正反转接线图

合集下载

单项电机(双电容)正反转简易接线图

单项电机(双电容)正反转简易接线图

或盐池,那上面连小草也长不出来的。

人生的磨难是很多的,所以我们不可对于每一件轻微的伤害都过于敏感。

在生活磨难面前,精神上的坚强和无动于衷是我们抵抗罪恶和人生意外的最好武器。

1 单项电机(双电容)正反转简易接线图
人们往往把单项电机的正反转接线搞的很复杂,其实电机在出厂前已经按相关标准做好了接线图。

分别是:Z2W2 U2 V2下层是:U1 V1 Z1W1 内部图线如下:
对应的倒顺开关图如下:
或盐池,那上面连小草也长不出来的。

人生的磨难是很多的,所以我们不可对于每一件轻微的伤害都过于敏感。

在生活磨难面前,精神上的坚强和无动于衷是我们抵抗罪恶和人生意外的最好武器。

2
简单的倒顺接线图如下:
或盐池,那上面连小草也长不出来的。

人生的磨难是很多的,所以我们不可对于每一件轻微的伤害都过于敏感。

在生活磨难面前,精神上的坚强和无动于衷是我们抵抗罪恶和人生意外的最好武器。

3
注:配接倒顺开关时,应该把原电机的“连接片”去除
或盐池,那上面连小草也长不出来的。

人生的磨难是很多的,所以我们不可对于每一件轻微的伤害都过于敏感。

在生活磨难面前,精神上的坚强和无动于衷是我们抵抗罪恶和人生意外的最好武器。

4
单项电机正反转接线图。

单相电机正反转的详细接线图

单相电机正反转的详细接线图

单相电机正反转的详细接线图在单相电机中,通常主绕组的线径较大,电阻值较小,匝数也较小。

但有些正反转的单相电机并没有主副绕组之分。

其实是这样,主线圈的1(2)接副线圈的2(1),这样就正传。

反过来主线圈的1(2)接副线圈的1(2),这样就反转,以上两个图,一般的常规单相电机都可以用,不论他的主线圈与副线圈的参数一样不一样,另外还有一种单相电机,工作中需要他正反转,但是采用上面的办法,比较麻烦,实现自动控制,器件需要也多,所以就出现了,不分主副线圈的单相电机,就是主副线圈的参数一样,这种不分主副线圈的单相电机,除了用上面的这个办法外还可以这样(只适用于不分主副线圈的电机,各位看清楚了。

如果单相电机两个线圈的外观上,明显不一样,就不能采用此方法,切记切记)顺便说一下,洗衣机的电机就是不分主副的单相电机第一个图和第二个是一样的,第二个比较清楚一点,第二个图还可以变形为这样,这样也可以实现反转单相电机的画法还有一种倒顺开关控制的单相电机正反转落地扇电机接线图来个用接触器控制的,单相电机正反转,在KM1的下方红线和粉线互换,或者蓝线和黄线互换,电机就可以反转了KM1和KM2的二次线路就用三相电机的普通正反转互锁电路就行了单相电容电机接法单相电动机有三个抽头,首先用万用表电阻挡测量三个线头之间的电阻值,电阻最大的两个线头之间并联电容,另一个线头(公共端)接电源的一端。

然后用万用表的电阻挡测量公共端与接电容两端的线头之间的电阻,阻值稍大的一端接电源的另一端,绝对一次性接正转,若要想改变方向,将接电容一端的电源线.改接为另一端即可三个出线的单相电机主绕组、副绕组容易判断:1、先两两测出三条线的阻值,记住最大值的两条线及其阻值,第三条线就是主、副的连接点;2、分别测出接点与两端的阻值(这两个阻值之和必须等于上述的最大值)。

其中阻值较小的是主绕组,阻值较大的是副绕组。

一般对于单相电容启动交流电机,与电容串联的那个绕组接头就是副绕组。

电机正反转控制电路及实际接线图

电机正反转控制电路及实际接线图

在图1是三相异步电动机正反转控制的电路和继电器控制电路图,图2与3是功能与它相同的PLC控制系统的外部接线图和梯形图,其中,KM1和KM2分别是控制正转运行和反转运行的交流接触器.在梯形图中,用两个起保停电路来分别控制电动机的正转和反转。

