山东省日照市东港实验学校九年级数学总复习课时学案:第5课时 一次方程 分式方程 一次方程组

合集下载

2019-2020学年中考数学一轮复习 第5课 一次方程导学案.doc

2019-2020学年中考数学一轮复习 第5课 一次方程导学案.doc

2019-2020学年中考数学一轮复习第5课一次方程导学案【考点梳理】:1.方程、一元一次方程、二元一次方程(组)和方程(组)的解、解方程(组)的概念及解法,利用方程解决生活中的实际问题.2.等式的基本性质及用等式的性质解方程:等式的基本性质是解方程的依据,在使用时要注意使性质成立的条件.3.灵活运用代入法、加减法解二元一次方程组.4.用方程解决实际问题:关键是找到“等量关系”,在寻找等量关系时有时可以借助图表等,在得到方程的解后,要检验它是否符合实际意义.【思想方法】方程思想和转化思想【思想方法】数形结合,分类讨论【考点一】:一次方程(组)的相关概念【例题赏析】(2015•四川巴中,第4题3分)若单项式2x2y a+b与﹣x a﹣b y4是同类项,则a,b 的值分别为()A. a=3,b=1 B.a=﹣3,b=1 C. a=3,b=﹣1 D. a=﹣3,b=﹣1考点:解二元一次方程组;同类项.专题:计算题.分析:利用同类项的定义列出方程组,求出方程组的解即可得到a与b的值.解答:解:∵单项式2x2y a+b与﹣x a﹣b y4是同类项,∴,解得:a=3,b=1,故选A.点评:此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.【考点二】:一次方程(组)的解法【例题赏析】(1)(2015•梧州,第4题3分)一元一次方程4x+1=0的解是()A. B.﹣C. 4 D.﹣4考点:解一元一次方程.专题:计算题.分析:先移项得到4x=﹣1,然后把x的系数化为1即可.解答:解:4x=﹣1,所以x=﹣.故选B.点评:本题考查了解一元一次方程:去分母、去括号、移项、合并同类项、系数化为1,这仅是解一元一次方程的一般步骤,针对方程的特点,灵活应用,各种步骤都是为使方程逐渐向x=a形式转化.(2) (2015•河北,第11题2分)利用加减消元法解方程组,下列做法正确的是()A.要消去y,可以将①×5+②×2 B.要消去x,可以将①×3+②×(﹣5)C.要消去y,可以将①×5+②×3 D.要消去x,可以将①×(﹣5)+②×2考点:解二元一次方程组.专题:计算题.分析:方程组利用加减消元法求出解即可.解答:解:利用加减消元法解方程组,要消去x,可以将①×(﹣5)+②×2.故选D点评:此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.【考点三】:一次方程的应用【例题赏析】(1)(2015•黑龙江省大庆,第5题3分)某品牌自行车1月份销售量为100辆,相同.2月份的销售量比1月份增加10%,每辆车的售价比1月份降低了80元.2月份与月份的销售总额相同,则1月份的售价为()A. 880元 B. 800元 C. 720元 D. 1080元考点:一元一次方程的应用.分析:设1月份每辆车售价为x元,则2月份每辆车的售价为(x﹣80)元,依据“2的销售量比1月份增加10%,每辆车的售价比1月份降低了80元.2月份与1额相同”列出方程并解答.解答:解:设1月份每辆车售价为x元,则2月份每辆车的售价为(x﹣80)元,依题意得 100x=(x﹣80)×100×(1+10%),解得x=880.即1月份每辆车售价为880元.故选:A.点评:本题考查了一元一次方程的应用.根据题意得到“2月份每辆车的售价”和“2是销售总量”是解题的突破口.(2)(2015,广西柳州,20,6分)如图,小黄和小陈观察蜗牛爬行,蜗牛在以A直线匀速爬向B点的过程中,到达C点时用了6分钟,那么还需要多长时间才能到达B考点:一元一次方程的应用;数轴.分析:设蜗牛还需要x分钟到达B点.根据路程=速度×时间列出方程并解答.解答:解:设蜗牛还需要x分钟到达B点.则(6+x)×=5,解得x=4.答:蜗牛还需要4分钟到达B点.点评:本题考查了数轴和一元一次方程的应用.解题关键是要读懂题目的意思,给出的条件,找出合适的等量关系列出方程,再求解.B D3.(2015•黑龙江哈尔滨,第17题3分)的油画作品和国画作品共有100幅,其中油画作品的数量是国画作品数量的2倍多7幅,展出的油画作品有幅.4.(2015,广西河池,22,8分)联华商场以150元/台的价格购进某款电风扇若干台,售完,商场用相同的货款再次购进这款电风扇,因价格提高30元,进货量减少了10台.(1)这两次各购进电风扇多少台?(2)商场以250元/台的售价卖完这两批电风扇,商场获利多少元?5.(2015•齐齐哈尔,第27题10分)母亲节前夕,某淘宝店主从厂家购进A、B已知A、B两种礼盒的单价比为2:3,单价和为200元.(1)求A、B两种礼盒的单价分别是多少元?(2)该店主购进这两种礼盒恰好用去9600元,且购进A种礼盒最多36个,B量不超过A种礼盒数量的2倍,共有几种进货方案?(3)根据市场行情,销售一个A钟礼盒可获利10元,销售一个B种礼盒可获利18奉献爱心,该店主决定每售出一个B种礼盒,为爱心公益基金捐款m元,每个A润不变,在(2)的条件下,要使礼盒全部售出后所有方案获利相同,m主获利多少元?6.(2015•福建第21题 8分)某一天,蔬菜经营户老李用了145元从蔬菜批发市场批发一些黄瓜和茄子,到菜市场去卖,黄瓜和茄子当天的批发价与零售价如下表所示:当天他卖完这些黄瓜和茄子共赚了90元,这天他批发的黄瓜和茄子分别是多少千克?7.(2015•重庆A19,7分)解方程组24 31 y xx y=-⎧⎨+=⎩8.(2015•甘南州第20题 9分)阅读材料:善于思考的小军在解方程组时,采用了一种“整体代换”的解法:解:将方程②变形:4x+10y+y=5 即2(2x+5y)+y=5③把方程①带入③得:2×3+y=5,∴y=﹣1把y=﹣1代入①得x=4,∴方程组的解为.请你解决以下问题:(1)模仿小军的“整体代换”法解方程组(2)已知x,y 满足方程组.(i)求x2+4y2的值;(ii)求+的值.9.(2015•湖南张家界,第21题8假设他始终保持平路每分钟走60m,下坡路每分钟走80m,上坡路每分钟走40m 里到学校需10min,从学校到家里需15min.问:解得BD分析:设一辆大货车一次可以运货x吨,一辆小货车一次可以运货y吨,根据2与3辆小货车一次可以运货15.5吨,5辆大货车与6辆小货车一次可以运货35组即可.解答:解:设一辆大货车一次可以运货x吨,一辆小货车一次可以运货y吨,由题意得,.故选A.点评:本题考查了由实际问题抽象出二元一次方程组,解答本题的关键是读懂题意,未知数,找出合适的等量关系,列方程组.3.(2015•黑龙江哈尔滨,第17题3分)的油画作品和国画作品共有100幅,其中油画作品的数量是国画作品数量的2倍多7幅,展出的油画作品有69 幅.考点:二元一次方程组的应用.分析:设展出的油画作品的数量是x幅,展出的国画作品是y品和国画作品共有100幅,其中油画作品的数量是国画作品数量的2倍多7并解答.解答:解:设展出的油画作品的数量是x幅,展出的国画作品是y幅,依题意得,解得,故答案是:69.点评:的条件,找出合适的等量关系,列出方程组,般情况下题中要给出2个等量关系,准确的找到等量关系并用方程组表示出来是解题的关键.4.(2015,广西河池,22,8分)联华商场以150元/台的价格购进某款电风扇若干台,售完,商场用相同的货款再次购进这款电风扇,因价格提高30元,进货量减少了10台.(1)这两次各购进电风扇多少台?(2)商场以250元/台的售价卖完这两批电风扇,商场获利多少元?解:(1)设第一次购进电风扇x台,则第二次购进x-10台,由题意可得:150x=180(x-10),解得x=60,所以第一次购进电风扇60台,则第二次购进50台.(2)商场获利为:(250-150)·60+(250-180)·50=9500(元)所以当商场以250元/台的售价卖完这两批电风扇,商场获利9500元.5.(2015•齐齐哈尔,第27题10分)母亲节前夕,某淘宝店主从厂家购进A、B已知A、B两种礼盒的单价比为2:3,单价和为200元.(1)求A、B两种礼盒的单价分别是多少元?(2)该店主购进这两种礼盒恰好用去9600元,且购进A种礼盒最多36个,B量不超过A种礼盒数量的2倍,共有几种进货方案?(3)根据市场行情,销售一个A钟礼盒可获利10元,销售一个B种礼盒可获利18奉献爱心,该店主决定每售出一个B种礼盒,为爱心公益基金捐款m元,每个A润不变,在(2)的条件下,要使礼盒全部售出后所有方案获利相同,m主获利多少元?考点:一次函数的应用;一元一次方程的应用;一元一次不等式组的应用.分析:(1)利用A、B两种礼盒的单价比为2:3,单价和为200(2)利用两种礼盒恰好用去9600元,结合(1关系求出即可;(3)首先表示出店主获利,进而利用a,b关系得出符合题意的答案.解答:解:(1)设A种礼盒单价为2x元,B种礼盒单价为3x元,依据题意得:2x+3x=200,解得:x=40,则2x=80,3x=120,答:A种礼盒单价为80元,B种礼盒单价为120元;(2)设购进A种礼盒a个,B种礼盒b个,依据题意可得:,解得:30≤a≤36,∵a,b的值均为整数,∴a的值为:30、33、36,∴共有三种方案;(3)设店主获利为w元,则w=10a+(18﹣m)b,由80a+120b=9600,得:a=120﹣b,则w=(3﹣m)b+1200,∵要使(2)中方案获利都相同,∴3﹣m=0,∴m=3,此时店主获利1200元.点评:根据题意结合得出正确等量关系是解题关键.6.(2015•福建第21题 8分)某一天,蔬菜经营户老李用了145发一些黄瓜和茄子,到菜市场去卖,黄瓜和茄子当天的批发价与零售价如下表所示:当天他卖完这些黄瓜和茄子共赚了90元,这天他批发的黄瓜和茄子分别是多少千克?考点:二元一次方程组的应用..分析:设批发的黄瓜是x千克,茄子是y千克,根据“用了145些黄瓜和茄子,卖完这些黄瓜和茄子共赚了90元,”列出方程组解答即可.解答:解:设批发的黄瓜是x千克,茄子是y千克,由题意得解得答:这天他批发的黄瓜15千克,茄子是25千克.点评:此题考查二元一次方程组的实际运用,找出题目蕴含的数量关系是解决问题的关键.7.(2015•重庆A19,7分)解方程组24 31 y xx y=-⎧⎨+=⎩考点:解二元一次方程组.专题:计算题.分析:方程组利用代入消元法求出解即可.解答:解:24 31y xx y=-⎧⎨+=⎩,①代入②得:3x+2x ﹣4=1 ,解得:x=1 ,把x=1 代入①得:y= ﹣2 ,则方程组的解为12xy=⎧⎨=-⎩.点评:此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:减消元法.8.(2015•甘南州第20题 9分)阅读材料:善于思考的小军在解方程组采用了一种“整体代换”的解法:解:将方程②变形:4x+10y+y=5 即2(2x+5y)+y=5③把方程①带入③得:2×3+y=5,∴y=﹣1把y=﹣1代入①得x=4,∴方程组的解为.请你解决以下问题:(1)模仿小军的“整体代换”法解方程组(2)已知x,y满足方程组.(i)求x2+4y2的值;(ii)求+的值.考点:解二元一次方程组..专题:阅读型;整体思想.分析:(1)模仿小军的“整体代换”法,求出方程组的解即可;(2)方程组整理后,模仿小军的“整体代换”法,求出所求式子的值即可.解答:解:(1)把方程②变形:3(3x﹣2y)+2y=19③,把①代入③得:15+2y=19,即y=2,把y=2代入①得:x=3,则方程组的解为;(2)(i)由①得:3(x2+4y2)=47+2xy,即x2+4y2=③,把③代入②得:2×=36﹣xy,解得:xy=2,则x2+4y2=17;(ii)∵x2+4y2=17,∴(x+2y)2=x2+4y2+4xy=17+8=25,∴x+2y=5或x+2y=﹣5,则+==±.点评:此题考查了解二元一次方程组,弄清阅读材料中的“整体代入”方法是解本题的关键.9.(2015•湖南张家界,第21题8假设他始终保持平路每分钟走60m,下坡路每分钟走80m,上坡路每分钟走40m 里到学校需10min,从学校到家里需15min.问:考点:二元一次方程组的应用.分析:设出平路和坡路的路程,从家里到学校走平路和下坡路一共用10分钟,里走上坡路和平路一共用15分钟,利用这两个关系式列出方程组解答即可.解答:解:设平路有xm,下坡路有ym,根据题意得,解得:,答:小华家到学校的平路和下坡路各为300m,400m.点评:本题考查了二元一次方程的应用,此题主要利用时间、速度、路程三者之间的关系解答,注意来回坡路的变化是解题的关键.。

