冷镦工艺与模具设计
冷镦模具设计培训资料
冷镦模具设计培训资料冷镦模具设计是一项重要的工程技术,它涉及到冷镦工艺和模具结构的设计。
在冷镦生产过程中,模具起着关键性的作用,它决定了产品的加工精度、质量和生产效率。
因此,加强冷镦模具设计的培训是十分必要的。
以下是一份关于冷镦模具设计的培训资料。
一、冷镦模具设计的基本知识1.冷镦工艺的基本原理与特点:冷镦是利用金属在常温下的可塑性进行成型的一种冷加工方法。
冷镦工艺的特点是成型力量小、能耗低、能高效地将原材料加工成型,具有广泛的应用前景。
2.冷镦模具的分类:根据不同的加工要求和产品形状,冷镦模具主要可分为剪切模具、折边模具、拉伸模具和成形模具等几类。
3.冷镦模具的工作原理:冷镦模具是利用金属在受力作用下发生塑性变形,以达到所需产品形状和尺寸的一种工具。
冷镦模具的工作原理主要包括切削原理、切断原理、拉伸原理和成形原理等。
二、冷镦模具设计的基本步骤与方法1.冷镦模具设计的基本步骤:a.明确产品形状与尺寸要求;b.建立产品三维几何模型;c.分析产品的特点与加工工艺;d.制定模具加工工艺方案;e.进行模具结构设计;f.完善模具零部件设计;g.进行模具装配与调试;h.进行模具试验与修正;i.完善模具设计文件。
2.冷镦模具设计的基本方法:a.模具结构设计方法;b.模具加工工艺与工装设计方法;c.模具材料与热处理的选择方法;d.模具零部件装配与调试方法;e.模具试验与优化设计方法。
三、冷镦模具设计的关键技术与注意事项1.冷镦模具设计的关键技术:a.模具结构设计技术;b.模具零件设计技术;c.模具加工与装配技术;d.模具热处理技术。
2.冷镦模具设计的注意事项:a.注意材料的选择与热处理;b.注意模具结构的合理性与刚度;c.注意模具零部件的制造精度;d.注意模具的涂层保护与维护。
四、冷镦模具设计的应用与发展趋势1.冷镦模具设计的应用领域:冷镦模具广泛应用于汽车、摩托车、电子、家电、建筑设备等工业领域。
2.冷镦模具设计的发展趋势:a.使用CAD/CAM/CAE等先进技术进行模具设计与分析;b.开展模具标准化与模具设计规范的制定与推广;c.结合数值模拟与优化技术,提高冷镦模具设计与生产过程的效率和质量。
冷墩工艺流程
冷墩工艺流程
冷墩工艺是一种金属加工技术,主要用于制造螺栓、螺母等紧固件。
以下是冷墩工艺的基本流程:
1. 备料:根据产品图纸或生产要求,准备合适的原材料,如钢材。
2. 模具设计:根据产品形状和尺寸要求,设计相应的模具。
3. 模具制造:按照设计图纸,制造出精确的模具。
4. 表面处理:对原材料进行抛光、磷化、喷塑等表面处理,以提高成品外观和防腐性能。
5. 切料:使用切割机将原材料切割成合适的长度和直径。
6. 墩头成型:将切好的原材料放入冷墩机中,通过墩头冲压成型。
7. 切边:使用切边机将成型的零件边缘切割平滑。
8. 热处理:对成品进行热处理,以增强其机械性能和稳定性。
9. 抛光:对成品进行抛光处理,使其表面光滑。
10. 检验:对成品进行严格的质量检验,确保符合产品图纸或生产要求。
11. 包装:对成品进行包装,以保护其在运输和存储过程中的质量。
以上是冷墩工艺的基本流程,具体操作可能因产品要求和生产设备而有所不同。
冷镦模具设计介绍ppt
定期检查模具的磨损情况,发现异 常及时修复。
清洗保养
定期清洗模具,保持清洁干燥,防 止锈蚀和积垢。
调整维修
对磨损严重的模具进行修复或更换 ,调整模具间隙和高度,保证正常 使用。
润滑保养
定期为模具涂抹润滑脂,减少磨损 和摩擦阻力,延长模具使用寿命。
05
冷镦模具设计发展趋势
高效节能设计
高效节能设计理念
未来冷镦模具设计将更加注 重材料的选择和优化,采用 高性能材料和新型复合材料 ,提高模具的强度、耐磨性 和抗疲劳性。
未来冷镦模具设计将更加注 重绿色制造和可持续发展, 采用环保材料和节能技术, 减少对环境的负面影响,推 动制造业可持续发展。
THANKS
谢谢您的观看
冷镦模具设计技术不断发展,可以提高模具设计 效率、减少设计成本、提高模具精度和寿命等方 面的优势。
对未来发展的展望
未来,随着制造业的快速发 展和技术的不断创新,冷镦 模具设计将会有更加广泛的 应用和发展。
技术创新是推动冷镦模具设 计发展的关键因素,未来可 以通过采用先进的 CAD/CAM软件、智能制造 技术等手段进一步提高模具 设计精度和效率。
高稳定性设计
优化模具材料和热处理工艺,提高模具材料的强度和稳定性,降低模具变形 和开裂的风险,提高生产效率。
