沥青路面结构设计方法的简介
国外沥青路面设计简介
√
英国
√(水稳碎石)
√
√
法国
薄沥青层 厚粒料基层
厚沥青层 下卧底基层
半刚性基层
混合式
全厚式
粒料基层
主要路面结构
国家
※
※
俄罗斯
※
※
※
法国
※
※
※
比利时
※
※
诺丁汉大学
※
※
※
※
南非
※
※
日本
※
※
※
澳大利亚
※
※
※
SHELL
补强※
※
※
AI
路表 弯沉
永久变形
粒料层剪 切应力
路基顶面 压应变
稳定粒料 层拉应力
路基膨胀或冻胀考虑——路基膨胀或冻胀造成PSI的损失。 每一个特定地区给出了膨胀或冻胀造成的PSI损失随时间的变化曲线(△PSISV~t △PSIFH ~t ) 设计方法: 估计路面使用年限(年) 查图得出相应△ PSI SV、FH 从设 计总服务能力损失(△PSI )中扣除△ PSISV、FH,得到完全由 交通荷载引起的△PSITR △PSIIR查AASHTO路面设计图得到 累计交通量(ESAL) 根据交通量随时间变化图得到允许的使 用年限 ,与初始估计的使用年限相比,两者相差1年则可,否 则重新计算,直至收敛。
AASHTO(200x修订版)的修订要点
◎ 对沥青路面、水泥混凝土路面、复合路面提供一个通用的设计方法;反映了交通、气候环境、路基、可靠性的共同的设计要求。 ◎ 适用于新建和重建路面的结构设计,设计项目包括计算路面结构各层的厚度、重建的方法、地下排水设施、路基改善等等。 ◎ 将使用周期效益成本分析的方法作为该设计方法的一个子程序。
透水沥青路面结构做法
透水沥青路面结构做法一、引言透水沥青路面结构是现代城市道路建设中越来越受关注的一种新型路面结构,其具备较好的透水性能和抗滑性能,能够有效地解决城市雨水排水难题。
本文将深入探讨透水沥青路面结构的做法和优势。
二、透水沥青路面结构的组成透水沥青路面结构主要由以下几个组成部分构成:1. 路基层•砾石层:用于支撑上部结构和提供一定的强度。
•压实土层:用于增加路面的稳定性和承载能力。
2. 结构层•下基层:由粗骨料、粗砂、水泥和透水剂混合而成,具备一定的强度和透水性能。
•上基层:由细骨料、细砂和透水剂混合而成,提供良好的透水性能和车辆行驶的平顺度。
3. 表面层•透水沥青混合料:由骨料、矿料、沥青和透水剂混合而成,具备良好的透水性能和耐久性。
三、透水沥青路面结构的施工方法透水沥青路面结构的施工方法如下:1. 准备工作•彻底清理施工区域,包括清除杂物和障碍物。
•对路基层进行整平和压实处理。
2. 下基层施工1)将粗骨料、粗砂、水泥和透水剂按一定比例混合,并均匀铺设于路基层。
2)利用压路机进行初次压实,确保下基层的均匀和稳定性。
3)进行水泥稳定层的养护,保证其达到设计强度。
3. 上基层施工1)将细骨料、细砂和透水剂按一定比例混合,并均匀铺设于下基层。
2)用压路机进行压实,使上基层紧密结合并达到指定厚度。
4. 表面层施工1)将透水沥青混合料铺设于上基层。
2)采用机械压实设备进行压实,以确保材料的密实性和平整度。
3)对刚完成的透水沥青路面进行冷却,帮助沥青材料更好地固化。
5. 养护1)对施工完成的透水沥青路面进行养护,包括喷洒养护剂、覆盖防护层等操作。
2)养护时间一般为7-14天,保证路面材料的稳定性和耐久性。