中考中考数学复习方案 5 一次方程(组)

中考中考数学复习方案 5 一次方程(组)

(___移__项_____)得,9x-4x=-15-2;(____等__式__性___质__1______)
合并得,5x=-17;(__合__并__同__类__项__)
(_系__数__化__为__1_),得x=-
17 5
.(_等__式__性__质__2_)
考点聚焦
归类探究
回归教材
第5课时┃一次方程(组)及其应用
解 析 设甲、乙两种票各买x张,y张,根据“共买了35张 电影票”“共用750元”作为相等关系列方程组即可求解.
考点聚焦
归类探究
回归教材
第5课时┃一次方程(组)及其应用

设甲、乙两种票各买x张,y张,根据题意,

x+y=35,
24x+18y=750,
解得
x=20,
y=15.
答:甲、乙两种票各买20张,15张.
考点2 方程的概念
1.方程的概念:含有未知数的__等__式____叫做方程. 2.方程的解:使方程左右两边的值相等的未知数的值叫做
方程的解,也叫它的根. 3.解方程:求方程解的过程叫做解方程.
考点3 一元一次方程的解法
一元一次方程的定义:只含有___一_____个未知数,且 未知数的最高次数是____1____次的整式方程,叫做一元一 次方程.
(1)求1号线、2号线每千米的平均造价分别是多
少亿元?
(2)除1、2号线外,长沙市政府规划到2018年还要再建
91.8千米的地铁线网.据预算,这91.8千米地铁线网每千米的
平均造价是1号线每千米的平均造价的1.2倍,则还需投资多
少亿元?
考点聚焦
归类探究
回归教材
第5课时┃一次方程(组)及其应用

山东省日照市东港实验学校九年级数学 总复习教案

山东省日照市东港实验学校九年级数学 总复习教案

山东省日照市东港实验学校九年级数学 总复习教案复习教学目标:1、理解现实世界中具有相反意义的量的含义,会借助数轴理解实数的相反数和绝对值的意义,会求实数的相反数和绝对值,并会比较实数的大小。

2、了解平方根、算术平方根、立方根的概念,会用根号表示数的平方根和立方根。

3、了解无理数与实数的概念,知道实数与数轴上的点的一一对应的关系,会用一个有理数估计一个无理数的大致范围,了解近似数与有效数字的概念,会用计算器进行近似计算。

4、结合具体问题渗透化归思想,分类讨论的数学思想方法。

复习教学过程设计: Ⅰ [唤醒] 一、填空:1、-1.5的相反数是 、倒数是 、绝对值是 、1- 2 的绝对值是 。

2、倒数等于本身的数是 ,绝对值等于本身的数是 。

算术平方根等于本身的数是 ,立方根等于本身的数是 。

3、2-1= ,-2-2= ,(-12 )-2= ,(3.14-∏ )0=4、在227,∏,-8 ,3(-64) ,sin600,tan450中,无理数共有 个。

5、用科学记数法表示:-3700000= ,0.000312=用科学记数法表示的数3.4×105中有 个有效数字,它精确到 位。

6、点A 在数轴上表示实数2,在数轴上到A 点的距离是3的点表示的数是 。

7、3260 精确到0.1 的近似值为 ,误差小于1的近似值为 。

8、比较下列各位数的大小:-23 -34 ,0 -1, tan300 sin600二、判断:1、不带根号的数都是有理数。

( )2、无理数都是无限小数。

( )3、232是分数,也是有理数。

( )4、3-2没有平方根。

( ) 5、若3x =x ,则x 的值是0和1。

( )6、a 2的算术平方根是a 。

( ) 三、选择:1、和数轴上的点一一对应的数是( ) A 、整数 B 、有理数 C 、无理数 D 、实数2、已知:xy < 0,且|x|=3 ,|y|=1,则x+y 的值等于( ) A 、2或-2 B 、4或-4 C 、4或2 D 、4或-4或2或-23、如果一个数的平方根与立方根相同,这个数为( ) A 、0 B 、1 C 、0或1 D 、0或+1或-1 Ⅱ[尝试] 例1,已知下列各数:∏,-2.6,227,0,0.4,-(-3),3(-27) ,(--12)-2,cos300,23.6 ,-10,0.21221222122221……(按此规律,从左至右,在每相邻的两个1之间,每段在原有2的基础上再增加一个2)。

备战九年级中考数学一轮复习第5课 一次方程(组)的解法及应用(全国通用)

备战九年级中考数学一轮复习第5课 一次方程(组)的解法及应用(全国通用)

方法二:合买笔芯,单算. ∵整盒购买比单支购买每支可优惠0.5元 ∴小贤和小艺可一起购买整盒笔芯 ∴小工艺品的单价为3元,小贤:3×0.5+2=3.5>3, 小艺:7×0.5=3.5>3. ∴他们既能买到各自所需的文具用品,又都能购买到一个小 工艺品.
30.(202X·枣庄)对实数a,b,定义关于“⊗”的一种运算: a⊗b=2a+b,例如3⊗4=2×3+4=10. (1)求4⊗(-3)的值; (2)若x⊗(-y)=2,(2y)⊗x=-1,求x+y的值.
14.(202X·成都)《九章算术》是我国古代一部著名的算书, 它的出现标志着中国古代数学形成了完整的体系.其中卷八 方程[七]中记载:“今有牛五、羊二,直金十两.牛二、羊 五,直金八两.牛、羊各直金几何?”题目大意是:5头牛、 2只羊共值金10两.2头牛、5只羊共值金8两.每头牛、每只 羊各值金多少两?设1头牛值金x两,1只羊值金y两,则可列
24.(202X·无锡)若x+y=2,z-y=-3,则x+z的值等于( C )
A.5
B.1
C.-1
D.-5
25.(202X·绍兴)有两种消费券:A券,满60元减20元,B券,满
90元减30元,即一次购物大于等于60元、90元,付款时分别减
20元、30元.小敏有一张A券,小聪有一张B券,他们都购了一
学生参加社会实践活动,现已准备了49座和37座两种客车
共10辆,刚好坐满,设49座客车x辆,37座客车y辆.根据
题意,得A( )
x y 10 A.49x 37 y 466
x y 10 B.37x 49 y 466
D.4x9xy3746y6 10
D.3x7xy4946y6 10
A组
x 12 13.(202X·泰安)方程组5xxy3y16,72 的解是__y___4___.