高寿命、低成本设计
高寿命设计
选用高性能模具材料和表面强化技术,提高模具的耐磨性和抗疲劳性能,延长模 具的使用寿命。
低成本设计
采用优化结构设计、标准化模块化设计等手段,降低模具制造成本和提高维修维 护效率,实现低成本高效益的目标。
制造工艺:采用先进的数控机床进行高 精度加工,确保模具各部件的精度和表 面粗糙度。
模具材料选择:电子零件材质多为铜、 铝等有色金属,应选择专用的不锈钢或 硬质合金。
冷镦模具设计介绍课件
04
冷镦模具的应用与发展
冷镦模具的应用范围
汽车零件制造
冷镦模具被广泛应用于汽车零件的制造,如 螺栓、螺母、齿轮等。
机械制造业
机械制造业中,冷镦模具用于生产各种紧固 件、连接件等。
建筑行业
在建筑行业中,冷镦模具用于生产钢筋、螺 杆等紧固件。
其他行业
如航空航天、电子、家具、家电等行业,都 离不开冷镦模具的应用。
冷镦模具的结构设计应考虑成形 工艺的特点,如拉伸、冲压等, 以及零件的形状、尺寸和材料等
因素。
冷镦模具的材料选择
01
根据成形工艺和零件材料的不同,冷镦模具的材料选择也有所 不同。
02
常用的冷镦模具材料包括优质碳素结构钢、合金结构钢、不锈
钢、硬质合金等。
在选择冷镦模具材料时,需要考虑材料的耐磨性、抗冲击性和
提高解决实际问题的能力。
展望
随着制造业的快速发展,冷镦模具设 计领域面临着越来越多的挑战和机遇 。未来,该领域将更加注重技术创新 和跨学科融合,推动产业升级和发展 。
新材料和新工艺的不断涌现将为冷镦 模具设计带来更多的可能性,如采用 高性能材料制造高精度、长寿命的模 具,以及利用3D打印技术实现快速原 型制作等。
此外,随着智能制造和数字化转型的 加速推进,冷镦模具设计将更加注重 信息化和智能化,实现数据驱动的设 计优化和生产自动化。
06
参考文献与致谢
参考文献
01
参考文献1
作者1,书名,出版社,出版年份 。
参考文献3
作者3,书名,出版社,出版年份 。
03
02
参考文献2
作者2,书名,出版社,出版年份 。
参考文献4
作者4,书名,出版社,出版年份 。
冷镦锻工艺与模具设计
以GB5786-M8六角头螺栓为例来说明。
..冷镦锻工艺是一种少无切削金属压力加工工艺。
它是一种利用金属在外力作用下所产生的塑性变形,并借助于模具,使金属体积作重新分布及转移,从而形成所需要的零件或毛坯的加工方法。
冷镦锻工艺的特点:1.冷镦然是在常温条件进行的.冷镦锻可使金属零件的机械性能得到改善.2.冷镦锻工艺可以提高材料利率。
它是以塑性变形为基础的压力加工方法,可实现少切削或者无切削加工。
一般材料利用率都在85%以上,最高可达99%以上.3.可提高生产效率.金属产品变形的时间和过程都比较短,特别是在多工位成形机上加工零件,可大大提高生产率.4.冷镦锻工艺能提高产品表面粗糙度、保证产品精度。
二、冷镦锻工艺对原材料的要求1.原材料的化学成份及机械性能应符合相关标准.2.原材料必须进行球化退火处理,其材料金相组织为球状珠光体4—6级。
3.原材料的硬度,为了尽可能减少材料的开裂倾向,提高模具使用寿命还要求冷拔料有尽可能低的硬度,以提高塑性.一般要求原材料的硬度在HB110~170(HRB62—88)。
4.冷拔料的尽寸精度一般应根据产品的具体要求及工艺情况而定,一般来说,对于缩径和强缩尺寸精度要求低一些。
5.冷拔料的表面质量要求有润滑薄膜呈无光泽的暗色,同时表面不得有划痕、折叠、裂纹、拉毛、锈蚀、氧化皮及凹坑麻点等缺陷。
6.要求冷拔料半径方向脱碳层总厚度不超过原材料直径的1-1。
5%(具体情况随各制造厂家的要求而定)。
7.为了保证冷成形时的切断质量,要求冷拔料具有表面较硬,而心部较软的状态。
8.冷拔料应进行冷顶锻试验,同时要求材料对冷作硬化的敏感性越低越好,以减少变形过程中,由于冷作硬化使变形抗力增加.三、紧固件加工工艺简述紧固件主要分两大粪:一类是螺纹类紧固件;另一类是非螺纹类紧固件或联接件。
这里仅针对螺纹类紧固件进行简述。
1. 螺纹类紧固件加工流程一般都是由剪断、冷镦、或者冷挤压、切削、螺纹加工、热处理、表面处理等生产工序组成的.材料改制工艺流程一般为:酸洗→拉丝→退火→磷化皂化→拉丝→(球化磷化)螺纹类紧固件冷加工艺流程订要有以下几种情况:8。
冷镦基础知识和工艺分析
冷镦基础知识和工艺分析冷镦是一种金属加工方法,用于在室温下通过挤压和塑造金属材料,从而使其变为中空或实心形状。