四、透水沥青路面结构的优势透水沥青路面结构具有以下几个优势:1. 良好的透水性能透水沥青路面能够将雨水迅速渗透到地下水,减少道路表面积水,有效缓解城市排水问题,预防水患的发生。
2. 减少水雾和水溅透水沥青路面能够减少道路表面的水雾和水溅,保持视线清晰,提高驾驶安全性。
我国沥青路面设计方法及典型实例
我国沥青路面设计方法及典型实例1、设计理论-层状体系理论2、设计指标和要求; (1)轮隙中间路表面(A点)计算弯沉值小于或等于设计弯沉值(2)轮隙中心下(C点)或单圆荷载中心处(B点)的层底拉应力应小于或等于容许拉应力3、弯沉概念(1)回弹弯沉:路基或路面在规定荷载作用下产生垂直变形,卸载后能恢复的那一部分变形。
(2)残余弯沉:路基或路面在规定荷载作用下产生的卸载后不能恢复的那一部分变形。
(3)总弯沉:路基或路面在规定荷载作用下产生的总垂直变形(回弹弯沉+残余弯沉)。
(4)容许弯沉:路面设计使用期末不利季节,标准轴载作用下双轮轮隙中间容许出现的最大回弹弯沉值。
(5)设计弯沉:是指路面交工验收时、不利季节、在标准轴载作用下,标准轴载双轮轮隙中间的最大弯沉值。
4、弯沉测定;(1)贝克曼法:传统检测方法,速度慢,静态测试,试验方法成熟,目前为规范规定的标准方法。
(2)自动弯沉仪法:利用贝克曼法原理快速连续测定,属于试验范畴,但测定的是总弯沉,因此使用时应用贝克曼进行标定换算。
(3)落锤弯沉仪法:利用重锤自由落下的瞬间产生的冲击载荷测定弯沉,属于动态弯沉,并能反算路面的回弹量,快速连续测定,使用时应用贝克曼进行标定换算。
5、设计弯沉的调查与分析(1)我国把第四外观等级作为路面临界破坏状态,以第四外观等级路面的弯沉值的低限作为临界状态的划界标准,从表中所列的外观特征可知,这样的临界状态相当于路面已疲劳开裂并伴有少量永久变形的情况。
(2)对相同路面结构不同外观特征的路段进行测定后发现,外观等级数愈高,弯沉值愈大,并且外观等级同弯沉值大小有着明显的联系。
因此可以在弯沉值与不同时期的累计交通量间建立关系。
6、设计弯沉值; 设计弯沉值是路面峻工验收时、最不利季节、路面在标准轴载作用下测得的最大(代表)回弹弯沉值。
可根椐设计年限内每个车道通过的累计当量轴次、公路等级、面层和基层类型确定的路面弯沉设计值。
7、容许弯拉应力对沥青混凝土的极限劈裂强度,系指15℃时的极限劈裂强度;对水泥稳定类材料龄期为90d 的极限劈裂强度(MPa);对二灰稳定类、石灰稳定类材料系指龄期为180d的极限劈裂强度(MPa),水泥粉煤灰稳定类120d的极限劈裂强度(MPa) 。
沥青路面设计
15
三、沥青路面垫层结构
垫层的作用:
➢改善土基的湿度和温度状况,保证面层和基层的强度、 刚度和稳定性不受土基水温变化而造成不良影响。 ➢将基层传下的车辆荷载加以扩散,以减小土基的应力和 变形。同时阻止路基土挤入基层。
可选用粗砂、砂砾、碎石、煤渣、矿渣等粒料以及水泥或 石灰煤渣稳定类、石灰粉煤灰稳定类等。强度要求不一定 高,但水稳定性和隔温性能要好。 排水垫层应与边缘排水系统相连接,垫层宽度应铺筑到路 基边缘或与边沟下的渗沟相连接。 采用碎石和砂砾垫层时,一般最大粒径应不超过结构层厚 度的1/2,以保证形成骨架结构。
ቤተ መጻሕፍቲ ባይዱ 16
防冻厚度的设计,一般多采用经验厚度和经验公式加以 确定。 防冻厚度与路基潮湿类型、路基土类、道路冻深以及路 面结构层材料的热物理性能有关。 若根据交通量计算的结构层总厚度小于最小防冻层厚度 ,则应增加防冻垫层使其满足最小防冻厚度的要求。 在排水垫层下设土工织物反滤层,以防止路基污染粒料 垫层,降低排水功能。
