高等学校招生统一考试理科数学(新课标Ⅰ))A .B .C .D .33.(2014年全国普通高等学校招生统一考试理科数学)计算131ii+=- A .12i +B .12i -+C .12i -D .12i --34.(2014年全国普通高等学校招生统一考试理科数学(全国Ⅱ卷))设复数1z ,2z 在复平面内的对应点关于虚轴对称,12z i =+,则12z z =A .- 5B .5C .- 4+ iD .- 4 - i35.(2013年全国普通高等学校招生统一考试文科数学(新课标1卷))212(1)i i +=- A .112i -- B .112i -+ C .112i + D .112i - 36.(2013年全国普通高等学校招生统一考试理科数学(新课标1卷)已知复数z 满足(3443i z i -=+),则z 的虚部为 A .-4 B .45- C .4D .4537.(2013年全国普通高等学校招生统一考试文科数学(新课标2卷))21i +=A .B .2CD .138.(2013年全国普通高等学校招生统一考试理科数学(新课标2卷))设复数z 满足()12i z i -=,则z= ( ) A .-1+iB .-1-iC .1+iD .1-i39.(2012年全国普通高等学校招生统一考试文科数学(课标卷))复数32iz i-+=+的共轭复数是 A .2i +B .2i -C .1i -+D .1i --40.(2012年全国普通高等学校招生统一考试理科数学(课标卷))下面是关于复数21z i=-+的四个命题:其中的真命题为1:2p z =22:2p z i =3:p z 的共轭复数为1i +4:p z 的虚部为1-A .23,p pB .12,p pC .24,p pD .34,p p。

高考数学专题《复数》习题含答案解析

高考数学专题《复数》习题含答案解析

专题10.2 复数1.(2020·全国高考真题(理))复数113i-的虚部是( )A .310-B .110-C .110D .310【答案】D 【解析】因为1131313(13)(13)1010i z i i i i +===+--+,所以复数113z i =-的虚部为310.故选:D.2.(2020·全国高考真题(文))(1–i )4=( )A .–4B .4C .–4i D .4i【答案】A 【解析】422222(1)[(1)](12)(2)4i i i i i -=-=-+=-=-.故选:A.3.(2021·北京·高考真题)在复平面内,复数z 满足(1)2i z -=,则z =( )A .1i --B .1i-+C .1i-D .1i+【答案】D 【分析】由题意利用复数的运算法则整理计算即可求得最终结果.【详解】由题意可得:()()()()2121211112i i z i i i i ++====+--+.故选:D.4.(2021·全国·高考真题)已知2i z =-,则()i z z +=( )A .62i -B .42i-C .62i+D .42i+【答案】C 【分析】练基础利用复数的乘法和共轭复数的定义可求得结果.【详解】因为2z i =-,故2z i =+,故()()()2222=4+42262z z i i i i i i i+=-+--=+故选:C.5.(2021·全国·高考真题(文))已知2(1)32i z i -=+,则z =( )A .312i--B .312i-+C .32i-+D .32i--【答案】B 【分析】由已知得322iz i+=-,根据复数除法运算法则,即可求解.【详解】2(1)232i z iz i -=-=+,32(32)23312222i i i i z i i i i ++⋅-+====-+--⋅.故选:B.6.(2021·全国·高考真题(理))设()()2346z z z z i ++-=+,则z =( )A .12i -B .12i+C .1i+D .1i-【答案】C 【分析】设z a bi =+,利用共轭复数的定义以及复数的加减法可得出关于a 、b 的等式,解出这两个未知数的值,即可得出复数z .【详解】设z a bi =+,则z a bi =-,则()()234646z z z z a bi i ++-=+=+,所以,4466a b =⎧⎨=⎩,解得1a b ==,因此,1z i =+.故选:C.7.(2021·全国·高考真题(文))设i 43i z =+,则z =( )A .–34i -B .34i-+C .34i-D .34i+【答案】C 【分析】由题意结合复数的运算法则即可求得z 的值.【详解】由题意可得:()2434343341i i i i z i i i ++-====--.故选:C.8.(2021·浙江·高考真题)已知a R ∈,()13ai i i +=+,(i 为虚数单位),则a =( )A .1-B .1C .3-D .3【答案】C 【分析】首先计算左侧的结果,然后结合复数相等的充分必要条件即可求得实数a 的值.【详解】()213ai i i ai i a a i i +=-=-+=++=,利用复数相等的充分必要条件可得:3,3a a -=∴=-.故选:C.9.(2019·北京高考真题(文))已知复数z =2+i ,则( )ABC .3D .5【答案】D 【解析】∵ 故选D.10.(2019·全国高考真题(文))设,则=( )A.2B CD .1【答案】C 【解析】因为,所以,所以,故选C .1.(2010·山东高考真题(文))已知 ,,其中 为虚数单位,则=( )A .-1B .1C .2D .3【答案】B 【解析】z z ⋅=z 2i,z z (2i)(2i)5=+⋅=+-=3i12iz -=+z 312iz i -=+(3)(12)17(12)(12)55i i z i i i --==-+-z ==2a ib i i+=+,a b ∈R i +a b 练提升因为 ,,所以,则,故选B.2.(全国高考真题(理))复数的共轭复数是( )A .B .iC .D .【答案】A 【解析】,故其共轭复数为.所以选A.3.(2018·全国高考真题(理))设,则( )A .B .C .D【答案】C 【解析】,则,故选c.4.(2009·重庆高考真题(理))已知复数的实部为,虚部为2,则的共轭复数是( )A .B .C .D .【答案】B 【解析】由题意得:所以,共轭负数为2+i 故选B5.(2017·山东高考真题(理))已知,是虚数单位,若,,22222a i ai i ai b i i i+--==-=+-,a b ∈R 2211b b a a ==⎧⎧⇒⎨⎨-==-⎩⎩+1a b =212ii+-i -35i-35i()()()()2i 12i 5i i12i 12i 5++==-+i -1i2i 1iz -=++||z =0121()()()()1i 1i 1i2i 2i 1i 1i 1i z ---=+=++-+i 2i i =-+=1z =z 1-5iz2i -2i+2i--2i-+R a ∈i z a =4z z ⋅=则( )A .1或B或C .D【答案】A 【解析】由得,所以,故选A.6.(2021·广东龙岗·高三期中)已知复数z 满足()2i 34i z +=+(其中i 为虚数单位),则复数z =( )A .2i -B .2i-+C .2i+D .2i--【答案】C 【分析】根据复数除法运算求出z ,即可得出答案.【详解】()2i 35z +=+= ,()()()52i 52i 2i 2i 2i z -∴===-++-,则2i z =+.故选:C.7.(2021·安徽·合肥一六八中学高一期中)欧拉公式i s co in s i x e x x +=(i 是虚数单位)是由瑞士著名数学家欧拉发现的,它将指数函数的定义域扩大到复数,建立了三角函数和指数函数的关系,它在复变函数论里非常重要,被誉为“数学中的天桥”.根据欧拉公式可知,i 3e π表示的复数位于复平面中的( )A .第一象限B .第二象限C .第三象限D .第四象限【答案】A 【分析】先由欧拉公式计算可得312e π=,然后根据复数的几何意义作出判断即可.【详解】根据题意i s co in s i xe x x +=,故i3is n 1cos 33i 2e πππ=+=,对应点12⎛ ⎝,在第一象限.故选:A .8.【多选题】(2021·全国·模拟预测)已知复数z =(i 为虚数单位),则下列说法正确的是()A .复数z 在复平面内对应的点坐标为()sin 3cos3,sin 3cos3+-a =1-,4z a z z =+⋅=234a +=1a =±B .z 的虚部为C .2z z ⋅=D .z ⋅为纯虚数【答案】CD 【分析】根据复数的概念、共轭复数的概念、复数的几何意义以及四则运算法则即可求解.【详解】复数3cos3i sin 3cos3z =++-.因为334ππ<<,所以sin 3cos3304π⎛⎫+=+< ⎪⎝⎭,sin 3cos30->,所以原式()()sin 3cos3i sin 3cos3=-++-,所以选项A 错误;复数z B错误;222z z ⋅=+=,所以选项C 正确;z ⋅=()i 1sin 61sin 62i⋅=++-=,所以选项D 正确.故选:CD.9.【多选题】(2021·河北武强中学高三月考)已知复数cos isin z θθ=+(其中i 为虚数单位),下列说法正确的是( )A .1z z ⋅=B .1z z+为实数C .若83πθ=,则复数z 在复平面上对应的点落在第一象限D .若(0,)θπ∈,复数z 是纯虚数,则2πθ=【答案】ABD 【分析】对选项A ,根据计算1z z ⋅=即可判断A 正确,对选项B ,根据12cos z zθ+=即可判断B 正确,对选项C ,根据88cosisin 33z ππ=+在复平面对应的点落在第二象限,即可判断C 错误,对选项D ,根据z 是纯虚数得到2πθ=即可判断D 正确.【详解】对选项A ,()()()2222cos isin cos isin cos isin cos sin 1z z θθθθθθθθ⋅=+-=-=+=,故A 正确.对选项B ,因为11cos isin cos isin z z θθθθ+=+++()()cos isin cos isin cos isin cos isin θθθθθθθθ-=+++-cos isin cos isin 2cos θθθθθ=++-=,所以1z z+为实数.故B 正确.对选项C ,因为83πθ=为第二象限角,所以8cos03π<,8sin 03π>,所以88cos isin 33z ππ=+在复平面对应的点落在第二象限.故C 错误.对选项D ,复数z 是纯虚数,则cos 0sin 0θθ=⎧⎨≠⎩,又因为(0,)θπ∈,所以2πθ=,故D 正确.故选:ABD10.(2021·福建·厦门一中模拟预测)在复平面内,复数(,)z a bi a b R =+∈对应向量OZ(O为坐标原点),设||OZ r =,以射线Ox 为始边,OZ 为终边旋转的角为θ,则(cos sin )z r i θθ=+,法国数学家棣莫弗发现了棣莫弗定理:1111(cos sin )z r i θθ=+,2222(cos sin )z r i θθ=+,则12121212[cos()sin()]z z rr i θθθθ=+++,由棣莫弗定理可以推导出复数乘方公式:[(cos sin )](cos sin )n n r i r n i n θθθθ+=+,已知4)z i =,则||z =______;若复数ω满足()*10n n ω-=∈N ,则称复数ω为n 次单位根,若复数ω是6次单位根,且ω∉R ,请写出一个满足条件的ω=______.【答案】16 ()22cossin 1,2,4,566k k i k ππ+= 【分析】2(cos sin )66i i ππ+=+,则4222(cos sin )33z i ππ=+,再由||||z z =求解,由题意知61ω=,设cos sin i ωθθ=+,即可取一个符合题意的θ,即可得解.【详解】解: 2(cos sin )66i i ππ=+,∴4422)2(cos sin )33z i i ππ==+,则4||||216z z ===.由题意知61ω=,设cos sin i ωθθ=+,则6cos 6sin 61i ωθθ=+=,所以sin 60cos 61θθ=⎧⎨=⎩,又ω∉R ,所以sin 0θ≠,故可取3πθ=,则cossin33i ππω=+故答案为:16,cossin33i ππω=+(答案不唯一).1.(2021·江苏·高考真题)若复数z 满足()1i 3i z +=-,则z 的虚部等于( )A .4B .2C .-2D .-4【答案】C 【分析】利用复数的运算性质,化简得出12z i =-.【详解】若复数z 满足()1i 3i z +=-,则()()()()3i 1i 3i 12i 1i 1i 1i z ---===-++-,所以z 的虚部等于2-.故选:C.2.(2021·全国·高考真题)复数2i13i--在复平面内对应的点所在的象限为( )A .第一象限B .第二象限C .第三象限D .第四象限【答案】A 【分析】利用复数的除法可化简2i13i--,从而可求对应的点的位置.【详解】()()2i 13i 2i 55i 1i13i 10102-+-++===-,所以该复数对应的点为11,22⎛⎫ ⎪⎝⎭,该点在第一象限,故选:A.3.(2020·全国高考真题(理))若z=1+i ,则|z 2–2z |=( )A .0B .1C D .2练真题【答案】D 【解析】由题意可得:()2212z i i =+=,则()222212z z i i -=-+=-.故2222z z -=-=.故选:D.4.(2020·全国高考真题(文))若312i i z =++,则||=z ( )A .0B .1CD .2【答案】C 【解析】因为31+21+21z i i i i i =+=-=+,所以z ==故选:C .5.(2019·全国高考真题(理))设z =-3+2i ,则在复平面内对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限【答案】C 【解析】由得则对应点(-3,-2)位于第三象限.故选C .6.(2018·江苏高考真题)若复数满足,其中i 是虚数单位,则的实部为________.【答案】2【解析】因为,则,则的实部为.z 32,z i =-+32,z i =--32,z i =--z i 12i z ⋅=+z i 12i z ⋅=+12i2i iz +==-z 2。

(完整版)高考数学复数习题及答案

(完整版)高考数学复数习题及答案

(完好版)高考数学复数习题及答案高考复数训练题3- i(C )1. (2013 ·东山 )复数 1- i 等于A .1+ 2iB . 1-2iC . 2+ iD . 2-i3+ 2i - 3- 2i = ( D )2. (2013 宁·夏、海南 )复数 2- 3i 2+ 3iA .0B . 2C .- 2iD .2i3. (2013 陕·西 )已知 z 是纯虚数, z + 2是实数,那么 z 等于 (D) 1- i A .2i B . iC .- iD .- 2i4. (2013 武·汉市高三年级 2 月调研考试 )若 f(x)= x 3- x 2+ x - 1,则 f(i) = (B)A .2iB . 0C .- 2iD .-22- i5. (2013 北·京旭日 4 月 )复数 z = 1+ i (i 是虚数单位 )在复平面内对应的点位于 ( D ) A .第一象限 B .第二象限 C .第三象限 D .第四象限6. (2013 北·京东城3 月 )若将复数 2+i 表示为 a + bi(a , b ∈ R , i 是虚数单位 )的形式,则 b的值为 ia( A ) ,°则 z 2等于 ( B ) 7. (2013 北·京西城 4 月 )设 i 是虚数单位,复数 z = tan45 -° i sin60· A. 7- 3i B. 1- 3i 44C. 7+ 3i D. 1+ 3i 4 48. (2013 黄·冈中学一模 )过原点和 3- i 在复平面内对应的直线的倾斜角为(D)π π A. 6B .- 6 25 C.3πD.6πa + bi为实数,则(C )9.设 a 、b 、 c 、 d ∈R ,若 c + diA .bc + ad ≠ 0B . bc - ad ≠0C . bc - ad = 0D . bc + ad = 010.已知复数 z = 1-2i ,那么1=(D)z5+ 255- 2 5A. 55 iB. 55 iC. 1+2iD. 1- 2i555511.已知复数12z 1是实数,则实数 b 的值为(A)z =3- bi , z = 1- 2i ,若 z 21A .6B .- 6C . 0D.612. (2013 广·东 )设 z 是复数, α(z)表示知足 z n = 1 的最小正整数 n ,则对虚数单位 i , α(i)=( B )A .2B . 4C . 6D . 813.若 z = 1+ 3 4= a 4+ a 3+ a 2+ a( B )2 2 i ,且 (x - z) 0x 1x 2x 3x + a 4,则 a 2 等于A .- 1+ 3iB .- 3+ 3 3i2 2 C . 6+3 3i D .- 3-3 3i 14.若△ ABC 是锐角三角形,则复数 z = (cosB - sinA)+ i(sinB - cosA)对应的点位于 ( B ) A .第一象限 B .第二象限 C .第三象限 D .第四象限2- bi15.假如复数 1+ 2i (此中 i 为虚数单位, b 为实数 )的实部和虚部互为相反数,那么b 等于( C )(完好版)高考数学复数习题及答案2 2A.2B. 3C .- 3D . 21 + 3( C)16.设函数 f(x)=- x 5+5x 4- 10x 3+ 10x 2- 5x +1,则 f(2i )的值为2A .-1 + 3iB.312 22- i2 1 +3 iD .-3 1C. 22+ i2217.若 i 是虚数单位,则知足 (p +qi )2= q + pi 的实数 p , q 一共有( D)A .1 对B .2 对C .3对D .4 对18.已知 2 - x 6的睁开式中,不含 x 的项是 20,那么正数 p 的值是( C)( 2) 27 x pA .1B . 2C . 3D . 419.复数 z =- lg(x 2+2) -(2x + 2-x -1)i(x ∈ R)在复平面内对应的点位于( C )A .第一象限B .第二象限C .第三象限D .第四象限 20.设复数 z + i(z ∈C )在映照 f 下的象为复数为A .2B . 2- 2iC .- 2+ i1+ ai 21. (2013 海·淀 4 月 )在复平面内,复数 iz 的共轭复数与 i 的积,若复数( A ) D . 2+ i(a ∈ R)对应的点位于虚轴上,则ω 在映照 f 下的象为- 1+ 2i ,则相应的 ωa =____0____.1 2 2 3 3 4 4 5 56 6 = _-8i_______.22. (2013 安·徽宿州二中模拟考三)i 是虚数单位,则6 6 + C 6 + C 6 i + C 6i+ C 61+ C i + C i ii1 i 201123. i 为虚数单位,则1 iA. iB.1C.iD.124. 若 ( x i)iy 2i, x, y R ,则复数 x yi =( ) A.2 iB.2 iC.12i D.1 2iai25.设 i 是虚数单位,复数 i 为纯虚数,则实数 a为(A )2(B ) 2( C )(D )26.设复数z知足 i (z1)3 2i (i 是虚数单位),则 z 的实部是 _________27.复数 15 ( i 是虚数单位)的模等于 .2 i.已知 < < ,复数 z a i i 是虚数单位 ) ,则 | z 的取值范围是 28 0 a 2 = + ( | A . (1, 3 ) B . (1, 5 ) C .(1,3) D. (1,5)2 29.下边是对于复数 z的四个命题:此中的真命题为()1 ip 1 : z 2p 2 : z 2 2ip 3 : z 的共轭复数为 1 ip 4 : z 的虚部为 1( A) p 2, p 3(B) p 1, p 2(C ) p , p( D ) p , p。

高考数学复数习题及答案 百度文库

高考数学复数习题及答案 百度文库

一、复数选择题1.复数11z i=-,则z 的共轭复数为( ) A .1i - B .1i + C .1122i + D .1122i - 2.复数()1z i i =⋅+在复平面上对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限 3.已知,a b ∈R ,若2()2a b a b i -+->(i 为虚数单位),则a 的取值范围是( )A .2a >或1a <-B .1a >或2a <-C .12a -<<D .21a -<<4.已知i 是虚数单位,则复数41i i +在复平面内对应的点在( ) A .第一象限 B .第二象限C .第三象限D .第四象限 5.若复数1z i =-,则1z z =-( )A B .2 C .D .4 6.满足313i z i ⋅=-的复数z 的共扼复数是( ) A .3i -B .3i --C .3i +D .3i -+ 7.若复数2i 1i a -+(a ∈R )为纯虚数,则1i a -=( )A B C .3D .5 8.在复平面内,复数z 对应的点为(,)x y ,若22(2)4x y ++=,则( )A .22z +=B .22z i +=C .24z +=D .24z i +=9.已知2021(2)i z i -=,则复平面内与z 对应的点在( )A .第一象限B .第二象限C .第三象限D .第四象限 10.已知i 是虚数单位,a 为实数,且3i 1i 2i a -=-+,则a =( ) A .2 B .1 C .-2 D .-111.已知()312++=+a i i bi (,a b ∈R ,i 为虚数单位),则实数+a b 的值为( ) A .3 B .5 C .6 D .812.复数()()212z i i =-+在复平面内对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限13.复数()()212z i i =-+,则z 的共轭复数z =( )A .43i +B .34i -C .34i +D .43i -14.已知i 是虚数单位,设复数22i a bi i-+=+,其中,a b ∈R ,则+a b 的值为( )A .75B .75-C .15D .15- 15.复数22(1)1i i -+=-( ) A .1+i B .-1+i C .1-i D .-1-i二、多选题16.i 是虚数单位,下列说法中正确的有( )A .若复数z 满足0z z ⋅=,则0z =B .若复数1z ,2z 满足1212z z z z +=-,则120z z =C .若复数()z a ai a R =+∈,则z 可能是纯虚数D .若复数z 满足234z i =+,则z 对应的点在第一象限或第三象限17.已知复数cos sin 22z i ππθθθ⎛⎫=+-<< ⎪⎝⎭(其中i 为虚数单位)下列说法正确的是( )A .复数z 在复平面上对应的点可能落在第二象限B .z 可能为实数C .1z =D .1z的虚部为sin θ 18.已知复数z 满足220z z +=,则z 可能为( )A .0B .2-C .2iD .2i -19.已知复数(),z x yi x y R =+∈,则( )A .20zB .z 的虚部是yiC .若12z i =+,则1x =,2y =D .z =20.若复数z 满足()234z i i +=+(i 为虚数单位),则下列结论正确的有( )A .z 的虚部为3B .z =C .z 的共轭复数为23i +D .z 是第三象限的点 21.下面是关于复数21i z =-+(i 为虚数单位)的命题,其中真命题为( ) A .||2z =B .22z i =C .z 的共轭复数为1i +D .z 的虚部为1- 22.复数z 满足233232i z i i+⋅+=-,则下列说法正确的是( )A .z 的实部为3-B .z 的虚部为2C .32z i =-D .||z =23.下列结论正确的是( )A .已知相关变量(),x y 满足回归方程ˆ9.49.1yx =+,则该方程相应于点(2,29)的残差为1.1B .在两个变量y 与x 的回归模型中,用相关指数2R 刻画回归的效果,2R 的值越大,模型的拟合效果越好C .若复数1z i =+,则2z =D .若命题p :0x R ∃∈,20010x x -+<,则p ⌝:x R ∀∈,210x x -+≥24.已知1z ,2z 为复数,下列命题不正确的是( )A .若12z z =,则12=z zB .若12=z z ,则12z z =C .若12z z >则12z z >D .若12z z >,则12z z >25.设i 为虚数单位,复数()(12)z a i i =++,则下列命题正确的是( )A .若z 为纯虚数,则实数a 的值为2B .若z 在复平面内对应的点在第三象限,则实数a 的取值范围是(,)122- C .实数12a =-是z z =(z 为z 的共轭复数)的充要条件 D .若||5()z z x i x R +=+∈,则实数a 的值为226.已知复数12z =-+(其中i 为虚数单位),则以下结论正确的是( ) A .20z B .2z z = C .31z = D .1z =27.已知复数()(()()211z m m m i m R =-+-∈,则下列说法正确的是( )A .若0m =,则共轭复数1z =-B .若复数2z =,则mC .若复数z 为纯虚数,则1m =±D .若0m =,则2420z z ++= 28.(多选)()()321i i +-+表示( )A .点()3,2与点()1,1之间的距离B .点()3,2与点()1,1--之间的距离C .点()2,1到原点的距离D .坐标为()2,1--的向量的模29.设复数z 满足12z i =--,i 为虚数单位,则下列命题正确的是( )A .|z |=B .复数z 在复平面内对应的点在第四象限C .z 的共轭复数为12i -+D .复数z 在复平面内对应的点在直线2y x =-上30.已知复数i z a b =+(a ,b ∈R ,i 为虚数单位),且1a b +=,下列命题正确的是( ) A .z 不可能为纯虚数B .若z 的共轭复数为z ,且z z =,则z 是实数C .若||z z =,则z 是实数D .||z 可以等于12【参考答案】***试卷处理标记,请不要删除一、复数选择题1.D【分析】先由复数的除法化简该复数,再由共轭复数的概念,即可得出结果.【详解】因为,所以其共轭复数为.故选:D.解析:D【分析】先由复数的除法化简该复数,再由共轭复数的概念,即可得出结果.【详解】 因为()()11111111222i i z i i i i ++====+--+, 所以其共轭复数为1122i -. 故选:D.2.B【分析】先利用复数的乘法化简复数z ,再利用复数的几何意义求解.【详解】因为复数,所以在复数z 复平面上对应的点位于第二象限故选:B解析:B【分析】先利用复数的乘法化简复数z ,再利用复数的几何意义求解.【详解】因为复数()11z i i i =⋅+=-+,所以在复数z 复平面上对应的点位于第二象限故选:B3.A【分析】根据虚数不能比较大小可得,再解一元二次不等式可得结果.【详解】因为,,所以,,所以或.故选:A【点睛】关键点点睛:根据虚数不能比较大小得是解题关键,属于基础题.解析:A【分析】根据虚数不能比较大小可得a b =,再解一元二次不等式可得结果.【详解】因为,a b ∈R ,2()2a b a b i -+->,所以a b =,220a a -->,所以2a >或1a <-.故选:A【点睛】关键点点睛:根据虚数不能比较大小得a b =是解题关键,属于基础题. 4.A【分析】利用复数的乘除运算化简复数的代数形式,得到其对应坐标即知所在象限.【详解】,所以复数对应的坐标为在第一象限,故选:A解析:A【分析】利用复数的乘除运算化简复数的代数形式,得到其对应坐标即知所在象限.【详解】44(1)2(1)12i i i i i -==++,所以复数对应的坐标为(2,2)在第一象限, 故选:A5.A【分析】将代入,利用复数的除法运算化简,再利用复数的求模公式求解.【详解】由,得,则,故选:A.解析:A【分析】将1z i =-代入1z z-,利用复数的除法运算化简,再利用复数的求模公式求解. 【详解】 由1z i =-,得2111z i i i i z i i---===---,则11z i z =--==-,故选:A.6.A【分析】根据,利用复数的除法运算化简复数,再利用共扼复数的概念求解.【详解】因为,所以,复数的共扼复数是,故选:A解析:A【分析】根据313i z i ⋅=-,利用复数的除法运算化简复数,再利用共扼复数的概念求解.【详解】因为313i z i ⋅=-,所以()13133i z i i i i-==-=+-, 复数z 的共扼复数是3z i =-,故选:A7.B【分析】把给出的复数化简,然后由实部等于0,虚部不等于0求解a 的值,最后代入模的公式求模.【详解】由复数()为纯虚数,则 ,则所以故选:B解析:B【分析】把给出的复数化简,然后由实部等于0,虚部不等于0求解a 的值,最后代入模的公式求模.【详解】 由()()()()()()21i 2221112a i a a i a i i i i ----+-==++- 复数2i 1i a -+(a ∈R )为纯虚数,则202202a a -⎧=⎪⎪⎨+⎪≠⎪⎩ ,则2a =所以112ai i -=-=故选:B8.B【分析】利用复数模的计算公式即可判断出结论.【详解】因为复数对应的点为,所以,满足则故选:B解析:B【分析】利用复数模的计算公式即可判断出结论.【详解】因为复数z 对应的点为(,)x y ,所以z x yi =+x ,y 满足22(2)4x y ++=则22z i +=故选:B9.C【分析】由复数的乘方与除法运算求得,得后可得其对应点的坐标,得出结论.【详解】由题意,,∴,对应点,在第三象限.故选:C .解析:C【分析】 由复数的乘方与除法运算求得z ,得z 后可得其对应点的坐标,得出结论.【详解】 由题意2021(2)i z i i -==,(2)12122(2)(2)555i i i i z i i i i +-+====-+--+,∴1255z i =--,对应点12(,)55--,在第三象限. 故选:C . 10.B【分析】可得,即得.【详解】由,得a =1.故选:B .解析:B【分析】可得3(2)(1)3ai i i i -=+-=-,即得1a =.【详解】由23(2)(1)223ai i i i i i i -=+-=-+-=-,得a =1.故选:B . 11.D【分析】利用复数的乘法运算及复数相等求得a,b 值即可求解【详解】,故 则故选:D解析:D【分析】利用复数的乘法运算及复数相等求得a,b 值即可求解【详解】()312++=+a i i bi ,故332a i bi -+=+ 则32,38a b a b -==∴+= 故选:D12.A【分析】利用复数的乘法化简复数,利用复数的乘法可得出结论.【详解】,因此,复数在复平面内对应的点位于第一象限.故选:A.解析:A【分析】利用复数的乘法化简复数z ,利用复数的乘法可得出结论.【详解】()()221223243z i i i i i =-+=+-=+,因此,复数z 在复平面内对应的点位于第一象限.故选:A.13.D【分析】由复数的四则运算求出,即可写出其共轭复数.【详解】∴,故选:D解析:D【分析】由复数的四则运算求出z ,即可写出其共轭复数z .【详解】2(2)(12)24243z i i i i i i =-+=-+-=+ ∴43z i =-,故选:D14.D【分析】先化简,求出的值即得解.【详解】,所以.故选:D解析:D【分析】 先化简345i a bi -+=,求出,a b 的值即得解. 【详解】 22(2)342(2)(2)5i i i a bi i i i ---+===++-, 所以341,,555a b a b ==-∴+=-. 故选:D 15.C【分析】直接根据复数代数形式的乘除运算法则计算可得;【详解】解:故选:C解析:C【分析】直接根据复数代数形式的乘除运算法则计算可得;【详解】 解:22(1)1i i-+- ()()()()2211211i i i i i +=-++-+ 12i i =+-1i =-故选:C二、多选题16.AD【分析】A 选项,设出复数,根据共轭复数的相关计算,即可求出结果;B 选项,举出反例,根据复数模的计算公式,即可判断出结果;C 选项,根据纯虚数的定义,可判断出结果;D 选项,设出复数,根据题解析:AD【分析】A 选项,设出复数,根据共轭复数的相关计算,即可求出结果;B 选项,举出反例,根据复数模的计算公式,即可判断出结果;C 选项,根据纯虚数的定义,可判断出结果;D 选项,设出复数,根据题中条件,求出复数,由几何意义,即可判断出结果.【详解】A 选项,设(),z a bi a b R =+∈,则其共轭复数为(),z a bi a b R =-∈, 则220z z a b ⋅=+=,所以0a b ,即0z =;A 正确;B 选项,若11z =,2z i =,满足1212z z z z +=-,但12z z i =不为0;B 错;C 选项,若复数()z a ai a R =+∈表示纯虚数,需要实部为0,即0a =,但此时复数0z =表示实数,故C 错;D 选项,设(),z a bi a b R =+∈,则()2222234z a bi a abi b i =+=+-=+, 所以22324a b ab ⎧-=⎨=⎩,解得21a b =⎧⎨=⎩或21a b =-⎧⎨=-⎩,则2z i =+或2z i =--, 所以其对应的点分别为()2,1或()2,1--,所以对应点的在第一象限或第三象限;D 正确. 故选:AD.17.BC【分析】分、、三种情况讨论,可判断AB 选项的正误;利用复数的模长公式可判断C 选项的正误;化简复数,利用复数的概念可判断D 选项的正误.【详解】对于AB 选项,当时,,,此时复数在复平面内的点解析:BC【分析】 分02θπ-<<、0θ=、02πθ<<三种情况讨论,可判断AB 选项的正误;利用复数的模长公式可判断C 选项的正误;化简复数1z ,利用复数的概念可判断D 选项的正误. 【详解】对于AB 选项,当02θπ-<<时,cos 0θ>,sin 0θ<,此时复数z 在复平面内的点在第四象限;当0θ=时,1z R =-∈; 当02πθ<<时,cos 0θ>,sin 0θ>,此时复数z 在复平面内的点在第一象限.A 选项错误,B 选项正确;对于C 选项,1z ==,C 选项正确;对于D 选项,()()11cos sin cos sin cos sin cos sin cos sin i i z i i i θθθθθθθθθθ-===-++⋅-, 所以,复数1z的虚部为sin θ-,D 选项错误. 故选:BC. 18.ACD【分析】令代入已知等式,列方程组求解即可知的可能值.【详解】令代入,得:,∴,解得或或∴或或.故选:ACD【点睛】本题考查了已知等量关系求复数,属于简单题.解析:ACD【分析】令z a bi =+代入已知等式,列方程组求解即可知z 的可能值.【详解】令z a bi =+代入22||0z z +=,得:2220a b abi -+=,∴22020a b ab ⎧⎪-+=⎨=⎪⎩,解得0,0a b =⎧⎨=⎩或0,2a b =⎧⎨=⎩或0,2,a b =⎧⎨=-⎩ ∴0z =或2z i =或2z i =-.故选:ACD【点睛】本题考查了已知等量关系求复数,属于简单题.19.CD【分析】取特殊值可判断A 选项的正误;由复数的概念可判断B 、C 选项的正误;由复数模的概念可判断D 选项的正误.【详解】对于A 选项,取,则,A 选项错误;对于B 选项,复数的虚部为,B 选项错误;解析:CD【分析】取特殊值可判断A 选项的正误;由复数的概念可判断B 、C 选项的正误;由复数模的概念可判断D 选项的正误.【详解】对于A 选项,取z i ,则210z =-<,A 选项错误;对于B 选项,复数z 的虚部为y ,B 选项错误;对于C 选项,若12z i =+,则1x =,2y =,C 选项正确;对于D选项,z =D 选项正确.故选:CD.【点睛】本题考查复数相关命题真假的判断,涉及复数的计算、复数的概念以及复数的模,属于基础题.20.BC【分析】利用复数的除法求出复数,利用复数的概念与几何意义可判断各选项的正误.【详解】,,所以,复数的虚部为,,共轭复数为,复数在复平面对应的点在第四象限. 故选:BD.【点睛】本题考解析:BC【分析】利用复数的除法求出复数z ,利用复数的概念与几何意义可判断各选项的正误.【详解】()234z i i +=+,34232i z i i+∴=-=-+,所以,复数z 的虚部为3-,z =共轭复数为23i +,复数z 在复平面对应的点在第四象限.故选:BD.【点睛】 本题考查复数的四则运算、虚部、模、共轭复数以及几何意义,考查计算能力,属于基础题.21.BD【分析】把分子分母同时乘以,整理为复数的一般形式,由复数的基本知识进行判断即可.【详解】解:,,A 错误;,B 正确;z 的共轭复数为,C 错误;z 的虚部为,D 正确.故选:BD.【点解析:BD【分析】 把21iz =-+分子分母同时乘以1i --,整理为复数的一般形式,由复数的基本知识进行判断即可.【详解】解:22(1)11(1)(1)i z i i i i --===---+-+--,||z ∴=A 错误;22i z =,B 正确;z 的共轭复数为1i -+,C 错误;z 的虚部为1-,D 正确.故选:BD.【点睛】本题主要考查复数除法的基本运算、复数的基本概念,属于基础题.22.AD【分析】由已知可求出,进而可求出实部、虚部、共轭复数、复数的模,进而可选出正确答案.【详解】解:由知,,即,所以的实部为,A 正确;的虚部为-2,B 错误;,C 错误;,D 正确;故选:A解析:AD【分析】由已知可求出32z i =--,进而可求出实部、虚部、共轭复数、复数的模,进而可选出正确答案.【详解】解:由233232i z i i +⋅+=-知,232332i z i i +⋅=--,即()()()2233232232313i i i z i i ---=-=+ 39263213i i --==--,所以z 的实部为3-,A 正确;z 的虚部为-2,B 错误;32z i =-+,C 错误;||z ==D 正确; 故选:AD.【点睛】 本题考查了复数的除法运算,考查了复数的概念,考查了共轭复数的求解,考查了复数模的求解,属于基础题.23.ABD【分析】根据残差的计算方法判断A ,根据相关指数的性质判断B ,根据复数的模长公式判断C ,根据否定的定义判断D.【详解】当时,,则该方程相应于点(2,29)的残差为,则A 正确;在两个变量解析:ABD【分析】根据残差的计算方法判断A ,根据相关指数的性质判断B ,根据复数的模长公式判断C ,根据否定的定义判断D.【详解】当2x =时,ˆ9.429.127.9y=⨯+=,则该方程相应于点(2,29)的残差为2927.9 1.1-=,则A 正确;在两个变量y 与x 的回归模型中,2R 的值越大,模型的拟合效果越好,则B 正确;1z i =-,z ==C 错误;由否定的定义可知,D 正确;故选:ABD【点睛】本题主要考查了残差的计算,求复数的模,特称命题的否定,属于中档题. 24.BCD【分析】根据两个复数之间不能比较大小,得到C 、D 两项是错误的,根据复数的定义和复数模的概念,可以断定A 项正确,B 项错误,从而得到答案.【详解】因为两个复数之间只有等与不等,不能比较大小解析:BCD【分析】根据两个复数之间不能比较大小,得到C 、D 两项是错误的,根据复数的定义和复数模的概念,可以断定A 项正确,B 项错误,从而得到答案.【详解】因为两个复数之间只有等与不等,不能比较大小,所以C 、D 两项都不正确; 当两个复数的模相等时,复数不一定相等,比如11i i -=+,但是11i i -≠+,所以B 项是错误的;因为当两个复数相等时,模一定相等,所以A 项正确;故选:BCD.【点睛】该题考查的是有关复数的问题,涉及到的知识点有两个复数之间的关系,复数模的概念,属于基础题目.25.ACD【分析】首先应用复数的乘法得,再根据纯虚数概念、复数所在象限,以及与共轭复数或另一个复数相等,求参数的值或范围,进而可确定选项的正误【详解】∴选项A :为纯虚数,有可得,故正确选项B解析:ACD【分析】首先应用复数的乘法得2(12)z a a i =-++,再根据纯虚数概念、复数所在象限,以及与共轭复数或另一个复数相等,求参数的值或范围,进而可确定选项的正误【详解】()(12)2(12)z a i i a a i =++=-++∴选项A :z 为纯虚数,有20120a a -=⎧⎨+≠⎩可得2a =,故正确 选项B :z 在复平面内对应的点在第三象限,有20120a a -<⎧⎨+<⎩解得12a <-,故错误 选项C :12a =-时,52z z ==-;z z =时,120a +=即12a =-,它们互为充要条件,故正确 选项D :||5()z z x i x R +=+∈时,有125a +=,即2a =,故正确故选:ACD【点睛】本题考查了复数的运算及分类和概念,应用复数乘法运算求得复数,再根据复数的概念及性质、相等关系等确定参数的值或范围26.BCD【分析】利用复数的运算法则直接求解.【详解】解:复数(其中为虚数单位),,故错误;,故正确;,故正确;.故正确.故选:.【点睛】本题考查命题真假的判断,考查复数的运算法则解析:BCD利用复数的运算法则直接求解.【详解】 解:复数12z =-(其中i 为虚数单位),2131442z ∴=-=--,故A 错误; 2z z ∴=,故B 正确;31113()()12244z =--+=+=,故C 正确;||1z ==.故D 正确. 故选:BCD .【点睛】本题考查命题真假的判断,考查复数的运算法则等基础知识,考查运算求解能力,属于基础题.27.BD【分析】根据每个选项里的条件,求出相应的结果,即可判断选项的正误.【详解】对于A ,时,,则,故A 错误;对于B ,若复数,则满足,解得,故B 正确;对于C ,若复数z 为纯虚数,则满足,解得,解析:BD【分析】根据每个选项里的条件,求出相应的结果,即可判断选项的正误.【详解】对于A ,0m =时,1z =-,则1z =-,故A 错误;对于B ,若复数2z =,则满足(()21210m m m ⎧-=⎪⎨-=⎪⎩,解得m ,故B 正确; 对于C ,若复数z为纯虚数,则满足(()21010m m m ⎧-=⎪⎨--≠⎪⎩,解得1m =-,故C 错误; 对于D ,若0m =,则1z =-+,()()221420412z z ++=+--+=+,故D 正确.故选:BD.本题主要考查对复数相关概念的理解,注意不同情形下的取值要求,是一道基础题.28.ACD【分析】由复数的模的意义可判断选项A,B ;整理原式等于,也等于,即可判断选项C,D【详解】由复数的几何意义,知复数,分别对应复平面内的点与点,所以表示点与点之间的距离,故A 说法正确,B解析:ACD【分析】由复数的模的意义可判断选项A,B ;整理原式等于2i +,也等于2i --,即可判断选项C,D【详解】由复数的几何意义,知复数32i +,1i +分别对应复平面内的点()3,2与点()1,1,所以()()321i i +-+表示点()3,2与点()1,1之间的距离,故A 说法正确,B 说法错误;()()3212i i i +-+=+,2i +可表示点()2,1到原点的距离,故C 说法正确;()()()()3211322i i i i i +-+=+-+=--,2i --可表示表示点()2,1--到原点的距离,即坐标为()2,1--的向量的模,故D 说法正确,故选:ACD【点睛】本题考查复数的几何意义,考查复数的模29.AC【分析】根据复数的模、复数对应点的坐标、共轭复数等知识,选出正确选项.【详解】,A 正确;复数z 在复平面内对应的点的坐标为,在第三象限,B 不正确;z 的共轭复数为,C 正确;复数z 在复平面内对解析:AC【分析】根据复数的模、复数对应点的坐标、共轭复数等知识,选出正确选项.【详解】||z ==A 正确;复数z 在复平面内对应的点的坐标为(1,2)--,在第三象限,B 不正确;z 的共轭复数为12i -+,C 正确;复数z 在复平面内对应的点(1,2)--不在直线2y x =-上,D 不正确.故选:AC【点睛】本小题主要考查复数的有关知识,属于基础题.30.BC【分析】根据纯虚数、共轭复数、复数的模、复数为实数等知识,选出正确选项.【详解】当时,,此时为纯虚数,A 错误;若z 的共轭复数为,且,则,因此,B 正确;由是实数,且知,z 是实数,C 正确;由解析:BC【分析】根据纯虚数、共轭复数、复数的模、复数为实数等知识,选出正确选项.【详解】当0a =时,1b =,此时z i 为纯虚数,A 错误;若z 的共轭复数为z ,且z z =,则a bi a bi +=-,因此0b =,B 正确;由||z 是实数,且||z z =知,z 是实数,C 正确;由1||2z =得2214a b +=,又1a b +=,因此28830a a -+=,64483320∆=-⨯⨯=-<,无解,即||z 不可以等于12,D 错误. 故选:BC【点睛】本小题主要考查复数的有关知识,属于基础题.。