按下正转启动按钮SB2,X0变ON,其常开触点接通,Y0的线圈“得电”并自保。

使KM1的线圈通电,电机开始正转运行。

按下停止按钮SB1,X2变ON,其常闭触点断开,使Y0线圈“失电”,电动机停止运行。

在梯形图中,将Y0与Y1的常闭触电分别与对方的线圈串联,可以保证他们不会同时为ON,因此KM1和KM2的线圈不会同时通电,这种安全措施在继电器电路中称为“互锁”。

除此之外,为了方便操作和保证Y0和Y1不会同时为ON,在梯形图中还设置了“按钮互锁”,即将反转启动按钮X1的常闭点与控制正转的Y0的线圈串联,将正转启动按钮X0的常闭触点与控制反转的Y1的线圈串联。

设Y0为ON,电动机正转,这是如果想改为反转运行,可以不安停止按钮SB1,直接安反转启动按钮SB3,X1变为ON,它的常闭触点断开,使Y0线圈“失电”,同时X1的敞开触点接通,使Y1的线圈“得电”,点击正转变为反转。

在梯形图中的互锁和按钮联锁电路只能保证输出模块中的与Y0和Y1对应的硬件继电器的常开触点心不会同时接通。

由于切换过程中电感的延时作用,可能会出现一个触点还未断弧,另一个却已合上的现象,从而造成瞬间短路故障。

可以用正反转切换时的延时来解决这一问题,但是这一方案会增大编程的工作量,也不能解决不述的接触触点故障引起的电源短路事故。

如果因主电路电流过大或者接触器质量不好,某一接触器的主触点被断电时产生的电弧熔焊而被粘结,其线圈断电后主触点仍然是接通的,这时如果另一个接触器的线圈通电,仍将造成三相电源短路事故。

为了防止出现这种情况,应在PLC外部设置KM1和KM2的辅助常闭触点组成的硬件互锁电路(见图2),假设KM1的主触点被电弧熔焊,这时它与KM2线圈串联的辅助常闭触点处于断开状态,因此KM2的线圈不可能得电。

电容启动三种单相电动机正反转接线图

电容启动三种单相电动机正反转接线图

电容启动三种单相电动机正反转接线图
江苏省泗阳县李口中学沈正中
单相电容启动电动机有两个绕组,分别是主绕组又叫工作绕组、运行绕组,另一个是副绕组又叫起动绕组;两个绕组的线径和匝数一般是不同的,主绕组线径比粗些,匝数略少些;副绕组电阻大些,用万用表量下就知了,但也有少数主绕组和副绕组完全相同倒顺电动机;多数电动机的副绕组和主绕组在电路中是同时工作的;接线方法是:副绕组和电容电路串联后与主绕组并联,再接到220V电路中;
单相电容启动电动机可分为三种,即电容运转式、电容起动式和电容运转兼起动式双电容电动机;其正反转比起三相电动机任意交换两相接线即可正反转的接线稍复杂些,因为单相电动机有启动电容、运行电容、离心开关等辅助装置,且运行绕组和启动绕组也不同,接错线有可能损坏电动机;
单相电机从绕组上看有两种:一种是正反转电动机也叫倒顺电动机,主绕组和副绕组完全相同;另一种是单向电机,主绕组和副绕组不同,反转时,它的输出功率将变小,有可能损坏电动机;
一、电容运转式电动机
电容运转式电动机是在副绕组上串接有一个电容器,然后与主绕组并联,电动机在工作时或起动时,电容器都参与主绕组共同工作;其接线如图1、图2、图3所示;
二、电容起动式电动机
电容起动式电动机是在副绕组上串接一个电容器和后,再与主绕组并联;电容器在电动机起动时有电流通过,待电动机转速达到其的70%左右,由于转子在运转时产生离心力作用,把离心开关断开,切断了通过电容器的电源,单独由主绕组工作;其接线如图4、图5、图6所示;
三、电容运转兼起动式电动机
电容运转兼起动式电动机是采用双电容连接形式,多用在功率1 KW以上的单相电动机中;其中的起动电容C2容量比运转电容C1容量大一些,接线时不得接错;其接线如图7、图8、图9、图10所示;。