11
二、解题方法
p
h1
E1 μ1
hi
Ei μi
En μn
弹性层状体系示意图
12
第三节 沥青路面结构组合设计
➢基本原则:
面层耐久、基层坚实、土基稳定
➢具体要求:
1. 适应行车荷载作用的要求 从上至下,从薄到厚,从强到弱,表层抗滑、抗磨耗 2. 在各种自然因素作用下稳定性好 水稳定性和温度稳定性; 3. 考虑结构层的特点 上下层匹配,总体上强度足够; 4. 考虑防冻、防水要求 5. 层间结合良好
通过试验路的实测数据,建立路面结构(结构层组合、 厚度和材料性质)、车辆荷载(轴载大小和作用次数)和 路面使用性能之间的关系。
公路沥青路面结构设计技术方法综述
公路沥青路面结构设计技术方法综述摘要:随着我国经济的快速发展,基础设施建设进程加快,高等级公路突飞猛进的建设为我国经济的发展做出了重要贡献, 但也出现了一些值得重视的问题,尤其是一些新建的高速公路, 早期结构性破坏现象十分突出, 严重影响着公路建设的形象和交通运输安全。
因此, 开展对公路沥青路面结构设计的探索具有重要的现实意义。
关键词:公路,沥青路面结构,结构设计引言:目前我国高等级公路工程发展迅速,取得了巨大的成就,但也出现了一些值得重视的问题,尤其是一些新建的公路,早期结构性破坏现象十分突出,严重影响着公路建设的形象和交通运输安全。
因此,开展对公路沥青路而结构设计的探索具有重要的现实意义。
1、沥青路面设计指标及标准1.1 沥青路面设计指标目前,在我国公路路面结构设计中,对于高速、一级和二级公路的路面结构,设计指标为路表面回弹弯沉值和沥青混凝土层层底拉应力及半刚性材料层的层底拉应力;对于三级、四级公路的路面结构,设计指标为路表面设计弯沉值。
有条件时,对重载交通路面宜检验沥青混合料的抗剪切强度,验算其最大剪应力是否满足要求。
1.2 沥青路面设计标准目前我国现行的沥青路面设计规范中,采用了以下标准来确定路面结构所需的厚度:(1)路面结构表面在双轮荷载作用下轮隙中心处的弯沉值不大于设计弯沉值;(2)沥青面层底面的最大拉应力不大于该层混合料的容许拉应力;(3)半刚性基层或底基层底面的最大拉应力不大于该层材料的容许拉应力。
弯沉和应力计算分析时,将路面结构看成为多层弹性体系,体系顶面作用有相当于双轮组P=50 kN的双圆均布荷载,各层面间的接触条件按完全连续处理。
弯沉计算点的位置选在轮隙中心处。
层底面拉应力计算点的位置选在单圆中心点及单圆半径的1/2点和单圆内侧边缘点和双圆轮隙中心点,取其中的最大值作为层底最大拉应力。
2、沥青路面设计标准的确定方法2.1 设计弯沉值的确定在沥青里面设计中,路面结构的整体承载能力是通过弯沉值反映出来的。
沥青路面结构设计方法
第8章沥青路面结构设计方法1.沥青路面的设计为什么要选用多指标来控制?试说明各设计指标的意义,及其与路面破坏现象的联系。
在路面结构设计中人们不可能控制所有的损坏类型,但鉴于路面损坏模式的多样性,各种损坏对路面的使用性能具有不同性质和不同程度的影响,所以沥青路面设计也不能像其他结构物设计那样,仅选用一种损坏模式的临界状态和单一的设计指标作为结构的临界状态和设计指标,而必须采用多种临界状态和多项设计指标。