高中数学《复数》高考真题汇总(详解)——精品文档

高中数学《复数》高考真题汇总(详解)——精品文档

高中数学《复数》高考真题汇总(详解)1.对任意复数()i ,R z x y x y =+∈,i 为虚数单位,则下列结论正确的是( ) A.2z z y -= B.222z x y =+ C.2z z x -≥ D.z x y ≤+2.复数231i i -⎛⎫= ⎪+⎝⎭( )A.34i --B.34i -+C.34i -D.34i +3.复数z =1ii+在复平面上对应的点位于( ) A.第一象限B.第二象限C.第三象限D.第四象限4.设a,b 为实数,若复数11+2ii a bi=++,则( ) A.31,22a b == B.3,1a b == C.13,22a b == D.1,3a b ==5.已知(x+i )(1-i )=y ,则实数x ,y 分别为( ) A.x=-1,y=1 B. x=-1,y=2 C. x=1,y=1 D. x=1,y=26.已知21i =-,则i(1)=( )i i C.i D.i 7.设i 为虚数单位,则51ii-=+( ) A.-2-3i B.-2+3i C.2-3iD.2+3i8.已知()2,a ib i a b R i+=+∈,其中i 为虚数单位,则a b +=( ) A. 1- B. 1 C. 2 D. 3 9.在复平面内,复数6+5i, -2+3i 对应的点分别为A,B.若C 为线段AB 的中点,则点C 对应的复数是( )A.4+8iB.8+2iC.2+4iD.4+i10. i 是虚数单位,计算i +i 2+i 3=( )A.-1B.1C.i -D.i11. i 是虚数单位,复数31ii+-=( ) A.1+2i B.2+4i C.-1-2i D.2-i 12.i 是虚数单位,复数1312ii-+=+( )A.1+iB.5+5iC.-5-5iD.-1-i 13.若复数z 1=1+i ,z 2=3-i ,则z 1·z 2=( )A .4+2i B. 2+i C. 2+2i D.3 14. i 是虚数单位,41i ()1-i+等于 ( ) A .i B .-i C .1D .-115.复数3223ii+=-( ) A.i B.i - C.12-13i D. 12+13i16.已知2(,)a i b i a b i +=+2a ib i i+=+(a,b ∈R ),其中i 为虚数单位,则a+b=( ) A.-1 B.1 C.2 D.3 17. i 33i=+ ( ) A.13412- B.13412+ C.1326i + D.1326- 18.若i 为虚数单位,图中复平面内点Z 表示复数Z ,则表示复数1z i+的点是( )A.EB.FC.GD.H19.某程序框图如左图所示,若输出的S=57,则判断框内位( ) A. k >4? B.k >5? C. k >6? D.k >7? 20.如果执行下图(左)的程序框图,输入6,4n m ==,那么输出的p 等于( )A.720B.360C.240D.12021.如果执行上图(右)的程序框图,输入正整数n ,m ,满足n ≥m ,那么输出的P 等于( ) A.1m nC - B.1m nA - C.m n C D.mn A22.某程序框图如下图(左)所示,若输出的S=57,则判断框内为( ) A.k >4? B.k >5? C. k >6? D. k >7?23.【2010·天津文数】阅读右边的程序框图,运行相应的程序,则输出s 的值为( ) A.-1 B.0 C.1 D.3标准答案1.【答案】D【解析】可对选项逐个检查,A 项,y z z 2≥-,故A 错;B 项,xyi y x z 2222+-=,故B 错;C 项,y z z 2≥-,故C 错;D 项正确.本题主要考察了复数的四则运算、共轭复数及其几何意义,属中档题. 2.【答案】A【解析】本试题主要考查复数的运算.231i i -⎛⎫= ⎪+⎝⎭22(3)(1)(12)342i i i i --⎡⎤=-=--⎢⎥⎣⎦. 3.【答案】A【解析】本题考查复数的运算及几何意义.1i i +i i i 21212)1(+=-=,所以点()21,21位于第一象限 4.【答案】A【解析】本题考查了复数相等的概念及有关运算,考查了同学们的计算能力. 由121ii a bi +=++可得12()()i a b a b i +=-++,所以12a b a b -=⎧⎨+=⎩,解得32a =,12b =,故选A.5.【答案】D【解析】考查复数的乘法运算.可采用展开计算的方法,得2()(1)x i x i y -+-=,没有虚部,x=1,y=2. 6.【答案】B【解析】直接乘开,用21i =-代换即可.(1)i i =,选B. 7.【答案】C【解析】本题主要考察了复数代数形式的四则运算,属容易题. 8.【答案】B 9.【答案】C 10. 【答案】A【解析】由复数性质知:i 2=-1,故i +i 2+i 3=i +(-1)+(-i )=-1. 11.【答案】A【解析】本题主要考查复数代数形式的基本运算,属于容易题.进行复数的除法的运算需要份子、分母同时乘以分母的共轭复数,同时将i 2改为-1.331+24121-(1-)(1+)2i i i ii i i i +++===+()() 12.【答案】A【解析】本题主要考查复数代数形式的基本运算,属于容易题。

高考数学复数习题及答案 百度文库

高考数学复数习题及答案 百度文库

一、复数选择题1.设复数1iz i=+,则z 的虚部是( )A .12B .12iC .12-D .12i -2.212ii+=-( ) A .1B .−1C .i -D .i3.若复数z 满足()13i z i +=+(其中i 是虚数单位),复数z 的共轭复数为z ,则( ) A .z 的实部是1 B .z 的虚部是1C .z =D .复数z 在复平面内对应的点在第四象限4.在复平面内复数Z=i (1﹣2i )对应的点位于( ) A .第一象限 B .第二象限C .第三象限D .第四象限5.已知复数21iz i=-,则复数z 在复平面内对应点所在象限为( ) A .第一象限B .第二象限C .第三象限D .第四象限6.若复数1z i =-,则1zz=-( )A B .2C .D .47.若复数z 满足()322iz i i -+=+,则复数z 的虚部为( ) A .35B .35i -C .35D .35i8.若1m ii+-是纯虚数,则实数m 的值为( ).A .1-B .0C .1D9.已知复数z 满足202122z i i i+=+-+,则复数z 在复平面内对应的点在( )A .第一象限B .第二象限C .第三象限D .第四象限10.已知复数1z i =+,z 为z 的共轭复数,则()1z z ⋅+=( )A B .2C .10D11.复数11z =,2z 由向量1OZ 绕原点O 逆时针方向旋转3π而得到.则21arg()2z z -的值为( )A .6πB .3π C .23πD .43π 12.若复数z 满足213z z i -=+,则z =( ) A .1i + B .1i - C .1i -+D .1i --13.已知复数z 满足()1+243i z i =+,则z 的虚部是( ) A .-1 B .1C .i -D .i14.复数22(1)1i i-+=-( ) A .1+iB .-1+iC .1-iD .-1-i15.若复数()()1i 3i a +-(i 为虚数单位)的实部和虚部互为相反数,则实数a =( ) A .1-B .12-C .13D .1二、多选题16.i 是虚数单位,下列说法中正确的有( ) A .若复数z 满足0z z ⋅=,则0z =B .若复数1z ,2z 满足1212z z z z +=-,则120z z =C .若复数()z a ai a R =+∈,则z 可能是纯虚数D .若复数z 满足234z i =+,则z 对应的点在第一象限或第三象限 17.已知复数cos sin 22z i ππθθθ⎛⎫=+-<< ⎪⎝⎭(其中i 为虚数单位)下列说法正确的是( )A .复数z 在复平面上对应的点可能落在第二象限B .z 可能为实数C .1z =D .1z的虚部为sin θ 18.已知复数z 满足220z z +=,则z 可能为( ). A .0B .2-C .2iD .2i+1-19.下面是关于复数21iz =-+的四个命题,其中真命题是( )A .||z =B .22z i =C .z 的共轭复数为1i -+D .z 的虚部为1-20.下列四个命题中,真命题为( ) A .若复数z 满足z R ∈,则z R ∈ B .若复数z 满足1R z∈,则z R ∈ C .若复数z 满足2z ∈R ,则z R ∈ D .若复数1z ,2z 满足12z z R ⋅∈,则12z z =21.设复数z 满足1z i z+=,则下列说法错误的是( )A .z 为纯虚数B .z 的虚部为12i -C .在复平面内,z 对应的点位于第三象限D .2z =22.已知复数1cos 2sin 222z i ππθθθ⎛⎫=++-<< ⎪⎝⎭(其中i 为虚数单位),则( )A .复数z 在复平面上对应的点可能落在第二象限B .z 可能为实数C .2cos z θ=D .1z 的实部为12- 23.复数z 满足233232iz i i+⋅+=-,则下列说法正确的是( )A .z 的实部为3-B .z 的虚部为2C .32z i =-D .||z =24.已知复数1z i =+(其中i 为虚数单位),则以下说法正确的有( )A .复数z 的虚部为iB .z =C .复数z 的共轭复数1z i =-D .复数z 在复平面内对应的点在第一象限25.已知i 为虚数单位,以下四个说法中正确的是( ).A .234i i i i 0+++=B .3i 1i +>+C .若()2z=12i +,则复平面内z 对应的点位于第四象限D .已知复数z 满足11z z -=+,则z 在复平面内对应的点的轨迹为直线 26.已知复数122,2z i z i =-=则( ) A .2z 是纯虚数 B .12z z -对应的点位于第二象限C .123z z +=D .12z z =27.已知复数z 的共轭复数为z ,且1zi i =+,则下列结论正确的是( )A .1z +=B .z 虚部为i -C .202010102z =-D .2z z z +=28.已知复数()(()()211z m m m i m R =-+-∈,则下列说法正确的是( )A.若0m =,则共轭复数1z =- B .若复数2z =,则m C .若复数z 为纯虚数,则1m =± D .若0m =,则2420z z ++=29.以下命题正确的是( )A .0a =是z a bi =+为纯虚数的必要不充分条件B .满足210x +=的x 有且仅有iC .“在区间(),a b 内()0f x '>”是“()f x 在区间(),a b 内单调递增”的充分不必要条件D .已知()f x =()1878f x x '=30.已知复数z ,下列结论正确的是( ) A .“0z z +=”是“z 为纯虚数”的充分不必要条件 B .“0z z +=”是“z 为纯虚数”的必要不充分条件 C .“z z =”是“z 为实数”的充要条件 D .“z z ⋅∈R ”是“z 为实数”的充分不必要条件【参考答案】***试卷处理标记,请不要删除一、复数选择题 1.A 【分析】根据复数除法运算整理得到,根据虚部定义可得到结果. 【详解】 ,的虚部为. 故选:. 解析:A 【分析】根据复数除法运算整理得到z ,根据虚部定义可得到结果. 【详解】()()()1111111222i i i i z i i i i -+====+++-,z ∴的虚部为12.故选:A .2.D 【分析】利用复数的除法运算即可求解. 【详解】 , 故选:D解析:D 【分析】利用复数的除法运算即可求解. 【详解】()()()()2221222255121212145i i i i i ii i i i i +++++====--+-, 故选:D3.C 【分析】利用复数的除法运算求出,即可判断各选项. 【详解】 , ,则的实部为2,故A 错误;的虚部是,故B 错误; ,故C 正;对应的点为在第一象限,故D 错误. 故选:C.解析:C 【分析】利用复数的除法运算求出z ,即可判断各选项. 【详解】()13i z i +=+,()()()()3132111i i i z i i i i +-+∴===-++-, 则z 的实部为2,故A 错误;z 的虚部是1-,故B 错误;z ==,故C 正;2z i =+对应的点为()2,1在第一象限,故D 错误.故选:C.4.A 【解析】试题分析:根据复数乘法的运算法则,我们可以将复数Z 化为a=bi (a ,b ∈R )的形式,分析实部和虚部的符号,即可得到答案. 解:∵复数Z=i (1﹣2i )=2+i ∵复数Z 的实部2>0,虚解析:A 【解析】试题分析:根据复数乘法的运算法则,我们可以将复数Z 化为a=bi (a ,b ∈R )的形式,分析实部和虚部的符号,即可得到答案. 解:∵复数Z=i (1﹣2i )=2+i ∵复数Z 的实部2>0,虚部1>0 ∴复数Z 在复平面内对应的点位于第一象限 故选A点评:本题考查的知识是复数的代数表示法及其几何意义,其中根据复数乘法的运算法则,将复数Z 化为a=bi (a ,b ∈R )的形式,是解答本题的关键.5.B 【分析】对复数进行化简,再得到在复平面内对应点所在的象限. 【详解】,在复平面内对应点为,在第二象限. 故选:B.解析:B 【分析】对复数z 进行化简,再得到z 在复平面内对应点所在的象限. 【详解】21i z i =-()()()2111i i i i +=+-()1+1+i i i ==-,z 在复平面内对应点为()1,1-,在第二象限. 故选:B.6.A 【分析】将代入,利用复数的除法运算化简,再利用复数的求模公式求解. 【详解】 由,得, 则, 故选:A.解析:A 【分析】 将1z i =-代入1zz-,利用复数的除法运算化简,再利用复数的求模公式求解. 【详解】由1z i =-,得2111z i i ii z i i---===---,则11zi z=--==-,故选:A.7.A 【分析】由复数的除法法则和乘法法则计算出,再由复数的定义得结论. 【详解】 由题意,得, 其虚部为,故选:A.解析:A 【分析】由复数的除法法则和乘法法则计算出z ,再由复数的定义得结论. 【详解】 由题意,得()()()()()23343313343434552i i ii z ii i i i ----====-++-+, 其虚部为35, 故选:A.8.C 【分析】对复数进行化简根据实部为零,虚部不为零建立等量关系和不等关系即可得解. 【详解】 由题是纯虚数, 为纯虚数, 所以m=1. 故选:C 【点睛】此题考查复数的运算和概念辨析,关键在于熟解析:C 【分析】对复数进行化简根据实部为零,虚部不为零建立等量关系和不等关系即可得解. 【详解】 由题1m ii+-是纯虚数, ()()()()()()21111111222m i i m m i i m m i m i i i i +++++++-===+--+为纯虚数, 所以m =1. 故选:C 【点睛】此题考查复数的运算和概念辨析,关键在于熟练掌握复数的运算法则.9.C 【分析】由已知得到,然后利用复数的乘法运算法则计算,利用复数的周期性算出的值,最后利用复数的几何意义可得结果. 【详解】由题可得,,所以复数在复平面内对应的点为,在第三象限, 故选:C .解析:C 【分析】由已知得到2021(2)(2)i i iz -++-=,然后利用复数的乘法运算法则计算(2)(2)i i -++,利用复数n i 的周期性算出2021i 的值,最后利用复数的几何意义可得结果. 【详解】由题可得,2021(2)(2)5i z i ii -+=+-=--,所以复数z 在复平面内对应的点为(5,1)--,在第三象限, 故选:C .10.D 【分析】求出共轭复数,利用复数的乘法运算以及复数的求模公式可得答案. 【详解】 因为, 所以,, 所以, 故选:D.解析:D 【分析】求出共轭复数,利用复数的乘法运算以及复数的求模公式可得答案. 【详解】 因为1z i =+,所以1z i =-,12z i +=+,所以()()()1123z z i i i ⋅+=-⋅+=-== 故选:D.11.C 【分析】写出复数的三角形式,绕原点逆时针方向旋转得到复数的三角形式,从而求得的三角形式得解. 【详解】 ,,所以复数在第二象限,设幅角为,故选:C 【点睛】在复平面内运用复数的三解析:C 【分析】写出复数11z =的三角形式1cos 0sin 0z i =+,绕原点O 逆时针方向旋转3π得到复数2z 的三角形式,从而求得212z z -的三角形式得解. 【详解】11z =,1cos 0sin 0z i ∴=+,121(cos sin )3322Z i O OZ ππ=+=+2111()222z z --∴=+所以复数在第二象限,设幅角为θ,tan θ=23πθ∴=故选:C 【点睛】在复平面内运用复数的三角形式是求得幅角的关键.12.A 【分析】采用待定系数法,设,由复数运算和复数相等可求得,从而得到结果. 【详解】 设,则, ,,解得:, . 故选:A.解析:A 【分析】采用待定系数法,设(),z a bi a b R =+∈,由复数运算和复数相等可求得,a b ,从而得到结果. 【详解】设(),z a bi a b R =+∈,则z a bi =-,()()22313z z a bi a bi a bi i ∴-=+--=+=+,133a b =⎧∴⎨=⎩,解得:11a b =⎧⎨=⎩,1z i ∴=+. 故选:A. 13.B 【分析】利用复数代数形式的乘除运算化简,再由共轭复数的概念求得,则答案可求. 【详解】 由, 得, ,则的虚部是1. 故选:.解析:B 【分析】利用复数代数形式的乘除运算化简,再由共轭复数的概念求得z ,则答案可求. 【详解】由(12)43i z i +=+, 得43(43)(12)105212(12)(12)5i i i iz i i i i ++--====-++-, ∴2z i =+,则z 的虚部是1. 故选:B .14.C 【分析】直接根据复数代数形式的乘除运算法则计算可得; 【详解】 解: 故选:C解析:C 【分析】直接根据复数代数形式的乘除运算法则计算可得; 【详解】解:22(1)1i i-+- ()()()()2211211i i i i i +=-++-+ 12i i =+-1i =-故选:C15.B【分析】利用复数代数形式的乘法运算化简,再由实部加虚部为0求解.【详解】解:,所以复数的实部为,虚部为,因为实部和虚部互为相反数,所以,解得 故选:B解析:B【分析】利用复数代数形式的乘法运算化简,再由实部加虚部为0求解.【详解】解:()()()()21i 3i 33331a i ai ai a a i +-=-+-=++-,所以复数()()1i 3i a +-的实部为3a +,虚部为31a -,因为实部和虚部互为相反数,所以3310a a ++-=,解得12a =- 故选:B二、多选题16.AD【分析】A 选项,设出复数,根据共轭复数的相关计算,即可求出结果;B 选项,举出反例,根据复数模的计算公式,即可判断出结果;C 选项,根据纯虚数的定义,可判断出结果;D 选项,设出复数,根据题解析:AD【分析】A 选项,设出复数,根据共轭复数的相关计算,即可求出结果;B 选项,举出反例,根据复数模的计算公式,即可判断出结果;C 选项,根据纯虚数的定义,可判断出结果;D 选项,设出复数,根据题中条件,求出复数,由几何意义,即可判断出结果.【详解】A 选项,设(),z a bi a b R =+∈,则其共轭复数为(),z a bi a b R =-∈, 则220z z a b ⋅=+=,所以0a b ,即0z =;A 正确;B 选项,若11z =,2z i =,满足1212z z z z +=-,但12z z i =不为0;B 错;C 选项,若复数()z a ai a R =+∈表示纯虚数,需要实部为0,即0a =,但此时复数0z =表示实数,故C 错;D 选项,设(),z a bi a b R =+∈,则()2222234z a bi a abi b i =+=+-=+, 所以22324a b ab ⎧-=⎨=⎩,解得21a b =⎧⎨=⎩或21a b =-⎧⎨=-⎩,则2z i =+或2z i =--, 所以其对应的点分别为()2,1或()2,1--,所以对应点的在第一象限或第三象限;D 正确. 故选:AD.17.BC【分析】分、、三种情况讨论,可判断AB 选项的正误;利用复数的模长公式可判断C 选项的正误;化简复数,利用复数的概念可判断D 选项的正误.【详解】对于AB 选项,当时,,,此时复数在复平面内的点解析:BC【分析】 分02θπ-<<、0θ=、02πθ<<三种情况讨论,可判断AB 选项的正误;利用复数的模长公式可判断C 选项的正误;化简复数1z ,利用复数的概念可判断D 选项的正误. 【详解】对于AB 选项,当02θπ-<<时,cos 0θ>,sin 0θ<,此时复数z 在复平面内的点在第四象限;当0θ=时,1z R =-∈; 当02πθ<<时,cos 0θ>,sin 0θ>,此时复数z 在复平面内的点在第一象限.A 选项错误,B 选项正确;对于C 选项,1z ==,C 选项正确;对于D 选项,()()11cos sin cos sin cos sin cos sin cos sin i i z i i i θθθθθθθθθθ-===-++⋅-, 所以,复数1z的虚部为sin θ-,D 选项错误. 故选:BC.18.AC【分析】令,代入原式,解出的值,结合选项得出答案.【详解】令,代入,得,解得,或,或,所以,或,或.故选:AC【点睛】本题考查复数的运算,考查学生计算能力,属于基础题.解析:AC【分析】令()i ,z a b a b R =+∈,代入原式,解出,a b 的值,结合选项得出答案.【详解】令()i ,z a b a b R =+∈,代入220z z +=,得222i 0a b ab -+=,解得00a b =⎧⎨=⎩,或02a b =⎧⎨=⎩,或02a b =⎧⎨=-⎩, 所以0z =,或2i z =,或2i z =-.故选:AC【点睛】本题考查复数的运算,考查学生计算能力,属于基础题.19.ABCD【分析】先根据复数的除法运算计算出,再依次判断各选项.【详解】,,故A 正确;,故B 正确;的共轭复数为,故C 正确;的虚部为,故D 正确; 故选:ABCD.【点睛】本题考查复数的除法解析:ABCD【分析】先根据复数的除法运算计算出z ,再依次判断各选项.【详解】()()()2121111i z i i i i --===---+-+--,z ∴==,故A 正确;()2212z i i =--=,故B 正确;z 的共轭复数为1i -+,故C 正确;z 的虚部为1-,故D 正确;故选:ABCD.【点睛】本题考查复数的除法运算,以及对复数概念的理解,属于基础题.20.AB【分析】利用特值法依次判断选项即可得到答案.【详解】对选项A ,若复数满足,设,其中,则,则选项A 正确;对选项B ,若复数满足,设,其中,且,则,则选项B 正确;对选项C ,若复数满足,设解析:AB 【分析】利用特值法依次判断选项即可得到答案.【详解】对选项A ,若复数z 满足z R ∈,设z a =,其中a R ∈,则z R ∈,则选项A 正确; 对选项B ,若复数z 满足1R z ∈,设1a z =,其中a R ∈,且0a ≠, 则1z R a=∈,则选项B 正确; 对选项C ,若复数z 满足2z ∈R ,设z i ,则21z R =-∈,但z i R =∉,则选项C 错误;对选项D ,若复数1z ,2z 满足12z z R ⋅∈,设1z i =,2z i =,则121z z ⋅=-∈R , 而21z i z =-≠,则选项D 错误;故答案选:AB【点睛】本题主要考查复数的运算,同时考查复数的定义和共轭复数,特值法为解决本题的关键,属于简单题.21.AB【分析】先由复数除法运算可得,再逐一分析选项,即可得答案.【详解】由题意得:,即,所以z 不是纯虚数,故A 错误;复数z 的虚部为,故B 错误;在复平面内,对应的点为,在第三象限,故C 正确解析:AB【分析】 先由复数除法运算可得1122z i =--,再逐一分析选项,即可得答案. 【详解】由题意得:1z zi +=,即111122z i i -==---, 所以z 不是纯虚数,故A 错误;复数z 的虚部为12-,故B 错误; 在复平面内,z 对应的点为11(,)22--,在第三象限,故C 正确;2z ==,故D 正确. 故选:AB【点睛】本题考查复数的除法运算,纯虚数、虚部的概念,复平面内点所在象限、复数求模的运算等知识,考查计算求值的能力,属基础题.22.BC【分析】由可得,得,可判断A 选项,当虚部,时,可判断B 选项,由复数的模计算和余弦的二倍角公式可判断C 选项,由复数的运算得,的实部是,可判断D 选项.【详解】因为,所以,所以,所以,所以A 选解析:BC【分析】 由22ππθ-<<可得2πθπ-<<,得01cos22θ<+≤,可判断A 选项,当虚部sin 20θ=,,22ππθ⎛⎫∈- ⎪⎝⎭时,可判断B 选项,由复数的模计算和余弦的二倍角公式可判断C 选项,由复数的运算得11cos 2sin 212cos 2i z θθθ+-=+,1z 的实部是1cos 2122cos 22θθ+=+,可判断D 选项.【详解】因为22ππθ-<<,所以2πθπ-<<,所以1cos21θ-<≤,所以01cos22θ<+≤,所以A 选项错误;当sin 20θ=,,22ππθ⎛⎫∈- ⎪⎝⎭时,复数z 是实数,故B 选项正确;2cos z θ===,故C 选项正确:()()111cos 2sin 21cos 2sin 21cos 2sin 21cos 2sin 21cos 2sin 212cos 2i i z i i i θθθθθθθθθθθ+-+-===+++++-+,1z 的实部是1cos 2122cos 22θθ+=+,故D 不正确. 故选:BC【点睛】本题主要考查复数的概念,复数模的计算,复数的运算,以及三角恒等变换的应用,属于中档题.23.AD【分析】由已知可求出,进而可求出实部、虚部、共轭复数、复数的模,进而可选出正确答案.【详解】解:由知,,即,所以的实部为,A 正确;的虚部为-2,B 错误;,C 错误;,D 正确;故选:A解析:AD【分析】由已知可求出32z i =--,进而可求出实部、虚部、共轭复数、复数的模,进而可选出正确答案.【详解】解:由233232i z i i +⋅+=-知,232332i z i i +⋅=--,即()()()2233232232313i i i z i i ---=-=+ 39263213i i --==--,所以z 的实部为3-,A 正确;z 的虚部为-2,B 错误;32z i =-+,C 错误;||z ==D 正确; 故选:AD.【点睛】 本题考查了复数的除法运算,考查了复数的概念,考查了共轭复数的求解,考查了复数模的求解,属于基础题.24.BCD【分析】根据复数的概念判定A 错,根据复数模的计算公式判断B 正确,根据共轭复数的概念判断C 正确,根据复数的几何意义判断D 正确.【详解】因为复数,所以其虚部为,即A 错误;,故B 正确;解析:BCD【分析】根据复数的概念判定A 错,根据复数模的计算公式判断B 正确,根据共轭复数的概念判断C 正确,根据复数的几何意义判断D 正确.【详解】因为复数1z i =+,所以其虚部为1,即A 错误;z ==B 正确;复数z 的共轭复数1z i =-,故C 正确;复数z 在复平面内对应的点为()1,1,显然位于第一象限,故D 正确.故选:BCD.【点睛】本题主要考查复数的概念,复数的模,复数的几何意义,以及共轭复数的概念,属于基础题型.25.AD【分析】根据复数的运算判断A ;由虚数不能比较大小判断B ;由复数的运算以及共轭复数的定义判断C ;由模长公式化简,得出,从而判断D.【详解】,则A 正确;虚数不能比较大小,则B 错误;,则,解析:AD【分析】根据复数的运算判断A ;由虚数不能比较大小判断B ;由复数的运算以及共轭复数的定义判断C ;由模长公式化简11z z -=+,得出0x =,从而判断D.【详解】234110i i i i i i +++=--+=,则A 正确;虚数不能比较大小,则B 错误;()221424341z i i i i =++=+-+=,则34z i =--,其对应复平面的点的坐标为(3,4)--,位于第三象限,则C 错误; 令,,z x yi x y R =+∈,|1||1z z -=+∣,=,解得0x =则z 在复平面内对应的点的轨迹为直线,D 正确;故选:AD【点睛】本题主要考查了判断复数对应的点所在的象限,与复数模相关的轨迹(图形)问题,属于中档题.26.AD【分析】利用复数的概念及几何有意义判断A 、B 选项是否正确,利用利用复数的四则运算法则计算及,并计算出模长,判断C 、D 是否正确.【详解】利用复数的相关概念可判断A 正确;对于B 选项,对应的解析:AD【分析】利用复数的概念及几何有意义判断A 、B 选项是否正确,利用利用复数的四则运算法则计算12z z +及12z z ,并计算出模长,判断C 、D 是否正确.【详解】利用复数的相关概念可判断A 正确;对于B 选项,1223z z i -=-对应的点位于第四象限,故B 错;对于C 选项,122+=+z z i ,则12z z +==,故C 错;对于D 选项,()122224z z i i i ⋅=-⋅=+,则12z z ==D 正确. 故选:AD【点睛】本题考查复数的相关概念及复数的计算,较简单.27.ACD【分析】先利用题目条件可求得,再根据复数的模的计算公式,以及复数的有关概念和复数的四则运算法则即可判断各选项的真假.【详解】由可得,,所以,虚部为;因为,所以,.故选:ACD .【解析:ACD【分析】先利用题目条件可求得z ,再根据复数的模的计算公式,以及复数的有关概念和复数的四则运算法则即可判断各选项的真假.【详解】由1zi i =+可得,11i z i i+==-,所以12z i +=-==,z 虚部为1-;因为2422,2z i z =-=-,所以()5052020410102z z ==-,2211z z i i i z +=-++=-=.故选:ACD .【点睛】本题主要考查复数的有关概念的理解和运用,复数的模的计算公式的应用,复数的四则运算法则的应用,考查学生的数学运算能力,属于基础题. 28.BD【分析】根据每个选项里的条件,求出相应的结果,即可判断选项的正误.【详解】对于A ,时,,则,故A 错误;对于B ,若复数,则满足,解得,故B 正确;对于C ,若复数z 为纯虚数,则满足,解得,解析:BD【分析】根据每个选项里的条件,求出相应的结果,即可判断选项的正误.【详解】对于A ,0m=时,1z =-,则1z =-,故A 错误;对于B ,若复数2z=,则满足(()21210m m m ⎧-=⎪⎨-=⎪⎩,解得m ,故B 正确; 对于C ,若复数z 为纯虚数,则满足(()21010m m m ⎧-=⎪⎨--≠⎪⎩,解得1m =-,故C 错误; 对于D ,若0m =,则1z =-+,()()221420412z z ++=+--+=+,故D 正确.故选:BD.【点睛】本题主要考查对复数相关概念的理解,注意不同情形下的取值要求,是一道基础题.29.AC【分析】利用纯虚数的概念以及必要不充分条件的定义可判断A 选项的正误;解方程可判断B 选项的正误;利用导数与函数单调性的关系结合充分不必要条件的定义可判断C 选项的正误;利用基本初等函数的导数公式解析:AC【分析】利用纯虚数的概念以及必要不充分条件的定义可判断A 选项的正误;解方程210x +=可判断B 选项的正误;利用导数与函数单调性的关系结合充分不必要条件的定义可判断C 选项的正误;利用基本初等函数的导数公式可判断D 选项的正误.综合可得出结论.【详解】对于A 选项,若复数z a bi =+为纯虚数,则0a =且0b ≠,所以,0a =是z a bi =+为纯虚数的必要不充分条件,A 选项正确;对于B 选项,解方程210x +=得x i =±,B 选项错误;对于C 选项,当(),x a b ∈时,若()0f x '>,则函数()f x 在区间(),a b 内单调递增, 即“在区间(),a b 内()0f x '>”⇒“()f x 在区间(),a b 内单调递增”.反之,取()3f x x =,()23f x x '=,当()1,1x ∈-时,()0f x '≥,此时,函数()y f x =在区间()1,1-上单调递增,即“在区间(),a b 内()0f x '>”⇐/“()f x 在区间(),a b 内单调递增”.所以,“在区间(),a b 内()0f x '>”是“()f x 在区间(),a b 内单调递增”的充分不必要条件.C 选项正确;对于D 选项,()11172488f x x x ++===,()1878f x x -'∴=,D 选项错误. 故选:AC.【点睛】本题考查命题真假的判断,涉及充分条件与必要条件的判断、实系数方程的根以及导数的计算,考查推理能力与计算能力,属于中等题. 30.BC【分析】设,可得出,利用复数的运算、复数的概念结合充分条件、必要条件的定义进行判断,从而可得出结论.【详解】设,则,则,若,则,,若,则不为纯虚数,所以,“”是“为纯虚数”必要不充分解析:BC【分析】设(),z a bi a b R =+∈,可得出z a bi =-,利用复数的运算、复数的概念结合充分条件、必要条件的定义进行判断,从而可得出结论.【详解】设(),z a bi a b R =+∈,则z a bi =-, 则2z z a +=,若0z z +=,则0a =,b R ∈,若0b =,则z 不为纯虚数, 所以,“0z z +=”是“z 为纯虚数”必要不充分条件; 若z z =,即a bi a bi +=-,可得0b =,则z 为实数,“z z =”是“z 为实数”的充要条件;22z z a b ⋅=+∈R ,z ∴为虚数或实数,“z z ⋅∈R ”是“z 为实数”的必要不充分条件.故选:BC.【点睛】本题考查充分条件、必要条件的判断,同时也考查了共轭复数、复数的基本概念的应用,考查推理能力,属于基础题.。