山东省日照市东港实验学校九年级数学上册《一元二次方程》教案 新人教版

山东省日照市东港实验学校九年级数学上册《一元二次方程》教案 新人教版

一元二次方程集体备课一. 教学内容:复习目标:(辅导时各位老师要学生掌握的点,每节课可以视情况巩固两点)⑴了解一元二次方程的有关概念.⑵能灵活运用直接开平方法、配方法、公式法、因式分解法解一元二次方程.⑶会根据根的判别式判断一元二次方程的根的情况.⑷知道一元二次方程根与系数的关系,并会运用它解决有关问题.⑸能运用一元二次方程解决简单的实际问题.⑹了解数学解题中的方程思想、转化思想、分类讨论思想和整体思想.三. 重点讲解1. 了解一元二次方程的概念,对有关一元二次方程定义的题目,要充分考虑定义的三个(强调是三个)特点,即①是整式方程(重点强调);②化简后只含有一个未知数;③未知数的最高次数是2.2. 解一元二次方程时,应根据方程特点,灵活选择解题方法,先考虑能否用直接开平方法和因式分解法,再考虑用公式法.(通过教材课后习题的演练,可以很明显的发现利用十字相乘法解方程时二次项系数时常不是一,而有些学生十字相乘法中对于二次项系数不为一的题目会无所适从,不妨多加练习,但某某近三年的中考中没有出现过类似的题目)3 .一元二次方程20(0)ax bx c a++=≠的根的判别式正反都成立.利用其可以⑴不解方程判定方程根的情况(有根,有两个根,有两个不同的根分别代表⊿的取值X 围);⑵根据参系数的性质确定根的X围(有两正根,两负根,一根正一根负,只有一个根大于某常数);针对只有一个根大于某一常数的题型举例如下:⑶解与根有关的证明题(判断三角形的形状,某一恒等式证明).举例如下:4. 一元二次方程根与系数的应用很多:⑴已知方程的一根,不解方程求另一根及参系数;⑵已知方程,求含有两根对称式的代数式的值及有关未知数系数;⑶已知方程两根,求作以方程两根或其代数式为根的一元二次方程.5. 能够列出一元二次方程解应用题.能够发现、提出日常生活、生产或其他学科中可以利用一元二次方程来解决的实际问题,并正确地用语言表述问题及其解决过程.6. 本章解题思想总结:⑴转化思想转化思想是初中数学最常见的一种思想方法.运用转化的思想可将未知数的问题转化为已知的问题,将复杂的问题转化为简单的问题.在本章中,将解一元二次方程转化为求平方根问题,将二次方程利用因式分解转化为一次方程等.⑵从特殊到一般的思想从特殊到一般是我们认识世界的普遍规律,通过对特殊现象的研究得出一般结论,如从用直接开平方法解特殊的问题到配方法到公式法,再如探索一元二次方程根与系数的关系等.(对于理解力好的学生,可以要求其掌握公式法的求根公式的由来,以及怎样用两根推导根与系数的关系)⑶分类讨论的思想一元二次方程根的判别式体现了分类讨论的思想(在目前单元测试的压轴性题目中出现的频率较高).举例如下:四. 易错点点拨易错点1:对一元二次方程的定义的理解.判断一个方程是否一元二次方程,关键是将整式方程化简后只含有一个未知数,且未知数的最高次数为2,特别地,当二次项的系数用字母表示时,二次项系数不为零不能漏掉(虽简单,但极易被学生忽略).易错点2:一元二次方程的一般形式.在确定一元二次方程的二次项、一次项及常数项时,一定要将一元二次方程化为一般形式(注意同类项的合并与等号右边不为零的情况).易错点3:关于解一元二次方程时的易错点.⑴是在解形如“2x x =”这样的方程时,千万不能在方程左右两边都除以x ,从而造成方程丢根(告知学生原因,即当x=0时,两边是不能同时除以0的,无意义);⑵用配方法时,当二次项的系数不为1时,应将二次项系数化为1,再将方程左边配成完全平方式;⑶利用公式法求一元二次方程的解时,要先判断24b ac -必须非负才能求解;举例如下:⑷利用因式分解法求一元二次方程的解时,方程右边一定要变为0.易错点4:在用一元二次方程解决有关实际问题时,注意运用转化思想,如图形问题中,如何通过平移,旋转等变换把不规则的图形转化为规则的图形.另外,对于增长率问题,要把握基础数与总数的关系.特别地,一元二次方程的两个解,一定要会判断检验其是否符合实际意义(两个解并非必须有一个是增根,二者都合适的情况也是存在的).【典型例题】考点1:一元二次方程的概念及一般形式相关知识:只含有一个未知数的整式方程,并且都可以化为ax 2+bx +c =0(a 、b 、c 为常数,a ≠0)的形式,这样的方程叫做一元二次方程.一元二次方程的一般形式:ax 2+bx +c =0(a ≠0).复习策略:准确理解一元二次方程的定义,一元二次方程首先是整式方程,然后是经过化简后能得到一元二次方程的一般形式的方程才是一元二次方程.例1. ⑴下列方程是关于x 的一元二次方程的是()A.23(1)2(1)x x +=+ B.21120x x +-= C.20ax bx c ++= D.2221x x x +=-⑵方程215x x -=的一次项的系数是.【评注】概念性的问题关键是抓住概念的本质.一元二次方程必须符合三个条件:①是整式方程;②化简后只含一个未知数;③未知数的最高次数为2.考点2:一元二次方程的解相关知识:使一元二次方程左右两边的值相等的未知数的值,叫做一元二次方程的解,或叫做一元二次方程的根.复习策略:要判断一个值是否是一元二次方程的解,只要将这个值代入一元二次方程,看看方程左右两边是否相等即可.相等,则是方程的解;反之,则不是.例2. 如果关于x 的一元二次方程22(2)340m x x m -++-=有一个解是0,求m 的值.【评注】已知方程的解确定方程中的待定系数的值,是逆向思维的运用,有时将方程的解代入方程中,可能还会出现含两个待定系数的方程,这时要注意整体思想方法的运用.考点3:了解方程并判定方程根的情况相关知识:一元二次方程根的判别:⑴当24b ac ->0时,方程有两个不相等的实数根;⑵当24b ac -=0时,方程有两个相等的实数根;⑶当24b ac -<0时,方程没有实数根.反之也成立.复习策略:要掌握一元二次方程根的判别式的应用:①不解方程判别根的情况;②根据方程解的情况确定系数的取值X 围;③求解与根有关的综合题.例3. ⑴(2007某某市)一元二次方程2210x x --=的根的情况为( )A. 有两个相等的实数根B. 有两个不相等的实数根C. 只有一个实数根D. 没有实数根⑵(2007某某某某)若关于x 的一元二次方程02.2=+-m x x 没有实数根,则实数m的取值X 围是( )A. m <lB. m >-1C. m >lD. m <-1考点4:解一元二次方程相关知识:我们知道,一元二次方程的解法有四种:直接开平方法、因式分解法、配方法和公式法.而解一元二次方程的关键是判断方程的特点,选择最佳解题方法,其基本思想是“降次”,把二次转化为一次.这四种方法各有千秋,在解一元二次方程时可根据方程的特点,选用最佳解法.复习策略:灵活选用一元二次方程的解法,可从以下几点考虑:⑴对于形如x 2=a (a ≥0)或(mx -n )2=a (m ≠0, a ≥0)的方程,可根据平方根的意义,用直接开平方的方法求解.⑵如果一元二次方程缺少常数项,或方程的右边为0,左边很容易分解因式,可考虑用因式分解法.⑶当一元二次方程的二次项系数为1,一次项的系数是偶数时,可考虑使用配方法. ⑷如果用以上几种方法都不易求解时,可考虑用公式法求解.例4. 解下列方程: ⑴(x +1)2=12⑵(2x +1)(3x -1)=1⑶2x (x +2)+1=0⑷16-x 2-4x =0⑸3(x -2)2=x (x -2)由以上解析可以这样来总结:解一元二次方程,首先要把原方程变形为一般形式,然后计算b 2-4ac ,最后考虑用何种方法求解.如果b 2-4ac 是完全平方数,则用因式分解法,如果b 2-4ac 不是完全平方数且大于零,则用公式法,配方法实际是公式法的推导过程,因此,除题目要求,一般不用配方法.例5. 解方程:⑴(2007)解方程:2410x x +-=. ⑵(2007某某某某)解方程:x 2+3=3(x +1).考点5:根据根与系数的关系,求与方程的根有关的代数式的值相关知识:一元二次方程根与系数的关系:若一元二次方程20ax bx c ++=(a 、b 、c 为已知数,a ≠0,240b ac -≥)的两个实数根为12,x x ,则a c x x ,a b x x 2121=-=+.即:一元二次方程两个根的和等于方程的一次项系数除以二次项系数的商的相反数;两个根的积等于常数项除以二次项系数的商.