1)弯拉疲劳开裂——弯拉应变和弯拉应力指标在以疲劳开裂作为临界状态的结构设计方法中,通常采用结构中临界点的弯拉应变作为设计,以标准轴载在当量疲劳温度或标准温度时产生的弯拉应变不大于该材料在该温度条件下的容许弯拉应变作为设计准则。
2)车辙——路基顶面的压应变指标以车辙作为临界状态,采用车辙深度或永久变形量和行车安全所容许的车辙深度或永久变形。
国际上采用间接的设计指标控制路面的车辙,即路基顶面的压应变。
通过对压应变的控制,控制了路基的变形量,从而间接控制了车辙的大小。
3)路标回弹弯沉采用路面的回弹弯沉作为路面结构的设计指标,以控制路面结构的整体刚度,间接控制结构的疲劳开裂和永久变形。
2.路面结构组合设计中:1)如何按交通特点和结构层的功能选择结构层次?路面在交通荷载(包括垂直力和水平力)的作用下,内部产生的应力和应变随深度向下而递减。
因此,要求各层的强度和抗变形能力可自上而下逐渐减小,使得各结构层材料的效能得到充分发挥。
从施工工艺、材料规格和强度形成原理方面考虑,路面结构层数又不宜过多,结构层的厚度也不能过小,宜自上而下由薄到厚。
面层直接经受行车荷载和气候因素的作用,要求高强(抗剪和抗拉)、耐磨、热稳性好和不透水,因而通常选用粘结力强的结合料和强度高的集料作为面层材料。
沥青层(面层,上、中、下面层)可根据交通量大小分为单层、双层或三层。
计算时考虑其强度。
应保证结构层次能形成稳定的结构所要求的最小厚度5)怎样考虑水温状况的不利影响?内部排水设计的考虑因素有:预计的重交通情况、气候条件、天然路基的透水能力、路面材料的抗水损坏能力、内部排水是否是最有效地增加路面耐久性的方法和内部排水系统是否会得到定期养护减轻水损坏的常用方法有:①防止水分进入路面结构:路面坡度;填补所有的接缝、裂缝等不连续部位②采用水稳定性好的材料③引入减轻水损坏的设计:路边排水系统;全宽度摊铺;设置粒料垫层④快速排出进入路面结构中的水:路表排水、地下水排水和路面内部排水3.柔性路面设计理论的基本假设,荷载图式基本假设:1)各层是连续的、完全弹性的、均匀的、各向同性的,以及位移和形变是微小的2)最下一层在水平方向和垂直向下方向为无限大,其上各层厚度为有限、水平方向为无限大3)各层在水平方向无限远处及最下一层向下无限深处,其应力、形变和位移为零4)层间接触情况,或者位移完全连续(称连续体系),或者层间仅竖向应力和位移连续而无摩阻力(称滑动体系)5)不计自重4.请说明综合修正系数的概念由于力学计算模型、土基模量、材料特性和参数等方面在理论假设和实际状态之间存在一定的差异,理论弯沉值和实测弯沉值之间存在一定误差,因此需要对理论弯沉值进行修正才能作为路面结构实测弯沉值。
沥青路面设计方法
沥青路面设计方法
沥青路面设计方法包括以下几个步骤:
1. 交通流量测量和分析:根据道路的位置、车辆流量和行驶速度等数据进行测量和分析,确定道路的交通流量状况。
2. 路面维护评估:评估路面的状况,包括裂缝、坑洞、陷水等问题,并确定维护措施,如填补裂缝、修复坑洞等。
3. 特殊路段设计:对于有特殊要求的路段,如弯道、上下坡和交叉口等,需要根据实际情况进行设计,以确保车辆安全通行。
4. 路面结构设计:根据交通流量和土壤情况,确定适当的道路结构层次,包括基层、底层、中层和面层。
5. 沥青混凝土配方设计:根据路面结构要求和材料性能,确定适当的沥青混凝土配方,包括沥青含量、骨料种类和粒级等。