高考复数专题及答案

高考复数专题及答案

一、复数选择题1.已知复数1z i =+,则21z+=( ) A .2BC .4D .52.若()211z i =-,21z i =+,则12z z 等于( ) A .1i +B .1i -+C .1i -D .1i --3.复数3(23)i +(其中i 为虚数单位)的虚部为( ) A .9i B .46i -C .9D .46-4.212ii+=-( ) A .1B .−1C .i -D .i5.已知复数()123z i i +=- (其中i 是虚数单位),则z 在复平面内对应点在( ) A .第一象限B .第二象限C .第三象限D .第四象限6.已知复数z 满足()311z i i +=-,则复数z 对应的点在( )上 A .直线12y x =- B .直线12y x =C .直线12x =-D .直线12y7.若复数2i1ia -+(a ∈R )为纯虚数,则1i a -=( ) ABC .3D .58.设复数z 满足方程4z z z z ⋅+⋅=,其中z 为复数z 的共轭复数,若z,则z 为( ) A .1BC .2D .49.已知复数z 满足202122z i i i+=+-+,则复数z 在复平面内对应的点在( )A .第一象限B .第二象限C .第三象限D .第四象限10.复数11z =,2z 由向量1OZ 绕原点O 逆时针方向旋转3π而得到.则21arg()2z z -的值为( ) A .6π B .3π C .23π D .43π 11.设21iz i+=-,则z 的虚部为( ) A .12B .12-C .32D .32-12.设a +∈R ,复数()()()242121i i z ai ++=-,若1z =,则a =( )A .10B .9C .8D .713.已知复数z 满足()1+243i z i =+,则z 的虚部是( ) A .-1B .1C .i -D .i14.若复数()()1i 3i a +-(i 为虚数单位)的实部和虚部互为相反数,则实数a =( ) A .1-B .12-C .13D .115.在复平面内,复数z 对应的点的坐标是(1,1),则zi=( ) A .1i - B .1i --C .1i -+D .1i +二、多选题16.已知复数Z 在复平面上对应的向量(1,2),OZ =-则( ) A .z =-1+2iB .|z |=5C .12z i =+D .5z z ⋅=17.已知复数202011i z i+=-(i 为虚数单位),则下列说法错误的是( )A .z 的实部为2B .z 的虚部为1C .z i =D .||z =18.已知复数cos sin 22z i ππθθθ⎛⎫=+-<< ⎪⎝⎭(其中i 为虚数单位)下列说法正确的是( )A .复数z 在复平面上对应的点可能落在第二象限B .z 可能为实数C .1z =D .1z的虚部为sin θ 19.已知复数z 满足220z z +=,则z 可能为( ) A .0B .2-C .2iD .2i -20.下列四个命题中,真命题为( ) A .若复数z 满足z R ∈,则z R ∈ B .若复数z 满足1R z∈,则z R ∈ C .若复数z 满足2z ∈R ,则z R ∈D .若复数1z ,2z 满足12z z R ⋅∈,则12z z =21.已知复数(),z x yi x y R =+∈,则( )A .20zB .z 的虚部是yiC .若12z i =+,则1x =,2y =D .z =22.下面是关于复数21iz =-+(i 为虚数单位)的命题,其中真命题为( ) A .||2z =B .22z i =C .z 的共轭复数为1i +D .z 的虚部为1- 23.已知复数z 满足2724z i =--,在复平面内,复数z 对应的点可能在( ) A .第一象限B .第二象限C .第三象限D .第四象限24.已知复数1cos 2sin 222z i ππθθθ⎛⎫=++-<< ⎪⎝⎭(其中i 为虚数单位),则( )A .复数z 在复平面上对应的点可能落在第二象限B .z 可能为实数C .2cos z θ=D .1z 的实部为12- 25.已知i 为虚数单位,复数322iz i+=-,则以下真命题的是( ) A .z 的共轭复数为4755i - B .z 的虚部为75i C .3z =D .z 在复平面内对应的点在第一象限26.已知1z ,2z 为复数,下列命题不正确的是( ) A .若12z z =,则12=z z B .若12=z z ,则12z z =C .若12z z >则12z z >D .若12z z >,则12z z >27.下列命题中,正确的是( ) A .复数的模总是非负数B .复数集与复平面内以原点为起点的所有向量组成的集合一一对应C .如果复数z 对应的点在第一象限,则与该复数对应的向量的终点也一定在第一象限D .相等的向量对应着相等的复数28.已知复数z a =+在复平面内对应的点位于第二象限,且2z = 则下列结论正确的是( ).A .38z =B .zC .z 的共轭复数为1D .24z =29.设()()2225322z t t t t i =+-+++,t ∈R ,i 为虚数单位,则以下结论正确的是( )A .z 对应的点在第一象限B .z 一定不为纯虚数C .z 一定不为实数D .z 对应的点在实轴的下方30.已知复数i z a b =+(a ,b ∈R ,i 为虚数单位),且1a b +=,下列命题正确的是( )A .z 不可能为纯虚数B .若z 的共轭复数为z ,且z z =,则z 是实数C .若||z z =,则z 是实数D .||z 可以等于12【参考答案】***试卷处理标记,请不要删除一、复数选择题 1.B 【分析】先求出,再计算出模. 【详解】 , , . 故选:B. 解析:B 【分析】先求出21z +,再计算出模. 【详解】1z i =+,()()()21221112111i i z i i i -∴+=+=+=-++-,21z∴+==. 故选:B.2.D 【分析】由复数的运算法则计算即可. 【详解】 解:, . 故选:D.解析:D 【分析】由复数的运算法则计算即可.【详解】 解:()2211122z i i i i =-=-+=-,()()212222(1)2222111112z i i i i i i i z i i i i --⨯--+--∴=====--++--. 故选:D.3.C 【分析】应用复数相乘的运算法则计算即可. 【详解】 解:所以的虚部为9. 故选:C.解析:C 【分析】应用复数相乘的运算法则计算即可. 【详解】解:()()()32351223469i i i i +=-++=-+ 所以()323i +的虚部为9. 故选:C.4.D 【分析】利用复数的除法运算即可求解. 【详解】 , 故选:D解析:D 【分析】利用复数的除法运算即可求解. 【详解】()()()()2221222255121212145i i i i i i i i i i i +++++====--+-, 故选:D5.D 【分析】先由复数的运算化简复数z ,再运用复数的几何表示可得选项. 【详解】由已知得,所以复数z 在复平面上所对应的点为,在第四象限, 故选:D.解析:D 【分析】先由复数的运算化简复数z ,再运用复数的几何表示可得选项. 【详解】 由已知得()()()()312317171+21+212555i i i i z i i i i ----====--, 所以复数z 在复平面上所对应的点为17,55⎛⎫- ⎪⎝⎭,在第四象限, 故选:D.6.C 【分析】利用复数的乘法和除法运算求得复数z 的标准形式,得到对应点的坐标,然后验证即可. 【详解】解:因为,所以复数对应的点是,所以在直线上. 故选:C. 【点睛】本题考查复数的乘方和除法运解析:C 【分析】利用复数的乘法和除法运算求得复数z 的标准形式,得到对应点的坐标,然后验证即可. 【详解】解:因为33111(1)1(1)2(1)2i i z i i z i i --+=-⇔===-+-,所以复数z 对应的点是1,02⎛⎫- ⎪⎝⎭,所以在直线12x =-上. 故选:C. 【点睛】本题考查复数的乘方和除法运算,复数的坐标表示,属基础题.注意:()()()()()3211i 12121i i i i i +=++=-+=-.7.B【分析】把给出的复数化简,然后由实部等于0,虚部不等于0求解a 的值,最后代入模的公式求模.由复数()为纯虚数,则 ,则 所以 故选:B解析:B 【分析】把给出的复数化简,然后由实部等于0,虚部不等于0求解a 的值,最后代入模的公式求模. 【详解】 由()()()()()()21i 2221112a i a a ia i i i i ----+-==++- 复数2i1i a -+(a ∈R )为纯虚数,则202202a a -⎧=⎪⎪⎨+⎪≠⎪⎩ ,则2a =所以112ai i -=-=故选:B8.B 【分析】由题意,设复数,根据共轭复数的概念,以及题中条件,即可得出结果. 【详解】因为的实部为,所以可设复数, 则其共轭复数为,又, 所以由,可得,即,因此. 故选:B.解析:B 【分析】由题意,设复数(),z yi x R y R =∈∈,根据共轭复数的概念,以及题中条件,即可得出结果. 【详解】因为z,所以可设复数(),z yi x R y R =∈∈,则其共轭复数为z yi =,又z z =,所以由4z z z z ⋅+⋅=,可得()4z z z ⋅+=,即4z ⋅=,因此z =故选:B.9.C由已知得到,然后利用复数的乘法运算法则计算,利用复数的周期性算出的值,最后利用复数的几何意义可得结果. 【详解】 由题可得,,所以复数在复平面内对应的点为,在第三象限, 故选:C .解析:C 【分析】由已知得到2021(2)(2)i i iz -++-=,然后利用复数的乘法运算法则计算(2)(2)i i -++,利用复数n i 的周期性算出2021i 的值,最后利用复数的几何意义可得结果. 【详解】由题可得,2021(2)(2)5i z i ii -+=+-=--,所以复数z 在复平面内对应的点为(5,1)--,在第三象限, 故选:C .10.C 【分析】写出复数的三角形式,绕原点逆时针方向旋转得到复数的三角形式,从而求得的三角形式得解. 【详解】 ,,所以复数在第二象限,设幅角为, 故选:C 【点睛】在复平面内运用复数的三解析:C 【分析】写出复数11z =的三角形式1cos 0sin 0z i =+,绕原点O 逆时针方向旋转3π得到复数2z 的三角形式,从而求得212z z -的三角形式得解. 【详解】11z =,1cos 0sin 0z i ∴=+,121(cossin )3322Z i O OZ ππ=+=+2111()222z z --∴=+所以复数在第二象限,设幅角为θ,tan θ=23πθ∴=故选:C 【点睛】在复平面内运用复数的三角形式是求得幅角的关键.11.C 【分析】根据复数的除法运算,先化简复数,即可得出结果. 【详解】 因为, 所以其虚部为. 故选:C.解析:C 【分析】根据复数的除法运算,先化简复数,即可得出结果. 【详解】 因为()()()()21223113111222i i i i z i i i i ++++-====+--+, 所以其虚部为32. 故选:C.12.D 【分析】根据复数的模的性质求模,然后可解得. 【详解】 解:,解得. 故选:D . 【点睛】本题考查复数的模,掌握模的性质是解题关键.设复数,则, 模的性质:,,.解析:D 【分析】根据复数的模的性质求模,然后可解得a . 【详解】解:()()()()24242422221212501111i i i i a ai ai++++====+--,解得7a =. 故选:D . 【点睛】本题考查复数的模,掌握模的性质是解题关键.设复数(,)z a bi a b R=+∈,则z =模的性质:1212z z z z =,(*)nnz z n N =∈,1122z z z z =. 13.B 【分析】利用复数代数形式的乘除运算化简,再由共轭复数的概念求得,则答案可求. 【详解】 由, 得, ,则的虚部是1. 故选:.解析:B 【分析】利用复数代数形式的乘除运算化简,再由共轭复数的概念求得z ,则答案可求. 【详解】由(12)43i z i +=+, 得43(43)(12)105212(12)(12)5i i i iz i i i i ++--====-++-, ∴2z i =+,则z 的虚部是1. 故选:B .14.B 【分析】利用复数代数形式的乘法运算化简,再由实部加虚部为0求解. 【详解】解:,所以复数的实部为,虚部为,因为实部和虚部互为相反数,所以,解得解析:B【分析】利用复数代数形式的乘法运算化简,再由实部加虚部为0求解.【详解】解:()()()()21i 3i 33331a i ai ai a a i +-=-+-=++-,所以复数()()1i 3i a +-的实部为3a +,虚部为31a -,因为实部和虚部互为相反数,所以3310a a ++-=,解得12a =- 故选:B15.A【分析】根据复数对应的点的坐标是,得到,再利用复数的除法求解.【详解】因为在复平面内,复数对应的点的坐标是,所以,所以,故选:A解析:A【分析】根据复数z 对应的点的坐标是(1,1),得到1z i =+,再利用复数的除法求解.【详解】因为在复平面内,复数z 对应的点的坐标是(1,1),所以1z i =+, 所以11i i i z i+==-, 故选:A 二、多选题16.AD【分析】因为复数Z 在复平面上对应的向量,得到复数,再逐项判断.【详解】因为复数Z 在复平面上对应的向量,所以,,|z|=,,故选:AD解析:AD因为复数Z 在复平面上对应的向量(1,2)OZ =-,得到复数12z i =-+,再逐项判断.【详解】因为复数Z 在复平面上对应的向量(1,2)OZ =-,所以12z i =-+,12z i =--,|z 5z z ⋅=,故选:AD17.AC【分析】根据复数的运算及复数的概念即可求解.【详解】因为复数,所以z 的虚部为1,,故AC 错误,BD 正确.故选:AC解析:AC【分析】根据复数的运算及复数的概念即可求解.【详解】 因为复数2020450511()22(1)11112i i i z i i i i +++=====+---,所以z 的虚部为1,||z =故AC 错误,BD 正确.故选:AC18.BC【分析】分、、三种情况讨论,可判断AB 选项的正误;利用复数的模长公式可判断C 选项的正误;化简复数,利用复数的概念可判断D 选项的正误.【详解】对于AB 选项,当时,,,此时复数在复平面内的点解析:BC【分析】 分02θπ-<<、0θ=、02πθ<<三种情况讨论,可判断AB 选项的正误;利用复数的模长公式可判断C 选项的正误;化简复数1z ,利用复数的概念可判断D 选项的正误. 【详解】对于AB 选项,当02θπ-<<时,cos 0θ>,sin 0θ<,此时复数z 在复平面内的点在第四象限; 当0θ=时,1z R =-∈; 当02πθ<<时,cos 0θ>,sin 0θ>,此时复数z 在复平面内的点在第一象限.A 选项错误,B 选项正确;对于C选项,1z ==,C 选项正确;对于D 选项,()()11cos sin cos sin cos sin cos sin cos sin i i z i i i θθθθθθθθθθ-===-++⋅-, 所以,复数1z的虚部为sin θ-,D 选项错误. 故选:BC. 19.ACD【分析】令代入已知等式,列方程组求解即可知的可能值.【详解】令代入,得:,∴,解得或或∴或或.故选:ACD【点睛】本题考查了已知等量关系求复数,属于简单题.解析:ACD【分析】令z a bi =+代入已知等式,列方程组求解即可知z 的可能值.【详解】令z a bi =+代入22||0z z +=,得:2220a b abi -+=,∴22020a b ab ⎧⎪-+=⎨=⎪⎩,解得0,0a b =⎧⎨=⎩或0,2a b =⎧⎨=⎩或0,2,a b =⎧⎨=-⎩ ∴0z =或2z i =或2z i =-.故选:ACD【点睛】本题考查了已知等量关系求复数,属于简单题.20.AB【分析】利用特值法依次判断选项即可得到答案.【详解】对选项A ,若复数满足,设,其中,则,则选项A 正确;对选项B ,若复数满足,设,其中,且,则,则选项B 正确;对选项C ,若复数满足,设解析:AB【分析】利用特值法依次判断选项即可得到答案.【详解】对选项A ,若复数z 满足z R ∈,设z a =,其中a R ∈,则z R ∈,则选项A 正确; 对选项B ,若复数z 满足1R z ∈,设1a z =,其中a R ∈,且0a ≠, 则1z R a=∈,则选项B 正确; 对选项C ,若复数z 满足2z ∈R ,设z i ,则21z R =-∈,但z i R =∉,则选项C 错误;对选项D ,若复数1z ,2z 满足12z z R ⋅∈,设1z i =,2z i =,则121z z ⋅=-∈R , 而21z i z =-≠,则选项D 错误;故答案选:AB【点睛】本题主要考查复数的运算,同时考查复数的定义和共轭复数,特值法为解决本题的关键,属于简单题.21.CD【分析】取特殊值可判断A 选项的正误;由复数的概念可判断B 、C 选项的正误;由复数模的概念可判断D 选项的正误.【详解】对于A 选项,取,则,A 选项错误;对于B 选项,复数的虚部为,B 选项错误;解析:CD【分析】取特殊值可判断A 选项的正误;由复数的概念可判断B 、C 选项的正误;由复数模的概念可判断D 选项的正误.【详解】对于A 选项,取z i ,则210z =-<,A 选项错误;对于B 选项,复数z 的虚部为y ,B 选项错误;对于C 选项,若12z i =+,则1x =,2y =,C 选项正确;对于D选项,z=D选项正确.故选:CD.【点睛】本题考查复数相关命题真假的判断,涉及复数的计算、复数的概念以及复数的模,属于基础题.22.BD【分析】把分子分母同时乘以,整理为复数的一般形式,由复数的基本知识进行判断即可.【详解】解:,,A错误;,B正确;z的共轭复数为,C错误;z的虚部为,D正确.故选:BD.【点解析:BD【分析】把21iz=-+分子分母同时乘以1i--,整理为复数的一般形式,由复数的基本知识进行判断即可.【详解】解:22(1)11(1)(1)iz ii i i--===---+-+--,||z∴=A错误;22iz=,B正确;z的共轭复数为1i-+,C错误;z的虚部为1-,D正确.故选:BD.【点睛】本题主要考查复数除法的基本运算、复数的基本概念,属于基础题.23.BD【分析】先设复数,根据题中条件,由复数的乘法运算,以及复数相等的充要条件求出,即可确定对应的点所在的象限.【详解】则,所以,则,解得或,因此或,所以对应的点为或,因此复解析:BD【分析】先设复数(),z a bi a b R =+∈,根据题中条件,由复数的乘法运算,以及复数相等的充要条件求出z ,即可确定对应的点所在的象限.【详解】设复数(),z a bi a b R =+∈,则2222724z a abi b i =+-=--,所以2222724z a abi b i =+-=--,则227224a b ab ⎧-=-⎨=-⎩,解得34a b =⎧⎨=-⎩或34a b =-⎧⎨=⎩, 因此34z i =-或34z i =-+,所以对应的点为()3,4-或()3,4-,因此复数z 对应的点可能在第二或第四象限.故选:BD.【点睛】本题主要考查判定复数对应的点所在的象限,熟记复数的运算法则,以及复数相等的条件即可,属于基础题型.24.BC【分析】由可得,得,可判断A 选项,当虚部,时,可判断B 选项,由复数的模计算和余弦的二倍角公式可判断C 选项,由复数的运算得,的实部是,可判断D 选项.【详解】因为,所以,所以,所以,所以A 选解析:BC【分析】 由22ππθ-<<可得2πθπ-<<,得01cos22θ<+≤,可判断A 选项,当虚部sin 20θ=,,22ππθ⎛⎫∈- ⎪⎝⎭时,可判断B 选项,由复数的模计算和余弦的二倍角公式可判断C 选项,由复数的运算得11cos 2sin 212cos 2i z θθθ+-=+,1z 的实部是1cos 2122cos 22θθ+=+,可【详解】 因为22ππθ-<<,所以2πθπ-<<,所以1cos21θ-<≤,所以01cos22θ<+≤,所以A 选项错误;当sin 20θ=,,22ππθ⎛⎫∈- ⎪⎝⎭时,复数z 是实数,故B 选项正确;2cos z θ===,故C 选项正确:()()111cos 2sin 21cos 2sin 21cos 2sin 21cos 2sin 21cos 2sin 212cos 2i i z i i i θθθθθθθθθθθ+-+-===+++++-+,1z 的实部是1cos 2122cos 22θθ+=+,故D 不正确. 故选:BC【点睛】本题主要考查复数的概念,复数模的计算,复数的运算,以及三角恒等变换的应用,属于中档题.25.AD【分析】先利用复数的除法、乘法计算出,再逐项判断后可得正确的选项.【详解】,故,故A 正确.的虚部为,故B 错,,故C 错,在复平面内对应的点为,故D 正确.故选:AD.【点睛】本题考解析:AD【分析】先利用复数的除法、乘法计算出z ,再逐项判断后可得正确的选项. 【详解】()()32232474725555i i i i i z i ++++====+-,故4755i z =-,故A 正确.z 的虚部为75,故B 错,355z ==≠,故C 错, z 在复平面内对应的点为47,55⎛⎫ ⎪⎝⎭,故D 正确. 故选:AD.本题考查复数的概念、复数的运算以及复数的几何意义,注意复数(),z a bi a b R =+∈的虚部为b ,不是bi ,另外复数的除法运算是分子分母同乘以分母的共轭复数.26.BCD【分析】根据两个复数之间不能比较大小,得到C 、D 两项是错误的,根据复数的定义和复数模的概念,可以断定A 项正确,B 项错误,从而得到答案.【详解】因为两个复数之间只有等与不等,不能比较大小解析:BCD【分析】根据两个复数之间不能比较大小,得到C 、D 两项是错误的,根据复数的定义和复数模的概念,可以断定A 项正确,B 项错误,从而得到答案.【详解】因为两个复数之间只有等与不等,不能比较大小,所以C 、D 两项都不正确;当两个复数的模相等时,复数不一定相等, 比如11i i -=+,但是11i i -≠+,所以B 项是错误的;因为当两个复数相等时,模一定相等,所以A 项正确;故选:BCD.【点睛】该题考查的是有关复数的问题,涉及到的知识点有两个复数之间的关系,复数模的概念,属于基础题目.27.ABD【分析】根据复数的几何意义逐项判断后可得正确的选项.【详解】设复数,对于A ,,故A 正确.对于B ,复数对应的向量为,且对于平面内以原点为起点的任一向量,其对应的复数为,故复数集与解析:ABD【分析】根据复数的几何意义逐项判断后可得正确的选项.【详解】设复数(),z a bi a b R =+∈,对于A ,0z =≥,故A 正确.对于B ,复数z 对应的向量为(),OZ a b =,且对于平面内以原点为起点的任一向量(),m n α=,其对应的复数为m ni +, 故复数集与复平面内以原点为起点的所有向量组成的集合一一对应,故B 正确. 对于B ,复数z 对应的向量为(),OZ a b =,且对于平面内的任一向量(),m n α=,其对应的复数为m ni +,故复数集中的元素与复平面内以原点为起点的所有向量组成的集合中的元素是一一对应,故B 正确.对于C ,如果复数z 对应的点在第一象限,则与该复数对应的向量的终点不一定在第一象限,故C 错.对于D ,相等的向量的坐标一定是相同的,故它们对应的复数也相等,故D 正确. 故选:ABD .【点睛】本题考查复数的几何意义,注意复数(),z a bi a b R =+∈对应的向量的坐标为(),a b ,它与终点与起点的坐标的差有关,本题属于基础题.28.AB【分析】利用复数的模长运算及在复平面内对应的点位于第二象限求出 ,再验算每个选项得解.【详解】解:,且,复数在复平面内对应的点位于第二象限选项A:选项B: 的虚部是选项C:解析:AB【分析】利用复数2z =的模长运算及z a =+在复平面内对应的点位于第二象限求出a ,再验算每个选项得解.【详解】解:z a =+,且2z =224a +∴=,=1a ±复数z a =+在复平面内对应的点位于第二象限1a ∴=-选项A : 3323(1)(1)+3(1)+3())8-+=---+=选项B : 1z =-选项C : 1z =-的共轭复数为1z =--选项D : 222(1)(1)+2()2-+=--=--故选:AB .【点睛】本题考查复数的四则运算及共轭复数,考查运算求解能力.求解与复数概念相关问题的技巧:复数的分类、复数的相等、复数的模及共轭复数的概念都与复数的实部、虚部有关,所以解答与复数相关概念有关的问题时,需把所给复数化为代数形式,即()a bi a b R ∈+,的形式,再根据题意求解.29.CD【分析】利用配方法得出复数的实部和虚部的取值范围,结合复数的概念和几何意义可判断出各选项的正误,由此可得出结论.【详解】,,所以,复数对应的点可能在第一象限,也可能在第二象限,故A 错误 解析:CD【分析】利用配方法得出复数z 的实部和虚部的取值范围,结合复数的概念和几何意义可判断出各选项的正误,由此可得出结论.【详解】22549492532488t t t ⎛+⎫= ⎪⎝⎭+-->-,()2222110t t t ++=++>, 所以,复数z 对应的点可能在第一象限,也可能在第二象限,故A 错误;当222530220t t t t ⎧+-=⎨++≠⎩,即3t =-或12t =时,z 为纯虚数,故B 错误; 因为2220t t ++>恒成立,所以z 一定不为实数,故C 正确;由选项A 的分析知,z 对应的点在实轴的上方,所以z 对应的点在实轴的下方,故D 正确. 故选:CD.【点睛】本题考查复数的几何意义与复数的概念相关命题真假的判断,解题的关键就是求出复数虚部和实部的取值范围,考查计算能力与推理能力,属于中等题.30.BC【分析】根据纯虚数、共轭复数、复数的模、复数为实数等知识,选出正确选项.【详解】当时,,此时为纯虚数,A 错误;若z 的共轭复数为,且,则,因此,B 正确;由是实数,且知,z 是实数,C 正确;由解析:BC【分析】根据纯虚数、共轭复数、复数的模、复数为实数等知识,选出正确选项.【详解】当0a =时,1b =,此时z i 为纯虚数,A 错误;若z 的共轭复数为z ,且z z =,则a bi a bi +=-,因此0b =,B 正确;由||z 是实数,且||z z =知,z 是实数,C 正确;由1||2z =得2214a b +=,又1a b +=,因此28830a a -+=,64483320∆=-⨯⨯=-<,无解,即||z 不可以等于12,D 错误. 故选:BC【点睛】本小题主要考查复数的有关知识,属于基础题.。