冷镦过程能够在不改变材料的化学或物理属性的情况下,改善材料的强度、硬度和耐磨性。
冷镦工艺广泛应用于汽车、电气、机械和建筑等行业,生产出各种紧固件,如螺钉、螺栓、销钉和肩销等。
1.材料选择:冷镦加工适用于多种金属材料,如碳钢、不锈钢、铜、铝等。
不同材料具有不同的加工性能和机械性能,因此在选择材料时需要考虑到工件的使用环境和要求。
2.冷镦设备:冷镦设备主要包括镦头机、滚压机和冷挤压机。
镦头机用于将材料挤压成所需形状,滚压机用于将材料滚压成螺纹或花纹,冷挤压机用于将材料从材坯中挤出成型。
3.镦钢途径:冷镦过程中,将材料送入镦头机的路径称为镦钢途径。
镦钢途径的设计和选择直接影响到工件的加工效果和形状稳定性。
4.模具设计:模具是冷镦过程中必不可少的工具,用于形成工件的形状。
模具的设计需要考虑到工件的形状、尺寸和材料特性等因素,以确保工件的质量和精度。
冷镦工艺分析:1.工件设计:在冷镦工艺中,工件的设计是关键因素之一、工件的形状和尺寸应该符合冷镦设备和模具的要求,同时考虑到材料的挤压和延展性能。
2.材料预处理:在冷镦加工之前,材料需要进行一些预处理,如清洗、除油和退火等。
这些处理可以减少材料的不均匀性、气泡和应力,提高加工的稳定性和表面质量。
3.加热处理:一些情况下,冷镦工艺需要在加热状态下进行,以提高材料的延展性和塑性。
加热温度和时间的选择需要考虑到材料的特性和工艺要求。
4.加工参数:冷镦过程中的加工参数包括挤压速度、压力和润滑剂的选择等。
这些参数的选择需要经验和试验,以确保加工的稳定性和工件的质量。
5.表面处理:冷镦工艺后,工件的表面需要进行一些处理,如退火、焊接、镀锌等。
这些处理可以进一步改善工件的力学性能和抗腐蚀性能。
总结:冷镦是一种常见的金属加工方法,通过挤压和塑造金属材料,制造出各种紧固件和零部件。
翼轴冷镦工艺分析及模具设计
Abstract: Analyzing the cold upsetting process for wing axis, the structure and working process of progressive die for cutting and cold upsetting was introduced, and a method of die design was given to ensure the smooth cold upsetting of the parts.
在完成一次切断和冷镦工作后压力机滑块上行滑块9在推模弹簧作用下往右运动同时随着压力机滑块的逐渐上行固定在上模板14上的两个拉杆18通过拉套19193金属铸锻焊技术castingforgingwelding201hotworkingtechnology2011vol40拉动固定挂板23夹持钢丝将其向上送进一定距离在送进的同时将已冷镦成形的工件从活动凹模26滚夹器的设计钢球夹持钢丝只能让钢丝送进不让后退具有单向自锁作用
直径(mm)。 对 于 该 零 件 :△ =(2 ~3)% d =(2 ~3)% ×2.8 =
0.056~0.084 mm,这里取△=0.06 mm。
5 结束语
采用剪切、冷镦连续模生产翼轴,提高了生产 效率,降低了生产成本,满足了大批量生产的要求, 取得了较好的经济效益和社会效益。
参考文献:
[1] 杨长顺.冷挤压工艺实践[M].北京:国防工业出版社,1984. [2] 湖 南 省 机 械 工 程 学 会 锻 压 分 会. 冲 压 工 艺[M].长 沙 :湖 南
冷镦(挤压)工艺中主要工模具概要
1.2.3 初镦冲头 初镦冲头又称初冲,用于双击自动冷镦或两次以上的镦锻工艺。 初镦冲头,主要是锥形工作模腔的设计。主要工艺尺寸参数由变形工 艺及计算 公式确定。常用的初镦冲头型式与尺寸及技术要求,如表36-24(1),(2) 所示。 1.2.4 终镦冲头 终镦冲头又称光冲,用于双击自动冷镦机和多工位自动冷镦机。 型式与尺寸及技术要求,如表36-25所示。 1.2.5 冲裁模 1.2.5.1. 切边模 切边模适用于多工位自动冷镦机、自动切边机、冲床等专用设 备。常用切边模的型式与尺寸及技术要求,如表36-26所示。 切边模的刃口厚度尺寸h很重要。h过大,切边时易啃模,使模具断裂,顶 针顶料时费劲,易折断,同时产品的切面s也粗糙,螺栓杆部容易弯曲;h 大小,使产品的s面切的不平,呈波浪形。一般坯料材质较软,h宜取小, 材质较硬h宜取大。