6. 施工方法选择:根据材料和设备的可用性、现场条件和工期等因素,选择适当的施工方法,包括浇筑、铺设和压实等。
7. 质量控制:施工过程中需要进行质量控制,包括原材料的检验、施工参数的
监测和质量验收等,以确保路面的质量符合设计要求。
综上所述,沥青路面设计方法是一个综合考虑交通流量、路面状况、路段要求、结构设计、配方设计、施工方法和质量控制等多个因素的工程设计过程。
美国AASHTO沥青路面结构设计方法及应用
美国AASHTO沥青路面结构设计方法及应用论文
本文旨在详细介绍美国AASHTO沥青路面结构设计方法及其应用。
AASHTO是美国有关公路工程的主管机构,负责编制公路建设的行业准则。
在AASHTO的规范中,沥青路面和混凝土路面是两种重要的道路面材料,分别通过规范、设计和建设来满足不同类型道路和地形要求。
AASHTO在沥青路面设计方面提出了规范性的标准,尤其强调沥青路面结构设计的重要性,包括基层设计、胶结层设计和面层设计。
沥青路面的基层设计主要考虑道路承载能力和刚性要求,通常需要经历多个步骤,如现场调查、设计和施工,其中土质问题是重要的影响因素。
胶结层设计要求具有良好的隔离性能,通常使用沥青混合物和粗砂作为胶结材料,以保证道路的畅通性和稳定性。
面层设计需要考虑道路装载能力、抗滑性能和抗冻性能,影响因素主要有沥青混合物性能、沥青混合物配置以及施工工艺等。
此外,沥青路面还有一些特殊设计要求,比如复合路面、再生沥青、轻便沥青等,其中再生沥青的设计要求更具有难度,因为需要考虑到原材料性能的变化。
AASHTO沥青路面结构设计方法及其应用已经广泛应用于美国和全球各国的公路建设中,可以满足不同类型道路的要求。
良好的设计能够提高道路的通行能力,提高通行安全,同时也提高了道路建设成本效率,为道路建设带来巨大的经济效益。
CJJ169_2012_城镇道路路面设计规范_沥青路面设计方法浅析
为设计指标。
对于新建城市道路沥青路面,设计时首先需要
选取可靠度系数,然后通过路面结构组合设计使其
满足各项指标要求。
1. 4. 1 路表弯沉值
轮隙中心处路表计算弯沉值应不大于道路表面
的设计弯沉值:
γa ls ≤ld
= 600
N - 0. 2 e
Ac
As
Ab
( 4)
式中: γa 为沥青路面可靠度系数; ls 为轮隙中心处路
JTG D50—2006《公路沥青路面设计规范》、美国各州公路和运输官员协会( AASHTO) 设计法以及 SHELL 设计法等设
计指导文件中沥青路面设计方法进行的主要改进、区别以及依然存在的一些问题,并对这些改进、区别以及存在的
问题提出看法和建议。
关键词: 城镇道路; 沥青路面; 设计规范; 设计方法
地区还需 要 考 虑 路 面 冰 冻、强 日 照、强 风 化 等 不 利
因素。
1. 3 路用材料选择与配合比设计
沥青路面的工作性能,很大程度上取决于路用
材料的质量。因此,选取沥青混合料原材料时需慎
重考虑,并佐以可靠的试验分析。原材料的性能应
满足沥青混合料的各项要求,并尽可能利用当地材
料,以免远 距 离 运 送 原 材 料 而 增 加 不 必 要 的 费 用。
量轴次应按式( 3) 计算:
Ne
=
[( 1
+ γ) t
- 1] γ
× 365·N1 ·η
( 3)