高考数学复数习题及答案 百度文库

高考数学复数习题及答案 百度文库

一、复数选择题1.复数21i=+( ) A .1i --B .1i -+C .1i -D .1i + 2.已知复数1=-i z i ,其中i 为虚数单位,则||z =( )A .12BCD .23.若复数z 为纯虚数,且()373z i m i -=+,则实数m 的值为( )A .97- B .7 C .97 D .7-4.已知i 为虚数单位,则复数23i i -+的虚部是( ) A .35 B .35i - C .15- D .15i - 5.已知复数1z i i =+-(i 为虚数单位),则z =( )A .1B .iC iD i6.若复数z 满足()322i z i i -+=+,则复数z 的虚部为( ) A .35 B .35i - C .35 D .35i 7.若1m i i+-是纯虚数,则实数m 的值为( ).A .1-B .0C .1 D8.设复数z 满足方程4z z z z ⋅+⋅=,其中z 为复数z 的共轭复数,若z ,则z 为( )A .1B C .2 D .4 9.复数12i z i=+(i 为虚数单位)在复平面内对应的点位于( ) A .第一象限B .第二象限C .第三象限D .第四象限 10.已知复数z 的共轭复数212i z i -=+,i 是虚数单位,则复数z 的虚部是( ) A .1 B .-1 C .i D .i -11.已知i 为虚数单位,则43i i =-( )A .2655i +B .2655i -C .2655i -+D .2655i -- 12.复数12z i =-(其中i 为虚数单位),则3z i +=( )A .5BC .2D 13.设复数202011i z i+=-(其中i 为虚数单位),则z 在复平面内对应的点所在象限为( )A .第四象限B .第三象限C .第二象限D .第一象限14.设复数z 满足(1)2i z -=,则z =( )A .1B C D .2 15.若复数11i z i ,i 是虚数单位,则z =( ) A .0 B .12 C .1 D .2二、多选题16.i 是虚数单位,下列说法中正确的有( )A .若复数z 满足0z z ⋅=,则0z =B .若复数1z ,2z 满足1212z z z z +=-,则120z z =C .若复数()z a ai a R =+∈,则z 可能是纯虚数D .若复数z 满足234z i =+,则z 对应的点在第一象限或第三象限17.若复数351i z i -=-,则( )A .z =B .z 的实部与虚部之差为3C .4z i =+D .z 在复平面内对应的点位于第四象限18.(多选题)已知集合{},n M m m i n N ==∈,其中i 为虚数单位,则下列元素属于集合M 的是( )A .()()11i i -+B .11i i -+C .11i i +-D .()21i - 19.复数z 满足233232i z i i+⋅+=-,则下列说法正确的是( )A .z 的实部为3-B .z 的虚部为2C .32z i =-D .||z =20.下列说法正确的是( )A .若2z =,则4z z ⋅=B .若复数1z ,2z 满足1212z z z z +=-,则120z z =C .若复数z 的平方是纯虚数,则复数z 的实部和虛部相等D .“1a ≠”是“复数()()()211z a a i a R =-+-∈是虚数”的必要不充分条件 21.已知i 为虚数单位,复数322i z i +=-,则以下真命题的是( ) A .z 的共轭复数为4755i - B .z 的虚部为75i C .3z = D .z 在复平面内对应的点在第一象限22.已知复数1z =-+(i 为虚数单位),z 为z 的共轭复数,若复数z w z =,则下列结论正确的有( )A .w 在复平面内对应的点位于第二象限B .1w =C .w 的实部为12-D .w 23.已知复数1z i =+(其中i 为虚数单位),则以下说法正确的有( )A .复数z 的虚部为iB .z =C .复数z 的共轭复数1z i =-D .复数z 在复平面内对应的点在第一象限24.任何一个复数z a bi =+(其中a 、b R ∈,i 为虚数单位)都可以表示成:()cos sin z r i θθ=+的形式,通常称之为复数z 的三角形式.法国数学家棣莫弗发现:()()()n cos sin co i s s nn n z i n r i r n n N θθθθ+==+⎡⎤⎣∈⎦+,我们称这个结论为棣莫弗定理.根据以上信息,下列说法正确的是( )A .22z z =B .当1r =,3πθ=时,31z =C .当1r =,3πθ=时,122z =-D .当1r =,4πθ=时,若n 为偶数,则复数n z 为纯虚数25.已知复数12z =-+(其中i 为虚数单位),则以下结论正确的是( ) A .20z B .2z z = C .31z = D .1z =26.已知复数12ω=-,其中i 是虚数单位,则下列结论正确的是( )A .1ω=B .2ω的虚部为C .31ω=-D .1ω在复平面内对应的点在第四象限27.已知复数z 的共轭复数为z ,且1zi i =+,则下列结论正确的是( )A .1z +=B .z 虚部为i -C .202010102z =-D .2z z z +=28.对任意1z ,2z ,z C ∈,下列结论成立的是( )A .当m ,*n N ∈时,有m n m n z z z +=B .当1z ,2zC ∈时,若22120z z +=,则10z =且20z = C .互为共轭复数的两个复数的模相等,且22||||z z z z ==⋅D .12z z =的充要条件是12=z z29.设()()2225322z t t t t i =+-+++,t ∈R ,i 为虚数单位,则以下结论正确的是( )A .z 对应的点在第一象限B .z 一定不为纯虚数C .z 一定不为实数D .z 对应的点在实轴的下方 30.已知复数i z a b =+(a ,b ∈R ,i 为虚数单位),且1a b +=,下列命题正确的是( ) A .z 不可能为纯虚数B .若z 的共轭复数为z ,且z z =,则z 是实数C .若||z z =,则z 是实数D .||z 可以等于12【参考答案】***试卷处理标记,请不要删除一、复数选择题1.C【分析】根据复数的除法运算法则可得结果.【详解】.故选:C解析:C【分析】根据复数的除法运算法则可得结果.【详解】21i =+2(1)(1)(1)i i i -=+-2(1)12i i -=-. 故选:C2.B【分析】先利用复数的除法运算将化简,再利用模长公式即可求解.【详解】由于,则.故选:B解析:B【分析】 先利用复数的除法运算将1=-i z i 化简,再利用模长公式即可求解. 【详解】 由于()(1i)(1i)111(1i)222i i i i z i i ++====-+--+,则||2z ===. 故选:B3.B【分析】先求出,再解不等式组即得解.【详解】依题意,,因为复数为纯虚数,故,解得.故选:B【点睛】易错点睛:复数为纯虚数的充要条件是且,不要只写.本题不能只写出,还要写上.解析:B【分析】 先求出321795858m m z i -+=+,再解不等式组3210790m m -=⎧⎨+≠⎩即得解. 【详解】 依题意,()()()()3373321793737375858m i i m i m m z i i i i +++-+===+--+, 因为复数z 为纯虚数,故3210790m m -=⎧⎨+≠⎩,解得7m =. 故选:B【点睛】易错点睛:复数(,)z a bi a b R =+∈为纯虚数的充要条件是0a =且0b ≠,不要只写0b ≠.本题不能只写出790m +≠,还要写上3210m -=.4.A【分析】先由复数的除法运算化简复数,再由复数的概念,即可得出其虚部.【详解】因为,所以其虚部是.故选:A.解析:A【分析】 先由复数的除法运算化简复数23i i-+,再由复数的概念,即可得出其虚部. 【详解】 因为22(3)26133(3)(3)1055i i i i i i i i -----===--++-,所以其虚部是35. 故选:A.5.D【分析】先对化简,求出,从而可求出【详解】解:因为,所以,故选:D解析:D【分析】 先对1z i i =+-化简,求出z ,从而可求出z【详解】解:因为1z i i i i =+-==,所以z i =,故选:D 6.A【分析】由复数的除法法则和乘法法则计算出,再由复数的定义得结论.【详解】由题意,得,其虚部为,故选:A.解析:A【分析】由复数的除法法则和乘法法则计算出z ,再由复数的定义得结论.【详解】由题意,得()()()()()23343313343434552i i ii z i i i i i ----====-++-+, 其虚部为35, 故选:A. 7.C【分析】对复数进行化简根据实部为零,虚部不为零建立等量关系和不等关系即可得解.【详解】由题是纯虚数,为纯虚数,所以m=1.故选:C【点睛】此题考查复数的运算和概念辨析,关键在于熟解析:C【分析】对复数进行化简根据实部为零,虚部不为零建立等量关系和不等关系即可得解.【详解】由题1m i i+-是纯虚数, ()()()()()()21111111222m i i m m i i m m i m i i i i +++++++-===+--+为纯虚数, 所以m =1.故选:C【点睛】此题考查复数的运算和概念辨析,关键在于熟练掌握复数的运算法则.8.B【分析】由题意,设复数,根据共轭复数的概念,以及题中条件,即可得出结果.【详解】因为的实部为,所以可设复数,则其共轭复数为,又,所以由,可得,即,因此.故选:B.解析:B【分析】由题意,设复数(),z yi x R y R =∈∈,根据共轭复数的概念,以及题中条件,即可得出结果.【详解】因为z ,所以可设复数(),z yi x R y R =∈∈,则其共轭复数为z yi =,又z z =,所以由4z z z z ⋅+⋅=,可得()4z z z ⋅+=,即4z ⋅=,因此z =故选:B. 9.A【分析】对复数进行分母实数化,根据复数的几何意义可得结果.【详解】由,知在复平面内对应的点位于第一象限,故选:A.【点睛】本题主要考查了复数除法的运算以及复数的几何意义,属于基础题 解析:A【分析】对复数z 进行分母实数化,根据复数的几何意义可得结果.【详解】 由()()()122112121255i i i z i i i i -===+++-, 知在复平面内对应的点21,55⎛⎫ ⎪⎝⎭位于第一象限, 故选:A.【点睛】本题主要考查了复数除法的运算以及复数的几何意义,属于基础题.【分析】先化简,由此求得,进而求得的虚部.【详解】,所以,则的虚部为.故选:A解析:A【分析】 先化简z ,由此求得z ,进而求得z 的虚部.【详解】()()()()212251212125i i i i z i i i i ----====-++-, 所以z i ,则z 的虚部为1.故选:A11.C【分析】对的分子分母同乘以,再化简整理即可求解.【详解】,故选:C解析:C【分析】 对43i i-的分子分母同乘以3i +,再化简整理即可求解. 【详解】 ()()()434412263331055i i i i i i i i +-+===-+--+, 故选:C12.B【分析】首先求出,再根据复数的模的公式计算可得;【详解】解:因为,所以所以.故选:B.解析:B首先求出3z i +,再根据复数的模的公式计算可得;【详解】解:因为12z i =-,所以31231z i i i i +=-+=+所以3z i +==故选:B . 13.A【分析】根据复数的运算,先将化简,求出,再由复数的几何意义,即可得出结果.【详解】因为,所以,其在复平面内对应的点为,位于第四象限.故选:A.解析:A【分析】根据复数的运算,先将z 化简,求出z ,再由复数的几何意义,即可得出结果.【详解】 因为()()()()4202050550512111121111111i i i z i i i i i i i ++++======+-----+, 所以1z i =-,其在复平面内对应的点为()1,1-,位于第四象限.故选:A.14.B【分析】由复数除法求得,再由模的运算求得模.【详解】由题意,∴.故选:B .解析:B【分析】由复数除法求得z ,再由模的运算求得模.【详解】由题意22(1)11(1)(1)i z i i i i +===+--+,∴z == 故选:B .15.C【分析】由复数除法求出,再由模计算.【详解】由已知,所以.故选:C .解析:C【分析】由复数除法求出z ,再由模计算.【详解】 由已知21(1)21(1)(1)2i i i z i i i i ---====-++-, 所以1z i =-=.故选:C .二、多选题16.AD【分析】A 选项,设出复数,根据共轭复数的相关计算,即可求出结果;B 选项,举出反例,根据复数模的计算公式,即可判断出结果;C 选项,根据纯虚数的定义,可判断出结果;D 选项,设出复数,根据题解析:AD【分析】A 选项,设出复数,根据共轭复数的相关计算,即可求出结果;B 选项,举出反例,根据复数模的计算公式,即可判断出结果;C 选项,根据纯虚数的定义,可判断出结果;D 选项,设出复数,根据题中条件,求出复数,由几何意义,即可判断出结果.【详解】A 选项,设(),z a bi a b R =+∈,则其共轭复数为(),z a bi a b R =-∈, 则220z z a b ⋅=+=,所以0a b ,即0z =;A 正确;B 选项,若11z =,2z i =,满足1212z z z z +=-,但12z z i =不为0;B 错;C 选项,若复数()z a ai a R =+∈表示纯虚数,需要实部为0,即0a =,但此时复数0z =表示实数,故C 错;D 选项,设(),z a bi a b R =+∈,则()2222234z a bi a abi b i =+=+-=+,所以22324a b ab ⎧-=⎨=⎩,解得21a b =⎧⎨=⎩或21a b =-⎧⎨=-⎩,则2z i =+或2z i =--, 所以其对应的点分别为()2,1或()2,1--,所以对应点的在第一象限或第三象限;D 正确. 故选:AD.17.AD【分析】根据复数的运算先求出复数z ,再根据定义、模、几何意义即可求出.【详解】解:,,z 的实部为4,虚部为,则相差5,z 对应的坐标为,故z 在复平面内对应的点位于第四象限,所以AD 正解析:AD【分析】根据复数的运算先求出复数z ,再根据定义、模、几何意义即可求出.【详解】 解:()()()()351358241112i i i i z i i i i -+--====---+,z ∴==z 的实部为4,虚部为1-,则相差5,z 对应的坐标为()41-,,故z 在复平面内对应的点位于第四象限,所以AD 正确, 故选:AD.18.BC【分析】根据集合求出集合内部的元素,再对四个选项依次化简即可得出选项.【详解】根据题意,中,时,;时,;时,;时,,.选项A 中,;选项B 中,;选项C 中,;选项D 中,.解析:BC【分析】根据集合求出集合内部的元素,再对四个选项依次化简即可得出选项.【详解】 根据题意,{},n M m m i n N ==∈中, ()4n k k N =∈时,1n i =;()41n k k N =+∈时,n i i =;()42n k k N =+∈时,1n i =-;()43n k k N =+∈时,n i i =-,{}1,1,,M i i ∴=--.选项A 中,()()112i i M -+=∉;选项B 中,()()()211111i i i i i i M --==-+-∈+; 选项C 中,()()()211111i i i i i i M ++==-+∈-; 选项D 中,()212i i M -=-∉.故选:BC.【点睛】此题考查复数的基本运算,涉及复数的乘方和乘法除法运算,准确计算才能得解. 19.AD【分析】由已知可求出,进而可求出实部、虚部、共轭复数、复数的模,进而可选出正确答案.【详解】解:由知,,即,所以的实部为,A 正确;的虚部为-2,B 错误;,C 错误;,D 正确;故选:A解析:AD【分析】由已知可求出32z i =--,进而可求出实部、虚部、共轭复数、复数的模,进而可选出正确答案.【详解】解:由233232i z i i +⋅+=-知,232332i z i i +⋅=--,即()()()2233232232313i i i z i i ---=-=+ 39263213i i --==--,所以z 的实部为3-,A 正确;z 的虚部为-2,B 错误;32z i =-+,C 错误;||z ==D 正确; 故选:AD.【点睛】 本题考查了复数的除法运算,考查了复数的概念,考查了共轭复数的求解,考查了复数模的求解,属于基础题.20.AD【分析】由求得判断A ;设出,,证明在满足时,不一定有判断B ;举例说明C 错误;由充分必要条件的判定说明D 正确.【详解】若,则,故A 正确;设,由,可得则,而不一定为0,故B 错误; 当时解析:AD【分析】由z 求得z z ⋅判断A ;设出1z ,2z ,证明在满足1212z z z z +=-时,不一定有120z z =判断B ;举例说明C 错误;由充分必要条件的判定说明D 正确.【详解】 若2z =,则24z z z ⋅==,故A 正确;设()11111,z a bi a b R =+∈,()22222,z a b i a b R =+∈由1212z z z z +=-,可得()()()()222222121212121212z z a a b b z z a a b b +=+++=-=-+-则12120a a b b +=,而()()121122121212121212122z z a bi a b i a a bb a b i b a i a a a b i b a i =++=-++=++不一定为0,故B 错误;当1z i =-时22z i =-为纯虚数,其实部和虚部不相等,故C 错误;若复数()()()211z a a i a R =-+-∈是虚数,则210a -≠,即1a ≠± 所以“1a ≠”是“复数()()()211z a a i a R =-+-∈是虚数”的必要不充分条件,故D 正确;故选:AD【点睛】本题考查的是复数的相关知识,考查了学生对基础知识的掌握情况,属于中档题.21.AD【分析】先利用复数的除法、乘法计算出,再逐项判断后可得正确的选项.【详解】,故,故A 正确.的虚部为,故B 错,,故C 错,在复平面内对应的点为,故D 正确.故选:AD.【点睛】本题考解析:AD【分析】先利用复数的除法、乘法计算出z ,再逐项判断后可得正确的选项.【详解】()()32232474725555i i i i i z i ++++====+-,故4755i z =-,故A 正确.z 的虚部为75,故B 错,355z ==≠,故C 错, z 在复平面内对应的点为47,55⎛⎫ ⎪⎝⎭,故D 正确. 故选:AD.【点睛】本题考查复数的概念、复数的运算以及复数的几何意义,注意复数(),z a bi a b R =+∈的虚部为b ,不是bi ,另外复数的除法运算是分子分母同乘以分母的共轭复数.22.ABC【分析】对选项求出,再判断得解;对选项,求出再判断得解;对选项复数的实部为,判断得解;对选项,的虚部为,判断得解.【详解】对选项由题得.所以复数对应的点为,在第二象限,所以选项正确解析:ABC【分析】对选项,A 求出1=2w -+,再判断得解;对选项B ,求出1w =再判断得解;对选项,C 复数w 的实部为12-,判断得解;对选项D ,w 判断得解. 【详解】对选项,A 由题得1,z =-221=422w -+∴===-+.所以复数w 对应的点为1(2-,在第二象限,所以选项A 正确;对选项B ,因为1w ==,所以选项B 正确; 对选项,C 复数w 的实部为12-,所以选项C 正确;对选项D ,w 的虚部为2,所以选项D 错误. 故选:ABC【点睛】 本题主要考查复数的运算和共轭复数,考查复数的模的计算,考查复数的几何意义,考查复数的实部和虚部的概念,意在考查学生对这些知识的理解掌握水平.23.BCD【分析】根据复数的概念判定A 错,根据复数模的计算公式判断B 正确,根据共轭复数的概念判断C 正确,根据复数的几何意义判断D 正确.【详解】因为复数,所以其虚部为,即A 错误;,故B 正确;解析:BCD【分析】根据复数的概念判定A 错,根据复数模的计算公式判断B 正确,根据共轭复数的概念判断C 正确,根据复数的几何意义判断D 正确.【详解】因为复数1z i =+,所以其虚部为1,即A 错误;z ==B 正确;复数z 的共轭复数1z i =-,故C 正确;复数z 在复平面内对应的点为()1,1,显然位于第一象限,故D 正确.故选:BCD.【点睛】本题主要考查复数的概念,复数的模,复数的几何意义,以及共轭复数的概念,属于基础题型.24.AC【分析】利用复数的三角形式与模长公式可判断A 选项的正误;利用复数的棣莫弗定理可判断B 选项的正误;计算出复数,可判断C 选项的正误;计算出,可判断D 选项的正误.【详解】对于A 选项,,则,可得解析:AC【分析】利用复数的三角形式与模长公式可判断A 选项的正误;利用复数的棣莫弗定理可判断B 选项的正误;计算出复数z ,可判断C 选项的正误;计算出4z ,可判断D 选项的正误.【详解】对于A 选项,()cos sin z r i θθ=+,则()22cos2sin 2z r i θθ=+,可得()222cos 2sin 2z r i r θθ=+=,()222cos sin z r i r θθ=+=,A 选项正确; 对于B 选项,当1r =,3πθ=时,()33cos sin cos3sin3cos sin 1z i i i θθθθππ=+=+=+=-,B 选项错误;对于C 选项,当1r =,3πθ=时,1cos sin 3322z i ππ=+=+,则122z =-,C 选项正确;对于D 选项,()cos sin cos sin cos sin 44n n n n z i n i n i ππθθθθ=+=+=+, 取4n =,则n 为偶数,则4cos sin 1z i ππ=+=-不是纯虚数,D 选项错误.故选:AC.【点睛】本题考查复数的乘方运算,考查了复数的模长、共轭复数的运算,考查计算能力,属于中等题.25.BCD【分析】利用复数的运算法则直接求解.【详解】解:复数(其中为虚数单位),,故错误;,故正确;,故正确;.故正确.故选:.【点睛】本题考查命题真假的判断,考查复数的运算法则解析:BCD【分析】利用复数的运算法则直接求解.【详解】解:复数12z =-(其中i 为虚数单位),2131442z ∴=-=--,故A 错误; 2z z ∴=,故B 正确;31113()()12244z =--+=+=,故C 正确;||1z ==.故D 正确. 故选:BCD .【点睛】本题考查命题真假的判断,考查复数的运算法则等基础知识,考查运算求解能力,属于基础题.26.AB【分析】求得、的虚部、、对应点所在的象限,由此判断正确选项.【详解】依题意,所以A 选项正确;,虚部为,所以B 选项正确;,所以C 选项错误;,对应点为,在第三象限,故D 选项错误.故选解析:AB【分析】求得ω、2ω的虚部、3ω、1ω对应点所在的象限,由此判断正确选项. 【详解】依题意1ω==,所以A 选项正确;2211312242422ω⎛⎫=-+=--=-- ⎪ ⎪⎝⎭,虚部为,所以B 选项正确;22321111222ωωω⎛⎫⎛⎫⎛⎫=⋅=--⋅-+=-+= ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,所以C 选项错误;2211112222122222ω----====--⎛⎫-+ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,对应点为1,2⎛- ⎝⎭,在第三象限,故D 选项错误.故选:AB【点睛】本小题主要考查复数的概念和运算,考查复数对应点所在象限,属于基础题.27.ACD【分析】先利用题目条件可求得,再根据复数的模的计算公式,以及复数的有关概念和复数的四则运算法则即可判断各选项的真假.【详解】由可得,,所以,虚部为;因为,所以,.故选:ACD .【解析:ACD【分析】先利用题目条件可求得z ,再根据复数的模的计算公式,以及复数的有关概念和复数的四则运算法则即可判断各选项的真假.【详解】由1zi i =+可得,11i z i i+==-,所以12z i +=-==,z 虚部为1-;因为2422,2z i z =-=-,所以()5052020410102z z ==-,2211z z i i i z +=-++=-=.故选:ACD .【点睛】 本题主要考查复数的有关概念的理解和运用,复数的模的计算公式的应用,复数的四则运算法则的应用,考查学生的数学运算能力,属于基础题.28.AC【分析】根据复数乘法的运算律和复数的模及共轭复数的概念可判断出答案A 和C 正确;C 中可取,进行判断;D 中的必要不充分条件是.【详解】解:由复数乘法的运算律知,A 正确;取,;,满足,但且不解析:AC【分析】根据复数乘法的运算律和复数的模及共轭复数的概念可判断出答案A 和C 正确;C 中可取11z =,2z i =进行判断;D 中12z z =的必要不充分条件是12=z z .【详解】解:由复数乘法的运算律知,A 正确;取11z =,;2z i =,满足22120z z +=,但10z =且20z =不成立,B 错误; 由复数的模及共轭复数的概念知结论成立,C 正确;由12z z =能推出12=z z ,但12||||z z =推不出12z z =,因此12z z =的必要不充分条件是12=z z ,D 错误. 故选:AC【点睛】本题主要考查复数乘法的运算律和复数的基本知识以及共轭复数的概念,属于基础题.29.CD【分析】利用配方法得出复数的实部和虚部的取值范围,结合复数的概念和几何意义可判断出各选项的正误,由此可得出结论.【详解】,,所以,复数对应的点可能在第一象限,也可能在第二象限,故A 错误 解析:CD【分析】利用配方法得出复数z 的实部和虚部的取值范围,结合复数的概念和几何意义可判断出各选项的正误,由此可得出结论.【详解】22549492532488t t t ⎛+⎫= ⎪⎝⎭+-->-,()2222110t t t ++=++>, 所以,复数z 对应的点可能在第一象限,也可能在第二象限,故A 错误;当222530220t t t t ⎧+-=⎨++≠⎩,即3t =-或12t =时,z 为纯虚数,故B 错误; 因为2220t t ++>恒成立,所以z 一定不为实数,故C 正确;由选项A 的分析知,z 对应的点在实轴的上方,所以z 对应的点在实轴的下方,故D 正确. 故选:CD.【点睛】本题考查复数的几何意义与复数的概念相关命题真假的判断,解题的关键就是求出复数虚部和实部的取值范围,考查计算能力与推理能力,属于中等题.30.BC【分析】根据纯虚数、共轭复数、复数的模、复数为实数等知识,选出正确选项.【详解】当时,,此时为纯虚数,A 错误;若z 的共轭复数为,且,则,因此,B 正确;由是实数,且知,z 是实数,C 正确;由解析:BC【分析】根据纯虚数、共轭复数、复数的模、复数为实数等知识,选出正确选项.【详解】当0a =时,1b =,此时z i 为纯虚数,A 错误;若z 的共轭复数为z ,且z z =,则a bi a bi +=-,因此0b =,B 正确;由||z 是实数,且||z z =知,z 是实数,C 正确;由1||2z =得2214a b +=,又1a b +=,因此28830a a -+=,64483320∆=-⨯⨯=-<,无解,即||z 不可以等于12,D 错误. 故选:BC【点睛】本小题主要考查复数的有关知识,属于基础题.。

复数—(2018-2022)高考真题汇编

复数—(2018-2022)高考真题汇编

复数—(2018-2022)高考真题汇编一、单选题(共35题;共70分)1.(2分)(2022·浙江)已知a,b∈R,a+3i=(b+i)i(i为虚数单位),则()A.a=1,b=−3B.a=−1,b=3C.a=−1,b=−3D.a=1,b=3【答案】B【解析】【解答】由题意得a+3i=bi−1,由复数相等定义,知a=−1,b=3.故答案为:B【分析】利用复数的乘法运算化简,再利用复数的相等求解.2.(2分)(2022·新高考Ⅱ卷)(2+2i)(1−2i)=()A.−2+4i B.−2−4i C.6+2i D.6−2i【答案】D【解析】【解答】(2+2i)(1−2i)=2+4−4i+2i=6−2i,故答案为:D【分析】根据复数代数形式的乘法法则即可求解.3.(2分)(2022·全国乙卷)设(1+2i)a+b=2i,其中a,b为实数,则()A.a=1,b=−1B.a=1,b=1C.a=−1,b=1D.a=−1,b=−1【答案】A【解析】【解答】易得(a+b)+2ai=2i,根据复数相等的充要条件可得a+b=0,2a=2,解得:a=1,b=−1.故选:A【分析】根据复数代数形式的乘法运算法则以及复数相等的充要条件即可求解.4.(2分)(2022·全国甲卷)若z=−1+√3i,则zzz̅−1=()A.−1+√3i B.−1−√3i C.−13+√33iD.−13−√33i【答案】C【解析】【解答】解:由题意得, z =−1−√3i ,则zz =(−1+√3i)(−1−√3i)=4 则z zz−1=−1+√3i 3=−13+√33i .故选:C【分析】由共轭复数的概念及复数的运算即可得解.5.(2分)(2022·全国甲卷)若 z =1+i .则 |iz +3z̅|= ( )A .4√5B .4√2C .2√5D .2√2【答案】D【解析】【解答】解:因为z=1+i ,所以iz +3z =i (1+i )+3(1−i )=2−2i ,所以 |iz +3z|=√4+4=2√2 . 故选:D【分析】根据复数代数形式的运算法则,共轭复数的概念先求得iz +3z =2−2i ,再由复数的求模公式即可求出.6.(2分)(2022·全国乙卷)已知 z =1−2i ,且 z +az̅+b =0 ,其中a ,b 为实数,则( )A .a =1,b =−2B .a =−1,b =2C .a =1,b =2D .a =−1,b =−2【答案】A【解析】【解答】易知 z̅=1+2i 所以 z +az̅+b =1−2i +a(1+2i)+b =(1+a +b)+(2a −2)i 由 z +az̅+b =0 ,得 {1+a +b =02a −2=0,即 {a =1b =−2 . 故选:A【分析】先求得 z̅ ,再代入计算,由实部与虚部都为零解方程组即可. 7.(2分)(2022·北京)若复数 z 满足 i ⋅z =3−4i ,则 |z|= ( )A .1B .5C .7D .25【答案】B【解析】【解答】由已知条件可知 z =3−4ii=−4−3i ,所以 |z|=√(−4)2+(−3)2=5 . 故答案为:B【分析】根据复数的代数运算以及模长公式,进行计算即可.8.(2分)(2022·新高考Ⅱ卷)若i(1−z)=1,则z+z̅=()A.-2B.-1C.1D.2【答案】D【解析】【解答】解:由题意得,z=1−1i=1−ii2=1+i,则z̅=1−i,则z+z̅=2,故选:D【分析】先由复数的四则运算,求得z,z̅,再求z+z̅即可.9.(2分)(2021·新高考Ⅱ卷)复数2−i1−3i在复平面内对应的点所在的象限为()A.第一象限B.第二象限C.第三象限D.第四象限【答案】A【解析】【解答】解:2−i1−3i=(2−i)(1+3i)(1−3i)(1+3i)=5+5i10=12+12i,表示的点为(12,12),位于第一象限.故答案为:A【分析】根据复数的运算法则,及复数的几何意义求解即可10.(2分)(2021·北京)在复平面内,复数z满足(1−i)z=2,则z=()A.2+i B.2−i C.1−i D.1+i 【答案】D【解析】【解答】解:z=21−i=2(1+i)(1−i)(1+i)=1+i,故答案为:D【分析】根据复数的运算法则直接求解即可.11.(2分)(2021·浙江)已知a∈R,(1+ai)i=3+i,(i为虚数单位),则a=()A.-1B.1C.-3D.3【答案】C【解析】【解答】因为(1+ai)i=3+i,所以1+ai=3+ii=3i−1i·i=1−3i利用复数相等的充分必要条件可得:a=−3.故答案为:C.【分析】根据复数相等的条件,即可求得a的值。

高考数学真题题型分类解析专题专题02 复数

高考数学真题题型分类解析专题专题02 复数
则所求复数对应的点为 ( 6, 8) ,位于第一象限. 故选:A.
一、复数的概念
( ) 叫虚数单位,满足 ,当 时, . 1 i
i2 = −1 k ∈ Z
i 4k = 1, i 4 k +1 = i, i 4k + 2 = −1, i 4k +3 = −i
(2)形如 a + bi(a, b∈ R) 的数叫复数,记作 a +bi∈C .
高考数学真题题型分类解析 专题 02 复数
命题解读
考向
高考对复数的考查,重点是复数的运 共轭复数、复数的除法运算
算、概念、复数的模、复数的几何意义 等,难度较低.
复数的乘法运算 复数的几何意义
复数的模
考查统计 2022·新高考Ⅰ卷,2 2023·新高考Ⅰ卷,2 2024 新高考Ⅰ卷,2 2022·新高考Ⅱ卷,2 2023 新高考Ⅱ卷,1 2024·新高考Ⅱ卷,1
综上所述,无论方程的判别式b2 −4ac 的符号如何,韦达定理都成立,于是韦达定理能被推广到复数根的
情况,即实系数一元二次方程ax2 +bx + c = 0( a 、b 、c∈ R 且a ≠ 0 )的两个根与系数满足关系
, x1
+
x2
=

b a
x1 x2
=
c a
4 / 11
一、单选题
1.(2024·安徽芜湖·三模)已知复数
=
(1− i)2
−2i
=
= −1− i .
−2i
故选:D
5.(2024·山东德州·三模)已知复数 z 满足: z − i(2 + z) = 0 ,则 z = ( )
. . . . A −1− i B −1+ i C 1+ i D 1− i 【答案】B

(完整word版)高考真题:复数

(完整word版)高考真题:复数

高考真题:复数一、单选题1i (A )1+i (B )1−i (C )−1+i (D )−1−i2.若复数z 满足232i,z z +=- 其中i 为虚数单位,则z=(A )1+2i (B )1-2i (C )12i -+ (D )12i --3.设i 为虚数单位,则复数(1+i )2=(A )0 (B )2 (C )2i (D )2+2i4.设i 为虚数单位,则6(i)x +的展开式中含x 4的项为 (A )-15x 4 (B )15x 4 (C )-20i x 4 (D )20i x 45 (A )i (B )1+i (C )i - (D )1i -6.若43i z =+,则(A )1 (B )1- (C (D 7.若z=1+2i ,则41i zz =- A . 1 B . −1 C . i D . −i8.设复数z 满足3z i i +=-,则z =A . 12i -+B . 12i -C . 32i +D . 32i -9.已知()()31z m m i =++-在复平面内对应的点在第四象限,则实数m 的取值范围是A . ()31-,B . ()13-, C . ()1,+∞ D . ()3-∞-, 10.设(1+2i)(a +i)的实部与虚部相等,其中a 为实数,则a =( )A . −3B . −2C . 2D . 311.设(1i)1i x y +=+,其中x ,y(A )1 (B (C (D )212.(2017高考新课标III,理3)设复数z 满足(1+i)z =2i ,则∣z ∣=A . 12B . √22C . √2D . 213.若复数(1−i )(a +i )在复平面内对应的点在第二象限,则实数a 的取值范围是A . (−∞,1)B . (−∞,−1)C . (1,+∞)D . (−1,+∞)14.已知i 是虚数单位,若复数z 满足i 1i z =+,则2z =A . -2iB . 2iC . -2D . 215.若复数(1–i )(a +i )在复平面内对应的点在第二象限,则实数a 的取值范围是A . (–∞,1)B . (–∞,–1)C . (1,+∞)D . (–1,+∞)16.已知R a ∈, i 是虚数单位,若z a =, 4z z ⋅=,则a =()A . 1或1-B . 或C .D . 17.3+i 1+i =( )A . 1+2iB . 1−2iC . 2+iD . 2−i18.,2017新课标全国卷II 文科)(1+i )(2+i )=A . 1−iB . 1+3iC . 3+iD . 3+3i19.复平面内表示复数z=i(–2+i)的点位于A . 第一象限B . 第二象限C . 第三象限D . 第四象限20.设有下面四个命题p 1:若复数z 满足1z ∈R ,则z ∈R ,p 2:若复数z 满足z 2∈R ,则z ∈R ,p 3:若复数z 1,z 2满足z 1z 2∈R ,则z 1=z 2,p 4:若复数z ∈R ,则z̅∈R .其中的真命题为A . p 1,p 3B . p 1,p 4C . p 2,p 3D . p 2,p 421.下列各式的运算结果为纯虚数的是A . i(1+i)2B . i 2(1−i)C . (1+i)2D . i(1+i)二、填空题22,其中i 为虚数单位,则z 的虚部等于______________________.23.已知,a b ∈R ,i 是虚数单位,若(1+i )(1-bi )=a _______. 24.设a ∈R ,若复数(1i)(i)a ++在复平面内对应的点位于实轴上,则a =_______________.25.已知a R ∈,i 为虚数单位,若2a ii -+为实数,则a 的值为__________.参考答案1.B【来源】2016年全国普通高等学校招生统一考试文科数学(山东卷精编版)【解析】B. 2.B【来源】2016年全国普通高等学校招生统一考试理科数学(山东卷精编版)【解析】试题分析:设i z a b =+,则23i 32i z z a b +=+=-,故2,1-==b a ,则12i z =-,选B.3.C【来源】2016年全国普通高等学校招生统一考试文科数学(四川卷精编版)试题分析:22(1i)12i i 2i +=++=,故选C.【答案】A【来源】2016年全国普通高等学校招生统一考试理科数学(四川卷精编版)【解析】 试题分析:二项式6(i)x +的展开式的通项为616C i r r r r T x -+=,令64r -=,则2r =,故展开式中含4x 的项为24246C i 15x x =-,故选A.5.A【来源】2016年全国普通高等学校招生统一考试文科数学(北京卷精编版)【解析】A. 【考点】复数运算【名师点睛】复数代数形式的四则运算的法则是进行复数运算的理论依据,加减运算类似于多项式的合并同类项,乘法法则类似于多项式的乘法法则,除法运算则先将除式写成分式的形式,再将分母实数化.6.D【来源】2016年全国普通高等学校招生统一考试文科数学(新课标3卷精编版)【解析】D . 【考点】复数的运算、共轭复数、复数的模 【名师点睛】复数的加、减法运算中,可以从形式上理解为关于虚数单位“i ”的多项式合并同类项,复数的乘法与多项式的乘法相类似,只是在结果中把2i 换成−1.复数除法可类比实数运算的分母有理化.复数加、减法的几何意义可依平面向量的加、减法的几何意义进行理解.7.C【来源】2016年全国普通高等学校招生统一考试理科数学(新课标3卷精编版)【解析】试题分析: ()()44112121i i i zz i i ==-+--,故选C . 【考点】复数的运算、共轭复数.【举一反三】复数的加、减法运算中,可以从形式上理解为关于虚数单位“i ”的多项式合并同类项,复数的乘法与多项式的乘法相类似,只是在结果中把2i 换成−1.复数除法可类比实数运算的分母有理化.复数加、减法的几何意义可依照平面向量的加、减法的几何意义进行理解. 视频 8.C【来源】2016年全国普通高等学校招生统一考试文科数学(新课标2卷精编版)【解析】试题分析:由i 3i z +=-得32i z =-,所以32i z =+,故选C.【考点】 复数的运算,共轭复数【名师点睛】复数(),a bi a b R +∈的共轭复数是(),a bi a b R -∈,据此先化简再计算即可.视频9.A【来源】2016年全国普通高等学校招生统一考试理科数学(新课标2卷精编版)【解析】试题分析:要使复数z 对应的点在第四象限,应满足30{10m m +>-<,解得31m -<<,故选A.【考点】 复数的几何意义 【名师点睛】复数的分类及对应点的位置问题都可以转化为复数的实部与虚部应该满足的条件问题,只需把复数化为代数形式,列出实部和虚部满足的方程(不等式)组即可. 复数z =a +bi 复平面内的点Z (a ,b )(a ,b∈R ).复数z =a +bi (a ,b ∈R )平面向量OZ uuu r . 视频 10.A 【来源】2016年全国普通高等学校招生统一考试文科数学(新课标1卷精编版)【解析】试题分析:(1+2i)(a +i)=a −2+(1+2a)i ,由已知,得,解得,选A.【考点】复数的概念及复数的乘法运算【名师点睛】复数题也是每年高考的必考内容,一般以客观题的形式出现,属得分题.高考中考查频率较高的内容有:复数相等、复数的几何意义、共轭复数、复数的模及复数的乘除运算.这类问题一般难度不大,但容易出现运算错误,特别是i 2=−1中的负号易忽略,所以做复数题时要注意运算的准确性.11.B【来源】2016年全国普通高等学校招生统一考试理科数学(新课标1卷精编版)【解析】试题分析:因为(1i)=1+i,x y +所以故选B.【考点】复数运算【名师点睛】复数题也是每年高考的必考内容,一般以客观题的形式出现,属得分题.高考中考查频率较高的内容有:复数相等、复数的几何意义、共轭复数、复数的模及复数的乘除运算.这类问题一般难度不大,但容易出现运算错误,特别是2i 1=-中的负号易忽略,所以做复数题时要注意运算的准确性.12.C【来源】2017年全国普通高等学校招生统一考试理科数学(新课标3卷精编版)【解析】由题意可得z =2i 1+i ,由复数求模的法则可得|z 1z 2|=|z 1||z 1|,则|z |=|2i ||1+i |=√2=√2.故选C.【名师点睛】共轭与模是复数的重要性质,运算性质有:(1)z 1±z 2=z 1±z 2,(2)z 1×z 2=z 1×z 2;(3)z ⋅z̅=|z |2=|z̅|2,(4)||z 1|−|z 2||≤|z 1±z 2|≤|z 1|+|z 2|,(5)|z 1z 2|=|z 1|×|z 2|,(6)|z 1z 2|=|z 1||z 1|. 13.B【来源】2017年全国普通高等学校招生统一考试文科数学(北京卷精编版)【解析】试题分析:设z =(1−i )(a +i )=(a +1)+(1−a )i ,因为复数对应的点在第二象限,所以{a +1<01−a >0,解得:a <−1,故选B. 14.A【来源】2017年全国普通高等学校招生统一考试文科数学(山东卷精编版)【解析】由i 1i z =+得()()22i 1i z =+,即22i z -=,所以22i z =-,故选A. 【名师点睛】复数代数形式的加减乘除运算的法则是进行复数运算的理论依据,加减运算类似于多项式的合并同类项,乘法法则类似于多项式乘法法则,除法运算则先将除式写成分式的形式,再将分母实数化.注意下面结论的灵活运用:(1)(1±i)2∈±2i∈(2)∈i,∈∈i.15.B 【来源】2017年全国普通高等学校招生统一考试理科数学(北京卷精编版)【解析】试题分析:设()()()()1i i 11i z a a a =-+=++-,因为复数对应的点在第二象限,所以10{ 10a a +<->,解得: 1a <-,故选B.【考点】复数的运算【名师点睛】复数的分类及对应点的位置问题都可以转化为复数的实部与虚部应该满足的条件问题,只需把复数化为代数形式,列出实部和虚部满足的方程(不等式)组即可.复数z =a +b i 复平面内的点Z (a ,b )(a ,b ∈R).复数z =a +b i(a ,b ∈R) 平面向量OZ uuu v .16.A【来源】【全国百强校】河北省曲周县第一中学2016-2017学年高二下学期期末考试数学(理)试题【解析】由,4z a z z =⋅=得234a +=,所以1a =±,故选A.【名师点睛】复数(),a bi a b R +∈的共轭复数是(),a bi a b R -∈,据此结合已知条件,求得a 的方程即可.17.D【来源】江西省赣州厚德外国语学校2018届高三上学期第一次阶段测试数学(理)试题【解析】3+i 1+i =(3+i)(1−i)(1+i)(1−i)=3−3i+i+11+1=4−2i 2=2−i故选D18.B【来源】2017年全国普通高等学校招生统一考试文科数学(新课标2卷精编版)【解析】由题意(1+i )(2+i )=2+3i +i 2=1+3i ,故选B. 点睛:首先对于复数的四则运算,要切实掌握其运算技巧和常规思路,如(a +b i )(c +d i )=(ac −bd)+ (ad +bc)i (a,b,c,d ∈R). 其次要熟悉复数相关基本概念,如复数a +b i (a,b ∈R)的实部为a 、虚部为b 、模为√a 2+b 2、对应点为(a,b)、共轭复数为a −b i .19.C【来源】2017年全国普通高等学校招生统一考试文科数学(新课标3卷精编版)【解析】()i 2i 12i z =-+=--,则表示复数()i 2i z =-+的点位于第三象限. 所以选C.【名师点睛】对于复数的四则运算,首先要切实掌握其运算技巧和常规思路,如()()()()()i i i ,,,a b c d ac bd ad bc a b c d R ++=-++∈.其次要熟悉复数的相关基本概念,如复数()i ,a b a b R +∈的实部为a 、虚部为b 、对应的点为(),a b 、共轭复数为i.a b -20.B【来源】2017年全国普通高等学校招生统一考试理科数学(新课标1卷精编版)【解析】令z =a +b i (a,b ∈R),则由1z =1a+b i =a−b ia 2+b 2∈R 得b =0,所以z ∈R ,故p 1正确;当z =i 时,因为z 2=i 2=−1∈R ,而z =i ∉R 知,故p 2不正确;当z 1=z 2=i 时,满足z 1⋅z 2=−1∈R ,但z 1≠z 2,故p 3不正确;对于p 4,因为实数的共轭复数是它本身,也属于实数,故p 4正确,故选B. 点睛:分式形式的复数,分子、分母同乘以分母的共轭复数,化简成z =a +b i (a,b ∈R)的形式进行判断,共轭复数只需实部不变,虚部变为原来的相反数即可.21.C【来源】2017年全国普通高等学校招生统一考试文科数学(新课标1卷精编版)【解析】2i 1+i)i 2i=-2,=⋅( ()2i 1i 1i -=-+ , 2(1i)2i += , ()i 1i 1i +=-+ ,所以选C.22.-3【来源】2016年全国普通高等学校招生统一考试文科数学(上海卷精编版)【解析】z 的虚部等于−3. 【考点】复数的运算、复数的概念【名师点睛】本题主要考查复数的运算及复数的概念,是一道基础题目.从历年高考题目来看,复数题目往往不难,有时运算与概念、复数的几何意义综合考查,也是考生必定得分的题目之一.23.2【来源】2016年全国普通高等学校招生统一考试理科数学(天津卷精编版)【解析】试题分析:由(1i)(1i)1(1)i b b b a +-=++-=,可得110b a b +=⎧⎨-=⎩,所以21a b =⎧⎨=⎩故答案为2.【考点】复数相等【名师点睛】本题重点考查复数的基本运算和复数的概念,属于基本题.首先对于复数的四则运算,要切实掌握其运算技巧和常规思路,如答案第7页,总7页 i i i()(a+b )(c+d )=(ac bd)+(ad +bc)a,b,c,d -∈R ,其次要熟悉复数的相关基本概念,如复数i(,)a+b a b ∈R 的实部为a 、虚部为b 、模为、共轭复数为i a b -.24.1-【来源】2016年全国普通高等学校招生统一考试理科数学(北京卷精编版)【解析】 试题分析:由题意得(1i)(i)1(1)i 1a a a a ++=-++∈⇒=-R .【考点】复数运算【名师点睛】复数代数形式的四则运算的法则是进行复数运算的理论依据,加减运算类似于多项式的合并同类项,乘法法则类似于多项式的乘法法则,除法运算则先将除式写成分式的形式,再将分母实数化.25.-2【来源】2017年全国普通高等学校招生统一考试理科数学(天津卷精编版) 【解析】()()()()()()2212212222555a i i a a i a i a a i i i i ----+--+===-++-为实数, 则20,25a a +==-. 【考点】 复数的分类【名师点睛】复数的分类及对应点的位置问题都可以转化为复数的实部与虚部应该满足的条件问题,只需把复数化为代数形式,列出实部和虚部满足的方程(不等式)组即可. 复数(),z a bi a b R =+∈,当0b ≠时, z 为虚数,当0b =时, z 为实数,当0,0a b =≠时, z 为纯虚数.。