双重互锁正反转控制电路原理接线图

双重互锁正反转控制电路原理接线图

双重互锁正反转控制电路原理接线图双重互锁正反转控制电路原理接线图只采用复合按钮的互锁保护是不太可靠的,实际工作中由于负载短路或大电流的长期作用,接触器的主触点有可能被强烈的电弧“烧焊”在一起;或因为接触器的机构失灵,使衔铁卡住而总是处于吸合状态。

这时,如果另一个接触器正好得电吸合,就会发生电源短路故障。

为此,在电路中再分别串接两接触器的常闭触点,可起到双重互锁的作用。

将上两篇文章(接触器互锁电动机正反转控制电路、按钮互锁的电动机正反转控制电路)中的电路图结合起来,就变成具有双重互锁的正反转控制电路。

如下图所示,图中SB2和SB3均为复合按钮,合上电源开关Q,按下起动按钮SB2,其常闭触点SB2断开,使接触器KM2不得电;常开触点SB2接通,使接触器KM1得电吸合并自锁,其主触点闭合,接通电源,电动机正向起动运转。

这时KM1的常闭触点KM1断开,进一步保证KM2不得电。

电动机双重互锁正反转控制电路接线图当需要电动机反转时,按下反向按钮SB3,其常开触点SB3断开,使接触器KM1断电释放,主触点断开,切除了电动机的电源,电动机断电而慢慢停止,同时SB3的常开触点闭合,又由于KM1的常闭辅助触点恢复闭合,使得接触器KM2得电吸合并自锁,
其主触点闭合,将电动机的两相电源对调,电动机反向转动。

这时KM2的常闭触点断开,确保KM1断电。

如果要电动机停止,只需要按下停止按钮SB1即可。

本电路特点操作方便,可直接进行正反转的操作,又安全可靠,因此广泛应用于可逆运转的各种生产机械上。

220V接触器双重互锁正反转实物接线图如下所示:。

电机正反转控制电路附实际接线图

电机正反转控制电路附实际接线图

三相异步电动机正反转控制电路图原理及plc接线与编程在图1是三相异步正反转控制的电路和控制,图2与3是功能与它相同的控制系统的外部接线图和梯形图,其中,KM1和KM2分别是控制正转运行和反转运行的.在梯形图中,用两个起保停电路来分别控制电动机的正转和反转;按下正转启动按钮SB2,X0变ON,其常开触点接通,Y0的线圈“得电”并自保;使KM1的线圈通电,开始正转运行;按下停止按钮SB1,X2变ON,其常闭触点断开,使Y0线圈“失电”,电动机停止运行;在梯形图中,将Y0与Y1的常闭触电分别与对方的线圈串联,可以保证他们不会同时为ON,因此KM1和KM2的线圈不会同时通电,这种安全措施在继电器电路中称为“互锁”;除此之外,为了方便操作和保证Y0和Y1不会同时为ON,在梯形图中还设置了“按钮互锁”,即将反转启动按钮X1的常闭点与控制正转的Y0的线圈串联,将正转启动按钮X0的常闭触点与控制反转的Y1的线圈串联;设Y0为ON,电动机正转,这是如果想改为反转运行,可以不安停止按钮SB1,直接安反转启动按钮SB3,X1变为ON,它的常闭触点断开,使Y0线圈“失电”,同时X1的敞开触点接通,使Y1的线圈“得电”,点击正转变为反转;在梯形图中的互锁和按钮联锁电路只能保证输出模块中的与Y0和Y1对应的硬件继电器的常开触点心不会同时接通;由于切换过程中电感的延时作用,可能会出现一个触点还未断弧,另一个却已合上的现象,从而造成瞬间短路故障;可以用正反转切换时的延时来解决这一问题,但是这一方案会增大编程的工作量,也不能解决不述的接触触点故障引起的短路事故;如果因主电路电流过大或者接触器质量不好,某一接触器的主触点被断电时产生的电弧熔焊而被粘结,其线圈断电后主触点仍然是接通的,这时如果另一个接触器的线圈通电,仍将造成三相短路事故;为了防止出现这种情况,应在PLC外部设置KM1和KM2的辅助常闭触点组成的硬件互锁电路见图2,假设KM1的主触点被电弧熔焊,这时它与KM2线圈串联的辅助常闭触点处于断开状态,因此KM2的线圈不可能得电;图1中的FR是作过载保护用的热继电器,异步电动机长期严重过载时,经过一定延时,热继电器的常开触点断开,常开触点闭合;其常闭触点与接触器的线圈串联,过载时接触其线圈断电,电机停止运行,起到保护作用;有的热继电器需要手动复位,即热继电器动作后要按一下它自带的复位按钮,其触点才会恢复原状,及常开触点断开,常闭触点闭合;这种热继电器的常闭触点可以像图2那样接在PLC的输出回路,仍然与接触器的线圈串联,这反而可以节约PLC的一个输入点;有的热继电器有复位功能,即热继电器动作后电机停止转,串接在主回路中的热继电器的原件冷却,热继电器的触点恢复原状;如果这种热断电器的常闭触点仍然接在PLC的输出回路,电机停止转动后果一段时间会因热继电器的触点恢复原状而自动重新运转,可能会造成设备和人身事故;因此有自动复位功能的热继电器的常闭触点不能接在PLC 的输出回路,必须将它的触点接在PLC的输入端可接常开触点或常闭触点,用梯形图来实现点击的过载保护;如果用式电机过载保护来代替热继电器,也应注意它的复位.电动机正反转实物接线图按钮联锁正反转控制电路图接触器联锁正反转控制线路。