式中: Ne 为设计基准期内 1 个车道上的累计当量轴 次; γ 为设计基准期内交通量的年平均增长率; t 为设
计基准年; N1 为路面营运第 1 年单向日平均当量轴 次; η 为设计车道分布系数,其取值与车道特征相关。
我国沥青路面设计方法及典型实例
我国沥青路面设计方法及典型实例沥青路面是目前我国常见的道路铺设材料之一,它具有使用方便、维护成本低廉、使用寿命长等优点,在城市道路和高速公路中被广泛应用。
本文将重点介绍我国沥青路面的设计方法和一些典型实例。
一、沥青路面设计方法1.路面层厚度设计:沥青路面的设计首先需要确定其层厚度。
根据路面的设计标准和相应的道路使用等级,可以采用经验公式、试验和数学模型计算得到合适的层厚。
一般情况下,沥青路面的总厚度包括基层、底基层、底面、粗石层和面层。
2.沥青混合料设计:沥青路面的面层多采用沥青混合料,其设计方法主要包括配合比设计和级配设计两种。
配合比设计通过确定沥青、石料、骨料和填料的配合比例,保证混合料的力学性能和耐久性能。
级配设计则是通过确定石料或骨料的级配曲线,使得混合料在不同粒径下的力学性能均能满足要求。
3.施工质量控制:沥青路面的施工质量对其使用寿命和性能有着重要影响。
在施工过程中需要加强对各个层次的控制,包括基层的夯实度、底面的平整度、沥青混合料的铺设厚度和密实度等。
此外,还需要合理控制施工温度和加水量,以确保沥青路面的质量。
二、典型实例1.北京五环路改扩建工程:该工程是对北京市五环路进行改扩建的项目,施工中采用了多层沥青路面结构。
在路面设计中,根据道路使用等级和设计标准,确定了各个层次的厚度,采用了橡胶改性沥青混合料作为面层材料,提高了路面的耐久性和抗裂性。
2.上海市嘉定区高速公路:该高速公路采用了浇筑式沥青混凝土路面结构。
设计时,根据高速公路的使用要求,确定了合适的路面层厚度和沥青混凝土的配合比。
施工过程中,严格控制了石料级配和混合料的施工温度,保证了路面的质量。
3.广州市岭南高速公路:该高速公路采用了悬浮式沥青混凝土路面结构。
在设计过程中,考虑到高速公路的往返快车道和法兰带,采用了不同的路面结构和厚度。
施工中,采取了分层施工和层间养护的方式,确保了沥青路面的平整度和耐久性。
通过上述典型实例,我们可以看到,在沥青路面设计中,需要综合考虑道路使用等级、设计标准、材料性能和施工工艺等因素,以确保沥青路面具有良好的耐久性和使用性能。
沥青路构造
沥青路构造是指使用沥青作为主要结构材料来铺设道路的一种技术。
沥青路构造具有较好的承载力、防水性以及耐久性,广泛应用于各种道路交通建设中。
下面将介绍沥青路构造的相关内容。
一、沥青路面结构1.硬表层:硬表层是道路上的最外层,主要承担车辆荷载和交通载荷,具有很好的承载能力和抗损伤能力。
硬表层的厚度一般为3-5厘米,常见的材料有矿物粒料混合沥青、改性沥青等。
2.粗骨料层:粗骨料层位于硬表层下方,主要作用是承受车辆荷载的分布,使其均匀传递到下方的基层上。
粗骨料层的厚度一般为5-10厘米,常用的材料有碎石、沙砾等。
3.砼基层:砼基层是整个路面结构的基础,是承载沥青路面的主要部分。
砼基层的厚度一般为10-15厘米,材料为水泥混凝土,其强度应满足承担车辆荷载的要求。
二、沥青路施工工艺1.基层处理:在施工道路的基层上进行平整、压实和修复,保证基层的平整度和强度,为上层材料提供良好的基础。