复习策略:根与系数的关系存在的前提是:①a ≠0,即方程一定是一元二次方程;②b 2-4ac ≥0,即方程一定有实数根.根据新课标的要求,在课改实验区的中考试题中,运用一元二次方程根与系数的关系的考题主要是求与方程的根有关的代数式的值的题型.例6. ⑴(2007某某某某)若关于x 的一元二次方程22430x kx k ++-=的两个实数根分别是12,x x ,且满足2121x x x x =+.则k 的值为( ) (A )-1或34 (B )-1 (C )34 (D )不存在⑵(2007某某德阳)阅读材料:设一元二次方程20ax bx c ++=的两根为1x ,2x ,则两根与方程系数之间有如下关系:12b x x a +=-,a c x x 21=.根据该材料填空: 已知1x ,2x 是方程2630x x ++=的两实数根,则2112x x x x +的值为______ 【评注】不解方程,利用一元二次方程根与系数的关系求两个代数式的值关键是把所给的代数式经过恒等变形,化为含12x x +,21x x ⋅的形式,然后把12x x +,21x x ⋅的值代入,即可求出所求代数式的值.常见的代数式变形有:①222121212()2x x x x x x +=+-②12121211x x x x x x ++= ③212122221212()211()x x x x x x x x +-+=④22112121212()2x x x x x x x x x x +-+=⑤12x x -= 考点6:一元二次方程的应用相关知识:应用一元二次方程解决实际问题的步骤:在日常生活实践中,许多问题都可以通过建立一元二次方程这个模型来进行求解,然后回到实际问题中去进行解释和检验.首先要把实际问题加以分析,抽象成数学问题,然后用数学知识去解决它.应用一元二次方程解决实际问题的步骤可归结为:“设、找、列、解、验、答”:⑴设:是指设未知数,可分为直接设和间接设.所谓直接设,就是指问什么设什么;在直接设未知数比较难列出方程或者列出的方程比较复杂时,可考虑间接设未知数.⑵找:是指读懂题目,审清题意,明确已知条件和未知条件,找出它们之间的等量关系.⑶列:就是指根据等量关系列出方程.⑷解:就是求出所列方程的解.⑸验:分为两步.一是检验解出的数值是否是方程的解,二是检验方程的解是否符合实际情况.⑹答:就是书写答案,一定要遵循“问什么答什么,怎么问就怎么答”的原则. 以上几个步骤中,审题是基础,找出等量关系是解决问题的关键,能否恰当设元直接影响着列方程和解方程的难易,所以要根据不同的具体情况把握好解题的每一步.复习策略:1.一元二次方程解应用题应注意:⑴写未知数时必须写清单位,用对单位;列方程时,方程两边必须单位一致;答必须写清单位.⑵注意语言和代数式的转化,要把用语言给出的条件用代数式表示出来.2. 常见的应用题:⑴几何图形的面积问题:这类问题的面积公式是等量关系,如果图形不规则,应分割或组合成规则图形,找出各部分面积之间的关系,再运用规则图形的面积公式列出方程.⑵平均增长(降低)率问题:此类问题是在某个数据的基础上连续增长(降低)两次得到新的数据,解这类问题需牢记公式2(1)a x b +=或2(1)a x b -=,其中a 表示增长(降低)前的数据,x 表示增长或降低率,b 表示后来得到的数据,“+”表示增长,“-”表示降低.[方法·规律]:⑴解此类问题所列的方程,一般用直接开平方法求解.⑵增长率不能为负数,降低率不能大于1.⑶营销问题:解决此类问题首先要清楚几个名称的意义,如成本价、售价、标价、打折、利润、利润率等以及它们之间的等量关系.[梳理·总结]:此类问题常见的等量关系是:“总利润=总售价-总成本”或“总利润=每件商品的利润×销售数量,100售价-进价利润率=%进价”例7.据报道,我省农作物秸杆的资源巨大,但合理利用量十分有限,2006年的利用率只有30%,大部分秸杆被直接焚烧了,假定我省每年产出的农作物秸杆总量不变,且合理利用量的增长率相同,要使2008年的利用率提高到60%,求每年的增长率.(取2≈)例8. 一块矩形耕地大小尺寸如图1,如果修筑同样宽的两条“之”字形的道路,如图1所示,余下的部分作为耕地.要使耕地的面积为540m2,道路的宽应是多少?分析:在面积问题中有一些计算题,如采用平移的方法适当改变图形的形状,可以给解决问题带来意想不到的美妙效果.此题如不采用“平移法”,很难人手.若把“之”字道路平移一下位置,变为图2,则此题即可迎刃而解.图1 图2考点7:一元二次方程中考阅读理解题例析与一元二次方程相关的阅读理解问题,是近几年的一种新题型,由于这类问题有助于培养学生的阅读理解能力、创新意识,而备受大家的关注,现略举几例与同学们共赏析. 例9. (2006年某某某某市)阅读下面的例题:解方程:x 2—|x|—2=0解:(1)当x ≥0时,原方程化为x 2—x —2=0,解得:x 1=2,x 2=—1(不合题意,舍去).(2)当x <0时,原方程化为x 2+x —2=0,解得:x 1=1(不合题意,舍去),x 2=—2∴原方程的根是x 1=2,x 2=—2.请参照例题解方程x 2—|x —3|—3=0,则此方程的根是.例10. (2006年某某某某市)先阅读,再填空解题:(1)方程x 2-x -12=0 的根是:x 1=-3,x 2=4,则x 1+x 2=1,x 1·x 2=-12; (2)方程2x 2-7x +3=0的根是:x 1=12,x 2=3,则x 1+x 2=72,x 1·x 2=32;(3)方程x 2-3x +1=0的根是:x 1=, x 2=.则x 1+x 2=,x 1·x 2=;根据以上(1)(2)(3)你能否猜出:如果关于x 的一元二次方程mx 2+nx +p =0(m ≠0且m 、n 、p 为常数)的两根为x 1、x 2,那么x 1+x 2、21x x ⋅与系数m 、n 、p 有什么关系?请写出来你的猜想并说明理由.分析:本题首先请同学们阅读两个一元二次方程的两根之和、两根之积与系数之间的关系,再通过第3个方程的两根之和、两根之积与系数之间的关系特点,归纳猜想出一元二次方程的两个根与系数的关系.【中考再现】【模拟试题】(答题时间:40分钟)一、选择题1、(2007某某市)一元二次方程2210x x --=的根的情况为( )A. 有两个相等的实数根B. 有两个不相等的实数根C. 只有一个实数根D. 没有实数根2、(2007某某某某)若关于x 的一元二次方程02.2=+-m x x 没有实数根,则实数m 的取值X 围是( )A. m<lB. m>-1C. m>lD. m<-13、(2007某某内江)用配方法解方程2420x x -+=,下列配方正确的是()A. 2(2)2x -=B. 2(2)2x +=C. 2(2)2x -=-D.2(2)6x -= 4、(2007某某某某)下列关于x 的一元二次方程中,有两个不相等的实数根的方程是( )A. x 2+4=0B. 4x 2-4x +1=0C. x 2+x +3=0D. x 2+2x -1=05、(2007某某某某)某商品原价200元,连续两次降价a %后售价为148元,下列所列方程正确的是( )A. 200(1+a%)2=148B. 200(1-a%)2=148 C. 200(1-2a%)=148 D. 200(1-a 2%)=148 6、(2007某某某某)已知关于x 的一元二次方程22x m x -=有两个不相等的实数根,则m 的取值X 围是()A. m >-1B. m <-2C. m ≥0D. m <07、(2007某某某某)如果2是一元二次方程x 2=c 的一个根,那么常数c 是()A. 2B. -2C. 4D. -4二、填空题1、(2007某某)已知一元二次方程01322=--x x 的两根为1x 、2x ,则=+21x x2、(2007某某眉山)关于x 的一元二次方程x 2+bx +c =0的两个实数根分别为1和2,则b =______;c =______.3、(2007某某某某)方程220x x -=的解是.4、(2007某某某某)已知方程230x x k -+=有两个相等的实数根,则k =5、(2007某某某某)已知x 是一元二次方程x 2+3x -1=0的实数根,那么代数式235(2)362x x x x x -÷+---的值为____.6、(2007某某某某)写出一个两实数根符号相反的一元二次方程:__________________。