(完整)人教版最新高考数学复数习题及答案Word版.docx

(完整)人教版最新高考数学复数习题及答案Word版.docx

高考复习试卷 ( 附参考答案 )一、选择题 (每小题只有一个选项是正确的,每小题5 分,共 100 分,在每小题给出的四个选项中,只有一项是符合题目要求的。

)3- i()1. (2013 山·东 )复数 1- i 等于A .1+ 2iB . 1-2iC . 2+ iD . 2-i 答案: C3-i (3- i)(1 + i) 4+ 2i = 2+ i.故选 C.解析: 1- i = (1- i)(1 + i) =22. (2013 宁·夏、海南 )复数 3+ 2i - 3- 2i =(2- 3i 2+ 3i A .0 B . 2 C .- 2i D .2i 答案: D3+2i 3- 2i (3+ 2i)(2 + 3i) (3- 2i)(2 - 3i) 13i -13i解析: 2-3i - 2+ 3i = (2- 3i)(2 + 3i)- (2- 3i)(2 + 3i) =13 - 13 = i +i =2i.z + 2是实数,那么 z 等于() 3. (2013 陕·西 )已知 z 是纯虚数, 1- iA .2iB . iC .- iD .- 2i答案: D 解析: 由题意得 z = ai.( a ∈R 且 a ≠ 0).∴z + 2=(2 +ai)(1 + i) = 2- a + (a +2)i ,- i (1- i)(1 + i)21则 a + 2=0, ∴ a =- 2.有 z =- 2i ,故选 D.4. (2013 武·汉市高三年级 2 月调研考试 )若 f(x)= x 3- x 2+ x - 1,则 f(i) = () A .2i B . 0 C .- 2i D .- 2 答案: B 解析: 依题意, f(i) = i 3- i 2+ i -1=- i + 1+ i - 1=0,选择 B.2- i5. (2013 北·京朝阳 4 月 )复数 z = 1+ i (i 是虚数单位 )在复平面内对应的点位于 ( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 答案: D解析: z =2- i = 1- 3 i ,它对应的点在第四象限,故选 D.1+ i 2 26. (2013 北·京东城 3月 )若将复数 2+i 表示为 a + bi(a , b ∈ R , i 是虚数单位 )的形式,则 i( ))ba 的值为 1 1A .- 2B .- 2C . 2 D.2答案: A解析: 2+i = 1- 2i ,把它表示为 a +bi( a , b ∈ R ,i 是虚数单位 )的形式,则 b 的值为- 2,故选 A.i a7. (2013 北·京西城 4 月 )设 i 是虚数单位,复数 z = tan45 -° i sin60· ,°则 z 2等于 ( )A. 7- 3i B.1- 3i 4 4 C. 7+ 3i D.1+ 3i 44答案: B解析: z = tan45 °-i ·sin60 °= 1-313i ,故选 B.2 i ,z 2 = -48. (2013 黄·冈中学一模 )过原点和 3- i 在复平面内对应的直线的倾斜角为()π π A. 6B .- 6 2 5 C.3πD.6π答案: D解析:3- i 对应的点为 ( 3,- 1),所求直线的斜率为-3,则倾斜角为536π,故选 D.a + bi为实数,则()9.设 a 、b 、 c 、 d ∈R ,若 c + diA .bc + ad ≠ 0B . bc - ad ≠0C . bc - ad = 0D . bc + ad = 0 答案: Ca + bi (a + bi)( c - di) ac + bd bc - adbc - ad = 0? bc - ad = 0.解析: 因为 = 2 2= 2 2 + 2 2 i ,所以由题意有 22 c + di c + d c + d c + d c + d10.已知复数 z = 1-2i ,那么 1 =()z5+ 2 55- 2 5A. 55 iB. 55 iC. 1+2iD. 1- 2i5555答案: D解析: 由 z = 1- 2i 知 z = 1+2i ,于是1 = 1 = 1- 2i = 1- 2i.故选 D.z 1+ 2i 1+ 4 5 5z 1是实数,则实数b 的值为()11.已知复数 z 1=3- bi , z 2= 1- 2i ,若 z 2 1A .6B .- 6C . 0D.6答案: A1 3-bi (3- bi)(1 + 2i)(3+ 2b)+ (6-b)i= = = 是实数,则实数 b 的值为 6,故选 A.解析: 21- 2i (1- 2i)(1 + 2i)5z12. (2013 ·东广 )设 z 是复数, α(z)表示满足 z n= 1 的最小正整数 n ,则对虚数单位 i , α(i)=( )A .2B . 4C . 6D . 8 答案: B解析: α(i)表示 i n = 1 的最小正整数 n ,因 i 4k = 1(k ∈ N * ),显然 n = 4,即 α(i)= 4.故选 B.1+ 34= a 0 4+ a 1 3+ a 2 2+ a 3 4 2等于()13.若 z =22 i ,且 (x - z)x x x x + a ,则 a A .- 1+ 3iB .- 3+ 3 3i2 2 C . 6+3 3iD .- 3-3 3i答案: Br 4- rr,解析: ∵T r + 1=C 4x(- z)由 4- r = 2 得 r = 2,221 32∴ a 2= C 4 (- z) = 6× (- 2-2 i)=- 3+ 3 3i .故选 B.14.若△ ABC 是锐角三角形,则复数 z = (cosB - sinA)+ i(sinB - cosA)对应的点位于 ()A .第一象限B .第二象限C .第三象限D .第四象限 答案: B解析: ∵△ ABC 为锐角三角形,∴ A +B > 90°, B > 90°- A , ∴ cosB < sinA , sinB > cosA , ∴ cosB - sinA < 0, sinB - cosA > 0, ∴ z 对应的点在第二象限.2- bi15.如果复数 1+ 2i (其中 i 为虚数单位, b 为实数 )的实部和虚部互为相反数,那么b 等于2 2( )A. 2B. 3C .- 3D . 2答案: C解析: 2-bi = (2- bi)(1 - 2i)1+2i 5=(2- 2b)+ (- 4-b)i55由 2- 2b =-- 4- b5得 b =- 2.531 + 3 ()16.设函数 f(x)=- x 5+5x 4- 10x 3+ 10x 2- 5x +1,则 f(2i )的值为2A .- 1 + 3iB.312 22- i2 C. 1 +3 i D .-3 12 22+ i2答案: C解析: ∵f(x)=- (x - 1)5∴ f(1+ 3i )=- (1+ 3i - 1)52 22 2=- ω5(其中 ω=- 12+ 23i)=- ω =- (-1- 31+ 32 2 i )= 2 2 i .17.若 i 是虚数单位,则满足(p +qi )2= q + pi 的实数 p , q 一共有()A .1 对B . 2 对C . 3 对D .4 对 答案: Dp 2- q 2= q ,p = 0, p = 0, 解析: 由(p + qi)2= q +pi 得(p 2- q 2)+ 2pqi =q + pi ,所以解得q = 0,或q =- 1,2pq = p.33p = 2 ,或 p =- 2 ,因此满足条件的实数p , q 一共有 4 对.或1,1,q = 2q = 2总结评述: 本题主要考查复数的基本运算,解答复数问题的基本策略是将复数问题转化为实数问题来解决,解答中要特别注意不要出现漏解现象,如由 12pq = p 应得到 p = 0 或 q = .22 - x 6 的展开式中,不含x 的项是20,那么正数 p 的值是 ()18.已知 (2)27 xpA .1B . 2C . 3D . 4答案: C解析: 由题意得:120,求得 p =3.故选 C.C 64·4·22=27px 的项,即找常数项.总结评述: 本题考查二项式定理的展开式,注意搭配展开式中不含2 x- x-1)i(x ∈ R)在复平面内对应的点位于 ()19.复数 z =- lg(x +2) -(2 + 2 A .第一象限 B .第二象限 C .第三象限 D .第四象限 答案: C解析: 本题考查复数与复平面上的点之间的关系,复数与复平面上的点是一一对应的关系,即z = a +bi ,与复平面上的点 Z( a , b)对应,由 z =- lg(x 2+2) -(2 x + 2-x -1)i(x ∈ R)知:a =- lg(x2+ 2)< 0,又 --x- 1= 1> 0;2x + 2x- 1≥ 2 2x·2∴ - (2x +2-x - 1)< 0,即 b < 0.∴(a , b)应为第三象限的点,故选 C.20.设复数 z + i(z ∈C )在映射 f 下的象为复数 z 的共轭复数与 i 的积,若复数ω 在映射 f 下的象为- 1+ 2i ,则相应的 ω为() A .2 B . 2- 2i C .- 2+ i D . 2+ i答案: A解析: 令 ω= a + bi , a , b ∈ R ,则 ω= [a + (b -1)i] + i ,∴ 映射 f 下 ω的象为 [a - (b - 1)i] ·i = (b - 1)+ai =- 1+ 2i.b - 1=- 1, b = 0,∴ 解得 a = 2. ∴ ω= 2.a = 2.第Ⅱ卷(非选择题共 50 分)二、填空题 (本大题共 5 小题,每小题 4 分,共 20 分,请将答案填在题中的横线上。

高考数学复数习题及答案百度文库

高考数学复数习题及答案百度文库

一、复数选择题1.在复平面内,复数534i i -(i 为虚数单位)对应的点的坐标为( ) A .()3,4 B .()4,3- C .43,55⎛⎫- ⎪⎝⎭ D .43,55⎛⎫- ⎪⎝⎭ 2.已知复数1=-i z i ,其中i 为虚数单位,则||z =( ) A .12 B .22 C .2 D .23.若20212zi i =+,则z =( )A .12i -+B .12i --C .12i -D .12i +4.若复数z 满足()13i z i +=+(其中i 是虚数单位),复数z 的共轭复数为z ,则( )A .z 的实部是1B .z 的虚部是1C .5z =D .复数z 在复平面内对应的点在第四象限5.在复平面内复数Z=i (1﹣2i )对应的点位于( ) A .第一象限B .第二象限C .第三象限D .第四象限 6.若复数()()24z i i =--,则z =( )A .76i --B .76-+iC .76i -D .76i + 7.已知复数21i z i =-,则复数z 在复平面内对应点所在象限为( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限8.如图所示,在复平面内,网格中的每个小正方形的边长都为1,点A ,B 对应的复数分别是1z ,2z ,则12z z -=( )A 2B .2C .2D .8 9.复数z 满足12i z i ⋅=-,z 是z 的共轭复数,则z z ⋅=( ) A 3B 5C .3 D .5 10.若复数1211i z i +=--,则z 在复平面内的对应点位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限11.设复数2i 1i z =+,则复数z 的共轭复数z 在复平面内对应的点位于( ) A .第一象限 B .第二象限 C .第三象限D .第四象限 12.在复平面内,复数z 对应的点为(,)x y ,若22(2)4x y ++=,则( )A .22z +=B .22z i +=C .24z +=D .24z i += 13.若()()324z ii =+-,则在复平面内,复数z 所对应的点位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限14.已知()312++=+a i i bi (,a b ∈R ,i 为虚数单位),则实数+a b 的值为( ) A .3 B .5 C .6 D .815.复数12z i =-(其中i 为虚数单位),则3z i +=( )A .5BC .2D 二、多选题16.若复数351i z i -=-,则( )A .z =B .z 的实部与虚部之差为3C .4z i =+D .z 在复平面内对应的点位于第四象限17.下列四个命题中,真命题为( )A .若复数z 满足z R ∈,则z R ∈B .若复数z 满足1R z ∈,则z R ∈C .若复数z 满足2z ∈R ,则z R ∈D .若复数1z ,2z 满足12z z R ⋅∈,则12z z =18.(多选题)已知集合{},n M m m i n N ==∈,其中i 为虚数单位,则下列元素属于集合M 的是( )A .()()11i i -+B .11i i -+C .11i i +-D .()21i - 19.设复数z 满足1z i z +=,则下列说法错误的是( ) A .z 为纯虚数B .z 的虚部为12i -C .在复平面内,z 对应的点位于第三象限D .z =20.若复数z 满足()234z i i +=+(i 为虚数单位),则下列结论正确的有( )A .z 的虚部为3B .z =C .z 的共轭复数为23i +D .z 是第三象限的点21.已知复数z 满足2724z i =--,在复平面内,复数z 对应的点可能在( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限22.已知复数1cos 2sin 222z i ππθθθ⎛⎫=++-<< ⎪⎝⎭(其中i 为虚数单位),则( ) A .复数z 在复平面上对应的点可能落在第二象限B .z 可能为实数C .2cos z θ=D .1z 的实部为12- 23.复数z 满足233232i z i i+⋅+=-,则下列说法正确的是( )A .z 的实部为3-B .z 的虚部为2C .32z i =-D .||z =24.若复数z 满足()1z i i +=,则( ) A .1z i =-+B .z 的实部为1C .1z i =+D .22z i =25.已知复数1z =-+(i 为虚数单位),z 为z 的共轭复数,若复数z w z =,则下列结论正确的有( )A .w 在复平面内对应的点位于第二象限B .1w =C .w 的实部为12-D .w 26.若复数z 满足(1i)3i z +=+(其中i 是虚数单位),复数z 的共轭复数为z ,则( )A .|z |=B .z 的实部是2C .z 的虚部是1D .复数z 在复平面内对应的点在第一象限27.已知复数12ω=-(i 是虚数单位),ω是ω的共轭复数,则下列的结论正确的是( )A .2ωω=B .31ω=-C .210ωω++=D .ωω>28.已知复数()(()()211z m m m i m R =-+-∈,则下列说法正确的是( )A .若0m =,则共轭复数1z =-B .若复数2z =,则mC .若复数z 为纯虚数,则1m =±D .若0m =,则2420z z ++=29.已知复数z a =+在复平面内对应的点位于第二象限,且2z = 则下列结论正确的是( ).A .38z =B .zC .z 的共轭复数为1D .24z =30.已知复数z ,下列结论正确的是( )A .“0z z +=”是“z 为纯虚数”的充分不必要条件B .“0z z +=”是“z 为纯虚数”的必要不充分条件C .“z z =”是“z 为实数”的充要条件D .“z z ⋅∈R ”是“z 为实数”的充分不必要条件【参考答案】***试卷处理标记,请不要删除一、复数选择题1.D【分析】运用复数除法的运算法则化简复数的表示,最后选出答案即可.【详解】因为,所以在复平面内,复数(为虚数单位)对应的点的坐标为.故选:D解析:D【分析】 运用复数除法的运算法则化简复数534i i -的表示,最后选出答案即可. 【详解】 因为55(34)15204334(34)(34)2555i i i i i i i i ⋅+-===-+--+, 所以在复平面内,复数534i i -(i 为虚数单位)对应的点的坐标为43,55⎛⎫- ⎪⎝⎭. 故选:D2.B【分析】先利用复数的除法运算将化简,再利用模长公式即可求解.【详解】由于,则.故选:B解析:B【分析】 先利用复数的除法运算将1=-i z i化简,再利用模长公式即可求解.【详解】 由于()(1i)(1i)111(1i)222i i i i z i i ++====-+--+,则||2z ===. 故选:B3.C【分析】根据复数单位的幂的周期性和复数除法的运算法则进行求解即可.【详解】由已知可得,所以.故选:C解析:C【分析】根据复数单位i 的幂的周期性和复数除法的运算法则进行求解即可.【详解】 由已知可得202150541222(2)21121i i i i i i z i i i i i i ⨯+++++⋅-======-⋅-,所以12z i =-. 故选:C 4.C【分析】利用复数的除法运算求出,即可判断各选项.【详解】,,则的实部为2,故A 错误;的虚部是,故B 错误;,故C 正;对应的点为在第一象限,故D 错误.故选:C.解析:C【分析】利用复数的除法运算求出z ,即可判断各选项.【详解】()13i z i +=+,()()()()3132111i i i z i i i i +-+∴===-++-, 则z 的实部为2,故A 错误;z 的虚部是1-,故B 错误;z==,故C正;2,1在第一象限,故D错误.=+对应的点为()z i2故选:C.5.A【解析】试题分析:根据复数乘法的运算法则,我们可以将复数Z化为a=bi(a,b∈R)的形式,分析实部和虚部的符号,即可得到答案.解:∵复数Z=i(1﹣2i)=2+i∵复数Z的实部2>0,虚解析:A【解析】试题分析:根据复数乘法的运算法则,我们可以将复数Z化为a=bi(a,b∈R)的形式,分析实部和虚部的符号,即可得到答案.解:∵复数Z=i(1﹣2i)=2+i∵复数Z的实部2>0,虚部1>0∴复数Z在复平面内对应的点位于第一象限故选A点评:本题考查的知识是复数的代数表示法及其几何意义,其中根据复数乘法的运算法则,将复数Z化为a=bi(a,b∈R)的形式,是解答本题的关键.6.D【分析】由复数乘法运算求得,根据共轭复数定义可求得结果.【详解】,.故选:.解析:D【分析】由复数乘法运算求得z,根据共轭复数定义可求得结果.【详解】()()2248676=--=-+=-,76z i i i i i∴=+.z i故选:D.7.B【分析】对复数进行化简,再得到在复平面内对应点所在的象限.【详解】,在复平面内对应点为,在第二象限.故选:B.解析:B【分析】对复数z 进行化简,再得到z 在复平面内对应点所在的象限.【详解】21i z i =-()()()2111i i i i +=+-()1+1+i i i ==-,z 在复平面内对应点为()1,1-,在第二象限. 故选:B.8.B【分析】根据复数的几何意义,求两个复数,再计算复数的模.【详解】由图象可知,,则,故.故选:B.解析:B【分析】根据复数的几何意义,求两个复数,再计算复数的模.【详解】由图象可知1z i =,22z i =-,则1222z z i -=-+,故12|22|z z i -=-+==故选:B .9.D【分析】求出复数,然后由乘法法则计算.【详解】由题意,.故选:D .解析:D【分析】求出复数z ,然后由乘法法则计算z z ⋅.【详解】 由题意12122i z i i i-==-+=--, 22(2)(2)(2)5z z i i i ⋅=---+=--=.10.B【分析】利用复数的运算法则和复数的几何意义求解即可【详解】,所以,在复平面内的对应点为,则对应点位于第二象限故选:B解析:B【分析】利用复数的运算法则和复数的几何意义求解即可【详解】()()12i 1i 12i 33i 33i 111i 2222z +++-+=-=-==-+-, 所以,z 在复平面内的对应点为33,22⎛⎫- ⎪⎝⎭,则对应点位于第二象限 故选:B11.D【分析】先求出,再求出,直接得复数在复平面内对应的点【详解】因为,所以,在复平面内对应点,位于第四象限.故选:D解析:D【分析】先求出z ,再求出z ,直接得复数z 在复平面内对应的点【详解】 因为211i z i i ==++,所以1z i -=-,z 在复平面内对应点()1,1-,位于第四象限. 故选:D12.B【分析】利用复数模的计算公式即可判断出结论.【详解】因为复数对应的点为,所以,满足则解析:B【分析】利用复数模的计算公式即可判断出结论.【详解】因为复数z 对应的点为(,)x y ,所以z x yi =+x ,y 满足22(2)4x y ++=则22z i +=故选:B13.D【分析】根据复数的运算,先化简复数,再由复数的几何意义确定对应点的坐标,进而可得出结果.【详解】,则复数对应的点的坐标为,位于第四象限.故选:D .解析:D【分析】根据复数的运算,先化简复数,再由复数的几何意义确定对应点的坐标,进而可得出结果.【详解】()()324(2)(4)76z i i i i i =+-=--=-,则复数z 对应的点的坐标为()7,6-,位于第四象限.故选:D . 14.D【分析】利用复数的乘法运算及复数相等求得a,b 值即可求解【详解】,故 则故选:D解析:D【分析】利用复数的乘法运算及复数相等求得a,b 值即可求解【详解】()312++=+a i i bi ,故332a i bi -+=+ 则32,38a b a b -==∴+=故选:D15.B【分析】首先求出,再根据复数的模的公式计算可得;【详解】解:因为,所以所以.故选:B.解析:B【分析】首先求出3z i +,再根据复数的模的公式计算可得;【详解】解:因为12z i =-,所以31231z i i i i +=-+=+所以3z i +==故选:B . 二、多选题16.AD【分析】根据复数的运算先求出复数z ,再根据定义、模、几何意义即可求出.【详解】解:,,z 的实部为4,虚部为,则相差5,z 对应的坐标为,故z 在复平面内对应的点位于第四象限,所以AD 正 解析:AD【分析】根据复数的运算先求出复数z ,再根据定义、模、几何意义即可求出.【详解】 解:()()()()351358241112i i i i z i i i i -+--====---+,z ∴==z 的实部为4,虚部为1-,则相差5,z 对应的坐标为()41-,,故z 在复平面内对应的点位于第四象限,所以AD 正确, 故选:AD.17.AB【分析】利用特值法依次判断选项即可得到答案.对选项A ,若复数满足,设,其中,则,则选项A 正确;对选项B ,若复数满足,设,其中,且,则,则选项B 正确;对选项C ,若复数满足,设解析:AB【分析】利用特值法依次判断选项即可得到答案.【详解】对选项A ,若复数z 满足z R ∈,设z a =,其中a R ∈,则z R ∈,则选项A 正确; 对选项B ,若复数z 满足1R z ∈,设1a z =,其中a R ∈,且0a ≠, 则1z R a=∈,则选项B 正确; 对选项C ,若复数z 满足2z ∈R ,设z i ,则21z R =-∈,但z i R =∉,则选项C 错误;对选项D ,若复数1z ,2z 满足12z z R ⋅∈,设1z i =,2z i =,则121z z ⋅=-∈R , 而21z i z =-≠,则选项D 错误;故答案选:AB【点睛】本题主要考查复数的运算,同时考查复数的定义和共轭复数,特值法为解决本题的关键,属于简单题.18.BC【分析】根据集合求出集合内部的元素,再对四个选项依次化简即可得出选项.【详解】根据题意,中,时,;时,;时,;时,,.选项A 中,;选项B 中,;选项C 中,;选项D 中,.【分析】根据集合求出集合内部的元素,再对四个选项依次化简即可得出选项.【详解】 根据题意,{},n M m m i n N ==∈中, ()4n k k N =∈时,1n i =;()41n k k N =+∈时,n i i =;()42n k k N =+∈时,1n i =-;()43n k k N =+∈时,n i i =-,{}1,1,,M i i ∴=--.选项A 中,()()112i i M -+=∉;选项B 中,()()()211111i i i i i i M --==-+-∈+; 选项C 中,()()()211111i i i i i i M ++==-+∈-; 选项D 中,()212i i M -=-∉.故选:BC.【点睛】此题考查复数的基本运算,涉及复数的乘方和乘法除法运算,准确计算才能得解. 19.AB【分析】先由复数除法运算可得,再逐一分析选项,即可得答案.【详解】由题意得:,即,所以z 不是纯虚数,故A 错误;复数z 的虚部为,故B 错误;在复平面内,对应的点为,在第三象限,故C 正确解析:AB【分析】 先由复数除法运算可得1122z i =--,再逐一分析选项,即可得答案. 【详解】由题意得:1z zi +=,即111122z i i -==---,所以z 不是纯虚数,故A 错误;复数z 的虚部为12-,故B 错误; 在复平面内,z 对应的点为11(,)22--,在第三象限,故C 正确;2z ==,故D 正确. 故选:AB【点睛】本题考查复数的除法运算,纯虚数、虚部的概念,复平面内点所在象限、复数求模的运算等知识,考查计算求值的能力,属基础题.20.BC【分析】利用复数的除法求出复数,利用复数的概念与几何意义可判断各选项的正误.【详解】,,所以,复数的虚部为,,共轭复数为,复数在复平面对应的点在第四象限. 故选:BD.【点睛】本题考解析:BC【分析】利用复数的除法求出复数z ,利用复数的概念与几何意义可判断各选项的正误.【详解】()234z i i +=+,34232i z i i+∴=-=-+,所以,复数z 的虚部为3-,z =共轭复数为23i +,复数z 在复平面对应的点在第四象限.故选:BD.【点睛】 本题考查复数的四则运算、虚部、模、共轭复数以及几何意义,考查计算能力,属于基础题.21.BD【分析】先设复数,根据题中条件,由复数的乘法运算,以及复数相等的充要条件求出,即可确定对应的点所在的象限.【详解】设复数,则,所以,则,解得或,因此或,所以对应的点为或,因此复解析:BD【分析】先设复数(),z a bi a b R =+∈,根据题中条件,由复数的乘法运算,以及复数相等的充要条件求出z ,即可确定对应的点所在的象限.【详解】设复数(),z a bi a b R =+∈,则2222724z a abi b i =+-=--,所以2222724z a abi b i =+-=--,则227224a b ab ⎧-=-⎨=-⎩,解得34a b =⎧⎨=-⎩或34a b =-⎧⎨=⎩, 因此34z i =-或34z i =-+,所以对应的点为()3,4-或()3,4-,因此复数z 对应的点可能在第二或第四象限.故选:BD.【点睛】本题主要考查判定复数对应的点所在的象限,熟记复数的运算法则,以及复数相等的条件即可,属于基础题型.22.BC【分析】由可得,得,可判断A 选项,当虚部,时,可判断B 选项,由复数的模计算和余弦的二倍角公式可判断C 选项,由复数的运算得,的实部是,可判断D 选项.【详解】因为,所以,所以,所以,所以A 选解析:BC【分析】 由22ππθ-<<可得2πθπ-<<,得01cos22θ<+≤,可判断A 选项,当虚部sin 20θ=,,22ππθ⎛⎫∈- ⎪⎝⎭时,可判断B 选项,由复数的模计算和余弦的二倍角公式可判断C 选项,由复数的运算得11cos 2sin 212cos 2i z θθθ+-=+,1z 的实部是1cos 2122cos 22θθ+=+,可判断D 选项.【详解】 因为22ππθ-<<,所以2πθπ-<<,所以1cos21θ-<≤,所以01cos22θ<+≤,所以A 选项错误;当sin 20θ=,,22ππθ⎛⎫∈- ⎪⎝⎭时,复数z 是实数,故B 选项正确;2cos z θ===,故C 选项正确:()()111cos 2sin 21cos 2sin 21cos 2sin 21cos 2sin 21cos 2sin 212cos 2i i z i i i θθθθθθθθθθθ+-+-===+++++-+,1z 的实部是1cos 2122cos 22θθ+=+,故D 不正确. 故选:BC【点睛】本题主要考查复数的概念,复数模的计算,复数的运算,以及三角恒等变换的应用,属于中档题.23.AD【分析】由已知可求出,进而可求出实部、虚部、共轭复数、复数的模,进而可选出正确答案.【详解】解:由知,,即,所以的实部为,A 正确;的虚部为-2,B 错误;,C 错误;,D 正确;故选:A解析:AD【分析】由已知可求出32z i =--,进而可求出实部、虚部、共轭复数、复数的模,进而可选出正确答案.【详解】解:由233232i z i i +⋅+=-知,232332i z i i +⋅=--,即()()()2233232232313i i i z i i ---=-=+ 39263213i i --==--,所以z 的实部为3-,A 正确;z 的虚部为-2,B 错误;32z i =-+,C 错误;||z ==D 正确; 故选:AD.【点睛】 本题考查了复数的除法运算,考查了复数的概念,考查了共轭复数的求解,考查了复数模的求解,属于基础题.24.BC【分析】先利用复数的运算求出复数z ,然后逐个分析判断即可【详解】解:由,得,所以z 的实部为1,,,故选:BC【点睛】此题考查复数的运算,考查复数的模,考查复数的有关概念,考查共轭 解析:BC【分析】先利用复数的运算求出复数z ,然后逐个分析判断即可【详解】解:由()1z i i +=,得2(1)2(1)1(1)(1)2i i z i i i --====-+-, 所以z 的实部为1,1z i =+,22z i =-,故选:BC【点睛】此题考查复数的运算,考查复数的模,考查复数的有关概念,考查共轭复数,属于基础题25.ABC【分析】对选项求出,再判断得解;对选项,求出再判断得解;对选项复数的实部为,判断得解;对选项,的虚部为,判断得解.【详解】对选项由题得.所以复数对应的点为,在第二象限,所以选项正确解析:ABC【分析】对选项,A 求出1=22w -+,再判断得解;对选项B ,求出1w =再判断得解;对选项,C 复数w 的实部为12-,判断得解;对选项D ,w 的虚部为2,判断得解. 【详解】对选项,A 由题得1,z =-1=2w ∴===-.所以复数w 对应的点为1(,22-,在第二象限,所以选项A 正确;对选项B ,因为1w ==,所以选项B 正确; 对选项,C 复数w 的实部为12-,所以选项C 正确;对选项D ,w 所以选项D 错误. 故选:ABC【点睛】 本题主要考查复数的运算和共轭复数,考查复数的模的计算,考查复数的几何意义,考查复数的实部和虚部的概念,意在考查学生对这些知识的理解掌握水平.26.ABD【分析】把已知等式变形,然后利用复数代数形式的乘除运算化简,求出复数,根据共轭复数概念得到,即可判断.【详解】,,,故选项正确,的实部是,故选项正确,的虚部是,故选项错误,复解析:ABD【分析】把已知等式变形,然后利用复数代数形式的乘除运算化简,求出复数z ,根据共轭复数概念得到z ,即可判断.【详解】(1i)3i z +=+,()()()()3134221112i i i i z i i i i +-+-∴====-++-,z ∴==,故选项A 正确,z 的实部是2,故选项B 正确,z 的虚部是1-,故选项C 错误, 复数2z i =+在复平面内对应的点为()2,1,在第一象限,故选项D 正确.故选:ABD .【点睛】本题主要考查的是复数代数形式的乘除运算,考查了复数的代数表示及几何意义,是基础题.27.AC【分析】根据复数的运算进行化简判断即可.【详解】解:∵所以,∴,故A 正确,,故B 错误,,故C 正确,虚数不能比较大小,故D 错误,故选:AC.【点睛】本题主要考查复数的有关概念解析:AC【分析】根据复数的运算进行化简判断即可.【详解】解:∵12ω=-所以122ω=--,∴213142422ωω=--=--=,故A 正确,32111312244ωωω⎛⎫⎛⎫⎛⎫==---=--= ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭,故B 错误,2111102222ωω++=---++=,故C 正确, 虚数不能比较大小,故D 错误,故选:AC .【点睛】本题主要考查复数的有关概念和运算,结合复数的运算法则进行判断是解决本题的关键.属于中档题.28.BD【分析】根据每个选项里的条件,求出相应的结果,即可判断选项的正误.【详解】对于A ,时,,则,故A 错误;对于B ,若复数,则满足,解得,故B 正确;对于C ,若复数z 为纯虚数,则满足,解得,解析:BD【分析】根据每个选项里的条件,求出相应的结果,即可判断选项的正误.【详解】对于A ,0m =时,1z =-,则1z =-,故A 错误;对于B ,若复数2z =,则满足(()21210m m m ⎧-=⎪⎨-=⎪⎩,解得m ,故B 正确; 对于C ,若复数z为纯虚数,则满足(()21010m m m ⎧-=⎪⎨--≠⎪⎩,解得1m =-,故C 错误; 对于D ,若0m =,则1z =-+,()()221420412z z ++=+--+=+,故D 正确.故选:BD.【点睛】 本题主要考查对复数相关概念的理解,注意不同情形下的取值要求,是一道基础题.29.AB【分析】利用复数的模长运算及在复平面内对应的点位于第二象限求出 ,再验算每个选项得解.【详解】解:,且,复数在复平面内对应的点位于第二象限选项A:选项B: 的虚部是选项C:解析:AB【分析】 利用复数2z =的模长运算及z a =+在复平面内对应的点位于第二象限求出a ,再验算每个选项得解.【详解】解:z a =+,且2z=224a +∴=,=1a ±复数z a =+在复平面内对应的点位于第二象限1a ∴=-选项A: 3323(1)(1)+3(1)+3())8-+=---+=选项B : 1z =-选项C : 1z =-的共轭复数为1z =--选项D : 222(1)(1)+2()2-+=--=--故选:AB .【点睛】本题考查复数的四则运算及共轭复数,考查运算求解能力.求解与复数概念相关问题的技巧:复数的分类、复数的相等、复数的模及共轭复数的概念都与复数的实部、虚部有关,所以解答与复数相关概念有关的问题时,需把所给复数化为代数形式,即()a bi a b R ∈+,的形式,再根据题意求解.30.BC【分析】设,可得出,利用复数的运算、复数的概念结合充分条件、必要条件的定义进行判断,从而可得出结论.【详解】设,则,则,若,则,,若,则不为纯虚数,所以,“”是“为纯虚数”必要不充分解析:BC【分析】设(),z a bi a b R =+∈,可得出z a bi =-,利用复数的运算、复数的概念结合充分条件、必要条件的定义进行判断,从而可得出结论.【详解】设(),z a bi a b R =+∈,则z a bi =-, 则2z z a +=,若0z z +=,则0a =,b R ∈,若0b =,则z 不为纯虚数, 所以,“0z z +=”是“z 为纯虚数”必要不充分条件; 若z z =,即a bi a bi +=-,可得0b =,则z 为实数,“z z =”是“z 为实数”的充要条件;22z z a b ⋅=+∈R ,z ∴为虚数或实数,“z z ⋅∈R ”是“z 为实数”的必要不充分条件.故选:BC.【点睛】本题考查充分条件、必要条件的判断,同时也考查了共轭复数、复数的基本概念的应用,考查推理能力,属于基础题.。