电机正反转接线图

电机正反转接线图

为了使电动机能够正转和反转,可采用两只接触器KM1、KM2换接电动机三相电源的相序,但两个接触器不能吸合,如果同时吸合将造成电源的短路事故,为了防止这种事故,在电路中应采取可靠的互锁,上图为采用按钮和接触器双重互锁的电动机正、反两方向运行的控制路。

线路分析如下:一、正向启动:1、合上空气开关QF接通三相电源2、按下正向启动按钮SB3,KM1通电吸合并自锁,主触头闭合接通电动机,电动机这时的相序是L1、L2、L3,即正向运行。

二、反向启动:1、合上空气开关QF接通三相电源2、按下反向启动按钮SB2,KM2通电吸合并通过辅助触点自锁,常开主触头闭合换接了电动机三相的电源相序,这时电动机的相序是L3、L2、L1,即反向运行。

三、互锁环节:具有禁止功能在线路中起安全保护作用1、接触器互锁:KM1线圈回路串入KM2的常闭辅助触点,KM2线圈回路串入KM1的常闭触点。

当正转接触器KM1线圈通电动作后,K M1的辅助常闭触点断开了KM2线圈回路,若使KM1得电吸合,必须先使KM2断电释放,其辅助常闭触头复位,这就防止了KM1、KM2同时吸合造成相间短路,这一线路环节称为互锁环节。

2、按钮互锁:在电路中采用了控制按钮操作的正反传控制电路,按钮SB2、SB3都具有一对常开触点,一对常闭触点,这两个触点分别与KM1、KM2线圈回路连接。

例如按钮SB2的常开触点与接触器KM2线圈串联,而常闭触点与接触器KM1线圈回路串联。

按钮SB3的常开触点与接触器KM1线圈串联,而常闭触点压KM2线圈回路串联。

这样当按下SB2时只能有接触器KM2的线圈可以通电而KM1断电,按下SB 3时只能有接触器KM1的线圈可以通电而KM2断电,如果同时按下SB2和SB3则两只接触器线圈都不能通电。