中考数学一轮复习 第5课 一次方程导学案

中考数学一轮复习 第5课 一次方程导学案

第5课一次方程【考点梳理】:1.方程、一元一次方程、二元一次方程(组)和方程(组)的解、解方程(组)的概念及解法,利用方程解决生活中的实际问题.2.等式的基本性质及用等式的性质解方程:等式的基本性质是解方程的依据,在使用时要注意使性质成立的条件.3.灵活运用代入法、加减法解二元一次方程组.4.用方程解决实际问题:关键是找到“等量关系”,在寻找等量关系时有时可以借助图表等,在得到方程的解后,要检验它是否符合实际意义.【思想方法】方程思想和转化思想【思想方法】数形结合,分类讨论【考点一】:一次方程(组)的相关概念【例题赏析】(2015•四川巴中,第4题3分)若单项式2x2y a+b与﹣x a﹣b y4是同类项,则a,b 的值分别为()A. a=3,b=1 B.a=﹣3,b=1 C. a=3,b=﹣1 D. a=﹣3,b=﹣1考点:解二元一次方程组;同类项.专题:计算题.分析:利用同类项的定义列出方程组,求出方程组的解即可得到a与b的值.解答:解:∵单项式2x2y a+b与﹣x a﹣b y4是同类项,∴,解得:a=3,b=1,故选A.点评:此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.【考点二】:一次方程(组)的解法【例题赏析】(1)(2015•梧州,第4题3分)一元一次方程4x+1=0的解是()A. B.﹣C. 4 D.﹣4考点:解一元一次方程.专题:计算题.分析:先移项得到4x=﹣1,然后把x的系数化为1即可.解答:解:4x=﹣1,所以x=﹣.故选B.点评:本题考查了解一元一次方程:去分母、去括号、移项、合并同类项、系数化为1,这仅是解一元一次方程的一般步骤,针对方程的特点,灵活应用,各种步骤都是为使方程逐渐向x=a形式转化.(2) (2015•河北,第11题2分)利用加减消元法解方程组,下列做法正确的是()A.要消去y,可以将①×5+②×2 B.要消去x,可以将①×3+②×(﹣5)C.要消去y,可以将①×5+②×3 D.要消去x,可以将①×(﹣5)+②×2考点:解二元一次方程组.专题:计算题.分析:方程组利用加减消元法求出解即可.解答:解:利用加减消元法解方程组,要消去x,可以将①×(﹣5)+②×2.故选D点评:此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.【考点三】:一次方程的应用【例题赏析】(1)(2015•黑龙江省大庆,第5题3分)某品牌自行车1月份销售量为100辆,每辆车售价相同.2月份的销售量比1月份增加10%,每辆车的售价比1月份降低了80元.2月份与1月份的销售总额相同,则1月份的售价为()A. 880元 B. 800元 C. 720元 D. 1080元考点:一元一次方程的应用.分析:设1月份每辆车售价为x元,则2月份每辆车的售价为(x﹣80)元,依据“2月份的销售量比1月份增加10%,每辆车的售价比1月份降低了80元.2月份与1月份的销售总额相同”列出方程并解答.解答:解:设1月份每辆车售价为x元,则2月份每辆车的售价为(x﹣80)元,依题意得 100x=(x﹣80)×100×(1+10%),解得x=880.即1月份每辆车售价为880元.故选:A.点评:本题考查了一元一次方程的应用.根据题意得到“2月份每辆车的售价”和“2月份是销售总量”是解题的突破口.(2)(2015,广西柳州,20,6分)如图,小黄和小陈观察蜗牛爬行,蜗牛在以A为起点沿直线匀速爬向B点的过程中,到达C点时用了6分钟,那么还需要多长时间才能到达B点?考点:一元一次方程的应用;数轴.分析:设蜗牛还需要x分钟到达B点.根据路程=速度×时间列出方程并解答.解答:解:设蜗牛还需要x分钟到达B点.则(6+x)×=5,解得x=4.答:蜗牛还需要4分钟到达B点.点评:本题考查了数轴和一元一次方程的应用.解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.思考与收获【考点四】:二元一次方程组的应用思考与收获【例题赏析】(2015•齐齐哈尔,第8题3分)为了开展阳光体育活动,某班计划购买毽子和跳绳两种体育用品,共花费35元,毽子单价3元,跳绳单价5元,购买方案有()A. 1种 B. 2种 C. 3种 D. 4种考点:二元一次方程的应用.分析:设毽子能买x个,跳绳能买y根,依据“某班计划购买毽子和跳绳两种体育用品,共花费35元,毽子单价3元,跳绳单价5元”列出方程,并解答.解答:解:设毽子能买x个,跳绳能买y根,根据题意可得:3x+5y=35,y=7﹣x,∵x、y都是正整数,∴x=5时,y=4;x=10时,y=1;∴购买方案有2种.故选B.点评:此题主要考查了二元一次方程的应用,根据题意得出正确等量关系是解题关键.【真题专练】1.(2015•滨州,第18题4分)某服装厂专门安排210名工人进行手工衬衣的缝制,每件衬衣由2个小袖、1个衣身、1个衣领组成,如果每人每天能够缝制衣袖10个,或衣身15个,或衣领12个,那么应该安排名工人缝制衣袖,才能使每天缝制出的衣袖,衣身、衣领正好配套.2.(2015•辽宁省盘锦,第6题3分)有大小两种货车,2辆大货车与3辆小货车一次可以运货15.5吨,5辆大货车与6辆小货车一次可以运货35吨.设一辆大货车一次可以运货x吨,一辆小货车一次可以运货y吨,根据题意所列方程组正确的是()A.B.C.D.3.(2015•黑龙江哈尔滨,第17题3分)的油画作品和国画作品共有100幅,其中油画作品的数量是国画作品数量的2倍多7幅,展出的油画作品有幅.4.(2015,广西河池,22,8分)联华商场以150元/台的价格购进某款电风扇若干台,售完,商场用相同的货款再次购进这款电风扇,因价格提高30元,进货量减少了10台.(1)这两次各购进电风扇多少台?(2)商场以250元/台的售价卖完这两批电风扇,商场获利多少元?5.(2015•齐齐哈尔,第27题10分)母亲节前夕,某淘宝店主从厂家购进A、B已知A、B两种礼盒的单价比为2:3,单价和为200元.(1)求A、B两种礼盒的单价分别是多少元?(2)该店主购进这两种礼盒恰好用去9600元,且购进A种礼盒最多36个,B量不超过A种礼盒数量的2倍,共有几种进货方案?(3)根据市场行情,销售一个A钟礼盒可获利10元,销售一个B种礼盒可获利18奉献爱心,该店主决定每售出一个B种礼盒,为爱心公益基金捐款m元,每个A润不变,在(2)的条件下,要使礼盒全部售出后所有方案获利相同,m主获利多少元?6.(2015•福建第21题 8分)某一天,蔬菜经营户老李用了145元从蔬菜批发市场批发一些黄瓜和茄子,到菜市场去卖,黄瓜和茄子当天的批发价与零售价如下表所示:品名黄瓜茄子批发价(元/千克) 3 4零售价(元/千克) 4 7当天他卖完这些黄瓜和茄子共赚了90元,这天他批发的黄瓜和茄子分别是多少千克?7.(2015•重庆A19,7分)解方程组24 31 y xx y=-⎧⎨+=⎩8.(2015•甘南州第20题 9分)阅读材料:善于思考的小军在解方程组时,采用了一种“整体代换”的解法:解:将方程②变形:4x+10y+y=5 即2(2x+5y)+y=5③把方程①带入③得:2×3+y=5,∴y=﹣1把y=﹣1代入①得x=4,∴方程组的解为.请你解决以下问题:(1)模仿小军的“整体代换”法解方程组思考与收获(2)已知x,y满足方程组.(i)求x 2+4y2的值;(ii)求+的值.9.(2015•湖南张家界,第21题8分)小华从家里到学校的路是一段平路和一段下坡路,假设他始终保持平路每分钟走60m,下坡路每分钟走80m,上坡路每分钟走40m里到学校需10min,从学校到家里需15min.问:从小华家到学校的平路和下坡路各有多远?思考与收获【真题演练参考答案】思考与收获1.(2015•滨州,第18题4分)某服装厂专门安排210名工人进行手工衬衣的缝制,每件衬衣由2个小袖、1个衣身、1个衣领组成,如果每人每天能够缝制衣袖10个,或衣身15个,或衣领12个,那么应该安排名工人缝制衣袖,才能使每天缝制出的衣袖,衣身、衣领正好配套.考点:三元一次方程组的应用.分析:可设应该安排x名工人缝制衣袖,y名工人缝制衣身,z名工人缝制衣领,才能使每天缝制出的衣袖,衣身、衣领正好配套,根据等量关系:①一共210名工人;②小袖的个数:衣身的个数:衣领的个数=2:1:1;依此列出方程组求解即可.