高考复数专题及答案百度文库

高考复数专题及答案百度文库

一、复数选择题1.已知复数1z i =+,则21z +=( )A .2BC .4D .52.i =( )A .i -B .iC i -D i 3.欧拉是瑞士著名数学家,他首先发现:e cos isin i θθθ=+(e 为自然对数的底数,i 为虚数单位),此结论被称为“欧拉公式”,它将指数函数的定义域扩大到复数集,建立了三角函数和指数函数的关系.根据欧拉公式可知,i e π=( )A .1B .0C .-1D .1+i 4.若复数1z i i ⋅=-+,则复数z 的虚部为( ) A .-1B .1C .-iD .i 5.已知复数21i z i =-,则复数z 在复平面内对应点所在象限为( ) A .第一象限B .第二象限C .第三象限D .第四象限 6.若复数1211i z i +=--,则z 在复平面内的对应点位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限7.若复数z 满足()322i z i i -+=+,则复数z 的虚部为( ) A .35 B .35i - C .35 D .35i 8.设2i z i +=,则||z =( )A B C .2 D .59.已知复数202111i z i-=+,则z 的虚部是( ) A .1- B .i - C .1 D .i10.复数z 的共轭复数记为z ,则下列运算:①z z +;②z z -;③z z ⋅④z z ,其结果一定是实数的是( )A .①②B .②④C .②③D .①③ 11.设复数z 满足41i z i =+,则z 的共轭复数z 在复平面内的对应点位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限12.3( )A .i -B .iC .iD .i -13.若i 为虚数单位,,a b ∈R ,且2a i b i i +=+,则复数a bi -的模等于( )A B C D14.若复数()()1i 3i a +-(i 为虚数单位)的实部和虚部互为相反数,则实数a =( ) A .1- B .12- C .13 D .115.设复数满足(12)i z i +=,则||z =( )A .15BCD .5二、多选题16.i 是虚数单位,下列说法中正确的有( )A .若复数z 满足0z z ⋅=,则0z =B .若复数1z ,2z 满足1212z z z z +=-,则120z z =C .若复数()z a ai a R =+∈,则z 可能是纯虚数D .若复数z 满足234z i =+,则z 对应的点在第一象限或第三象限17.已知复数202011i z i+=-(i 为虚数单位),则下列说法错误的是( )A .z 的实部为2B .z 的虚部为1C .z i =D .||z =18.已知复数z 满足220z z +=,则z 可能为( ).A .0B .2-C .2iD .2i+1- 19.已知复数z 满足220z z +=,则z 可能为( )A .0B .2-C .2iD .2i -20.下列四个命题中,真命题为( )A .若复数z 满足z R ∈,则z R ∈B .若复数z 满足1R z ∈,则z R ∈C .若复数z 满足2z ∈R ,则z R ∈D .若复数1z ,2z 满足12z z R ⋅∈,则12z z = 21.已知复数1cos 2sin 222z i ππθθθ⎛⎫=++-<< ⎪⎝⎭(其中i 为虚数单位),则( ) A .复数z 在复平面上对应的点可能落在第二象限B .z 可能为实数C .2cos z θ=D .1z 的实部为12-22.若复数z 满足()1z i i +=,则( )A .1z i =-+B .z 的实部为1C .1z i =+D .22z i =23.下列结论正确的是( ) A .已知相关变量(),x y 满足回归方程ˆ9.49.1yx =+,则该方程相应于点(2,29)的残差为1.1B .在两个变量y 与x 的回归模型中,用相关指数2R 刻画回归的效果,2R 的值越大,模型的拟合效果越好C .若复数1z i =+,则2z =D .若命题p :0x R ∃∈,20010x x -+<,则p ⌝:x R ∀∈,210x x -+≥24.已知复数122,2z i z i =-=则( )A .2z 是纯虚数B .12z z -对应的点位于第二象限C .123z z +=D .12z z =25.已知复数()(()()211z m m m i m R =-+-∈,则下列说法正确的是( )A .若0m =,则共轭复数1z =-B .若复数2z =,则mC .若复数z 为纯虚数,则1m =±D .若0m =,则2420z z ++= 26.复数21i z i +=-,i 是虚数单位,则下列结论正确的是( )A .|z |=B .z 的共轭复数为3122i +C .z 的实部与虚部之和为2D .z 在复平面内的对应点位于第一象限 27.给出下列命题,其中是真命题的是( )A .纯虚数z 的共轭复数是z -B .若120z z -=,则21z z =C .若12z z +∈R ,则1z 与2z 互为共轭复数D .若120z z -=,则1z 与2z 互为共轭复数28.已知复数z ,下列结论正确的是( )A .“0z z +=”是“z 为纯虚数”的充分不必要条件B .“0z z +=”是“z 为纯虚数”的必要不充分条件C .“z z =”是“z 为实数”的充要条件D .“z z ⋅∈R ”是“z 为实数”的充分不必要条件29.已知i 为虚数单位,下列命题中正确的是( )A .若x ,y ∈C ,则1x yi i +=+的充要条件是1x y ==B .2(1)()a i a +∈R 是纯虚数C .若22120z z +=,则120z z == D .当4m =时,复数22lg(27)(56)m m m m i --+++是纯虚数30.设复数z 满足12z i =--,i 为虚数单位,则下列命题正确的是( )A .|z |=B .复数z 在复平面内对应的点在第四象限C .z 的共轭复数为12i -+D .复数z 在复平面内对应的点在直线2y x =-上【参考答案】***试卷处理标记,请不要删除一、复数选择题1.B【分析】先求出,再计算出模.【详解】,,.故选:B.解析:B【分析】 先求出21z+,再计算出模. 【详解】 1z i =+,()()()21221112111i i z i i i -∴+=+=+=-++-,21z∴+==. 故选:B.2.B【分析】由复数除法运算直接计算即可.【详解】.故选:B.解析:B【分析】由复数除法运算直接计算即可.()21iii+==-.故选:B.3.C【分析】利用复数和三角函数的性质,直接代入运算即可【详解】由题意可知=,故选C解析:C【分析】利用复数和三角函数的性质,直接代入运算即可【详解】由题意可知i eπ=cos sin101iππ+=-+=-,故选C4.B【分析】,然后算出即可.【详解】由题意,则复数的虚部为1故选:B解析:B【分析】1izi-+=,然后算出即可.【详解】由题意()11111i ii iz ii i i-+-+--====+⋅-,则复数z的虚部为1故选:B5.B【分析】对复数进行化简,再得到在复平面内对应点所在的象限. 【详解】,在复平面内对应点为,在第二象限.故选:B.解析:B对复数z 进行化简,再得到z 在复平面内对应点所在的象限.【详解】21i z i =-()()()2111i i i i +=+-()1+1+i i i ==-,z 在复平面内对应点为()1,1-,在第二象限. 故选:B.6.B【分析】利用复数的运算法则和复数的几何意义求解即可【详解】,所以,在复平面内的对应点为,则对应点位于第二象限故选:B解析:B【分析】利用复数的运算法则和复数的几何意义求解即可【详解】()()12i 1i 12i 33i 33i 111i 2222z +++-+=-=-==-+-, 所以,z 在复平面内的对应点为33,22⎛⎫- ⎪⎝⎭,则对应点位于第二象限 故选:B7.A【分析】由复数的除法法则和乘法法则计算出,再由复数的定义得结论.【详解】由题意,得,其虚部为,故选:A.解析:A【分析】由复数的除法法则和乘法法则计算出z ,再由复数的定义得结论.【详解】由题意,得()()()()()23343313343434552i i ii z i i i i i ----====-++-+, 其虚部为35,8.B【分析】利用复数的除法运算先求出,再求出模即可.【详解】,.故选:B .解析:B【分析】利用复数的除法运算先求出z ,再求出模即可.【详解】()22212i i i z i i i++===-,∴z ==故选:B .9.C【分析】求出,即可得出,求出虚部.【详解】,,其虚部是1.故选:C.解析:C【分析】求出z ,即可得出z ,求出虚部.【详解】()()()220211i 1i i 1i 1i 1i z --===-++-,i z ∴=,其虚部是1. 故选:C. 10.D【分析】设,则,利用复数的运算判断.【详解】设,则,故,,,.解析:D【分析】设(),z a bi a b R =+∈,则z a bi =-,利用复数的运算判断.【详解】设(),z a bi a b R =+∈,则z a bi =-, 故2z z a R +=∈,2z z bi -=,22222z a bi a b abi z a bi a b+-+==-+,22z z a b ⋅=+∈R . 故选:D.11.D【分析】先对化简,从而可求出共轭复数,再利用复数的几何意义可得答案【详解】解:因为,所以,所以共轭复数在复平面内的对应点位于第四象限,故选:D解析:D【分析】 先对41i z i=+化简,从而可求出共轭复数z ,再利用复数的几何意义可得答案 【详解】 解:因为244(1)4(1)=2(1)22221(1)(1)2i i i i i z i i i i i i i i --===-=-=+++-, 所以22z i =-, 所以共轭复数z 在复平面内的对应点位于第四象限,故选:D12.B【分析】首先,再利用复数的除法运算,计算结果.【详解】复数.故选:B解析:B【分析】首先3i i =-,再利用复数的除法运算,计算结果.3133i ii+====.故选:B13.C【分析】首先根据复数相等得到,,再求的模即可.【详解】因为,所以,.所以.故选:C解析:C【分析】首先根据复数相等得到1a=-,2b=,再求a bi-的模即可.【详解】因为()21a ib i i bi+=+=-+,所以1a=-,2b=.所以12a bi i-=--==故选:C14.B【分析】利用复数代数形式的乘法运算化简,再由实部加虚部为0求解.【详解】解:,所以复数的实部为,虚部为,因为实部和虚部互为相反数,所以,解得故选:B解析:B【分析】利用复数代数形式的乘法运算化简,再由实部加虚部为0求解.【详解】解:()()()()21i3i33331a i ai ai a a i+-=-+-=++-,所以复数()()1i3ia+-的实部为3a+,虚部为31a-,因为实部和虚部互为相反数,所以3310a a++-=,解得12a=-故选:B15.B【分析】利用复数除法运算求得,再求得.依题意,所以.故选:B解析:B【分析】利用复数除法运算求得z ,再求得z .【详解】 依题意()()()12221121212555i i i i z i i i i -+====+++-,所以5z == 故选:B二、多选题16.AD【分析】A 选项,设出复数,根据共轭复数的相关计算,即可求出结果;B 选项,举出反例,根据复数模的计算公式,即可判断出结果;C 选项,根据纯虚数的定义,可判断出结果;D 选项,设出复数,根据题解析:AD【分析】A 选项,设出复数,根据共轭复数的相关计算,即可求出结果;B 选项,举出反例,根据复数模的计算公式,即可判断出结果;C 选项,根据纯虚数的定义,可判断出结果;D 选项,设出复数,根据题中条件,求出复数,由几何意义,即可判断出结果.【详解】A 选项,设(),z a bi a b R =+∈,则其共轭复数为(),z a bi a b R =-∈, 则220z z a b ⋅=+=,所以0a b ,即0z =;A 正确;B 选项,若11z =,2z i =,满足1212z z z z +=-,但12z z i =不为0;B 错;C 选项,若复数()z a ai a R =+∈表示纯虚数,需要实部为0,即0a =,但此时复数0z =表示实数,故C 错;D 选项,设(),z a bi a b R =+∈,则()2222234z a bi a abi b i =+=+-=+,所以22324a b ab ⎧-=⎨=⎩,解得21a b =⎧⎨=⎩或21a b =-⎧⎨=-⎩,则2z i =+或2z i =--, 所以其对应的点分别为()2,1或()2,1--,所以对应点的在第一象限或第三象限;D 正确. 故选:AD.17.AC【分析】根据复数的运算及复数的概念即可求解.【详解】因为复数,所以z 的虚部为1,,故AC 错误,BD 正确.故选:AC解析:AC【分析】根据复数的运算及复数的概念即可求解.【详解】 因为复数2020450511()22(1)11112i i i z i i i i +++=====+---,所以z 的虚部为1,||z =故AC 错误,BD 正确.故选:AC18.AC【分析】令,代入原式,解出的值,结合选项得出答案.【详解】令,代入,得,解得,或,或,所以,或,或.故选:AC【点睛】本题考查复数的运算,考查学生计算能力,属于基础题.解析:AC【分析】令()i ,z a b a b R =+∈,代入原式,解出,a b 的值,结合选项得出答案.【详解】令()i ,z a b a b R =+∈,代入220z z +=,得222i 0a b ab -+=,解得00a b =⎧⎨=⎩,或02a b =⎧⎨=⎩,或02a b =⎧⎨=-⎩, 所以0z =,或2i z =,或2i z =-.故选:AC【点睛】本题考查复数的运算,考查学生计算能力,属于基础题.19.ACD【分析】令代入已知等式,列方程组求解即可知的可能值.【详解】令代入,得:,∴,解得或或∴或或.故选:ACD【点睛】本题考查了已知等量关系求复数,属于简单题.解析:ACD【分析】令z a bi =+代入已知等式,列方程组求解即可知z 的可能值.【详解】令z a bi =+代入22||0z z +=,得:2220a b abi -+=,∴22020a b ab ⎧⎪-+=⎨=⎪⎩,解得0,0a b =⎧⎨=⎩或0,2a b =⎧⎨=⎩或0,2,a b =⎧⎨=-⎩ ∴0z =或2z i =或2z i =-.故选:ACD【点睛】本题考查了已知等量关系求复数,属于简单题.20.AB【分析】利用特值法依次判断选项即可得到答案.【详解】对选项A ,若复数满足,设,其中,则,则选项A 正确;对选项B ,若复数满足,设,其中,且,则,则选项B 正确;对选项C ,若复数满足,设解析:AB【分析】利用特值法依次判断选项即可得到答案.【详解】对选项A ,若复数z 满足z R ∈,设z a =,其中a R ∈,则z R ∈,则选项A 正确; 对选项B ,若复数z 满足1R z ∈,设1a z =,其中a R ∈,且0a ≠, 则1z R a=∈,则选项B 正确; 对选项C ,若复数z 满足2z ∈R ,设z i ,则21z R =-∈,但z i R =∉,则选项C 错误;对选项D ,若复数1z ,2z 满足12z z R ⋅∈,设1z i =,2z i =,则121z z ⋅=-∈R , 而21z i z =-≠,则选项D 错误;故答案选:AB【点睛】本题主要考查复数的运算,同时考查复数的定义和共轭复数,特值法为解决本题的关键,属于简单题.21.BC【分析】由可得,得,可判断A 选项,当虚部,时,可判断B 选项,由复数的模计算和余弦的二倍角公式可判断C 选项,由复数的运算得,的实部是,可判断D 选项.【详解】因为,所以,所以,所以,所以A 选解析:BC【分析】 由22ππθ-<<可得2πθπ-<<,得01cos22θ<+≤,可判断A 选项,当虚部sin 20θ=,,22ππθ⎛⎫∈- ⎪⎝⎭时,可判断B 选项,由复数的模计算和余弦的二倍角公式可判断C 选项,由复数的运算得11cos 2sin 212cos 2i z θθθ+-=+,1z 的实部是1cos 2122cos 22θθ+=+,可判断D 选项.【详解】 因为22ππθ-<<,所以2πθπ-<<,所以1cos21θ-<≤,所以01cos22θ<+≤,所以A 选项错误;当sin 20θ=,,22ππθ⎛⎫∈- ⎪⎝⎭时,复数z 是实数,故B 选项正确;2cos z θ===,故C 选项正确:()()111cos 2sin 21cos 2sin 21cos 2sin 21cos 2sin 21cos 2sin 212cos 2i i z i i i θθθθθθθθθθθ+-+-===+++++-+,1z 的实部是1cos 2122cos 22θθ+=+,故D 不正确. 故选:BC【点睛】本题主要考查复数的概念,复数模的计算,复数的运算,以及三角恒等变换的应用,属于中档题.22.BC【分析】先利用复数的运算求出复数z ,然后逐个分析判断即可【详解】解:由,得,所以z 的实部为1,,,故选:BC【点睛】此题考查复数的运算,考查复数的模,考查复数的有关概念,考查共轭 解析:BC【分析】先利用复数的运算求出复数z ,然后逐个分析判断即可【详解】解:由()1z i i +=,得2(1)2(1)11(1)(1)2i i z i i i i --====-++-, 所以z 的实部为1,1z i =+,22z i =-,故选:BC【点睛】此题考查复数的运算,考查复数的模,考查复数的有关概念,考查共轭复数,属于基础题23.ABD【分析】根据残差的计算方法判断A ,根据相关指数的性质判断B ,根据复数的模长公式判断C ,根据否定的定义判断D.【详解】当时,,则该方程相应于点(2,29)的残差为,则A 正确;在两个变量解析:ABD【分析】根据残差的计算方法判断A ,根据相关指数的性质判断B ,根据复数的模长公式判断C ,根据否定的定义判断D.【详解】当2x =时,ˆ9.429.127.9y=⨯+=,则该方程相应于点(2,29)的残差为2927.9 1.1-=,则A 正确;在两个变量y 与x 的回归模型中,2R 的值越大,模型的拟合效果越好,则B 正确;1z i =-,z ==C 错误;由否定的定义可知,D 正确;故选:ABD【点睛】本题主要考查了残差的计算,求复数的模,特称命题的否定,属于中档题. 24.AD【分析】利用复数的概念及几何有意义判断A 、B 选项是否正确,利用利用复数的四则运算法则计算及,并计算出模长,判断C 、D 是否正确.【详解】利用复数的相关概念可判断A 正确;对于B 选项,对应的解析:AD【分析】利用复数的概念及几何有意义判断A 、B 选项是否正确,利用利用复数的四则运算法则计算12z z +及12z z ,并计算出模长,判断C 、D 是否正确.【详解】利用复数的相关概念可判断A 正确;对于B 选项,1223z z i -=-对应的点位于第四象限,故B 错;对于C 选项,122+=+z z i ,则12z z +==,故C 错;对于D 选项,()122224z z i i i ⋅=-⋅=+,则12z z ==D 正确. 故选:AD【点睛】本题考查复数的相关概念及复数的计算,较简单.25.BD【分析】根据每个选项里的条件,求出相应的结果,即可判断选项的正误.【详解】对于A ,时,,则,故A 错误;对于B ,若复数,则满足,解得,故B 正确;对于C ,若复数z 为纯虚数,则满足,解得,解析:BD【分析】根据每个选项里的条件,求出相应的结果,即可判断选项的正误.【详解】对于A ,0m =时,1z =-,则1z =-,故A 错误;对于B ,若复数2z =,则满足(()21210m m m ⎧-=⎪⎨-=⎪⎩,解得m ,故B 正确; 对于C ,若复数z为纯虚数,则满足(()21010m m m ⎧-=⎪⎨--≠⎪⎩,解得1m =-,故C 错误; 对于D ,若0m =,则1z =-+,()()221420412z z ++=+--+=+,故D 正确.故选:BD.【点睛】 本题主要考查对复数相关概念的理解,注意不同情形下的取值要求,是一道基础题.26.CD【分析】根据复数的四则运算,整理复数,再逐一分析选项,即得.【详解】由题得,复数,可得,则A 不正确;的共轭复数为,则B 不正确;的实部与虚部之和为,则C 正确;在复平面内的对应点为,位于第一解析:CD【分析】根据复数的四则运算,整理复数z ,再逐一分析选项,即得.【详解】 由题得,复数22(2)(1)13131(1)(1)122i i i i z i i i i i ++++====+--+-,可得||2z ==,则A 不正确;z 的共轭复数为1322i -,则B 不正确;z 的实部与虚部之和为13222+=,则C 正确;z 在复平面内的对应点为13(,)22,位于第一象限,则D 正确.综上,正确结论是CD.故选:CD【点睛】本题考查复数的定义,共轭复数以及复数的模,考查知识点全面.27.AD【分析】A .根据共轭复数的定义判断.B.若,则,与关系分实数和虚数判断.C.若,分可能均为实数和与的虚部互为相反数分析判断.D. 根据,得到,再用共轭复数的定义判断.【详解】A .根据共轭解析:AD【分析】A .根据共轭复数的定义判断.B.若120z z -=,则12z z =,1z 与2z 关系分实数和虚数判断.C.若12z z +∈R ,分12,z z 可能均为实数和1z 与2z 的虚部互为相反数分析判断.D. 根据120z z -=,得到12z z =,再用共轭复数的定义判断.【详解】A .根据共轭复数的定义,显然是真命题;B .若120z z -=,则12z z =,当12,z z 均为实数时,则有21z z =,当1z ,2z 是虚数时,21≠z z ,所以B 是假命题;C .若12z z +∈R ,则12,z z 可能均为实数,但不一定相等,或1z 与2z 的虚部互为相反数,但实部不一定相等,所以C 是假命题;D. 若120z z -=,则12z z =,所以1z 与2z 互为共轭复数,故D 是真命题.故选:AD【点睛】本题主要考查了复数及共轭复数的概念,还考查了理解辨析的能力,属于基础题. 28.BC【分析】设,可得出,利用复数的运算、复数的概念结合充分条件、必要条件的定义进行判断,从而可得出结论.【详解】设,则,则,若,则,,若,则不为纯虚数,所以,“”是“为纯虚数”必要不充分解析:BC【分析】设(),z a bi a b R =+∈,可得出z a bi =-,利用复数的运算、复数的概念结合充分条件、必要条件的定义进行判断,从而可得出结论.【详解】设(),z a bi a b R =+∈,则z a bi =-, 则2z z a +=,若0z z +=,则0a =,b R ∈,若0b =,则z 不为纯虚数, 所以,“0z z +=”是“z 为纯虚数”必要不充分条件; 若z z =,即a bi a bi +=-,可得0b =,则z 为实数,“z z =”是“z 为实数”的充要条件;22z z a b ⋅=+∈R ,z ∴为虚数或实数,“z z ⋅∈R ”是“z 为实数”的必要不充分条件.故选:BC.【点睛】本题考查充分条件、必要条件的判断,同时也考查了共轭复数、复数的基本概念的应用,考查推理能力,属于基础题.29.BD【分析】选项A :取,满足方程,所以错误;选项B :,恒成立,所以正确;选项C :取,,,所以错误;选项D :代入,验证结果是纯虚数,所以正确.【详解】取,,则,但不满足,故A 错误;,恒成解析:BD【分析】选项A :取x i =,y i =-满足方程,所以错误;选项B :a ∀∈R ,210a +>恒成立,所以正确;选项C :取1z i =,21z =,22120z z +=,所以错误;选项D :4m =代入 22lg(27)(56)m m m m i --+++,验证结果是纯虚数,所以正确.【详解】取x i =,y i =-,则1x yi i +=+,但不满足1x y ==,故A 错误;a ∀∈R ,210a +>恒成立,所以2(1a i +)是纯虚数,故B 正确;取1z i =,21z =,则22120z z +=,但120z z ==不成立,故C 错误;4m =时,复数2212756=42g m m m m i i --+++()()是纯虚数,故D 正确.故选:BD .【点睛】本题考查复数有关概念的辨析,特别要注意复数的实部和虚部都是实数,解题时要合理取特殊值,属于中档题.30.AC【分析】根据复数的模、复数对应点的坐标、共轭复数等知识,选出正确选项.【详解】,A 正确;复数z 在复平面内对应的点的坐标为,在第三象限,B 不正确;z 的共轭复数为,C 正确;复数z 在复平面内对解析:AC【分析】根据复数的模、复数对应点的坐标、共轭复数等知识,选出正确选项.【详解】||z ==A 正确;复数z 在复平面内对应的点的坐标为(1,2)--,在第三象限,B 不正确;z 的共轭复数为12i -+,C 正确;复数z 在复平面内对应的点(1,2)--不在直线2y x =-上,D 不正确.故选:AC【点睛】本小题主要考查复数的有关知识,属于基础题.。

高考复数专题及答案

高考复数专题及答案

一、复数选择题1.复数11z i=-,则z 的共轭复数为( )A .1i -B .1i +C .1122i + D .1122i - 2.已知复数()2m m m iz i--=为纯虚数,则实数m =( )A .-1B .0C .1D .0或13.已知i 是虚数单位,复数2z i =-,则()12z i ⋅+的模长为( ) A .6BC .5D4.已知i 为虚数单位,则复数23ii -+的虚部是( ) A .35B .35i -C .15-D .15i -5.已知,a b ∈R ,若2()2a b a b i -+->(i 为虚数单位),则a 的取值范围是( ) A .2a >或1a <-B .1a >或2a <-C .12a -<<D .21a -<<6.设1z 是虚数,2111z z z =+是实数,且211z -≤≤,则1z 的实部取值范围是( ) A .[]1,1- B .11,22⎡⎤-⎢⎥⎣⎦C .[]22-,D .11,00,22⎡⎫⎛⎤-⋃⎪ ⎢⎥⎣⎭⎝⎦7.设()2211z i i=+++,则||z =( ) AB .1C .2D8.若复数z 满足()322iz i i -+=+,则复数z 的虚部为( ) A .35B .35i -C .35D .35i9.已知复数()211i z i-=+,则z =( )A .1i --B .1i -+C .1i +D .1i -10.复数z 满足22z z i +=,则z 在复平面上对应的点位于( ) A .第一象限 B .第二象限C .第三象限D .第四象限11.122ii-=+( ) A .1B .-1C .iD .-i12.设a +∈R ,复数()()()242121i i z ai ++=-,若1z =,则a =( )A .10B .9C .8D .713.已知i 为虚数单位,则43ii =-( ) A .2655i + B .2655i - C .2655i -+ D .2655i -- 14.设复数z 满足(1)2i z -=,则z =( )A .1BC D .215.设复数满足(12)i z i +=,则||z =( )A .15B C D .5二、多选题16.已知复数cos sin 22z i ππθθθ⎛⎫=+-<< ⎪⎝⎭(其中i 为虚数单位)下列说法正确的是( )A .复数z 在复平面上对应的点可能落在第二象限B .z 可能为实数C .1z =D .1z的虚部为sin θ 17.下面是关于复数21iz =-+(i 为虚数单位)的命题,其中真命题为( ) A .||2z =B .22z i =C .z 的共轭复数为1i +D .z 的虚部为1-18.已知复数1cos 2sin 222z i ππθθθ⎛⎫=++-<< ⎪⎝⎭(其中i 为虚数单位),则( )A .复数z 在复平面上对应的点可能落在第二象限B .z 可能为实数C .2cos z θ=D .1z 的实部为12- 19.已知i 为虚数单位,复数322iz i+=-,则以下真命题的是( ) A .z 的共轭复数为4755i - B .z 的虚部为75i C .3z =D .z 在复平面内对应的点在第一象限20.已知复数1z =-+(i 为虚数单位),z 为z 的共轭复数,若复数zw z=,则下列结论正确的有( )A .w 在复平面内对应的点位于第二象限B .1w =C .w 的实部为12-D .w 21.下列结论正确的是( )A .已知相关变量(),x y 满足回归方程ˆ9.49.1yx =+,则该方程相应于点(2,29)的残差为1.1B .在两个变量y 与x 的回归模型中,用相关指数2R 刻画回归的效果,2R 的值越大,模型的拟合效果越好C .若复数1z i =+,则2z =D .若命题p :0x R ∃∈,20010x x -+<,则p ⌝:x R ∀∈,210x x -+≥22.已知复数1z i =+(其中i 为虚数单位),则以下说法正确的有( )A .复数z 的虚部为iB .z =C .复数z 的共轭复数1z i =-D .复数z 在复平面内对应的点在第一象限23.已知i 为虚数单位,则下列选项中正确的是( )A .复数34z i =+的模5z =B .若复数34z i =+,则z (即复数z 的共轭复数)在复平面内对应的点在第四象限C .若复数()()2234224m m m m +-+--i 是纯虚数,则1m =或4m =- D .对任意的复数z ,都有20z24.已知复数12z =-+(其中i 为虚数单位),则以下结论正确的是( )A .20zB .2z z =C .31z =D .1z =25.下列命题中,正确的是( )A .复数的模总是非负数B .复数集与复平面内以原点为起点的所有向量组成的集合一一对应C .如果复数z 对应的点在第一象限,则与该复数对应的向量的终点也一定在第一象限D .相等的向量对应着相等的复数 26.若复数21iz =+,其中i 为虚数单位,则下列结论正确的是( )A .z 的虚部为1-B .||z =C .2z 为纯虚数D .z 的共轭复数为1i --27.已知复数z 满足23z z iz ai ⋅+=+,a R ∈,则实数a 的值可能是( )A .1B .4-C .0D .528.已知复数z ,下列结论正确的是( ) A .“0z z +=”是“z 为纯虚数”的充分不必要条件 B .“0z z +=”是“z 为纯虚数”的必要不充分条件C .“z z =”是“z 为实数”的充要条件D .“z z ⋅∈R ”是“z 为实数”的充分不必要条件29.设复数z 满足12z i =--,i 为虚数单位,则下列命题正确的是( )A .|z |=B .复数z 在复平面内对应的点在第四象限C .z 的共轭复数为12i -+D .复数z 在复平面内对应的点在直线2y x =-上30.已知复数i z a b =+(a ,b ∈R ,i 为虚数单位),且1a b +=,下列命题正确的是( ) A .z 不可能为纯虚数 B .若z 的共轭复数为z ,且z z =,则z 是实数C .若||z z =,则z 是实数D .||z 可以等于12【参考答案】***试卷处理标记,请不要删除一、复数选择题 1.D 【分析】先由复数的除法化简该复数,再由共轭复数的概念,即可得出结果. 【详解】 因为,所以其共轭复数为. 故选:D. 解析:D 【分析】先由复数的除法化简该复数,再由共轭复数的概念,即可得出结果. 【详解】 因为()()11111111222i i z i i i i ++====+--+, 所以其共轭复数为1122i -. 故选:D.2.C 【分析】结合复数除法运算化简复数,再由纯虚数定义求解即可 【详解】解析:因为为纯虚数,所以,解得,故选:C.解析:C【分析】结合复数除法运算化简复数z,再由纯虚数定义求解即可【详解】解析:因为()()22m m m iz m m mii--==--为纯虚数,所以20m mm⎧-=⎨≠⎩,解得1m=,故选:C.3.C【分析】利用复数代数形式的乘除运算化简,再由复数模的公式得答案.【详解】,,所以,,故选:C.解析:C【分析】利用复数代数形式的乘除运算化简,再由复数模的公式得答案.【详解】2z i=-,(12)(2)(12)43z i i i i∴⋅+=-+=+,所以,5z=,故选:C.4.A【分析】先由复数的除法运算化简复数,再由复数的概念,即可得出其虚部. 【详解】因为,所以其虚部是.故选:A.解析:A【分析】先由复数的除法运算化简复数23ii-+,再由复数的概念,即可得出其虚部.【详解】因为22(3)26133(3)(3)1055i i i i i i i i -----===--++-,所以其虚部是35. 故选:A.5.A 【分析】根据虚数不能比较大小可得,再解一元二次不等式可得结果. 【详解】 因为,,所以,, 所以或. 故选:A 【点睛】关键点点睛:根据虚数不能比较大小得是解题关键,属于基础题.解析:A 【分析】根据虚数不能比较大小可得a b =,再解一元二次不等式可得结果. 【详解】因为,a b ∈R ,2()2a b a b i -+->,所以a b =,220a a -->, 所以2a >或1a <-. 故选:A 【点睛】关键点点睛:根据虚数不能比较大小得a b =是解题关键,属于基础题.6.B 【分析】设,由是实数可得,即得,由此可求出. 【详解】 设,, 则,是实数,,则, ,则,解得, 故的实部取值范围是. 故选:B.解析:B 【分析】设1z a bi =+,由2111z z z =+是实数可得221a b +=,即得22z a =,由此可求出1122a -≤≤.【详解】设1z a bi =+,0b ≠, 则21222222111a bi a b z z a bi a bi a b i z a bi a b a b a b -⎛⎫⎛⎫=+=++=++=++- ⎪ ⎪++++⎝⎭⎝⎭, 2z 是实数,220bb a b∴-=+,则221a b +=, 22z a ∴=,则121a -≤≤,解得1122a -≤≤,故1z 的实部取值范围是11,22⎡⎤-⎢⎥⎣⎦. 故选:B.7.D 【分析】利用复数的乘除法运算法则将化简,然后求解. 【详解】 因为, 所以,则. 故选:D . 【点睛】本题考查复数的运算,解答时注意复数的乘法运算符合多项式乘法的运算法则,计算复数的除法时,解析:D 【分析】利用复数的乘除法运算法则将z 化简,然后求解||z . 【详解】 因为()()()()2221211*********i z i i i i i i i i i -=++=+++=-++-=+++-, 所以1z i =-,则z = 故选:D . 【点睛】本题考查复数的运算,解答时注意复数的乘法运算符合多项式乘法的运算法则,计算复数的除法时,需要给分子分母同乘以分母的共轭复数然后化简.8.A 【分析】由复数的除法法则和乘法法则计算出,再由复数的定义得结论. 【详解】由题意,得, 其虚部为, 故选:A.解析:A 【分析】由复数的除法法则和乘法法则计算出z ,再由复数的定义得结论. 【详解】 由题意,得()()()()()23343313343434552i i ii z ii i i i ----====-++-+, 其虚部为35, 故选:A.9.B 【分析】根据复数的除法运算法则求出复数,然后根据共轭复数的概念即可得解. 【详解】 由题意可得,则. 故答案为:B解析:B 【分析】根据复数的除法运算法则求出复数z ,然后根据共轭复数的概念即可得解. 【详解】由题意可得()()()()()212111111i i i z i i i ii i ---===--=--++-,则1z i =-+.故答案为:B10.B 【分析】先设复数,根据复数模的计算公式,以及复数相等,求出,得出复数,再由复数的几何意义,即可得出结果. 【详解】 设复数, 由得, 所以,解得,因为时,不能满足,舍去; 故,所以,其对应的解析:B 【分析】先设复数(),z x yi x R y R =+∈∈,根据复数模的计算公式,以及复数相等,求出,x y ,得出复数,再由复数的几何意义,即可得出结果. 【详解】设复数(),z x yi x R y R =+∈∈,由22z z i +=得222x yi i +=,所以2022x y ⎧⎪+=⎨=⎪⎩,解得1x y ⎧=⎪⎨⎪=⎩,因为1x y ⎧=⎪⎨⎪=⎩时,不能满足20x =,舍去;故31x y ⎧=-⎪⎨⎪=⎩,所以3z i =-+,其对应的点⎛⎫ ⎪ ⎪⎝⎭位于第二象限, 故选:B.11.D 【分析】利用复数的除法求解. 【详解】 . 故选:D解析:D 【分析】利用复数的除法求解. 【详解】()()()()12212222i i i i i i i ---==-++-. 故选:D12.D 【分析】根据复数的模的性质求模,然后可解得. 【详解】 解:,解得. 故选:D . 【点睛】本题考查复数的模,掌握模的性质是解题关键.设复数,则,模的性质:,,.解析:D 【分析】根据复数的模的性质求模,然后可解得a . 【详解】解:()()()()24242422221212501111i i i i aai ai++++====+--,解得7a =. 故选:D . 【点睛】本题考查复数的模,掌握模的性质是解题关键.设复数(,)z a bi a b R =+∈,则z =模的性质:1212z z z z =,(*)nnz z n N =∈,1122z z z z =. 13.C 【分析】对的分子分母同乘以,再化简整理即可求解. 【详解】 , 故选:C解析:C 【分析】对43ii -的分子分母同乘以3i +,再化简整理即可求解. 【详解】()()()434412263331055i i i i i i i i +-+===-+--+, 故选:C14.B 【分析】由复数除法求得,再由模的运算求得模. 【详解】 由题意,∴. 故选:B .解析:B 【分析】由复数除法求得z ,再由模的运算求得模.【详解】由题意22(1)11(1)(1)i z i i i i +===+--+,∴z == 故选:B .15.B【分析】利用复数除法运算求得,再求得.【详解】依题意,所以.故选:B解析:B【分析】利用复数除法运算求得z ,再求得z .【详解】 依题意()()()12221121212555i i i i z i i i i -+====+++-,所以z == 故选:B二、多选题16.BC【分析】分、、三种情况讨论,可判断AB 选项的正误;利用复数的模长公式可判断C 选项的正误;化简复数,利用复数的概念可判断D 选项的正误.【详解】对于AB 选项,当时,,,此时复数在复平面内的点解析:BC【分析】 分02θπ-<<、0θ=、02πθ<<三种情况讨论,可判断AB 选项的正误;利用复数的模长公式可判断C 选项的正误;化简复数1z,利用复数的概念可判断D 选项的正误. 【详解】对于AB 选项,当02θπ-<<时,cos 0θ>,sin 0θ<,此时复数z 在复平面内的点在第四象限; 当0θ=时,1z R =-∈; 当02πθ<<时,cos 0θ>,sin 0θ>,此时复数z 在复平面内的点在第一象限.A 选项错误,B 选项正确;对于C 选项,1z ==,C 选项正确;对于D 选项,()()11cos sin cos sin cos sin cos sin cos sin i i z i i i θθθθθθθθθθ-===-++⋅-, 所以,复数1z的虚部为sin θ-,D 选项错误. 故选:BC. 17.BD【分析】把分子分母同时乘以,整理为复数的一般形式,由复数的基本知识进行判断即可.【详解】解:,,A 错误;,B 正确;z 的共轭复数为,C 错误;z 的虚部为,D 正确.故选:BD.【点解析:BD【分析】 把21iz =-+分子分母同时乘以1i --,整理为复数的一般形式,由复数的基本知识进行判断即可.【详解】 解:22(1)11(1)(1)i z i i i i --===---+-+--,||z ∴=A 错误;22i z =,B 正确;z 的共轭复数为1i -+,C 错误;z 的虚部为1-,D 正确.故选:BD.【点睛】本题主要考查复数除法的基本运算、复数的基本概念,属于基础题.18.BC【分析】由可得,得,可判断A 选项,当虚部,时,可判断B 选项,由复数的模计算和余弦的二倍角公式可判断C 选项,由复数的运算得,的实部是,可判断D 选项.【详解】因为,所以,所以,所以,所以A 选解析:BC【分析】 由22ππθ-<<可得2πθπ-<<,得01cos22θ<+≤,可判断A 选项,当虚部sin 20θ=,,22ππθ⎛⎫∈- ⎪⎝⎭时,可判断B 选项,由复数的模计算和余弦的二倍角公式可判断C 选项,由复数的运算得11cos 2sin 212cos 2i z θθθ+-=+,1z 的实部是1cos 2122cos 22θθ+=+,可判断D 选项.【详解】 因为22ππθ-<<,所以2πθπ-<<,所以1cos21θ-<≤,所以01cos22θ<+≤,所以A 选项错误;当sin 20θ=,,22ππθ⎛⎫∈- ⎪⎝⎭时,复数z 是实数,故B 选项正确;2cos z θ===,故C 选项正确:()()111cos 2sin 21cos 2sin 21cos 2sin 21cos 2sin 21cos 2sin 212cos 2i i z i i i θθθθθθθθθθθ+-+-===+++++-+,1z 的实部是1cos 2122cos 22θθ+=+,故D 不正确. 故选:BC【点睛】本题主要考查复数的概念,复数模的计算,复数的运算,以及三角恒等变换的应用,属于中档题.19.AD【分析】先利用复数的除法、乘法计算出,再逐项判断后可得正确的选项.【详解】,故,故A 正确.的虚部为,故B 错,,故C 错,在复平面内对应的点为,故D 正确.故选:AD.【点睛】本题考解析:AD【分析】先利用复数的除法、乘法计算出z ,再逐项判断后可得正确的选项.【详解】()()32232474725555i i i i i z i ++++====+-,故4755i z =-,故A 正确.z 的虚部为75,故B 错,355z ==≠,故C 错, z 在复平面内对应的点为47,55⎛⎫ ⎪⎝⎭,故D 正确. 故选:AD.【点睛】本题考查复数的概念、复数的运算以及复数的几何意义,注意复数(),z a bi a b R =+∈的虚部为b ,不是bi ,另外复数的除法运算是分子分母同乘以分母的共轭复数.20.ABC【分析】对选项求出,再判断得解;对选项,求出再判断得解;对选项复数的实部为,判断得解;对选项,的虚部为,判断得解.【详解】对选项由题得.所以复数对应的点为,在第二象限,所以选项正确解析:ABC【分析】对选项,A 求出1=22w -+,再判断得解;对选项B ,求出1w =再判断得解;对选项,C 复数w 的实部为12-,判断得解;对选项D ,w 的虚部为2,判断得解. 【详解】对选项,A 由题得1,z =-1=2w ∴===-.所以复数w 对应的点为1(2-,在第二象限,所以选项A 正确;对选项B ,因为1w ==,所以选项B 正确; 对选项,C 复数w 的实部为12-,所以选项C 正确;对选项D ,w 所以选项D 错误. 故选:ABC【点睛】 本题主要考查复数的运算和共轭复数,考查复数的模的计算,考查复数的几何意义,考查复数的实部和虚部的概念,意在考查学生对这些知识的理解掌握水平.21.ABD【分析】根据残差的计算方法判断A ,根据相关指数的性质判断B ,根据复数的模长公式判断C ,根据否定的定义判断D.【详解】当时,,则该方程相应于点(2,29)的残差为,则A 正确;在两个变量解析:ABD【分析】根据残差的计算方法判断A ,根据相关指数的性质判断B ,根据复数的模长公式判断C ,根据否定的定义判断D.【详解】当2x =时,ˆ9.429.127.9y=⨯+=,则该方程相应于点(2,29)的残差为2927.9 1.1-=,则A 正确;在两个变量y 与x 的回归模型中,2R 的值越大,模型的拟合效果越好,则B 正确;1z i =-,z ==C 错误;由否定的定义可知,D 正确;故选:ABD【点睛】本题主要考查了残差的计算,求复数的模,特称命题的否定,属于中档题. 22.BCD【分析】根据复数的概念判定A 错,根据复数模的计算公式判断B 正确,根据共轭复数的概念判断C 正确,根据复数的几何意义判断D 正确.【详解】因为复数,所以其虚部为,即A 错误;,故B 正确;解析:BCD【分析】根据复数的概念判定A 错,根据复数模的计算公式判断B 正确,根据共轭复数的概念判断C 正确,根据复数的几何意义判断D 正确.【详解】因为复数1z i =+,所以其虚部为1,即A 错误;z ==B 正确;复数z 的共轭复数1z i =-,故C 正确;复数z 在复平面内对应的点为()1,1,显然位于第一象限,故D 正确.故选:BCD.【点睛】本题主要考查复数的概念,复数的模,复数的几何意义,以及共轭复数的概念,属于基础题型.23.AB【分析】求解复数的模判断;由共轭复数的概念判断;由实部为0且虚部不为0求得值判断;举例说明错误.【详解】解:对于,复数的模,故正确;对于,若复数,则,在复平面内对应的点的坐标为,在第四解析:AB【分析】求解复数的模判断A ;由共轭复数的概念判断B ;由实部为0且虚部不为0求得m 值判断C ;举例说明D 错误.【详解】解:对于A ,复数34z i =+的模||5z ==,故A 正确;对于B ,若复数34z i =+,则34z i =-,在复平面内对应的点的坐标为(3,4)-,在第四象限,故B 正确;对于C ,若复数22(34)(224)m m m m i +-+--是纯虚数,则223402240m m m m ⎧+-=⎨--≠⎩,解得1m =,故C 错误; 对于D ,当z i 时,210z =-<,故D 错误.故选:AB .【点睛】本题考查复数代数形式的乘除运算,考查复数的基本概念,考查复数模的求法,属于基础题. 24.BCD【分析】利用复数的运算法则直接求解.【详解】解:复数(其中为虚数单位),,故错误;,故正确;,故正确;.故正确.故选:.【点睛】本题考查命题真假的判断,考查复数的运算法则解析:BCD【分析】利用复数的运算法则直接求解.【详解】解:复数12z =-(其中i 为虚数单位),2131442z ∴=-=--,故A 错误; 2z z ∴=,故B 正确;31113()()12244z =--+=+=,故C 正确;||1z ==.故D 正确. 故选:BCD .【点睛】本题考查命题真假的判断,考查复数的运算法则等基础知识,考查运算求解能力,属于基础题.25.ABD根据复数的几何意义逐项判断后可得正确的选项.【详解】设复数,对于A ,,故A 正确.对于B ,复数对应的向量为,且对于平面内以原点为起点的任一向量,其对应的复数为,故复数集与解析:ABD【分析】根据复数的几何意义逐项判断后可得正确的选项.【详解】设复数(),z a bi a b R =+∈,对于A ,0z =≥,故A 正确.对于B ,复数z 对应的向量为(),OZ a b =,且对于平面内以原点为起点的任一向量(),m n α=,其对应的复数为m ni +, 故复数集与复平面内以原点为起点的所有向量组成的集合一一对应,故B 正确. 对于B ,复数z 对应的向量为(),OZ a b =,且对于平面内的任一向量(),m n α=,其对应的复数为m ni +,故复数集中的元素与复平面内以原点为起点的所有向量组成的集合中的元素是一一对应,故B 正确.对于C ,如果复数z 对应的点在第一象限,则与该复数对应的向量的终点不一定在第一象限,故C 错.对于D ,相等的向量的坐标一定是相同的,故它们对应的复数也相等,故D 正确. 故选:ABD .【点睛】本题考查复数的几何意义,注意复数(),z a bi a b R =+∈对应的向量的坐标为(),a b ,它与终点与起点的坐标的差有关,本题属于基础题.26.ABC【分析】首先利用复数代数形式的乘除运算化简后得:,然后分别按照四个选项的要求逐一求解判断即可.【详解】对于A :的虚部为,正确;对于B :模长,正确;对于C :因为,故为纯虚数,解析:ABC【分析】首先利用复数代数形式的乘除运算化简z 后得:1z i =-,然后分别按照四个选项的要求逐一求解判断即可.【详解】 因为()()()2122211i 1i 12i i z i i --====-++-, 对于A :z 的虚部为1-,正确;对于B :模长z =对于C :因为22(1)2z i i =-=-,故2z 为纯虚数,正确;对于D :z 的共轭复数为1i +,错误.故选:ABC .【点睛】本题考查复数代数形式的乘除运算,考查复数的有关概念,考查逻辑思维能力和运算能力,侧重考查对基础知识的理解和掌握,属于常考题.27.ABC【分析】设,从而有,利用消元法得到关于的一元二次方程,利用判别式大于等于0,从而求得a 的范围,即可得答案.【详解】设,∴,∴,∴,解得:,∴实数的值可能是.故选:ABC.【点解析:ABC【分析】设z x yi =+,从而有222()3x y i x yi ai ++-=+,利用消元法得到关于y 的一元二次方程,利用判别式大于等于0,从而求得a 的范围,即可得答案.【详解】设z x yi =+,∴222()3x y i x yi ai ++-=+,∴222223,23042,x y y a y y x a ⎧++=⇒++-=⎨=⎩, ∴244(3)04a ∆=--≥,解得:44a -≤≤, ∴实数a 的值可能是1,4,0-.故选:ABC.【点睛】本题考查复数的四则运算、模的运算,考查函数与方程思想,考查逻辑推理能力和运算求解能力.28.BC【分析】设,可得出,利用复数的运算、复数的概念结合充分条件、必要条件的定义进行判断,从而可得出结论.【详解】设,则,则,若,则,,若,则不为纯虚数,所以,“”是“为纯虚数”必要不充分解析:BC【分析】设(),z a bi a b R =+∈,可得出z a bi =-,利用复数的运算、复数的概念结合充分条件、必要条件的定义进行判断,从而可得出结论.【详解】设(),z a bi a b R =+∈,则z a bi =-, 则2z z a +=,若0z z +=,则0a =,b R ∈,若0b =,则z 不为纯虚数, 所以,“0z z +=”是“z 为纯虚数”必要不充分条件; 若z z =,即a bi a bi +=-,可得0b =,则z 为实数,“z z =”是“z 为实数”的充要条件;22z z a b ⋅=+∈R ,z ∴为虚数或实数,“z z ⋅∈R ”是“z 为实数”的必要不充分条件.故选:BC.【点睛】本题考查充分条件、必要条件的判断,同时也考查了共轭复数、复数的基本概念的应用,考查推理能力,属于基础题.29.AC【分析】根据复数的模、复数对应点的坐标、共轭复数等知识,选出正确选项.【详解】,A 正确;复数z 在复平面内对应的点的坐标为,在第三象限,B 不正确;z 的共轭复数为,C 正确;复数z 在复平面内对解析:AC【分析】根据复数的模、复数对应点的坐标、共轭复数等知识,选出正确选项.【详解】||z ==A 正确;复数z 在复平面内对应的点的坐标为(1,2)--,在第三象限,B 不正确;z 的共轭复数为12i -+,C 正确;复数z 在复平面内对应的点(1,2)--不在直线2y x =-上,D 不正确.故选:AC【点睛】本小题主要考查复数的有关知识,属于基础题.30.BC【分析】根据纯虚数、共轭复数、复数的模、复数为实数等知识,选出正确选项.【详解】当时,,此时为纯虚数,A 错误;若z 的共轭复数为,且,则,因此,B 正确;由是实数,且知,z 是实数,C 正确;由解析:BC【分析】根据纯虚数、共轭复数、复数的模、复数为实数等知识,选出正确选项.【详解】当0a =时,1b =,此时z i 为纯虚数,A 错误;若z 的共轭复数为z ,且z z =,则a bi a bi +=-,因此0b =,B 正确;由||z 是实数,且||z z =知,z 是实数,C 正确;由1||2z =得2214a b +=,又1a b +=,因此28830a a -+=,64483320∆=-⨯⨯=-<,无解,即||z 不可以等于12,D 错误. 故选:BC【点睛】本小题主要考查复数的有关知识,属于基础题.。