1.2.2 切料模具 a. 切料模 切料模又称割模,如图36-57所示。孔径d的选择可按公式36-29计算: d=d材max+(0.05~0.1)mm (公式36-29) 式中: d材max——线材最大直径,mm。
切料模进料端有30°喇叭口,使线材端部容易通过。切料模刃口容易 磨损,可选用合金工具钢或高速工具钢制造,热处理硬度60~62 HRC。为提高切料模使用寿命,切料模可镶硬质合金。常用的A型及 B型切料模型式与尺寸及技术要求, 您表36-18及表36-19。
ห้องสมุดไป่ตู้
成型模片的型腔应制有0°10′~0°15′的出模斜度,多边成型模片的 棱角处,要以圆角过度,防止应力集中损坏模具。 与直孔模芯镶配使用的成型模片,在两者结合处应制有排气槽,以便 金属流动时充满模腔。 4.2 下模设计原则 由于下模承受坯件的变形力较大,多数情况下,它既要承受压应力, 又要承受轴向拉应力、径向拉应力等多种应力,受力情况复杂。因此 下模的使用寿命是生产合格产品,保证设备正常开动的关键。如何提 高下模的使用寿命,是工模具设计者要考虑的首要问题。用普通材料 制成的整体式下模是不可能达到高寿命的。因此,设计者常从模具结 构、选用材料及处理工艺上着手考虑。 下模类模具的设计原则主要有以下几个方面: a.以组合式下模代替整体式下模。设计组合式下模时,其组合原则应 从应力集中处着眼,遵循“未裂先分”的原则,使模具从结构上就消 除了应力集中区; b.模芯材料选用具有较高碳化物的、耐磨性好的,并且有一定韧性的 材料,如YG20C; c.模芯用的中套、外套选用强度较高的材料,如60Si2Mn、5CrNiMo 等,中套与外套过盈压配。
冷镦基础知识和工艺分析
冷镦基础知识和工艺分析冷镦是一种金属加工工艺,用于将金属棒材通过一系列冷镦工序进行变形,并形成不同形状的零件。
冷镦零件广泛应用于各种行业,如汽车制造、机械制造、电子设备等。
1.冷镦工件材料:冷镦工件材料通常为高强度合金钢,因其具有良好的可塑性和机械性能。
常见的冷镦材料有碳素钢、不锈钢、铝合金等。
2.冷镦机械设备:冷镦工艺需要使用专用的机械设备,如冷镦机、冷锻机等。
这些设备通常由电机、冷镦模具、冷却系统等组成。
3.冷镦模具:冷镦模具用于给金属材料施加压力和变形。
模具设计和制造的精度直接影响到冷镦产品的质量。
常见的冷镦模具类型包括直形镦模、曲形镦模、针形镦模等。
4.冷镦工序:冷镦过程主要包括切割、预加工、镦粗、镦细等。
切割是将金属棒材切断合适长度;预加工是通过切割、上锥等工序,将材料准备好进行下一步镦制;镦制则是通过模具施加压力,使金属棒材产生塑性变形,最终形成所需零件。
工艺分析:1.材料分析:在进行冷镦工艺分析前,需要对选定的材料进行分析。
包括材料的化学成分、力学性能、热处理特性等。
这些特性将决定冷镦工艺中的参数选择和工艺优化。
2.模具设计:根据所需零件的形状和尺寸,进行冷镦模具的设计。
模具设计要考虑材料的机械性能和变形特点,确保模具能够施加适当的压力和变形力,形成理想的零件形状。
3.工艺参数确定:确定适当的冷镦工艺参数对于生产高质量零件至关重要。
包括材料温度、镦制速度、润滑剂选择等。
合理的参数选择既能保证产品质量,又能提高生产效率。
4.工艺优化:通过实验和仿真分析,对冷镦工艺进行优化。
例如,使用合适的润滑剂可以减小摩擦阻力,提高工件表面质量;选择合适的冷镦速度可以减小能耗,提高生产效率。
总结:冷镦作为一种重要的金属加工工艺,广泛应用于各个行业。
了解冷镦基础知识和进行工艺分析,能够帮助我们选择适当的材料和工艺参数,优化冷镦工艺,提高零件的生产效率和质量。
冷镦锻工艺与模具设计
冷镦锻工艺与模具设计冷镦锻工艺是一种利用冷变形原理,通过冲击力使材料表面产生塑性变形,通过模具来塑造材料形状的工艺。
冷镦锻工艺主要应用于金属制品的生产中,如螺丝、螺母、铆钉等。
本文将重点介绍冷镦锻工艺的基本原理以及模具设计的要点。
1.材料准备:选择合适的材料进行冷镦锻加工。
通常选择易于塑性变形的材料,如碳钢、合金钢等。
2.材料切割:将材料按照需要的长度进行切割。
切割过程需要注意保持材料的质量和精度。
3.镦头设计:根据产品的需求和形状设计镦头。
镦头是冷镦锻的关键部件,它决定了最终产品的形状和质量。
4.冷镦锻加工:将切割的材料放入冷镦机床中,通过冲击力和挤压力使材料发生塑性变形。
冷镦机床通常由强制进料装置、冷锻头和后处理装置等组成。
5.后处理:对冷镦锻加工后的产品进行去毛刺、清洗、校直等处理。