这样就起到了互锁的作用。

四、电动机正向(或反向)启动运转后,不必先按停止按钮使电动机停止,可以直接按反向(或正向)启动按钮,使电动机变为反方向运行。

单相电机正反转的详细接线图

单相电机正反转的详细接线图

单相机电正反转的详细接线图之答禄夫天创作在单相机电中,通常主绕组的线径较年夜,电阻值较小,匝数也较小.但有些正反转的单相机电并没有主副绕组之分.其实是这样,主线圈的1(2)接副线圈的2(1),这样就正传.反过来主线圈的1(2)接副线圈的1(2),这样就反转,以上两个图,一般的惯例单相机电都可以用,不论他的主线圈与副线圈的参数一样纷歧样,另外还有一种单相机电,工作中需要他正反转,可是采纳上面的法子,比力麻烦,实现自动控制,器件需要也多,所以就呈现了,不分主副线圈的单相机电,就是主副线圈的参数一样,这种不分主副线圈的单相机电,除用上面的这个法子外还可以这样(只适用于不分主副线圈的机电,各位看清楚了.如果单相机电两个线圈的外观上,明显纷歧样,就不能采纳此方法,切记切记)顺便说一下,洗衣机的机电就是不分主副的单相机电第一个图和第二个是一样的,第二个比力清楚一点,第二个图还可以变形为这样,这样也可以实现反转单相机电的画法还有一种倒顺开关控制的单相机电正反转落地扇机电接线图来个用接触器控制的,单相机电正反转,在KM1的下方红线和粉线互换,或者蓝线和黄线互换,机电就可以反转了KM1和KM2的二次线路就用三相机电的普通正反转互锁电路就行了单相电容机电接法单相电念头有三个抽头,首先用万用表电阻挡丈量三个线头之间的电阻值,电阻最年夜的两个线头之间并联电容,另一个线头(公共端)接电源的一端.然后用万用表的电阻挡丈量公共端与接电容两真个线头之间的电阻,阻值稍年夜的一端接电源的另一端,绝对一次性接正转,若要想改变方向,将接电容一真个电源线改接为另一端即可.三个出线的单相机电主绕组、副绕组容易判断:1、先两两测出三条线的阻值,记住最年夜值的两条线及其阻值,第三条线就是主、副的连接点;2、分别测出接点与两真个阻值(这两个阻值之和必需即是上述的最年夜值).其中阻值较小的是主绕组,阻值较年夜的是副绕组.一般对单相电容启动交流机电,与电容串连的那个绕组接头就是副绕组.设副绕组电阻为R1,主绕组电阻为R2,则 R1>R2.(主绕组功率年夜,电阻小)用万用表丈量比力三个端子中每次两个端子之间的电阻值,先寻找火线通过电容连接的副绕组接头端子:其和另外两个端子之间电阻有最年夜值(R1串连R2),和第二年夜值R1)剩下二个端子中找到有最小阻值R2和第二小阻值R1的那个即为接零线的端子,也就是主绕组和副绕组的公共端子单相机电为什么有三根线启动电容和机电怎么接线?如果机电自己没有接线图示,只能用万能表了,用电阻档丈量出三组电阻数,最年夜的一组的两个端子为启动和工作绕组的串连,中间年夜小的一组为工作绕组的两个端子,较小的一组为启动绕组的两面个端子,把工作绕组和220VAC并联,启动绕组和电容串连后和电源并联.。

电动机正反转行程开关接线图

电动机正反转行程开关接线图

C6150普通车床电气4)闭合自锁 KM线圈通电 KM主触点闭合 KMY主触点闭合 按下SB2 KMY线圈通电 KMY(4-7)断开,实现联锁 KT(5-6)动断触点延时断开 KT线圈通电 KMY主触点断开 KMY(4-7)动断触点复位 KT(7-8)动合触点延时闭合 KM△(7-8)闭合自锁 KM△线圈通电 KM△主触点闭合 电动机绕组连接成△形运行 KM△(4-5)断开,实现联锁 KMY线圈断电 电动机绕组连接成Y形起动
KT线圈断电
KT动合、动断触点全部复位
电动机定子绕组在Y形联结时起动电流为△形联结的1/3,Y 形联结时的起动转矩也是△形联结时的1/3,所以这种方法 只适用于空载或轻载起动,由于Y-△降压起动投资少、维修 方便,在生产中得到广泛应用。
先合上隔离开关QS: KM(3-4)闭合自锁 KM线圈通电 KM主触点闭合 KMY主触点闭合 按下SB2 KMY线圈通电 KMY(4-7)断开,实现联锁 KT(5-6)动断触点延时断开 KT线圈通电 KMY主触点断开 KMY(4-7)动断触点复位 KT(7-8)动合触点延时闭合 KM△(7-8)闭合自锁 KM△线圈通电 KM△主触点闭合 电动机绕组连接成△形运行 KM△(4-5)断开,实现联锁 KMY线圈断电 电动机绕组连接成Y形起动
KT线圈断电
KT动合、动断触点全部复位
电动机定子绕组在Y形联结时起动电流为△形联结的1/3,Y 形联结时的起动转矩也是△形联结时的1/3,所以这种方法 只适用于空载或轻载起动,由于Y-△降压起动投资少、维修 方便,在生产中得到广泛应用。
M7130平面磨床电气控制原理图
Z3040摇臂钻床电气控制原理图
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档