(完整版)高考真题:复数

(完整版)高考真题:复数

高考真题:复数一、单选题1i (A )1+i (B )1−i (C )−1+i (D )−1−i2.若复数z 满足232i,z z +=- 其中i 为虚数单位,则z=(A )1+2i (B )1-2i (C )12i -+ (D )12i --3.设i 为虚数单位,则复数(1+i )2=(A )0 (B )2 (C )2i (D )2+2i4.设i 为虚数单位,则6(i)x +的展开式中含x 4的项为 (A )-15x 4 (B )15x 4 (C )-20i x 4 (D )20i x 45 (A )i (B )1+i (C )i - (D )1i -6.若43i z =+,则(A )1 (B )1- (C (D 7.若z=1+2i ,则41i zz =- A . 1 B . −1 C . i D . −i8.设复数z 满足3z i i +=-,则z =A . 12i -+B . 12i -C . 32i +D . 32i -9.已知()()31z m m i =++-在复平面内对应的点在第四象限,则实数m 的取值范围是A . ()31-,B . ()13-, C . ()1,+∞ D . ()3-∞-, 10.设(1+2i)(a +i)的实部与虚部相等,其中a 为实数,则a =( )A . −3B . −2C . 2D . 311.设(1i)1i x y +=+,其中x ,y(A )1 (B (C (D )212.(2017高考新课标III,理3)设复数z 满足(1+i)z =2i ,则∣z ∣=A . 12B . √22C . √2D . 213.若复数(1−i )(a +i )在复平面内对应的点在第二象限,则实数a 的取值范围是A . (−∞,1)B . (−∞,−1)C . (1,+∞)D . (−1,+∞)14.已知i 是虚数单位,若复数z 满足i 1i z =+,则2z =A . -2iB . 2iC . -2D . 215.若复数(1–i )(a +i )在复平面内对应的点在第二象限,则实数a 的取值范围是A . (–∞,1)B . (–∞,–1)C . (1,+∞)D . (–1,+∞)16.已知R a ∈, i 是虚数单位,若z a =, 4z z ⋅=,则a =()A . 1或1-B . 或C .D . 17.3+i 1+i =( )A . 1+2iB . 1−2iC . 2+iD . 2−i18.,2017新课标全国卷II 文科)(1+i )(2+i )=A . 1−iB . 1+3iC . 3+iD . 3+3i19.复平面内表示复数z=i(–2+i)的点位于A . 第一象限B . 第二象限C . 第三象限D . 第四象限20.设有下面四个命题p 1:若复数z 满足1z ∈R ,则z ∈R ,p 2:若复数z 满足z 2∈R ,则z ∈R ,p 3:若复数z 1,z 2满足z 1z 2∈R ,则z 1=z 2,p 4:若复数z ∈R ,则z̅∈R .其中的真命题为A . p 1,p 3B . p 1,p 4C . p 2,p 3D . p 2,p 421.下列各式的运算结果为纯虚数的是A . i(1+i)2B . i 2(1−i)C . (1+i)2D . i(1+i)二、填空题22,其中i 为虚数单位,则z 的虚部等于______________________.23.已知,a b ∈R ,i 是虚数单位,若(1+i )(1-bi )=a _______. 24.设a ∈R ,若复数(1i)(i)a ++在复平面内对应的点位于实轴上,则a =_______________.25.已知a R ∈,i 为虚数单位,若2a ii -+为实数,则a 的值为__________.参考答案1.B【来源】2016年全国普通高等学校招生统一考试文科数学(山东卷精编版)【解析】B. 2.B【来源】2016年全国普通高等学校招生统一考试理科数学(山东卷精编版)【解析】试题分析:设i z a b =+,则23i 32i z z a b +=+=-,故2,1-==b a ,则12i z =-,选B.3.C【来源】2016年全国普通高等学校招生统一考试文科数学(四川卷精编版)试题分析:22(1i)12i i 2i +=++=,故选C.【答案】A【来源】2016年全国普通高等学校招生统一考试理科数学(四川卷精编版)【解析】 试题分析:二项式6(i)x +的展开式的通项为616C i r r r r T x -+=,令64r -=,则2r =,故展开式中含4x 的项为24246C i 15x x =-,故选A.5.A【来源】2016年全国普通高等学校招生统一考试文科数学(北京卷精编版)【解析】A. 【考点】复数运算【名师点睛】复数代数形式的四则运算的法则是进行复数运算的理论依据,加减运算类似于多项式的合并同类项,乘法法则类似于多项式的乘法法则,除法运算则先将除式写成分式的形式,再将分母实数化.6.D【来源】2016年全国普通高等学校招生统一考试文科数学(新课标3卷精编版)【解析】D . 【考点】复数的运算、共轭复数、复数的模 【名师点睛】复数的加、减法运算中,可以从形式上理解为关于虚数单位“i ”的多项式合并同类项,复数的乘法与多项式的乘法相类似,只是在结果中把2i 换成−1.复数除法可类比实数运算的分母有理化.复数加、减法的几何意义可依平面向量的加、减法的几何意义进行理解.7.C【来源】2016年全国普通高等学校招生统一考试理科数学(新课标3卷精编版)【解析】试题分析: ()()44112121i i i zz i i ==-+--,故选C . 【考点】复数的运算、共轭复数.【举一反三】复数的加、减法运算中,可以从形式上理解为关于虚数单位“i ”的多项式合并同类项,复数的乘法与多项式的乘法相类似,只是在结果中把2i 换成−1.复数除法可类比实数运算的分母有理化.复数加、减法的几何意义可依照平面向量的加、减法的几何意义进行理解. 视频 8.C【来源】2016年全国普通高等学校招生统一考试文科数学(新课标2卷精编版)【解析】试题分析:由i 3i z +=-得32i z =-,所以32i z =+,故选C.【考点】 复数的运算,共轭复数【名师点睛】复数(),a bi a b R +∈的共轭复数是(),a bi a b R -∈,据此先化简再计算即可.视频9.A【来源】2016年全国普通高等学校招生统一考试理科数学(新课标2卷精编版)【解析】试题分析:要使复数z 对应的点在第四象限,应满足30{10m m +>-<,解得31m -<<,故选A.【考点】 复数的几何意义 【名师点睛】复数的分类及对应点的位置问题都可以转化为复数的实部与虚部应该满足的条件问题,只需把复数化为代数形式,列出实部和虚部满足的方程(不等式)组即可. 复数z =a +bi 复平面内的点Z (a ,b )(a ,b∈R ).复数z =a +bi (a ,b ∈R )平面向量OZ uuu r . 视频 10.A 【来源】2016年全国普通高等学校招生统一考试文科数学(新课标1卷精编版)【解析】试题分析:(1+2i)(a +i)=a −2+(1+2a)i ,由已知,得,解得,选A.【考点】复数的概念及复数的乘法运算【名师点睛】复数题也是每年高考的必考内容,一般以客观题的形式出现,属得分题.高考中考查频率较高的内容有:复数相等、复数的几何意义、共轭复数、复数的模及复数的乘除运算.这类问题一般难度不大,但容易出现运算错误,特别是i 2=−1中的负号易忽略,所以做复数题时要注意运算的准确性.11.B【来源】2016年全国普通高等学校招生统一考试理科数学(新课标1卷精编版)【解析】试题分析:因为(1i)=1+i,x y +所以故选B.【考点】复数运算【名师点睛】复数题也是每年高考的必考内容,一般以客观题的形式出现,属得分题.高考中考查频率较高的内容有:复数相等、复数的几何意义、共轭复数、复数的模及复数的乘除运算.这类问题一般难度不大,但容易出现运算错误,特别是2i 1=-中的负号易忽略,所以做复数题时要注意运算的准确性.12.C【来源】2017年全国普通高等学校招生统一考试理科数学(新课标3卷精编版)【解析】由题意可得z =2i 1+i ,由复数求模的法则可得|z 1z 2|=|z 1||z 1|,则|z |=|2i ||1+i |=√2=√2.故选C.【名师点睛】共轭与模是复数的重要性质,运算性质有:(1)z 1±z 2=z 1±z 2,(2)z 1×z 2=z 1×z 2;(3)z ⋅z̅=|z |2=|z̅|2,(4)||z 1|−|z 2||≤|z 1±z 2|≤|z 1|+|z 2|,(5)|z 1z 2|=|z 1|×|z 2|,(6)|z 1z 2|=|z 1||z 1|. 13.B【来源】2017年全国普通高等学校招生统一考试文科数学(北京卷精编版)【解析】试题分析:设z =(1−i )(a +i )=(a +1)+(1−a )i ,因为复数对应的点在第二象限,所以{a +1<01−a >0,解得:a <−1,故选B. 14.A【来源】2017年全国普通高等学校招生统一考试文科数学(山东卷精编版)【解析】由i 1i z =+得()()22i 1i z =+,即22i z -=,所以22i z =-,故选A. 【名师点睛】复数代数形式的加减乘除运算的法则是进行复数运算的理论依据,加减运算类似于多项式的合并同类项,乘法法则类似于多项式乘法法则,除法运算则先将除式写成分式的形式,再将分母实数化.注意下面结论的灵活运用:(1)(1±i)2∈±2i∈(2)∈i,∈∈i.15.B 【来源】2017年全国普通高等学校招生统一考试理科数学(北京卷精编版)【解析】试题分析:设()()()()1i i 11i z a a a =-+=++-,因为复数对应的点在第二象限,所以10{ 10a a +<->,解得: 1a <-,故选B.【考点】复数的运算【名师点睛】复数的分类及对应点的位置问题都可以转化为复数的实部与虚部应该满足的条件问题,只需把复数化为代数形式,列出实部和虚部满足的方程(不等式)组即可.复数z =a +b i 复平面内的点Z (a ,b )(a ,b ∈R).复数z =a +b i(a ,b ∈R) 平面向量OZ uuu v .16.A【来源】【全国百强校】河北省曲周县第一中学2016-2017学年高二下学期期末考试数学(理)试题【解析】由,4z a z z =⋅=得234a +=,所以1a =±,故选A.【名师点睛】复数(),a bi a b R +∈的共轭复数是(),a bi a b R -∈,据此结合已知条件,求得a 的方程即可.17.D【来源】江西省赣州厚德外国语学校2018届高三上学期第一次阶段测试数学(理)试题【解析】3+i 1+i =(3+i)(1−i)(1+i)(1−i)=3−3i+i+11+1=4−2i 2=2−i故选D18.B【来源】2017年全国普通高等学校招生统一考试文科数学(新课标2卷精编版)【解析】由题意(1+i )(2+i )=2+3i +i 2=1+3i ,故选B. 点睛:首先对于复数的四则运算,要切实掌握其运算技巧和常规思路,如(a +b i )(c +d i )=(ac −bd)+ (ad +bc)i (a,b,c,d ∈R). 其次要熟悉复数相关基本概念,如复数a +b i (a,b ∈R)的实部为a 、虚部为b 、模为√a 2+b 2、对应点为(a,b)、共轭复数为a −b i .19.C【来源】2017年全国普通高等学校招生统一考试文科数学(新课标3卷精编版)【解析】()i 2i 12i z =-+=--,则表示复数()i 2i z =-+的点位于第三象限. 所以选C.【名师点睛】对于复数的四则运算,首先要切实掌握其运算技巧和常规思路,如()()()()()i i i ,,,a b c d ac bd ad bc a b c d R ++=-++∈.其次要熟悉复数的相关基本概念,如复数()i ,a b a b R +∈的实部为a 、虚部为b 、对应的点为(),a b 、共轭复数为i.a b -20.B【来源】2017年全国普通高等学校招生统一考试理科数学(新课标1卷精编版)【解析】令z =a +b i (a,b ∈R),则由1z =1a+b i =a−b ia 2+b 2∈R 得b =0,所以z ∈R ,故p 1正确;当z =i 时,因为z 2=i 2=−1∈R ,而z =i ∉R 知,故p 2不正确;当z 1=z 2=i 时,满足z 1⋅z 2=−1∈R ,但z 1≠z 2,故p 3不正确;对于p 4,因为实数的共轭复数是它本身,也属于实数,故p 4正确,故选B. 点睛:分式形式的复数,分子、分母同乘以分母的共轭复数,化简成z =a +b i (a,b ∈R)的形式进行判断,共轭复数只需实部不变,虚部变为原来的相反数即可.21.C【来源】2017年全国普通高等学校招生统一考试文科数学(新课标1卷精编版)【解析】2i 1+i)i 2i=-2,=⋅( ()2i 1i 1i -=-+ , 2(1i)2i += , ()i 1i 1i +=-+ ,所以选C.22.-3【来源】2016年全国普通高等学校招生统一考试文科数学(上海卷精编版)【解析】z 的虚部等于−3. 【考点】复数的运算、复数的概念【名师点睛】本题主要考查复数的运算及复数的概念,是一道基础题目.从历年高考题目来看,复数题目往往不难,有时运算与概念、复数的几何意义综合考查,也是考生必定得分的题目之一.23.2【来源】2016年全国普通高等学校招生统一考试理科数学(天津卷精编版)【解析】试题分析:由(1i)(1i)1(1)i b b b a +-=++-=,可得110b a b +=⎧⎨-=⎩,所以21a b =⎧⎨=⎩故答案为2.【考点】复数相等【名师点睛】本题重点考查复数的基本运算和复数的概念,属于基本题.首先对于复数的四则运算,要切实掌握其运算技巧和常规思路,如答案第7页,总7页 i i i()(a+b )(c+d )=(ac bd)+(ad +bc)a,b,c,d -∈R ,其次要熟悉复数的相关基本概念,如复数i(,)a+b a b ∈R 的实部为a 、虚部为b 、模为、共轭复数为i a b -.24.1-【来源】2016年全国普通高等学校招生统一考试理科数学(北京卷精编版)【解析】 试题分析:由题意得(1i)(i)1(1)i 1a a a a ++=-++∈⇒=-R .【考点】复数运算【名师点睛】复数代数形式的四则运算的法则是进行复数运算的理论依据,加减运算类似于多项式的合并同类项,乘法法则类似于多项式的乘法法则,除法运算则先将除式写成分式的形式,再将分母实数化.25.-2【来源】2017年全国普通高等学校招生统一考试理科数学(天津卷精编版) 【解析】()()()()()()2212212222555a i i a a i a i a a i i i i ----+--+===-++-为实数, 则20,25a a +==-. 【考点】 复数的分类【名师点睛】复数的分类及对应点的位置问题都可以转化为复数的实部与虚部应该满足的条件问题,只需把复数化为代数形式,列出实部和虚部满足的方程(不等式)组即可. 复数(),z a bi a b R =+∈,当0b ≠时, z 为虚数,当0b =时, z 为实数,当0,0a b =≠时, z 为纯虚数.。

高考数学复数习题及答案百度文库

高考数学复数习题及答案百度文库

一、复数选择题1.复数()1z i i =⋅+在复平面上对应的点位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 2.若20212zi i =+,则z =( )A .12i -+B .12i --C .12i -D .12i +3.已知复数()2m m m iz i--=为纯虚数,则实数m =( )A .-1B .0C .1D .0或14.若复数z 为纯虚数,且()373z i m i -=+,则实数m 的值为( ) A .97-B .7C .97D .7-5.如图所示,在复平面内,网格中的每个小正方形的边长都为1,点A ,B 对应的复数分别是1z ,2z ,则12z z -=( )A 2B .2C .2D .8 6.复数z 满足12i z i ⋅=-,z 是z 的共轭复数,则z z ⋅=( )A 3B 5C .3D .57.满足313i z i ⋅=-的复数z 的共扼复数是( )A .3i -B .3i --C .3i +D .3i -+8.若1m ii+-是纯虚数,则实数m 的值为( ). A .1- B .0C .1D 29.设复数2i1iz =+,则复数z 的共轭复数z 在复平面内对应的点位于( ) A .第一象限 B .第二象限C .第三象限D .第四象限10.若复数2i1ia -+(a ∈R )为纯虚数,则1i a -=( ) A 3B 5C .3D .511.在复平面内,已知平行四边形OABC 顶点O ,A ,C 分别表示25-+i ,32i +,则点B 对应的复数的共轭复数为( ) A .17i -B .16i -C .16i --D .17i --12.设21iz i+=-,则z 的虚部为( ) A .12B .12- C .32D .32-13.复数()()212z i i =-+,则z 的共轭复数z =( ) A .43i + B .34i - C .34i + D .43i - 14.已知i 是虚数单位,2i z i ⋅=+,则复数z 的共轭复数的模是( )A .5 BC D .315.复数21ii+的虚部为( ) A .1-B .1C .iD .i -二、多选题16.已知复数cos sin 22z i ππθθθ⎛⎫=+-<< ⎪⎝⎭(其中i 为虚数单位)下列说法正确的是( )A .复数z 在复平面上对应的点可能落在第二象限B .z 可能为实数C .1z =D .1z的虚部为sin θ 17.下列四个命题中,真命题为( ) A .若复数z 满足z R ∈,则z R ∈ B .若复数z 满足1R z∈,则z R ∈ C .若复数z 满足2z ∈R ,则z R ∈D .若复数1z ,2z 满足12z z R ⋅∈,则12z z =18.已知复数(),z x yi x y R =+∈,则( ) A .20zB .z 的虚部是yiC .若12z i =+,则1x =,2y =D .z =19.已知复数z 满足2724z i =--,在复平面内,复数z 对应的点可能在( ) A .第一象限B .第二象限C .第三象限D .第四象限20.下列说法正确的是( ) A .若2z =,则4z z ⋅=B .若复数1z ,2z 满足1212z z z z +=-,则120z z =C .若复数z 的平方是纯虚数,则复数z 的实部和虛部相等D .“1a ≠”是“复数()()()211z a a i a R =-+-∈是虚数”的必要不充分条件21.已知复数1z =-+(i 为虚数单位),z 为z 的共轭复数,若复数zw z=,则下列结论正确的有( )A .w 在复平面内对应的点位于第二象限B .1w =C .w 的实部为12-D .w 的虚部为2i 22.已知i 为虚数单位,则下列选项中正确的是( ) A .复数34z i =+的模5z =B .若复数34z i =+,则z (即复数z 的共轭复数)在复平面内对应的点在第四象限C .若复数()()2234224m m m m +-+--i 是纯虚数,则1m =或4m =- D .对任意的复数z ,都有20z23.已知i 为虚数单位,以下四个说法中正确的是( ).A .234i i i i 0+++=B .3i 1i +>+C .若()2z=12i +,则复平面内z 对应的点位于第四象限D .已知复数z 满足11z z -=+,则z 在复平面内对应的点的轨迹为直线24.已知复数12ω=-,其中i 是虚数单位,则下列结论正确的是( )A .1ω=B .2ω的虚部为C .31ω=-D .1ω在复平面内对应的点在第四象限25.已知复数z 的共轭复数为z ,且1zi i =+,则下列结论正确的是( )A .1z +=B .z 虚部为i -C .202010102z =-D .2z z z +=26.已知复数z 满足(2i)i z -=(i 为虚数单位),复数z 的共轭复数为z ,则( )A .3||5z =B .12i5z +=-C .复数z 的实部为1-D .复数z 对应复平面上的点在第二象限 27.对于复数(,)z a bi a b R =+∈,下列结论错误..的是( ). A .若0a =,则a bi +为纯虚数 B .若32a bi i -=+,则3,2a b == C .若0b =,则a bi +为实数D .纯虚数z 的共轭复数是z -28.已知i 为虚数单位,下列命题中正确的是( ) A .若x ,y ∈C ,则1x yi i +=+的充要条件是1x y == B .2(1)()a i a +∈R 是纯虚数C .若22120z z +=,则120z z == D .当4m =时,复数22lg(27)(56)m m m m i --+++是纯虚数 29.设复数z 满足12z i =--,i 为虚数单位,则下列命题正确的是( )A .|z |=B .复数z 在复平面内对应的点在第四象限C .z 的共轭复数为12i -+D .复数z 在复平面内对应的点在直线2y x =-上30.已知复数i z a b =+(a ,b ∈R ,i 为虚数单位),且1a b +=,下列命题正确的是( ) A .z 不可能为纯虚数 B .若z 的共轭复数为z ,且z z =,则z 是实数C .若||z z =,则z 是实数D .||z 可以等于12【参考答案】***试卷处理标记,请不要删除一、复数选择题 1.B 【分析】先利用复数的乘法化简复数z ,再利用复数的几何意义求解. 【详解】 因为复数,所以在复数z 复平面上对应的点位于第二象限 故选:B 解析:B 【分析】先利用复数的乘法化简复数z ,再利用复数的几何意义求解. 【详解】因为复数()11z i i i =⋅+=-+,所以在复数z 复平面上对应的点位于第二象限 故选:B2.C 【分析】根据复数单位的幂的周期性和复数除法的运算法则进行求解即可. 【详解】由已知可得,所以. 故选:C解析:C 【分析】根据复数单位i 的幂的周期性和复数除法的运算法则进行求解即可. 【详解】 由已知可得202150541222(2)21121i i i i i i z i i i i i i ⨯+++++⋅-======-⋅-,所以12z i =-. 故选:C3.C 【分析】结合复数除法运算化简复数,再由纯虚数定义求解即可 【详解】解析:因为为纯虚数,所以,解得, 故选:C.解析:C 【分析】结合复数除法运算化简复数z ,再由纯虚数定义求解即可 【详解】 解析:因为()()22m m m iz m m mi i--==--为纯虚数,所以200m m m ⎧-=⎨≠⎩,解得1m =,故选:C.4.B【分析】先求出,再解不等式组即得解. 【详解】依题意,,因为复数为纯虚数, 故,解得. 故选:B 【点睛】易错点睛:复数为纯虚数的充要条件是且,不要只写.本题不能只写出,还要写上.解析:B 【分析】 先求出321795858m m z i -+=+,再解不等式组3210790m m -=⎧⎨+≠⎩即得解. 【详解】依题意,()()()()3373321793737375858m i i m i m m z i i i i +++-+===+--+, 因为复数z 为纯虚数,故3210790m m -=⎧⎨+≠⎩,解得7m =.故选:B 【点睛】易错点睛:复数(,)z a bi a b R =+∈为纯虚数的充要条件是0a =且0b ≠,不要只写0b ≠.本题不能只写出790m +≠,还要写上3210m -=.5.B 【分析】根据复数的几何意义,求两个复数,再计算复数的模. 【详解】由图象可知,,则, 故. 故选:B.解析:B 【分析】根据复数的几何意义,求两个复数,再计算复数的模. 【详解】由图象可知1z i =,22z i =-,则1222z z i -=-+,故12|22|z z i -=-+== 故选:B .6.D 【分析】求出复数,然后由乘法法则计算. 【详解】 由题意, . 故选:D .解析:D 【分析】求出复数z ,然后由乘法法则计算z z ⋅. 【详解】 由题意12122i z i i i-==-+=--,22(2)(2)(2)5z z i i i ⋅=---+=--=.故选:D .7.A 【分析】根据,利用复数的除法运算化简复数,再利用共扼复数的概念求解. 【详解】 因为, 所以,复数的共扼复数是, 故选:A解析:A 【分析】根据313i z i ⋅=-,利用复数的除法运算化简复数,再利用共扼复数的概念求解. 【详解】因为313i z i ⋅=-, 所以()13133iz i i i i-==-=+-, 复数z 的共扼复数是3z i =-, 故选:A8.C 【分析】对复数进行化简根据实部为零,虚部不为零建立等量关系和不等关系即可得解. 【详解】 由题是纯虚数, 为纯虚数, 所以m=1. 故选:C 【点睛】此题考查复数的运算和概念辨析,关键在于熟解析:C 【分析】对复数进行化简根据实部为零,虚部不为零建立等量关系和不等关系即可得解. 【详解】 由题1m ii+-是纯虚数,()()()()()()21111111222m i i m m i i m m i m i i i i +++++++-===+--+为纯虚数, 所以m =1. 故选:C 【点睛】此题考查复数的运算和概念辨析,关键在于熟练掌握复数的运算法则.9.D 【分析】先求出,再求出,直接得复数在复平面内对应的点 【详解】因为,所以,在复平面内对应点,位于第四象限. 故选:D解析:D 【分析】先求出z ,再求出z ,直接得复数z 在复平面内对应的点 【详解】 因为211i z i i==++,所以1z i -=-,z 在复平面内对应点()1,1-,位于第四象限.故选:D10.B 【分析】把给出的复数化简,然后由实部等于0,虚部不等于0求解a 的值,最后代入模的公式求模. 【详解】 由复数()为纯虚数,则 ,则 所以 故选:B解析:B 【分析】把给出的复数化简,然后由实部等于0,虚部不等于0求解a 的值,最后代入模的公式求模. 【详解】 由()()()()()()21i 2221112a i a a i a i i i i ----+-==++-复数2i 1i a -+(a ∈R )为纯虚数,则202202a a -⎧=⎪⎪⎨+⎪≠⎪⎩ ,则2a =所以112ai i -=-=故选:B11.A 【分析】根据复数的几何意义得出坐标,由平行四边形得点坐标,即得点对应复数,从而到共轭复数. 【详解】 由题意,设,∵是平行四边形,AC 中点和BO 中点相同, ∴,即,∴点对应是,共轭复数为.解析:A 【分析】根据复数的几何意义得出,A C 坐标,由平行四边形得B 点坐标,即得B 点对应复数,从而到共轭复数. 【详解】由题意(2,5),(3,2)A C -,设(,)B x y ,∵OABC 是平行四边形,AC 中点和BO 中点相同,∴023052x y +=-+⎧⎨+=+⎩,即17x y =⎧⎨=⎩,∴B 点对应是17i +,共轭复数为17i -.故选:A . 12.C 【分析】根据复数的除法运算,先化简复数,即可得出结果. 【详解】 因为, 所以其虚部为. 故选:C.解析:C 【分析】根据复数的除法运算,先化简复数,即可得出结果. 【详解】因为()()()()21223113111222i i i i z i i i i ++++-====+--+, 所以其虚部为32. 故选:C.13.D 【分析】由复数的四则运算求出,即可写出其共轭复数. 【详解】 ∴, 故选:D解析:D 【分析】由复数的四则运算求出z ,即可写出其共轭复数z . 【详解】2(2)(12)24243z i i i i i i =-+=-+-=+∴43z i =-, 故选:D14.C 【分析】首先求出复数的共轭复数,再求模长即可. 【详解】 据题意,得,所以的共轭复数是,所以. 故选:C.解析:C 【分析】首先求出复数z 的共轭复数,再求模长即可. 【详解】 据题意,得22(2)12121i i i iz i i i ++-+====--,所以z 的共轭复数是12i +,所以z =. 故选:C.15.B 【分析】将分母乘以其共轭复数进行分母实数化,化成的代数形式即得结果.,故虚部为1.故选:B.解析:B【分析】将分母乘以其共轭复数进行分母实数化,化成(),a bi a b R +∈的代数形式即得结果.【详解】22(1)11(1)(1)i i i i i i i -==+++-,故虚部为1. 故选:B.二、多选题16.BC【分析】分、、三种情况讨论,可判断AB 选项的正误;利用复数的模长公式可判断C 选项的正误;化简复数,利用复数的概念可判断D 选项的正误.【详解】对于AB 选项,当时,,,此时复数在复平面内的点解析:BC【分析】 分02θπ-<<、0θ=、02πθ<<三种情况讨论,可判断AB 选项的正误;利用复数的模长公式可判断C 选项的正误;化简复数1z ,利用复数的概念可判断D 选项的正误. 【详解】对于AB 选项,当02θπ-<<时,cos 0θ>,sin 0θ<,此时复数z 在复平面内的点在第四象限;当0θ=时,1z R =-∈; 当02πθ<<时,cos 0θ>,sin 0θ>,此时复数z 在复平面内的点在第一象限.A 选项错误,B 选项正确;对于C 选项,1z ==,C 选项正确;对于D 选项,()()11cos sin cos sin cos sin cos sin cos sin i i z i i i θθθθθθθθθθ-===-++⋅-, 所以,复数1z的虚部为sin θ-,D 选项错误.17.AB【分析】利用特值法依次判断选项即可得到答案.【详解】对选项A ,若复数满足,设,其中,则,则选项A 正确;对选项B ,若复数满足,设,其中,且,则,则选项B 正确;对选项C ,若复数满足,设解析:AB【分析】利用特值法依次判断选项即可得到答案.【详解】对选项A ,若复数z 满足z R ∈,设z a =,其中a R ∈,则z R ∈,则选项A 正确; 对选项B ,若复数z 满足1R z ∈,设1a z =,其中a R ∈,且0a ≠, 则1z R a=∈,则选项B 正确; 对选项C ,若复数z 满足2z ∈R ,设z i ,则21z R =-∈,但z i R =∉,则选项C 错误;对选项D ,若复数1z ,2z 满足12z z R ⋅∈,设1z i =,2z i =,则121z z ⋅=-∈R , 而21z i z =-≠,则选项D 错误;故答案选:AB【点睛】本题主要考查复数的运算,同时考查复数的定义和共轭复数,特值法为解决本题的关键,属于简单题.18.CD【分析】取特殊值可判断A 选项的正误;由复数的概念可判断B 、C 选项的正误;由复数模的概念可判断D 选项的正误.【详解】对于A 选项,取,则,A 选项错误;对于B 选项,复数的虚部为,B 选项错误;解析:CD【分析】取特殊值可判断A 选项的正误;由复数的概念可判断B 、C 选项的正误;由复数模的概念可判断D 选项的正误.对于A 选项,取z i ,则210z =-<,A 选项错误;对于B 选项,复数z 的虚部为y ,B 选项错误;对于C 选项,若12z i =+,则1x =,2y =,C 选项正确;对于D 选项,z =D 选项正确.故选:CD.【点睛】本题考查复数相关命题真假的判断,涉及复数的计算、复数的概念以及复数的模,属于基础题. 19.BD【分析】先设复数,根据题中条件,由复数的乘法运算,以及复数相等的充要条件求出,即可确定对应的点所在的象限.【详解】设复数,则,所以,则,解得或,因此或,所以对应的点为或,因此复解析:BD【分析】先设复数(),z a bi a b R =+∈,根据题中条件,由复数的乘法运算,以及复数相等的充要条件求出z ,即可确定对应的点所在的象限.【详解】设复数(),z a bi a b R =+∈,则2222724z a abi b i =+-=--,所以2222724z a abi b i =+-=--,则227224a b ab ⎧-=-⎨=-⎩,解得34a b =⎧⎨=-⎩或34a b =-⎧⎨=⎩, 因此34z i =-或34z i =-+,所以对应的点为()3,4-或()3,4-,因此复数z 对应的点可能在第二或第四象限.故选:BD.【点睛】本题主要考查判定复数对应的点所在的象限,熟记复数的运算法则,以及复数相等的条件即可,属于基础题型.【分析】由求得判断A ;设出,,证明在满足时,不一定有判断B ;举例说明C 错误;由充分必要条件的判定说明D 正确.【详解】若,则,故A 正确;设,由,可得则,而不一定为0,故B 错误;当时解析:AD【分析】 由z 求得z z ⋅判断A ;设出1z ,2z ,证明在满足1212z z z z +=-时,不一定有120z z =判断B ;举例说明C 错误;由充分必要条件的判定说明D 正确.【详解】 若2z =,则24z z z ⋅==,故A 正确;设()11111,z a bi a b R =+∈,()22222,z a b i a b R =+∈ 由1212z z z z +=-,可得()()()()222222121212121212z z a a b b z z a a b b +=+++=-=-+-则12120a a b b +=,而()()121122121212121212122z z a bi a b i a a bb a b i b a i a a a b i b a i =++=-++=++不一定为0,故B 错误;当1z i =-时22z i =-为纯虚数,其实部和虚部不相等,故C 错误;若复数()()()211z a a i a R =-+-∈是虚数,则210a -≠,即1a ≠± 所以“1a ≠”是“复数()()()211z a a i a R =-+-∈是虚数”的必要不充分条件,故D 正确; 故选:AD【点睛】本题考查的是复数的相关知识,考查了学生对基础知识的掌握情况,属于中档题.21.ABC【分析】对选项求出,再判断得解;对选项,求出再判断得解;对选项复数的实部为,判断得解;对选项,的虚部为,判断得解.【详解】对选项由题得.所以复数对应的点为,在第二象限,所以选项正确解析:ABC【分析】对选项,A 求出1=2w -+,再判断得解;对选项B ,求出1w =再判断得解;对选项,C 复数w 的实部为12-,判断得解;对选项D ,w 判断得解. 【详解】对选项,A 由题得1,z =-1=2w ∴===-.所以复数w 对应的点为1(2-,在第二象限,所以选项A 正确;对选项B ,因为1w ==,所以选项B 正确; 对选项,C 复数w 的实部为12-,所以选项C 正确;对选项D ,w 所以选项D 错误. 故选:ABC【点睛】 本题主要考查复数的运算和共轭复数,考查复数的模的计算,考查复数的几何意义,考查复数的实部和虚部的概念,意在考查学生对这些知识的理解掌握水平.22.AB【分析】求解复数的模判断;由共轭复数的概念判断;由实部为0且虚部不为0求得值判断;举例说明错误.【详解】解:对于,复数的模,故正确;对于,若复数,则,在复平面内对应的点的坐标为,在第四解析:AB【分析】求解复数的模判断A ;由共轭复数的概念判断B ;由实部为0且虚部不为0求得m 值判断C ;举例说明D 错误.【详解】解:对于A ,复数34z i =+的模||5z ==,故A 正确;对于B ,若复数34z i =+,则34z i =-,在复平面内对应的点的坐标为(3,4)-,在第四象限,故B 正确;对于C ,若复数22(34)(224)m m m m i +-+--是纯虚数,则223402240m m m m ⎧+-=⎨--≠⎩,解得1m =,故C 错误; 对于D ,当z i 时,210z =-<,故D 错误.故选:AB .【点睛】本题考查复数代数形式的乘除运算,考查复数的基本概念,考查复数模的求法,属于基础题. 23.AD【分析】根据复数的运算判断A ;由虚数不能比较大小判断B ;由复数的运算以及共轭复数的定义判断C ;由模长公式化简,得出,从而判断D.【详解】,则A 正确;虚数不能比较大小,则B 错误;,则,解析:AD【分析】根据复数的运算判断A ;由虚数不能比较大小判断B ;由复数的运算以及共轭复数的定义判断C ;由模长公式化简11z z -=+,得出0x =,从而判断D.【详解】234110i i i i i i +++=--+=,则A 正确;虚数不能比较大小,则B 错误;()221424341z i i i i =++=+-+=,则34z i =--,其对应复平面的点的坐标为(3,4)--,位于第三象限,则C 错误; 令,,z x yi x y R =+∈,|1||1z z -=+∣,=,解得0x =则z 在复平面内对应的点的轨迹为直线,D 正确;故选:AD【点睛】本题主要考查了判断复数对应的点所在的象限,与复数模相关的轨迹(图形)问题,属于中档题.24.AB【分析】求得、的虚部、、对应点所在的象限,由此判断正确选项.【详解】依题意,所以A 选项正确;,虚部为,所以B 选项正确;,所以C 选项错误;,对应点为,在第三象限,故D 选项错误.故选解析:AB【分析】 求得ω、2ω的虚部、3ω、1ω对应点所在的象限,由此判断正确选项.【详解】依题意1ω==,所以A 选项正确;2211312242422ω⎛⎫=-+=--=-- ⎪ ⎪⎝⎭,虚部为,所以B 选项正确;22321111222222ωωω⎛⎫⎛⎫⎛⎛⎫=⋅=--⋅-+=-+= ⎪ ⎪ ⎪ ⎪ ⎪ ⎝⎭⎝⎭⎝⎭⎝⎭,所以C 选项错误;221111222212ω---====--⎛⎫-+ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,对应点为1,22⎛⎫-- ⎪ ⎪⎝⎭,在第三象限,故D 选项错误. 故选:AB【点睛】本小题主要考查复数的概念和运算,考查复数对应点所在象限,属于基础题.25.ACD【分析】先利用题目条件可求得,再根据复数的模的计算公式,以及复数的有关概念和复数的四则运算法则即可判断各选项的真假.【详解】由可得,,所以,虚部为;因为,所以,.故选:ACD .【解析:ACD【分析】先利用题目条件可求得z ,再根据复数的模的计算公式,以及复数的有关概念和复数的四则运算法则即可判断各选项的真假.【详解】由1zi i =+可得,11i z i i+==-,所以12z i +=-==,z 虚部为1-;因为2422,2z i z =-=-,所以()5052020410102z z ==-,2211z z i i i z +=-++=-=.故选:ACD .【点睛】本题主要考查复数的有关概念的理解和运用,复数的模的计算公式的应用,复数的四则运算法则的应用,考查学生的数学运算能力,属于基础题. 26.BD【分析】因为复数满足,利用复数的除法运算化简为,再逐项验证判断.【详解】因为复数满足,所以所以,故A 错误;,故B 正确;复数的实部为 ,故C 错误;复数对应复平面上的点在第二象限解析:BD【分析】因为复数z 满足(2i)i z -=,利用复数的除法运算化简为1255z i =-+,再逐项验证判断. 【详解】因为复数z 满足(2i)i z -=, 所以()(2)1222(2)55i i i z i i i i +===-+--+所以z ==,故A 错误;1255z i =--,故B 正确; 复数z 的实部为15- ,故C 错误; 复数z 对应复平面上的点12,55⎛⎫- ⎪⎝⎭在第二象限,故D 正确. 故选:BD【点睛】本题主要考查复数的概念,代数运算以及几何意义,还考查分析运算求解的能力,属于基础题. 27.AB【分析】由复数的代数形式的运算,逐个选项验证可得.【详解】解:因为当且时复数为纯虚数,此时,故A 错误,D 正确;当时,复数为实数,故C 正确;对于B :,则即,故B 错误;故错误的有AB解析:AB【分析】由复数的代数形式的运算,逐个选项验证可得.【详解】解:因为(,)z a bi a b R =+∈当0a =且0b ≠时复数为纯虚数,此时z bi z =-=-,故A 错误,D 正确;当0b =时,复数为实数,故C 正确;对于B :32a bi i -=+,则32a b =⎧⎨-=⎩即32a b =⎧⎨=-⎩,故B 错误; 故错误的有AB ;故选:AB【点睛】本题考查复数的代数形式及几何意义,属于基础题.28.BD【分析】选项A :取,满足方程,所以错误;选项B :,恒成立,所以正确;选项C :取,,,所以错误;选项D :代入,验证结果是纯虚数,所以正确.【详解】取,,则,但不满足,故A 错误;,恒成解析:BD【分析】选项A :取x i =,y i =-满足方程,所以错误;选项B :a ∀∈R ,210a +>恒成立,所以正确;选项C :取1z i =,21z =,22120z z +=,所以错误;选项D :4m =代入 22lg(27)(56)m m m m i --+++,验证结果是纯虚数,所以正确.【详解】取x i =,y i =-,则1x yi i +=+,但不满足1x y ==,故A 错误;a ∀∈R ,210a +>恒成立,所以2(1a i +)是纯虚数,故B 正确;取1z i =,21z =,则22120z z +=,但120z z ==不成立,故C 错误; 4m =时,复数2212756=42g m m m m i i --+++()()是纯虚数,故D 正确.故选:BD .【点睛】本题考查复数有关概念的辨析,特别要注意复数的实部和虚部都是实数,解题时要合理取特殊值,属于中档题.29.AC【分析】根据复数的模、复数对应点的坐标、共轭复数等知识,选出正确选项.【详解】,A 正确;复数z 在复平面内对应的点的坐标为,在第三象限,B 不正确;z 的共轭复数为,C 正确;复数z 在复平面内对解析:AC【分析】根据复数的模、复数对应点的坐标、共轭复数等知识,选出正确选项.【详解】||z ==A 正确;复数z 在复平面内对应的点的坐标为(1,2)--,在第三象限,B 不正确;z 的共轭复数为12i -+,C 正确;复数z 在复平面内对应的点(1,2)--不在直线2y x =-上,D 不正确.故选:AC【点睛】本小题主要考查复数的有关知识,属于基础题.30.BC【分析】根据纯虚数、共轭复数、复数的模、复数为实数等知识,选出正确选项.【详解】当时,,此时为纯虚数,A 错误;若z 的共轭复数为,且,则,因此,B 正确;由是实数,且知,z 是实数,C 正确;由解析:BC【分析】根据纯虚数、共轭复数、复数的模、复数为实数等知识,选出正确选项.【详解】当0a =时,1b =,此时z i 为纯虚数,A 错误;若z 的共轭复数为z ,且z z =,则a bi a bi +=-,因此0b =,B 正确;由||z 是实数,且||z z =知,z 是实数,C 正确;由1||2z =得2214a b +=,又1a b +=,因此28830a a -+=,64483320∆=-⨯⨯=-<,无解,即||z 不可以等于12,D 错误. 故选:BC【点睛】本小题主要考查复数的有关知识,属于基础题.。