这些处理过程可以提高产品的表面质量和精度。
1.模具材料选择:模具需要选择耐磨、耐冲击和耐高温的材料,如合金钢、硬质合金等。
2.模具结构设计:模具结构需要合理,能够实现产品的形状要求,并且易于装卸和调整。
模具结构通常包括模具座、模具芯、模具套等组件。
3.模具热处理:模具需要进行适当的热处理,以增加其硬度和耐磨性。
4.模具表面处理:模具表面需要进行适当的涂层处理,以减少摩擦和磨损。
5.模具维护:模具需要定期进行维护和保养,以延长其使用寿命和保持良好的工作状态。
综上所述,冷镦锻工艺与模具设计密不可分。
只有合理选择冷镦锻工艺并设计优化的模具,才能保证产品的质量和生产效率。
冷镦锻工艺与模具设计
冷镦锻工艺与模具设计 Company Document number:WUUT-WUUY-WBBGB-BWYTT-1982GT以GB5786-M8六角头螺栓为例来说明...冷镦锻工艺是一种少无切削金属压力加工工艺。
它是一种利用金属在外力作用下所产生的塑性变形,并借助于模具,使金属体积作重新分布及转移,从而形成所需要的零件或毛坯的加工方法。
冷镦锻工艺的特点:1.冷镦然是在常温条件进行的。
冷镦锻可使金属零件的机械性能得到改善。
2.冷镦锻工艺可以提高材料利率。
它是以塑性变形为基础的压力加工方法,可实现少切削或者无切削加工。
一般材料利用率都在85%以上,最高可达99%以上。
3.可提高生产效率。
金属产品变形的时间和过程都比较短,特别是在多工位成形机上加工零件,可大大提高生产率。
4.冷镦锻工艺能提高产品表面粗糙度、保证产品精度。
二、冷镦锻工艺对原材料的要求1.原材料的化学成份及机械性能应符合相关标准。
2.原材料必须进行球化退火处理,其材料金相组织为球状珠光体4-6级。
3.原材料的硬度,为了尽可能减少材料的开裂倾向,提高模具使用寿命还要求冷拔料有尽可能低的硬度,以提高塑性。
一般要求原材料的硬度在HB110~170(HRB62-88)。
4.冷拔料的尽寸精度一般应根据产品的具体要求及工艺情况而定,一般来说,对于缩径和强缩尺寸精度要求低一些。
5.冷拔料的表面质量要求有润滑薄膜呈无光泽的暗色,同时表面不得有划痕、折叠、裂纹、拉毛、锈蚀、氧化皮及凹坑麻点等缺陷。
6.要求冷拔料半径方向脱碳层总厚度不超过原材料直径的%(具体情况随各制造厂家的要求而定)。
7.为了保证冷成形时的切断质量,要求冷拔料具有表面较硬,而心部较软的状态。
8.冷拔料应进行冷顶锻试验,同时要求材料对冷作硬化的敏感性越低越好,以减少变形过程中,由于冷作硬化使变形抗力增加。
三、紧固件加工工艺简述紧固件主要分两大粪:一类是螺纹类紧固件;另一类是非螺纹类紧固件或联接件。
冷镦模具设计介绍
实例三:多工位冷镦模具设计
总结词
多工位冷镦模具设计是较为复杂的,需要考 虑多个工位的协调和加工精度的保证等因素 。
详细描述
多工位冷镦模具设计需要考虑多个工位的协 调和加工精度的保证等因素。在确定设计方 案时,需要考虑每个工位的加工任务和顺序 ,以及各个工位之间的相互关系。在制造过 程中,需要采用高精度的加工设备和工艺, 以保证每个工位的加工精度和质量。此外,
05
未来冷镦模具设计的发展趋势
Chapter
高精度、高强度、高效率的趋势
高精度
随着制造业的不断发展,对冷镦 模具的精度要求越来越高,设计 师们需要关注模具的加工制造精 度,提高模具的重复使用率和生
产效率。
高强度
为了满足高强度材料的需求,冷 镦模具需要具备更高的耐磨性和 抗冲击性能,同时要优化模具结
实例二:复杂零件的冷镦模具设计
总结词
复杂零件的冷镦模具设计较为复杂,需要考虑材料、尺寸、结构、制造和维修等因素,同时需要采用多种工艺。
详细描述
复杂零件的冷镦模具设计需要考虑材料的选择,以及材料之间的匹配。在确定尺寸时,需要考虑零件的用途、批 量和精度等因素。在结构设计时,需要考虑零件的形状、尺寸和精度等因素。此外,还需要考虑制造和维修等因 素。为了实现复杂零件的冷镦加工,需要采用多种工艺,如多工位冷镦、弯曲、切边等。
在冷镦过程中,模具会受 到周期性的应力循环作用 ,模具设计需考虑材料的 疲劳强度特性。
03
冷镦模具设计实例分析
Chapter
实例一:简单零件的冷镦模具设计
总结词
简单零件的冷镦模具设计相对较为简单 ,主要考虑材料、尺寸和结构等因素。
VS
详细描述