解答:解:设应该安排x名工人缝制衣袖,y名工人缝制衣身,z名工人缝制衣领,才能使每天缝制出的衣袖,衣身、衣领正好配套,依题意有,解得.故应该安排120名工人缝制衣袖,才能使每天缝制出的衣袖,衣身、衣领正好配套.故答案为:120.点评:考查了三元一次方程组的应用,在解决实际问题时,若未知量较多,要考虑设三个未知数,但同时应注意,设几个未知数,就要找到几个等量关系列几个方程.(1)把求等式中常数的问题可转化为解三元一次方程组为以后待定系数法求二次函数解析式奠定基础.(2)通过设二元与三元的对比,体验三元一次方程组在解决多个未知数问题中优越性.2.(2015•辽宁省盘锦,第6题3分)有大小两种货车,2辆大货车与3辆小货车一次可以运货15.5吨,5辆大货车与6辆小货车一次可以运货35吨.设一辆大货车一次可以运货x吨,一辆小货车一次可以运货y吨,根据题意所列方程组正确的是()A.B.C.D.考点:由实际问题抽象出二元一次方程组.分析:设一辆大货车一次可以运货x吨,一辆小货车一次可以运货y吨,根据2辆大货车思考与收获与3辆小货车一次可以运货15.5吨,5辆大货车与6辆小货车一次可以运货35吨,列方程组即可.解答:解:设一辆大货车一次可以运货x吨,一辆小货车一次可以运货y吨,由题意得,.故选A.点评:本题考查了由实际问题抽象出二元一次方程组,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程组.3.(2015•黑龙江哈尔滨,第17题3分)(2015•哈尔滨)美术馆举办的一次画展中,展出的油画作品和国画作品共有100幅,其中油画作品的数量是国画作品数量的2倍多7幅,则展出的油画作品有69 幅.考点:二元一次方程组的应用.分析:设展出的油画作品的数量是x幅,展出的国画作品是y幅,则根据“展出的油画作品和国画作品共有100幅,其中油画作品的数量是国画作品数量的2倍多7幅”列出方程组并解答.解答:解:设展出的油画作品的数量是x幅,展出的国画作品是y幅,依题意得,解得,故答案是:69.点评:本题考查了二元一次方程组的应用.解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程组,再求解.利用二元一次方程组求解的应用题一般情况下题中要给出2个等量关系,准确的找到等量关系并用方程组表示出来是解题的关键.4.(2015,广西河池,22,8分)联华商场以150元/台的价格购进某款电风扇若干台,很快售完,商场用相同的货款再次购进这款电风扇,因价格提高30元,进货量减少了10台.(1)这两次各购进电风扇多少台?(2)商场以250元/台的售价卖完这两批电风扇,商场获利多少元?解:(1)设第一次购进电风扇x台,则第二次购进x-10台,由题意可得:150x=180(x-10),解得x=60,思考与收获所以第一次购进电风扇60台,则第二次购进50台.(2)商场获利为:(250-150)·60+(250-180)·50=9500(元)所以当商场以250元/台的售价卖完这两批电风扇,商场获利9500元.5.(2015•齐齐哈尔,第27题10分)母亲节前夕,某淘宝店主从厂家购进A、B两种礼盒,已知A、B两种礼盒的单价比为2:3,单价和为200元.(1)求A、B两种礼盒的单价分别是多少元?(2)该店主购进这两种礼盒恰好用去9600元,且购进A种礼盒最多36个,B量不超过A种礼盒数量的2倍,共有几种进货方案?(3)根据市场行情,销售一个A钟礼盒可获利10元,销售一个B种礼盒可获利18元.为奉献爱心,该店主决定每售出一个B种礼盒,为爱心公益基金捐款m元,每个A种礼盒的利润不变,在(2)的条件下,要使礼盒全部售出后所有方案获利相同,m主获利多少元?考点:一次函数的应用;一元一次方程的应用;一元一次不等式组的应用.分析:(1)利用A、B两种礼盒的单价比为2:3,单价和为200元,得出等式求出即可;(2)利用两种礼盒恰好用去9600元,结合(1)中所求,得出等式,利用两种礼盒的数量关系求出即可;(3)首先表示出店主获利,进而利用a,b关系得出符合题意的答案.解答:解:(1)设A种礼盒单价为2x元,B种礼盒单价为3x元,依据题意得:2x+3x=200,解得:x=40,则2x=80,3x=120,答:A种礼盒单价为80元,B种礼盒单价为120元;(2)设购进A种礼盒a个,B种礼盒b个,依据题意可得:,解得:30≤a≤36,∵a,b的值均为整数,∴a的值为:30、33、36,∴共有三种方案;(3)设店主获利为w元,则w=10a+(18﹣m)b,由80a+120b=9600,得:a=120﹣b,则w=(3﹣m)b+1200,∵要使(2)中方案获利都相同,∴3﹣m=0,∴m=3,此时店主获利1200元.点评:此题主要考查了一元一次方程的应用以及一次函数的应用和一元一次不等式的应用,根据题意结合得出正确等量关系是解题关键.6.(2015•福建第21题 8分)某一天,蔬菜经营户老李用了145发一些黄瓜和茄子,到菜市场去卖,黄瓜和茄子当天的批发价与零售价如下表所示:品名黄瓜茄子批发价(元/千克) 3 4零售价(元/千克) 4 7当天他卖完这些黄瓜和茄子共赚了90元,这天他批发的黄瓜和茄子分别是多少千克?考点:二元一次方程组的应用..分析:设批发的黄瓜是x千克,茄子是y千克,根据“用了145元从蔬菜批发市场批发一些黄瓜和茄子,卖完这些黄瓜和茄子共赚了90元,”列出方程组解答即可.解答:解:设批发的黄瓜是x千克,茄子是y千克,由题意得解得答:这天他批发的黄瓜15千克,茄子是25千克.点评:此题考查二元一次方程组的实际运用,找出题目蕴含的数量关系是解决问题的关键.7.(2015•重庆A19,7分)解方程组24 31 y xx y=-⎧⎨+=⎩考点:解二元一次方程组.思考与收获专题:计算题.分析:方程组利用代入消元法求出解即可.解答:解:24 31y xx y=-⎧⎨+=⎩,①代入②得:3x+2x ﹣4=1 ,解得:x=1 ,把x=1 代入①得:y= ﹣2 ,则方程组的解为12xy=⎧⎨=-⎩.点评:此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.8.(2015•甘南州第20题 9分)阅读材料:善于思考的小军在解方程组时,采用了一种“整体代换”的解法:解:将方程②变形:4x+10y+y=5 即2(2x+5y)+y=5③把方程①带入③得:2×3+y=5,∴y=﹣1把y=﹣1代入①得x=4,∴方程组的解为.请你解决以下问题:(1)模仿小军的“整体代换”法解方程组(2)已知x,y满足方程组.(i)求x2+4y2的值;(ii)求+的值.考点:解二元一次方程组..专题:阅读型;整体思想.分析:(1)模仿小军的“整体代换”法,求出方程组的解即可;(2)方程组整理后,模仿小军的“整体代换”法,求出所求式子的值即可.思考与收获解答:解:(1)把方程②变形:3(3x﹣2y)+2y=19③,把①代入③得:15+2y=19,即y=2,把y=2代入①得:x=3,则方程组的解为;(2)(i)由①得:3(x2+4y2)=47+2xy,即x2+4y2=③,把③代入②得:2×=36﹣xy,解得:xy=2,则x2+4y2=17;(ii)∵x2+4y 2=17,∴(x+2y)2=x2+4y2+4xy=17+8=25,∴x+2y=5或x+2y=﹣5,则+==±.点评:此题考查了解二元一次方程组,弄清阅读材料中的“整体代入”方法是解本题的关键.9.(2015•湖南张家界,第21题8分)小华从家里到学校的路是一段平路和一段下坡路,假设他始终保持平路每分钟走60m,下坡路每分钟走80m,上坡路每分钟走40m里到学校需10min,从学校到家里需15min.问:从小华家到学校的平路和下坡路各有多远?考点:二元一次方程组的应用.分析:设出平路和坡路的路程,从家里到学校走平路和下坡路一共用10分钟,从学校到家里走上坡路和平路一共用15分钟,利用这两个关系式列出方程组解答即可.解答:解:设平路有xm,下坡路有ym,思考与收获根据题意得,解得:,答:小华家到学校的平路和下坡路各为300m,400m.点评:本题考查了二元一次方程的应用,此题主要利用时间、速度、路程三者之间的关系解答,注意来回坡路的变化是解题的关键.。