2.沥青混合料配合比的确定:根据工程要求和使用条件,确定沥青混合料中的沥青含量、集料含量以及不同粒径的比例关系,保证混合料的强度和稳定性。
3.沥青路面施工机械的选择:根据施工规模和工期要求,选择合适的施工机械设备,如沥青摊铺机、压路机等,保证施工进度和质量。
4.沥青路面施工过程:沥青路面施工一般包括底层施工、中间层施工和面层施工。
底层施工主要是进行砼基层的施工和硬表层的初期施工;中间层施工是进行粗骨料层的施工;面层施工是进行沥青混合料的摊铺和压实。
5.沥青路面养护:在施工完成后,及时进行路面养护工作,包括补漏、修复裂缝、清理杂物等,保持沥青路面的平整度和安全性。
三、沥青路面的优势和应用1.较好的承载力和耐久性:沥青路面具有较好的承载能力和耐久性,能够承受大型车辆的荷载和经久不衰。
2.良好的防水性能:沥青路面能够有效防止水分渗透,保护基层材料不受水分侵蚀,延长路面使用寿命。
3.良好的环保性能:沥青路面的施工过程中不会产生大量粉尘和废弃物,对环境污染较小。
沥青路面的结构设计
上基层 调平层 抗滑表层
AK-16A
1.2.选择沥青面层各层级配时,应至少有一层是I型密 级配沥青混凝土,以防止雨水下渗。三层式沥青面层的表 面层采用抗滑表层时,中面层应用I型密级配沥青混凝土, 下面层宜根据当地气候、交通量采用I型或II型沥青混凝土。 双层式沥青面层的表面层采用抗滑层时,下面层应用I 型密级配沥青混凝土;若采用半开级配或开级配热拌沥青 碎石做表面层时,应在沥青面层下设下封层。多雨地区采 用乳化沥青碎石混合料作面层时,必须设置上封层或下封 层。
基层、底基层
1.基层、底基层应具有足够的强度和稳定性,在冰冻地区 还应具有一定的抗冻性。 2.高级路面下的半刚性基层应具有较小的收缩变形和较强 的抗冲刷能力。 3.基层、底基层结构设计应贯彻就地取材的原则,认真做 好当地材料的调查,根据不同公路等级、交通量对基层、底 基层的技术要求,选择技术可靠、经济合理的基层、底基层 结构。 4.一般公路的基层宽度每侧宜比面层宽出25cm,底基层每 侧宜比基层宽15cm.在多雨地区,透水性好的粒料底基层, 宜铺至路基全宽,以利于排水。
磨光值:表示集料抗滑的指标,集料的磨光值越高,表示抗滑性能越好
次高级路面
1 热拌沥青碎石 热拌沥青碎石的配合比设计应根据实践经验和马歇尔试验 的结果,并通过施工前的试拌、试铺确定。 2 乳化沥青碎石混合料 乳化沥青碎石混合料的面层宜做成双层式,若用单层式应 根据当地降雨量设置下封层或上封层。混合料配合比设计可 根据当地成功的经验或试拌试铺确定。
4 沥青表面处治 沥青表面处治按施工方法分类有层铺法和拌和法. 层铺法可分为单层、双层、三层,厚度为1.0cm~3.0cm。 单层表处厚度为1.0cm~1.5cm;双层表处厚度为 1.5cm~2.5cm;三层表处厚度为2.5cm~3.0cm。 采用拌和法施工时,基层顶面应洒透层沥青或粘层沥青 或做下封层,使面层与基层之间结合紧密,防止雨雪下渗。 沥青表面处治:是用沥青和细粒料按层铺或拌和方法施工,厚度不超
重载交通沥青路面结构组合设计方法研究
重载交通沥青路面结构组合设计方法研究摘要:沥青路面结构组合设计是公路交通工程中的重要内容,而重载交通沥青路面结构组合设计更是其中的关键问题。
近年来,为了解决重载交通作用下路面的剪切破坏等问题,沥青路面结构组合设计方法得到了极大的丰富和改进,路面结构组合形式多样化。