简单零件的冷镦模具设计通常需要考虑材 料的性质、尺寸和结构等因素。在选择材 料时,需要考虑材料的强度、韧性和耐磨 性等因素。在确定尺寸时,需要考虑零件 的用途和生产批量等因素。在结构设计时 ,需要考虑零件的形状和尺寸等因素。此 外,还需要考虑模具的制造和维修等因素 。
冷镦螺丝成型工艺设计理论
冷镦螺丝成型工艺设计理论
1.工艺参数设计
2.材料选择
3.模具设计
模具是冷镦螺丝成型工艺的核心。
模具的设计应根据产品的尺寸和形
状需求合理选择。
模具的设计原则是满足产品的几何形状要求,确保螺纹
的精度和一致性。
模具的材质也需要考虑耐磨性和耐疲劳性。
4.加工工艺
冷镦螺丝成型工艺的加工过程包括切断、成型和去皮。
切断过程需要
确保切断面的平整度和尺寸精度。
成型过程中需要保持适当的成型力和速度,控制成型温度,避免过度变形和温度过高导致材料的回弹和裂纹。
去
皮过程需要通过合适的方法去除螺纹表面的氧化皮和硬化层,提高表面质量。
5.品质控制
冷镦螺丝成型工艺的品质控制是确保产品达到标准要求的关键。
品质
控制主要包括产品的尺寸精度、螺纹的牙型、外观质量和机械性能等方面。
通过采用先进的检测设备和方法,对每个工序进行检测和控制,可有效提
高产品的质量。
冷镦螺丝成型工艺设计理论是指在实际生产中,根据产品的要求和原
材料的特性,合理地选择工艺参数、材料、模具和加工工艺,确保制造出
满足要求的产品。
通过科学的设计和优化,可以提高生产效率和产品质量,降低成本和能耗,推动工艺的进步和发展。
冷镦螺丝成型工艺的设计理论是一个复杂而重要的课题。
随着技术的不断进步和应用的推广,冷镦螺丝成型工艺将在更多领域得到应用,并为相关行业的发展做出贡献。
因此,在工程实践中不断完善和优化冷镦螺丝成型工艺设计理论,将有助于提高工艺的可操作性和实用性,从而更好地满足市场需求。
冷镦(挤压)工艺中主要工模具概要
1.2.3 初镦冲头
初镦冲头又称初冲,用于双击自动冷镦或两次以上的镦锻工艺。
适用于双击整模自动冷镦机的A型预镦冲头及A型预镦冲头顶杆的型 式、尺寸及技术要求,如表36-27、表36-28所示。
2.2 用于多工位自动冷镦机的内六角预镦冲头
图36-63所示为多工位自动冷镦机使用的内六角上、下模工作图。
图36-64为预镦内六角冲头组合图。预镦内六角冲头1在工作行程中与 下模配合镦出锥形球头。由于冲头承受轴向力,R凹穴又比较浅,因 此预镦冲头不会从冲头套脱出。冲头和套采用过盈配合(H8/S7)。
1.2.5.1. 床等专用设
备。常用切边模的型式与尺寸及技术要求,如表36-26所示。
切边模的刃口厚度尺寸h很重要。h过大,切边时易啃模,使模具断裂,顶 针顶料时费劲,易折断,同时产品的切面s也粗糙,螺栓杆部容易弯曲;h 大小,使产品的s面切的不平,呈波浪形。一般坯料材质较软,h宜取小, 材质较硬h宜取大。
适用于多工位自动冷镦机的内六角预镦冲头的型式、尺寸及技术要求, 如表36-29所示。
表36-30所示为二序冲头,即精镦内六角冲头图的型式和尺寸。图中 可以看出,它与预镦冲头只是冲头的头部几何形状不同,而冲头材料 及热处理硬度与预镦冲头相同。
2.3精镦冲头:
图36-65、图36-66、图36-67示出了适用于多工位自动冷镦机的B、C 及D型三种精镦内六角冲头组合图。
1 冷镦用工模具结构 1.1 工模具分类
紧固件冷镦和模具设计
(一)1D2B产品过程成型设计原理
过程成型设计原理
• d.冷变形硬化对金属塑性及变形抗力的影响
• 金属经过冷塑性变形,引起金属的机械性能、物理性能及化学性能的改变。随着变形程度的增加,所有的强度指标(弹 性极限、比例极限、流动极限及强度极限)都有所提高,硬度亦有所提高;塑性指标(伸长率、断面收缩率及冲击韧性 )则有所降低;电阻增加;抗腐蚀性及导热性能降低,并改变了金属的磁性等等,在塑性变形中,金属的这些性质变化 的总和称作冷变形硬化,简称硬化。
紧固件系列之冷镦和模具设计
过程成型设计原理
(一)1D2B产品过程成型设计原理
根据产品图纸我们定义过程成型设计的方案,选择对应的机器。现在主要介绍一下1D2B的过程成型设计原 理。
首先是冷镦的介绍: 紧固件成型工艺中,冷镦(挤)技术是一种主要加工工艺。冷镦(挤)属于金属压力加工范畴。在生产中,在常温状态下, 对金属施加外力,使金属在预定的模具内成形,这种方法通常叫冷镦。实际上,任何紧固件的成形,不单是冷镦一种变形方 式能实现的,它在冷镦过程中,除了镦粗变形外,还伴随有正、反挤压、复合挤压、冲切、辗压等多种变形方式。因此,生 产中对冷镦的叫法,只是一种习惯性叫法,更确切地说,应该叫做冷镦(挤)。冷镦(挤)的优点很多,它适用于紧固件的 大批量生产。它的主要优点概括为以下几个方面:
过程成型设计原理
(一)1D的基本概念
1.1 变形 变形是指金属受力(外力、内力)时,在保持自己完整性的条件下,组成本身的细小微粒的相对位移的总和。 1.1.1 变形的种类 a.弹性变形 金属受外力作用发生了变形,当外力去掉后,恢复原来形状和尺寸的能力,这种变形称为弹性变形。 弹性的好坏是通过弹性极限、比例极限来衡量的。 b.塑性变形 金属在外力作用下,产生永久变形(指去掉外力后不能恢复原状的变形),但金属本身的完整性又不会被破坏的变形,称为 塑性变形。 塑性的好坏通过伸长率、断面收缩率、屈服极限来表示。 1.1.2 塑性的评定方法 为了评定金属塑性的好坏,常用一种数值上的指标,称为塑性指标。塑性指标是以钢材试样开始破坏瞬间的塑性变形量来表 示,生产实际中,通常用以下几种方法: (1)拉伸试验 拉伸试验用伸长率δ和断面收缩率ψ来表示。表示钢材试样在单向拉伸时的塑性变形能力,是金属材料标准中常用的塑性指 标。δ和ψ的数值由以下公式确定:
套类制件冷镦成形工艺与模具设计
为圆片,根据经验废料厚度取 3mm,直径为成形件内
兰工位坯料变形量较大,对成形工艺的影响相比其他
径),通过成形工序反推各工位坯料尺寸并参照现有
工序较高,故主要针对这两个工序进行数据分析,确
原 材 料 尺 寸 ,确 定 该 制 件 原 材 料 线 材 直 径 选 取 为
保工艺、模具设计的可行性。
ϕ17.5mm,同时计算出切料长度 L。
4 工位模具装配图
4.冲棒管
10.垫块 11.顶杆套
5.模壳
12.推管
12 11
10
6.主模 7.垫管 8.后垫
13.顶杆
14.冲棒
· 25 ·
·冲 模 技 术·
单件模具的设计与选用
α
为保证切料段顺利进入主模且不会因为金属轻
微的弹性恢复而导致无法达到所需尺寸,主模孔径 d1
取比该工位所设计成形件的直径大 0.1mm 左右,通过
·冲 模 技 术·
套类制件冷镦成形工艺与模具设计
张
威,
朱纹昊,
周露洋,陈志强
(中车眉山车辆有限公司,四川眉山
620010)
【摘要】冷镦成形工艺是紧固件主要成形工艺之一,冷镦成形工艺和模具的设计,是影响制
件质量和制造成本的关键因素。以一种套环类制件为例,进行制件冷镦成形工艺设计,并
对成形过程中与制件强相关的模具形状、尺寸进行设计,以达到降低模具损坏率、降低制
[4]
曹旭军,徐德敏,邓在宾. 摆动斜楔机构设计[J]. 模具工业,
2016,
42(12):31~33
第一作者简介:代小龙,男,1988 年生,汉族,四川
眉山人,
助理工程师,学士学位,模具结构设计员。
(收稿日期:
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
冷镦加工与冷镦变形力有着密切的关系。冷镦变形力是确定工艺参数、 模具设计、设备设计和选择设备的重要依据。在正常生产中,一般不需经 常进行变形力的计算,但对于非标零件与几何形状复杂零件加工时,为便 于合理地选用设备、设计工艺和模具等,必要时需要进行变形力计算,所 以必须掌握变形力的计算方法。
形过程中,随着变形的增大,由于冷作硬化
变形抗力 (N/mm2)
作用使金属的硬度和强度随之增大, 变形抗力也大大增加,而塑性却有所降 低,这将给后道工序带来变形的困难。
电工纯铁
金属材料冷作硬化后实际变形抗力如
图1.1-1所示,材料的含碳量越高,其变
形抗力越大。所以,在冷加工过程中需
适当增加中间热处理工序,以消除冷作硬 化和内应力。
4.冷镦变形力计算方法 F=KσT A 式种: F — 冷镦变形力 (MPa)
K — 镦锻头部的形状系数, 一般螺钉、螺栓取 2~2.4 σT — 考虑到冷作硬化后的变形抗力
σT = σbIn (A/A0) (MPa) σb — 金属材料的强度极限 (MPa)
A — 镦锻后头部的最大投影面积 (mm2) A0 —镦锻前坯的断面积 (mm2)
冷镦工艺与模具设计
一、冷镦变形工艺一些基本概念
1. 金属变形的基本概念
a. 金属的结构 一切金属的组织是由许多小晶体组成的,这些小晶体称为“晶粒” 。 常用冷镦材料的晶体结构:体心立方晶格、面心立方晶格和密排六方 晶格 。
b. 金属变形的基本概念 金属材料在外力作用下,所引起尺寸和形状的变化称为“变形”。
表面润滑要求
冷镦材料的改制过程