九年级数学一轮复习讲学稿 课时5 一次方程(组)及其应用

九年级数学一轮复习讲学稿 课时5 一次方程(组)及其应用

课时5 一次方程(组)及其应用班级_________ 姓名___________【学习目标】1.掌握一元一次方程的概念及其解法;2.掌握二元一次方程(组)的概念及其解法;3.能运用一次方程(组)解决实际问题。

【考点链接】1.等式的性质 ① 如果b a =,那么=±c a ;② 如果b a =,那么=ac ;如果b a =()0≠c ,那么=ca . 2.使方程左右两边 的未知数的值,叫做方程的解,一元方程的解又叫做方程的根。

3.只含有 个未知数,并且未知数的次数是 ,系数不等于0的____方程,叫做一元一次方程;它的一般形式为 ()0≠a .解一元一次方程的步骤:①去 ; ②去 ;③移 ;④合并 ;⑤系数化为1.4.消元是解二元一次方程组的基本思路,方法有 消元和 消元法两种.5.用作图象的方法解二元一次方程组的步骤:(1)将相应的二元一次方程组改写成________的表达式;(2)在同一坐标系中作出________;(3)观察图象的______即得二元一次方程组的解.【典例精析】例1. (1)关于x 的方程()1240m m x --+=是一元一次方程,则m =________.(2)若n (n ≠0)是关于x 的方程220x mx n ++=的根,则m n +的值为( )A.1B.2C.-1D.-2例2.解方程(组)(1)33124x x -+-= (2)325123x y y x +=+=-例3.已知关于x 的方程4kx x =-(1)若方程的解为正实数,求k 的取植范围(2)若方程的解为正整数,求k 所有能取的整数值。

例4.已知关于x 、y 的方程组32243x y m x y m -=-⎧⎨+=⎩的解的值。

例5.如图,直线:与直线:相交于点.(1)求的值;(2)不解关于的方程组(3)直线:是否也经过点?请说明理由.例6.水果批发市场香蕉的价格如下表:张强两次共购买香蕉50千克(第二次多于第一次),共付出264元, 请问张强第一次、第二次分别购买香蕉多少千克?1l 1y x =+2l y mx n =+), 1(b P b y x ,1y x y mx n =+⎧⎨=+⎩,,3l y nx m =+P x例7.去冬今春,我国大部地区遭遇历史上罕见的旱灾,解放军某部接到了限期打30口水井的作业任务,部队官兵到达灾区后,目睹灾情心急如焚,他们增派机械车辆,争分夺秒,每天比原计划多打3口井,结果提前5天完成任务,求原计划每天打多少口井?【当堂反馈】1.解方程16110312=+-+x x 时,去分母、去括号后,正确结果是( ) A. 111014=+-+x x B. 111024=--+x xC. 611024=--+x xD. 611024=+-+x x2.若关于x ,y 的方程组⎩⎨⎧=+=-n my x m y x 2的解是⎩⎨⎧==12y x ,则n m -=___3.“地球停电一小时”活动的某地区烛光晚餐中,设座位有x 排,每排坐30人,则有8人无座位;每排坐31人,则空26个座位,则下列方程正确的是( )A .30x -8=31x +26B .30x +8=31x +26C .30x -8=31x -26D .30x +8=31x -264.解方程(组) (1)3(1)7(5)30(1)x x x --+=+ (2)2931x y y x +=⎧⎨-=⎩5.已知关于x 的方程 的解是x=2,其中 且 ,求代数式 的值 。

山东省日照市东港实验学校九年级数学总复习课时学案:第6课时 一元二次方程

山东省日照市东港实验学校九年级数学总复习课时学案:第6课时 一元二次方程

复习教学目标1、 知道一元二次方程及其相关概念;了解求方程近似解的方法;能说出列方程解应用题的步骤。

2、 会灵活应用方程解法解简单的一元二次方程。

3、 会利用一元二次方程知识解决有关实际问题,能根据具体问题的实际意义检验结果的合理性及分类思想。

通过复习方程解法,进一步体会转化思想。

复习教学过程设计一、【唤醒】1、填空题2、判断题(1)关于x 的方程()22150k x kx -+-=是一元二次方程,则 10k ≠±≠且k ( × )(2)把一元二次方程73)12(2-=-x x 化成一般形式是073)12(2=---x x ( × )(3)方程2650x x +-=的左边配成完全平方后所得方程为()234x += ( × ) 3、选择题(1)方程257x x -=根的情况是 ( B )A 、有两个相等实根B 、有两个不等实根C 、没有实根D 、无法确定(2)若一元二次方程2102x x --=两个实数根x 1、x 2,则 1211x x +的值是 ( A ) A 、2- B 、21- C 、21 D 、2 (3)关于x 的一元二次方程270x kx --=的一个根为11x =,另一根为2x ,则有 ( A )A 、26,7k x =-=-B 、26,7k x ==C 、26,7k x =-=D 、26,7k x ==-(4)已知223201x x x -+=-,则x 的值为 ( C ) A 、1 B 、1或2 C 、2 D 、5一元二次方程 应用(注意验证解的合理性) 近似解 直接开方法 精确解二、【尝试】例1 用适当方法解下列方程:(1)()2121802x --= (2)()()2293420x x ---=(3)21232y y -+= (4)240x +-= 分析: 结合方程特点,四道题的解法依次是直接开方法、分解因式法、公式法、配方法。

解 略 答案见复习指导用书第26页提炼: 形如02=+c ax 的方程,选择用直接开方法;形如02=++c bx x 的方程,左边可以因式分解,选择用因式分解法;形如02=++c bx x 的方程,如果一次项系数是偶数,可以选择用配方法;否则用公式法。

山东省日照市东港实验学校九年级数学总复习课时学案:第5课时 一次方程 分式方程 一次方程组

山东省日照市东港实验学校九年级数学总复习课时学案:第5课时 一次方程 分式方程 一次方程组

复习教学目标1、了解一次方程、分式方程、二元一次方程组的概念。

知道方程组的解的含义。

理解分式方程产生增根的原因。

理解二元一次方程与一次函数的关系。

说出解整式方程和分式方程的异同,2、会解一元一次方程、简单的二元一次方程组、可化为一元一次方程的分式方程。

3、运用化归思想,引导学生分析出解二元一次方程组的本质是消元。

运用方程或方程组解决实际问题 复习教学过程设计 一、【唤醒】 1、 填空:2、判断: (1)=+3121x 1是一元一次方程 ( ) (2)∵23=x ∴23=x ( )(3)∵⎩⎨⎧==11y x 是方程y x +2=3的解∴方程y x +2=3的解是⎩⎨⎧==11y x ( ) (4)方程组⎩⎨⎧=-=+1233y x y x 的解是一次函数x y 33-=与12-=x y 的图象的交点坐标 ( ) 3、选择:(1)关于的方程012)1(=-+-m x m 是一元一次方程,则m 为 ( )A 、1=mB 、1-=mC 、1≠mD 、1-≠m(2)二元一次方程组⎩⎨⎧=+-=+522y x y x 的解是 ( ) A 、⎩⎨⎧==61y x B 、⎩⎨⎧=-=41y x C 、⎩⎨⎧=-=23y x D 、⎩⎨⎧==23y x (3)已知是2-=x 方程042=-+m x 的一个根,则m 的值是 ( )A 、 8B 、—8C 、0D 、2方程(组)的应用分式方程整式方程一元二次方程一元一次方程解题步骤 二元一次方程组 解法图像法方程解题方法:(4)已知方程组⎩⎨⎧=+=+54ay bx by ax 的解是⎩⎨⎧==12y x ,则b a +的值为 ( ) A 、3 B 、0 C 、1- D 、1二、【尝试】: 例1:解方程: (1)143231=+--x x (2) 114112=---+x x x 解: 略 答案:(1)5.12-=x (2)1=x 是增根,原方程无解提炼:解分式方程与整式方程的方法相似,容易出现错误的地方一是去分母时漏乘整式项及分子是多项式忘记添括号,二是忘记检验求得的整式方程的解是不是分式方程的根; 例2: 解方程组(1)⎩⎨⎧=-=+132342y x y x (2)312523-=+=+x y y x解 略 答案(1)⎩⎨⎧-==23y x (2)⎩⎨⎧-==31y x 提炼:解二元一次方程组应先观察方程中相同未知数的系数的特征,如果一个未知数的系数绝对值为1,一般选用代入法,若相同未知数系数绝对值相等,一般用加减法。