高考复数专题及答案 百度文库

高考复数专题及答案 百度文库

一、复数选择题1.复数21i=+( ) A .1i --B .1i -+C .1i -D .1i +2.若()211z i =-,21z i =+,则12z z 等于( ) A .1i +B .1i -+C .1i -D .1i --3.已知i 为虚数单位,则复数23ii -+的虚部是( ) A .35B .35i -C .15-D .15i -4.已知复数31iz i -=,则z 的虚部为( ) A .1B .1-C .iD .i -5.若复数z 满足421iz i+=+,则z =( ) A .13i + B .13i -C .3i +D .3i -6.设2iz i+=,则||z =( ) ABC .2D .57.已知复数1z i =+,z 为z 的共轭复数,则()1z z ⋅+=( ) AB .2C .10D8.在复平面内,复数z 对应的点为(,)x y ,若22(2)4x y ++=,则( ) A .22z +=B .22z i +=C .24z +=D .24z i +=9.已知2021(2)i z i -=,则复平面内与z 对应的点在( ) A .第一象限B .第二象限C .第三象限D .第四象限 10.复数112z i =+,21z i =+(i 为虚数单位),则12z z ⋅虚部等于( ). A .1- B .3C .3iD .i -11.122ii-=+( ) A .1B .-1C .iD .-i12.若i 为虚数单位,,a b ∈R ,且2a ib i i+=+,则复数a bi -的模等于( ) ABCD13.在复平面内,复数z 对应的点的坐标是(1,1),则zi=( ) A .1i - B .1i --C .1i -+D .1i +14.已知i 是虚数单位,设11iz i,则复数2z +对应的点位于复平面( ) A .第一象限B .第二象限C .第三象限D .第四象限15.题目文件丢失!二、多选题16.已知复数z 满足220z z +=,则z 可能为( ). A .0B .2-C .2iD .2i+1-17.下面是关于复数21iz =-+的四个命题,其中真命题是( )A .||z =B .22z i =C .z 的共轭复数为1i -+D .z 的虚部为1-18.已知复数12z =-,则下列结论正确的有( )A .1z z ⋅=B .2z z =C .31z =-D .2020122z =-+ 19.已知复数(),z x yi x y R =+∈,则( ) A .20zB .z 的虚部是yiC .若12z i =+,则1x =,2y =D .z =20.下面是关于复数21iz =-+(i 为虚数单位)的命题,其中真命题为( ) A .||2z =B .22z i =C .z 的共轭复数为1i +D .z 的虚部为1-21.已知复数1cos 2sin 222z i ππθθθ⎛⎫=++-<< ⎪⎝⎭(其中i 为虚数单位),则( )A .复数z 在复平面上对应的点可能落在第二象限B .z 可能为实数C .2cos z θ=D .1z 的实部为12- 22.下列结论正确的是( )A .已知相关变量(),x y 满足回归方程ˆ9.49.1yx =+,则该方程相应于点(2,29)的残差为1.1B .在两个变量y 与x 的回归模型中,用相关指数2R 刻画回归的效果,2R 的值越大,模型的拟合效果越好C .若复数1z i =+,则2z =D .若命题p :0x R ∃∈,20010x x -+<,则p ⌝:x R ∀∈,210x x -+≥23.已知复数122,2z i z i =-=则( ) A .2z 是纯虚数 B .12z z -对应的点位于第二象限C .123z z +=D .12z z =24.设i 为虚数单位,复数()(12)z a i i =++,则下列命题正确的是( ) A .若z 为纯虚数,则实数a 的值为2B .若z 在复平面内对应的点在第三象限,则实数a 的取值范围是(,)122-C .实数12a =-是z z =(z 为z 的共轭复数)的充要条件 D .若||5()z z x i x R +=+∈,则实数a 的值为225.已知复数12ω=-,其中i 是虚数单位,则下列结论正确的是( )A .1ω=B .2ω的虚部为C .31ω=-D .1ω在复平面内对应的点在第四象限26.已知复数()(()()211z m m m i m R =-+-∈,则下列说法正确的是( )A .若0m =,则共轭复数1z =-B .若复数2z =,则mC .若复数z 为纯虚数,则1m =±D .若0m =,则2420z z ++=27.已知复数z a =+在复平面内对应的点位于第二象限,且2z = 则下列结论正确的是( ).A .38z =B .zC .z 的共轭复数为1D .24z =28.已知复数z ,下列结论正确的是( ) A .“0z z +=”是“z 为纯虚数”的充分不必要条件 B .“0z z +=”是“z 为纯虚数”的必要不充分条件 C .“z z =”是“z 为实数”的充要条件 D .“z z ⋅∈R ”是“z 为实数”的充分不必要条件 29.已知i 为虚数单位,下列命题中正确的是( ) A .若x ,y ∈C ,则1x yi i +=+的充要条件是1x y == B .2(1)()a i a +∈R 是纯虚数C .若22120z z +=,则120z z ==D .当4m =时,复数22lg(27)(56)m m m m i --+++是纯虚数30.已知复数i z a b =+(a ,b ∈R ,i 为虚数单位),且1a b +=,下列命题正确的是( ) A .z 不可能为纯虚数 B .若z 的共轭复数为z ,且z z =,则z 是实数C .若||z z =,则z 是实数D .||z 可以等于12【参考答案】***试卷处理标记,请不要删除一、复数选择题 1.C 【分析】根据复数的除法运算法则可得结果. 【详解】 . 故选:C 解析:C 【分析】根据复数的除法运算法则可得结果. 【详解】21i =+2(1)(1)(1)i i i -=+-2(1)12i i -=-.故选:C2.D 【分析】由复数的运算法则计算即可. 【详解】 解:, . 故选:D.解析:D 【分析】由复数的运算法则计算即可. 【详解】 解:()2211122z i i i i =-=-+=-,()()212222(1)2222111112z i i i i i i i z i i i i --⨯--+--∴=====--++--. 故选:D.3.A 【分析】先由复数的除法运算化简复数,再由复数的概念,即可得出其虚部. 【详解】因为,所以其虚部是. 故选:A.解析:A 【分析】先由复数的除法运算化简复数23ii-+,再由复数的概念,即可得出其虚部. 【详解】 因为22(3)26133(3)(3)1055i i i i i i i i -----===--++-,所以其虚部是35. 故选:A.4.B 【分析】化简复数,可得,结合选项得出答案. 【详解】则,的虚部为 故选:B解析:B 【分析】化简复数z ,可得z ,结合选项得出答案. 【详解】()311==11i i z i i i i i--=-=+- 则1z i =-,z 的虚部为1- 故选:B5.C 【分析】首先根据复数的四则运算求出,然后根据共轭复数的概念求出. 【详解】 ,故.故选:C.解析:C 【分析】首先根据复数的四则运算求出z ,然后根据共轭复数的概念求出z . 【详解】()()()()421426231112i i i iz i i i i +-+-====-++-,故3z i =+. 故选:C.6.B 【分析】利用复数的除法运算先求出,再求出模即可. 【详解】 , .故选:B .解析:B 【分析】利用复数的除法运算先求出z ,再求出模即可. 【详解】()22212i ii z i i i++===-,∴z ==故选:B .7.D 【分析】求出共轭复数,利用复数的乘法运算以及复数的求模公式可得答案. 【详解】 因为, 所以,, 所以, 故选:D.解析:D 【分析】求出共轭复数,利用复数的乘法运算以及复数的求模公式可得答案. 【详解】 因为1z i =+,所以1z i =-,12z i +=+,所以()()()1123z z i i i ⋅+=-⋅+=-== 故选:D.8.B 【分析】利用复数模的计算公式即可判断出结论. 【详解】因为复数对应的点为,所以 ,满足则 故选:B解析:B 【分析】利用复数模的计算公式即可判断出结论. 【详解】因为复数z 对应的点为(,)x y ,所以z x yi =+x ,y 满足22(2)4x y ++=则22z i +=故选:B9.C 【分析】由复数的乘方与除法运算求得,得后可得其对应点的坐标,得出结论. 【详解】 由题意,,∴,对应点,在第三象限. 故选:C .解析:C 【分析】由复数的乘方与除法运算求得z ,得z 后可得其对应点的坐标,得出结论. 【详解】由题意2021(2)i z i i -==,(2)12122(2)(2)555i i i i z i i i i +-+====-+--+, ∴1255z i =--,对应点12(,)55--,在第三象限.故选:C .10.B 【分析】化简,利用定义可得的虚部.【详解】则的虚部等于 故选:B解析:B 【分析】化简12z z ⋅,利用定义可得12z z ⋅的虚部. 【详解】()()1212113z z i i i ⋅=+⋅+=-+则12z z ⋅的虚部等于3 故选:B11.D 【分析】利用复数的除法求解. 【详解】 . 故选:D解析:D 【分析】利用复数的除法求解. 【详解】()()()()12212222i i i i i i i ---==-++-. 故选:D12.C 【分析】首先根据复数相等得到,,再求的模即可. 【详解】 因为,所以,. 所以. 故选:C解析:C 【分析】首先根据复数相等得到1a =-,2b =,再求a bi -的模即可. 【详解】因为()21a i b i i bi +=+=-+,所以1a =-,2b =.所以12a bi i -=--==故选:C13.A 【分析】根据复数对应的点的坐标是,得到,再利用复数的除法求解. 【详解】因为在复平面内,复数对应的点的坐标是, 所以, 所以, 故选:A解析:A 【分析】根据复数z 对应的点的坐标是(1,1),得到1z i =+,再利用复数的除法求解. 【详解】因为在复平面内,复数z 对应的点的坐标是(1,1), 所以1z i =+,所以11i i i z i +==-, 故选:A14.A 【分析】由复数的除法求出,然后得出,由复数的几何意义得结果. 【详解】 由已知,,对应点为,在第一象限, 故选:A.解析:A 【分析】由复数的除法求出z i =-,然后得出2z +,由复数的几何意义得结果. 【详解】 由已知(1)(1)(1)(1)i i z i i i --==-+-,222z i i +=-+=+,对应点为(2,1),在第一象限, 故选:A. 15.无二、多选题 16.AC 【分析】令,代入原式,解出的值,结合选项得出答案. 【详解】 令,代入, 得,解得,或,或, 所以,或,或. 故选:AC 【点睛】本题考查复数的运算,考查学生计算能力,属于基础题.解析:AC 【分析】令()i ,z a b a b R =+∈,代入原式,解出,a b 的值,结合选项得出答案. 【详解】令()i ,z a b a b R =+∈,代入220z z +=,得222i 0a b ab -+=,解得00a b =⎧⎨=⎩,或02a b =⎧⎨=⎩,或02a b =⎧⎨=-⎩,所以0z =,或2i z =,或2i z =-. 故选:AC 【点睛】本题考查复数的运算,考查学生计算能力,属于基础题.17.ABCD 【分析】先根据复数的除法运算计算出,再依次判断各选项. 【详解】 ,,故A 正确;,故B 正确;的共轭复数为,故C 正确;的虚部为,故D 正确; 故选:ABCD. 【点睛】本题考查复数的除法解析:ABCD 【分析】先根据复数的除法运算计算出z ,再依次判断各选项.【详解】()()()2121111i z i i i i --===---+-+--,z ∴==,故A 正确;()2212z i i =--=,故B 正确;z 的共轭复数为1i -+,故C 正确;z 的虚部为1-,故D 正确;故选:ABCD.【点睛】本题考查复数的除法运算,以及对复数概念的理解,属于基础题.18.ACD【分析】分别计算各选项的值,然后判断是否正确,计算D 选项的时候注意利用复数乘方的性质.【详解】因为,所以A 正确;因为,,所以,所以B 错误;因为,所以C 正确; 因为,所以,所以D 正确解析:ACD 【分析】 分别计算各选项的值,然后判断是否正确,计算D 选项的时候注意利用复数乘方的性质.【详解】因为11131222244z z i ⎛⎫⎛⎫-+=+= ⎪⎪ ⎪⎪⎝⎭⎭=⎝⋅,所以A 正确;因为22112222z ⎛⎫-=-- ⎪ ⎪⎝⎭=,122z =+,所以2z z ≠,所以B 错误;因为321112222z z z i ⎛⎫⎛⎫=⋅=---=- ⎪⎪ ⎪⎪⎝⎭⎝⎭,所以C 正确;因为6331z z z =⋅=,所以()2020633644311122z z z z z ⨯+⎛⎫===⋅=-⋅=-+ ⎪ ⎪⎝⎭,所以D 正确,故选:ACD.【点睛】本题考查复数乘法与乘方的计算,其中还涉及到了共轭复数的计算,难度较易.19.CD【分析】取特殊值可判断A 选项的正误;由复数的概念可判断B 、C 选项的正误;由复数模的概念可判断D 选项的正误.【详解】对于A 选项,取,则,A 选项错误;对于B 选项,复数的虚部为,B 选项错误;解析:CD【分析】取特殊值可判断A 选项的正误;由复数的概念可判断B 、C 选项的正误;由复数模的概念可判断D 选项的正误.【详解】对于A 选项,取z i ,则210z =-<,A 选项错误;对于B 选项,复数z 的虚部为y ,B 选项错误;对于C 选项,若12z i =+,则1x =,2y =,C 选项正确;对于D 选项,z =D 选项正确.故选:CD.【点睛】本题考查复数相关命题真假的判断,涉及复数的计算、复数的概念以及复数的模,属于基础题. 20.BD【分析】把分子分母同时乘以,整理为复数的一般形式,由复数的基本知识进行判断即可.【详解】解:,,A 错误;,B 正确;z 的共轭复数为,C 错误;z 的虚部为,D 正确.故选:BD.【点解析:BD【分析】 把21iz =-+分子分母同时乘以1i --,整理为复数的一般形式,由复数的基本知识进行判断即可.【详解】解:22(1)11(1)(1)i z i i i i --===---+-+--,||z ∴=A 错误;22i z =,B 正确;z 的共轭复数为1i -+,C 错误;z 的虚部为1-,D 正确.故选:BD.【点睛】本题主要考查复数除法的基本运算、复数的基本概念,属于基础题.21.BC【分析】由可得,得,可判断A 选项,当虚部,时,可判断B 选项,由复数的模计算和余弦的二倍角公式可判断C 选项,由复数的运算得,的实部是,可判断D 选项.【详解】因为,所以,所以,所以,所以A 选解析:BC【分析】由22ππθ-<<可得2πθπ-<<,得01cos22θ<+≤,可判断A 选项,当虚部sin 20θ=,,22ππθ⎛⎫∈- ⎪⎝⎭时,可判断B 选项,由复数的模计算和余弦的二倍角公式可判断C 选项,由复数的运算得11cos 2sin 212cos 2i z θθθ+-=+,1z 的实部是1cos 2122cos 22θθ+=+,可判断D 选项.【详解】因为22ππθ-<<,所以2πθπ-<<,所以1cos21θ-<≤,所以01cos22θ<+≤,所以A 选项错误; 当sin 20θ=,,22ππθ⎛⎫∈- ⎪⎝⎭时,复数z 是实数,故B 选项正确;2cos z θ===,故C 选项正确:()()111cos 2sin 21cos 2sin 21cos 2sin 21cos 2sin 21cos 2sin 212cos 2i i z i i i θθθθθθθθθθθ+-+-===+++++-+,1z 的实部是1cos 2122cos 22θθ+=+,故D 不正确. 故选:BC【点睛】本题主要考查复数的概念,复数模的计算,复数的运算,以及三角恒等变换的应用,属于中档题.22.ABD【分析】根据残差的计算方法判断A ,根据相关指数的性质判断B ,根据复数的模长公式判断C ,根据否定的定义判断D.【详解】当时,,则该方程相应于点(2,29)的残差为,则A 正确;在两个变量解析:ABD【分析】根据残差的计算方法判断A ,根据相关指数的性质判断B ,根据复数的模长公式判断C ,根据否定的定义判断D.【详解】当2x =时,ˆ9.429.127.9y=⨯+=,则该方程相应于点(2,29)的残差为2927.9 1.1-=,则A 正确;在两个变量y 与x 的回归模型中,2R 的值越大,模型的拟合效果越好,则B 正确;1z i =-,z ==C 错误;由否定的定义可知,D 正确;故选:ABD【点睛】本题主要考查了残差的计算,求复数的模,特称命题的否定,属于中档题. 23.AD【分析】利用复数的概念及几何有意义判断A 、B 选项是否正确,利用利用复数的四则运算法则计算及,并计算出模长,判断C 、D 是否正确.【详解】利用复数的相关概念可判断A 正确;对于B 选项,对应的解析:AD【分析】利用复数的概念及几何有意义判断A 、B 选项是否正确,利用利用复数的四则运算法则计算12z z +及12z z ,并计算出模长,判断C 、D 是否正确.【详解】利用复数的相关概念可判断A 正确;对于B 选项,1223z z i -=-对应的点位于第四象限,故B 错;对于C 选项,122+=+z z i ,则12z z +==,故C 错;对于D 选项,()122224z z i i i ⋅=-⋅=+,则12z z ==D 正确. 故选:AD【点睛】本题考查复数的相关概念及复数的计算,较简单.24.ACD【分析】首先应用复数的乘法得,再根据纯虚数概念、复数所在象限,以及与共轭复数或另一个复数相等,求参数的值或范围,进而可确定选项的正误【详解】∴选项A :为纯虚数,有可得,故正确选项B解析:ACD【分析】首先应用复数的乘法得2(12)z a a i =-++,再根据纯虚数概念、复数所在象限,以及与共轭复数或另一个复数相等,求参数的值或范围,进而可确定选项的正误【详解】()(12)2(12)z a i i a a i =++=-++∴选项A :z 为纯虚数,有20120a a -=⎧⎨+≠⎩可得2a =,故正确 选项B :z 在复平面内对应的点在第三象限,有20120a a -<⎧⎨+<⎩解得12a <-,故错误 选项C :12a =-时,52z z ==-;z z =时,120a +=即12a =-,它们互为充要条件,故正确 选项D :||5()z z x i x R +=+∈时,有125a +=,即2a =,故正确故选:ACD【点睛】本题考查了复数的运算及分类和概念,应用复数乘法运算求得复数,再根据复数的概念及性质、相等关系等确定参数的值或范围25.AB【分析】求得、的虚部、、对应点所在的象限,由此判断正确选项.【详解】依题意,所以A 选项正确;,虚部为,所以B 选项正确;,所以C 选项错误;,对应点为,在第三象限,故D 选项错误.故选解析:AB【分析】 求得ω、2ω的虚部、3ω、1ω对应点所在的象限,由此判断正确选项.【详解】依题意1ω==,所以A 选项正确;2211312442ω⎛⎫=-+=-=- ⎪ ⎪⎝⎭,虚部为,所以B 选项正确;22321111222222ωωω⎛⎫⎛⎫⎛⎛⎫=⋅=--⋅-+=-+= ⎪ ⎪ ⎪ ⎪ ⎪ ⎝⎭⎝⎭⎝⎭⎝⎭,所以C 选项错误;221111222212ω---====--⎛⎫-+ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,对应点为1,22⎛⎫-- ⎪ ⎪⎝⎭,在第三象限,故D 选项错误. 故选:AB【点睛】本小题主要考查复数的概念和运算,考查复数对应点所在象限,属于基础题.26.BD【分析】根据每个选项里的条件,求出相应的结果,即可判断选项的正误.【详解】对于A ,时,,则,故A 错误;对于B ,若复数,则满足,解得,故B 正确;对于C ,若复数z 为纯虚数,则满足,解得,解析:BD【分析】根据每个选项里的条件,求出相应的结果,即可判断选项的正误.【详解】对于A ,0m =时,1z =-,则1z =-,故A 错误;对于B ,若复数2z =,则满足(()21210m m m ⎧-=⎪⎨-=⎪⎩,解得m ,故B 正确; 对于C ,若复数z为纯虚数,则满足(()21010m m m ⎧-=⎪⎨--≠⎪⎩,解得1m =-,故C 错误; 对于D ,若0m =,则1z =-+,()()221420412z z ++=+--+=+,故D 正确.故选:BD.【点睛】 本题主要考查对复数相关概念的理解,注意不同情形下的取值要求,是一道基础题.27.AB【分析】利用复数的模长运算及在复平面内对应的点位于第二象限求出 ,再验算每个选项得解.【详解】解:,且,复数在复平面内对应的点位于第二象限选项A:选项B: 的虚部是选项C:解析:AB【分析】 利用复数2z =的模长运算及z a =+在复平面内对应的点位于第二象限求出a ,再验算每个选项得解.【详解】解:z a =+,且2z=224a +∴=,=1a ±复数z a =+在复平面内对应的点位于第二象限1a ∴=-选项A: 3323(1)(1)+3(1)+3())8-+=---+=选项B: 1z =-选项C: 1z =-的共轭复数为1z =--选项D: 222(1)(1)+2()2-+=--=--故选:AB .【点睛】本题考查复数的四则运算及共轭复数,考查运算求解能力.求解与复数概念相关问题的技巧:复数的分类、复数的相等、复数的模及共轭复数的概念都与复数的实部、虚部有关,所以解答与复数相关概念有关的问题时,需把所给复数化为代数形式,即()a bi a b R ∈+,的形式,再根据题意求解.28.BC【分析】设,可得出,利用复数的运算、复数的概念结合充分条件、必要条件的定义进行判断,从而可得出结论.【详解】设,则,则,若,则,,若,则不为纯虚数,所以,“”是“为纯虚数”必要不充分解析:BC【分析】设(),z a bi a b R =+∈,可得出z a bi =-,利用复数的运算、复数的概念结合充分条件、必要条件的定义进行判断,从而可得出结论.【详解】设(),z a bi a b R =+∈,则z a bi =-, 则2z z a +=,若0z z +=,则0a =,b R ∈,若0b =,则z 不为纯虚数, 所以,“0z z +=”是“z 为纯虚数”必要不充分条件; 若z z =,即a bi a bi +=-,可得0b =,则z 为实数,“z z =”是“z 为实数”的充要条件;22z z a b ⋅=+∈R ,z ∴为虚数或实数,“z z ⋅∈R ”是“z 为实数”的必要不充分条件.故选:BC.【点睛】本题考查充分条件、必要条件的判断,同时也考查了共轭复数、复数的基本概念的应用,考查推理能力,属于基础题.29.BD【分析】选项A :取,满足方程,所以错误;选项B :,恒成立,所以正确;选项C :取,,,所以错误;选项D :代入,验证结果是纯虚数,所以正确.【详解】取,,则,但不满足,故A 错误;,恒成解析:BD【分析】选项A :取x i =,y i =-满足方程,所以错误;选项B :a ∀∈R ,210a +>恒成立,所以正确;选项C :取1z i =,21z =,22120z z +=,所以错误;选项D :4m =代入 22lg(27)(56)m m m m i --+++,验证结果是纯虚数,所以正确.【详解】取x i =,y i =-,则1x yi i +=+,但不满足1x y ==,故A 错误;a ∀∈R ,210a +>恒成立,所以2(1a i +)是纯虚数,故B 正确;取1z i =,21z =,则22120z z +=,但120z z ==不成立,故C 错误; 4m =时,复数2212756=42g m m m m i i --+++()()是纯虚数,故D 正确.故选:BD .【点睛】本题考查复数有关概念的辨析,特别要注意复数的实部和虚部都是实数,解题时要合理取特殊值,属于中档题.30.BC【分析】根据纯虚数、共轭复数、复数的模、复数为实数等知识,选出正确选项.【详解】当时,,此时为纯虚数,A 错误;若z 的共轭复数为,且,则,因此,B 正确;由是实数,且知,z 是实数,C 正确;由解析:BC【分析】根据纯虚数、共轭复数、复数的模、复数为实数等知识,选出正确选项.【详解】当0a =时,1b =,此时z i 为纯虚数,A 错误;若z 的共轭复数为z ,且z z =,则a bi a bi +=-,因此0b =,B 正确;由||z 是实数,且||z z =知,z 是实数,C 正确;由1||2z =得2214a b +=,又1a b +=,因此28830a a -+=,64483320∆=-⨯⨯=-<,无解,即||z 不可以等于12,D 错误. 故选:BC【点睛】本小题主要考查复数的有关知识,属于基础题.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档