材料热处理—低温去应力退火、完全退火、球化退火(对于C>0.25% 中碳钢,为了满足冷变形工艺要求,常需要进行球化退火。)、固溶 处理(对于冷镦用的1Cr18Ni9Ti等奥氏体不锈钢,需采用固溶处理方 法,实现钢材软化。)
材料的酸洗 酸洗前的预处理:钢材在热处理后,表面的氧化铁皮比较厚,不能单纯的依 靠酸洗去除,通常进行剥壳。 酸洗方法:硫酸酸洗、盐酸酸洗、酸洗质量 润滑处理:牛油—石灰润滑、磷化—皂化处理 材料的改制
δ= (L1-L0)/L0×100% 式中 L0 — 拉伸试样原始标距长度;
L1 —拉伸试样破断后标距长度;
Ψ=(A0-A1)/A0×100%
式中 Ao — 拉伸试样原始截面积; A1 —拉伸试样破断处的截面积;
因此,伸长率和断面收缩率数值越大,表示塑性越好。良 好的塑性材料,有利于进行断压、冷冲、冷镦锻和冷拉拔等成 型工艺。 原则上说,这两个塑性指标,都只能表示材料在单向拉伸条件 下的塑性变形能力。
二、冷镦挤压工艺及模具设计
采用专用自动冷镦机来加工零件。 优点:材料利用率高、提高劳动生产率、使零件具有较高的机械性能和疲劳
强度、使零件表面得到较高的光洁度。 缺点:模具制造费用高,不适合少量生产。
冷镦工艺基本概念:镦锻比(S) 、冷镦变形程度(ε) 1. 镦锻比(S) — 是指镦锻材料镦锻部分的长度和直径的比值。
变形程度 ε(%)
图1.1-1
否则,继续冷镦加工将是困难的。 3. 零件形状和模具形状对冷镦力的影响 由于零件与模具之间存在着摩擦, 在冲模和凹模间受压力作用而变形的坯料,其塑性变形是不均匀的.工件坯料 在变形时,摩擦力会阻止金属流动,因而在不同的部位金属的流动是不同的。 特别是在棱角和边缘部位变形困难而缓慢。所以,当坯料在模具内受控制 的情况不同时,所需要的冷镦变形力也不相同。不同的镦锻形式,镦锻系 数K不同。开式镦粗时,取系数为1.2~2.7;闭式镦锻时,取系数为2.4~5; 带有反挤压的镦锻时,取系数为4~9。
c. 塑性变形的基本定律
在冷镦加工中Βιβλιοθήκη 泛应用的塑性变形的基本定律是:体积不变定律和最小阻 力定律。
体积不变定律 — 冷镦加工时,变形前金属坯料的体积等于变形后工件的体 积。
最小阻力定律 — 金属受到外力作用发生塑性变形,金属晶粒有向各个不 同方向移动的可能时,总是沿着阻里最小的方向移动。
最小阻力定律应用很广泛,在设计冷镦模具时,怎样才能使金属流动阻力 减小和合理地控制金属的流动,这是设计人员必须考虑的问题。
试样裂纹的出现,是由于侧表面处附加拉应力作用的结果 。工具与试 样接触表面的摩擦力、散热条件、试样几何尺寸等因素,都会影响到附加 拉应力的大小。因此,用镦粗法测定塑性指标时,为使所得结果可进行比 较,必须制定相应的规程,说明试验条件。在冷镦生产中,常采用与工件 变形条件相近的试验规程,以测定材料对于冷镦工艺的适合性。
金属变形是由弹性变形和塑性变形所组成。 所谓塑性—是指在外力作用下发生永久变形而不损伤其整体性能。
许多零件在成型过程中要求材料有较好的塑性。在冷镦时零件有的 部位变形量很大,如材料的塑性不好将会发生开裂。 在工程中金属材料的塑性用伸长率δ和断面收缩率ψ两个指标来表示, 也就以此衡量材料的塑性。 δ和ψ的数值可由下公式表示:
镦粗试验在冷镦加工中常被采用。它是将试验材料制成圆 柱形试样,高度Ho一般为直径Do的1.5倍,然后在压力机或落 锤上进行镦粗,直至试样表面出现第一条肉眼可见的裂纹为止, 此时的压缩比ε即为塑性指标。
ε =(H0-H1)/H0×100% 式中 H0 —圆柱形试样原始高度;
H1 —试样压缩后在侧表面出现第一条肉眼可见的裂纹 时的试样高度;
一. 冷镦变形力的影响因素 冷镦变行力是根据镦锻金属的性质、变形度、 镦锻体形状、摩擦及其它一些因素决定的。所以在计算之前必须要了解上 述因素对变形力的影响。
1. 力学性能对变形力的影响 强度和硬度较高的材料发生变形时,所需要 的变形力比较大,变形力与材料的强度成正比。
2. 变形程度对变形力的影响 在塑性变
3. 冷镦常用金属材料及材料准备 常用的金属材料有黑色金属和有色金属两大类。
对冷镦用钢的要求: 力学性能的要求
化学成分的要求
金相组织的要求— 一般认为1~4级为粗晶粒,5~8为细晶粒。粗晶粒
材料的冷作硬化敏感性比细晶粒的要大,塑性比细晶粒的要差,适合 冷镦晶粒度以4、5、6级为宜。 材料表面质量的要求 — 钢材表面的缺陷 、表面脱碳。 尺寸精度要求