精品教案2021九年级数学一轮总复习课时5一次方程(组)导学案含答案解析

精品教案2021九年级数学一轮总复习课时5一次方程(组)导学案含答案解析

课时5 一次方程(组)【课前热身】1. (2020·益阳)同时满足二元一次方程x -y =9和4x +3y =1的x ,y 的值为( )A .4,5x y =⎧⎨=-⎩B .4,5x y =-⎧⎨=⎩C .2,3x y =-⎧⎨=⎩D .3,6x y =⎧⎨=-⎩ 2. (2020·宁波)我国古代数学名著《孙子算经》中记载:“今有木,不知长短,引绳度之,余绳四尺五寸;屈绳量之,不足一尺,木长几何?”意思是:用一根绳子去量一根木条,绳子还剩余4.5尺;将绳子对折再量木条,木条剩余1尺,问木条长多少尺?如果设木条长x 尺,绳子长y 尺,那么可列方程组为A . 4.50.51y x y x ⎩=+=⎧⎨-B . 4.521y x y x ⎧⎨⎩=+=-C . 4.50.51y x y x ⎩=-=⎧⎨+D . 4.521y x y x ⎧⎨⎩=-=- 3. 利用加减消元法解方程组 ⎩⎨⎧=--=+6351052y x y x 下列做法正确的是( )A.要消去y ,可以将①×5+②×2B.要消去x ,可以将①×3+②×(-5)C.要消去y ,可以将①×5-②×3D.要消去x ,可以将①×(-5)+②×24. 已知2=x 是关于x 的方程()x a xa +=+211的解,则a 的值为__ _. 5. 方程组⎩⎨⎧-=+=-124y x y x 的解是____ ___.6. 下表为深圳市居民每月用水收费标准(单位:元/m 3).(1)某用户用水10立方米,共交水费23元,则a 的值为___ _;(2)在(1)的前提下,该用户5月份交水费71费,则该用户用水___ _立方米.【例题讲解】例1 解方程:135221-=+--x x x例2解方程组:⎪⎩⎪⎨⎧=-=-132353y x y x例3某商品因换季准备打折出售,若按定价的七五折出售将赔25元,若按定价的九折出售将赚20元,则这种商品的定价为多少元?例4假如某市的出租车是这样收费的:起步价所包含的路程为0~1.5千米,超过1.5千米的部分按每千米另收费.小刘说:“我乘出租车从市政府到汽车站走了4.5千米,付车费10.5元.”小李说:“我乘出租车从市政府到医院走了6.5千米,付车费14.5元.”问:(1)出租车的起步价是多少元?超过1.5千米后每千米收费多少元?(2)小张乘出租车从市政府到高铁站走了5.5千米,应付车费多少元?【中考演练】1. 已知5.0≠=y x ,且0≠xy ,下列各式:①33-=-y x ;②55y x =;③1212+=+x y y x ;④022=+y x .其中一定正确的有 2. 若代数54-x 与212-x 的值相等,则x 的值是( ) ① ②A. 1B. 23C. 32 D. 2 3. 若方程6=+ny mx 的两个解是⎩⎨⎧==11y x ,⎩⎨⎧-==12y x 则m ,n 的值为( )A. 4,2B. 2,4C. -4,-2D. -2,-44. 若42b a m -与n m n b a ++225可以合并成一项,则mn 的值是( )A. 2B. 0C. -1D. 15. 某品牌自行车1月份销售量为100辆,每辆车售价相同.2月份的销售量比1月份增加10%,每辆车的售价比1月份降低了80元,两个月份的销售总额相同,则1月份的售价为( )A. 880元B. 800元C. 720元D. 1080元6. 现用190张铁皮做盒子,每张铁皮做8个盒身或做22个盒底,而一个盒身与两个盒底配成一个盒子,设用x 张铁皮做盒身,y 张铁皮做盒底,则可列方程组为( )A .⎩⎨⎧=⨯=+y x y x 2282190B .⎩⎨⎧=⨯=+x y y x 8222190C .⎩⎨⎧==+y x x y 2281902D . ⎩⎨⎧=⨯=+yx x y 228219027. 如果实数x ,y 满足方程组 ⎪⎩⎪⎨⎧=+-=-52221y x y x ,则22y x -的值为_ ___.8. 清明节期间,七(1)班全体同学分成若干小组到革命传统教育基地缅怀先烈. 若每小组7人,则余下3人;若每小组8人,则少5人,由此可知该班共有_ ___名同学.9. 定义运算“*”,规定x * y =ax 2 + by ,其中a ,b 为常数,且1*2=5,2*1=6,则2*3=__ __.10. 若方程组 ⎩⎨⎧=++=+k y x k y x 32253 的解x ,y 的和为0,则k 的值为__ _. 11.解方程组: (1)⎩⎨⎧=-=+1392x y y x (2)⎩⎨⎧=--=+3231954b a b a(3)⎩⎨⎧-=-=++4147022y x y x (4)⎪⎩⎪⎨⎧=---=+1213343144y x y x① ② ①② ① ② ① ②12. 若关于x 、y 的二元一次方程组 ⎩⎨⎧=++-=+42232y x m y x 的解满足y x +>23-,求出满足条件的m 的所有正整数值.13. 民航规定:乘坐飞机普通舱旅客一人最多可免费携带20千克行李,超过部分每千克按飞机票价的1.5%购买行李票.一名旅客带了35千克行李乘机,机票连同行李费共付了1323 元,求该旅客的机票票价.14. 在长为10m ,宽为8m 的矩形空地中,沿平行于矩形各边的方向分割出三个全等的小矩形花圃,其示意图如图所示. 求小矩形花圃的长和宽.15. 某商场投入13800元资金购进甲、乙两种矿泉水共500箱,矿泉水的成本价和销售价如表所示(单位:元/箱).(1)该商场购进甲、乙两种矿泉水各多少箱?(2)全部售完500箱矿泉水,该商场共获得利润多少元?一次方程组答案【课前热身】1. A2. A3. D4. 54 5. ⎩⎨⎧==31y x 6. 2.3 28【例题讲解】例1 x=3例2 ⎪⎩⎪⎨⎧==138y x例3 300元例4(1)起步价4.5元 (2)12.5元【中考演练】1. ①③2. B3. A4. D5. A6. A7. 45- 8. 599. 1010. 211. ⎪⎩⎪⎨⎧==⎩⎨⎧=-=⎩⎨⎧-=-=⎩⎨⎧==4113)4(6.15)3(31)2(41)1(y x y x b a y x 12. 1,2,313. 108014. 4,215. (1)250,150(2)4950元。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第1页(共3页)
复习教学目标
1、了解一次方程、分式方程、二元一次方程组的概念。

知道方程组的解的含义。

理解分式方程产生增根的原因。

理解二元一次方程与一次函数的关系。

说出解整式方程和分式方程的异同,
2、会解一元一次方程、简单的二元一次方程组、可化为一元一次方程的分式方程。

3、运用化归思想,引导学生分析出解二元一次方程组的本质是消元。

运用方程或方程组解决实际问题 复习教学过程设计 一、【唤醒】 1、 填空:
2、判断: (1)
=+3
121x
1是一元一次方程 ( ) (2)∵23=x ∴2
3=
x ( )
(3)∵⎩⎨
⎧==1
1
y x 是方程y x +2=3的解∴方程y x +2=3的解是⎩⎨
⎧==1
1
y x ( )
(4)方程组⎩⎨⎧=-=+1
233y x y x 的解是一次函数x y 33-=与12-=x y 的图象的交点坐标 ( )
3、选择:
(1)关于的方程012)1(=-+-m x m 是一元一次方程,则m 为 ( )
A 、1=m
B 、1-=m
C 、1≠m
D 、1-≠m
(2)二元一次方程组⎩⎨
⎧=+-=+5
2
2y x y x 的解是 ( )
A 、⎩⎨
⎧==6
1
y x B 、⎩⎨⎧=-=4
1y x C 、⎩⎨
⎧=-=2
3y x D 、⎩⎨
⎧==2
3
y x
(3)已知是2-=x 方程042=-+m x 的一个根,则m 的值是 ( )
A 、 8
B 、—8
C 、0
D 、2
方程(组)的应用
分式方程
整式方程
一元二次方程
一元一次方程
解题步骤 二元一次方程组 解法
图像法
方程
解题方法:

2页(共3页)
(4)已知方程组⎩⎨⎧=+=+5
4ay bx by ax 的解是⎩⎨
⎧==1
2
y x ,则b a +的值为 ( ) A 、3 B 、0 C 、1- D 、1
二、【尝试】: 例1:解方程: (1)
14
323
1=+--x x (2)
11
41
12
=--
-+x x x
解: 略 答案:(1)5.12-=x (2)1=x 是增根,原方程无解
提炼:解分式方程与整式方程的方法相似,容易出现错误的地方一是去分母时漏乘整式项及分子是多项式
忘记添括号,二是忘记检验求得的整式方程的解是不是分式方程的根;
例2: 解方程组
(1)⎩⎨
⎧=-=+13
2342y x y x (2)312523-=+=+x y y x
解 略 答案(1)⎩⎨
⎧-==2
3
y x (2)⎩⎨
⎧-==3
1y x
提炼:解二元一次方程组应先观察方程中相同未知数的系数的特征,如果一个未知数的系数绝对值为1,
一般选用代入法,若相同未知数系数绝对值相等,一般用加减法。

例3: 在一次慈善捐款活动中,某同学对甲、乙两班捐款情况进行统计,得到如下三条信息:信息一:
甲班共捐款300元,乙班共捐款232元;信息二:乙班平均每人捐款钱数是甲班平均每人捐款钱数的
45
倍;信息三:甲班比乙班多2人.请你根据以上三条信息,求出甲班平均每人捐款多少元?
解 略 答案 5元
提炼:列方程解应用题的步骤是一“审”二“设”三“列”四“解”五“答”。

在审题过程中,要找出等
量关系,设元的方法有两种(直接设元法和间接设元法),列是根据等量关系列出相应的方程(组), 在解方程时,还要考虑方程的解是否要检验、是否符合实际意义,最后写上答案 例4:(1)、阅读下列表格,求出表中关于x 的方程的解。

第3页(共3页)
(2)、通过阅读上述表格,你能解关于x 的方程 1
21
2-+
=-+
c c x x 吗?
分析:仔细阅读表格,比较以后不难发现方程的相似之处。

方程左右两边形式完全相同,只是把其中的未知数换成了某个常数,那么这样的方程可直接得解,因此我们只要把1
212-+
=-+c c x x 换成这种形式即可。

解:∵1211
21-+
-=-+
-c c x x
∴11-=-c x 或1
21-=
-c x ∴1
1,21-+==c c x c x
经检验1
1,21-+==c c x c x 是原方程的解。

提炼:观察、比较、归纳、猜测是解数学题的重要能力,仔细观察方程结构,将要解的方程化为材料中
的方程的形式,体会类比思想。

三、【小结】
1、知识结构:见填空。

2、基本数学思想:化归思想、类比思想、数形结合思想。

相关文档
最新文档