然而,现有的沥青路面结构组合设计方法还存在不少问题和挑战,如何提出适合重载交通的沥青路面结构组合方案和设计方法,是当前需要解决的问题之一。
关键词:重载交通沥青路面;结构组合;设计方法1.重载交通的定义及特点重载交通可以简单地理解为交通流量大、超过一定载重能力的车辆密度的交通现象。
与其它道路交通相比,重载交通会带来更大的压力和挑战。
主要表现在以下几个方面:(1)载重能力要求高:重载交通对路面的承载能力要求较高,需要路面具备更好的抗压能力和耐久性,才能够保持道路的安全性和通行性。
(2)交通流量大:重载交通为高强度、高密度的车辆流量,会特别考验路面的牢固性以及技术和管理能力。
(3)车速较快:重载交通行驶经过的时间较短,路面对车辆的承载能力也应做出相应的调整,以满足高速行驶时对路面的需求。
重载交通需要特殊设计的原因在于,其对路面结构的要求较高。
从道路使用寿命和行车安全上考虑,设计者必须根据交通形式考虑路面结构的合理性。
路面结构要负担起承载交通载重的责任,并且要满足车辆行驶时的协调性和舒适性。
2.重载交通沥青路面结构的设计要求为适应不同的交通工况,重载交通沥青路面结构应当通过合理的组合设计,能够吸收和分散车辆的荷载,保持较长时间的平坦度和提供合适的摩擦力和舒适性。
重载交通沥青路面结构的设计要求主要包括以下几个方面:(1)承载力要求由于重载车辆的荷载较大,因此沥青路面结构必须具备足够的承载力以保证行车的安全和稳定。
一般来说,承载力的设计值应当略大于实际荷载的最大值,并考虑到路面结构的使用年限以及车辆速度等因素。
(2)平整度要求道路平整度对于用户的行车舒适性、车速和燃油消耗等方面都有很大影响。
【2019年整理】国外沥青路面设计方法简介
Po — —指设计初期的 PSI;
第五章 沥青路面结构设计 Pt — —行驶过一定车辆数后 的PSI。
2、计算方法 对AASHO道路试验所得大量进行数理统计,建立路面耐用性的变化 同荷载大小、荷载重复作用次数和路面厚度等的联系 ,即:
C0 Pt G lg( ) (lg N lg ) C0 C1
第五章 沥青路面结构设计
第五章 沥青路面结构设计
一、AASHTO法
美国各州公路工作者协会(AASHO American Association of State Highway Officials)于1961年完成了一项综合性的大型足尺道路试验 (300多个试验段),建立了路面结构、荷载和路面使用性能三者间的 关系,以此建立了完全经验性的设计方法。后经过不断的修正完善,趋 向力学~经验方法。 * 路面结构(土基回弹模量、路面结构数) * 路面使用性能(路面的工作状态——PSI ) * 荷载(按等效损坏PSI进行轴载换算)
AASHO试验路的测试数据——为许多力学~经验法 的设计指标和参数验证提供了丰富的经验。
第五章 沥青路面结构设计
1、路面耐用性指数
首次提出了路面耐用性的概念,并用路面耐用性指数(PSI Present Serviceability Index )评价路面的使用性能(路面的工作状态)。
PSI由评分小组进行主观评定后处理得到的指标,它与路面实际状况
r=CN-0.25
其中 C——与沥青混合料的模量和类型有关的系数。
第五章 沥青路面结构设计
(3) 整体性基层的拉应力 无机结合料稳定基层的弯拉应力应不超过某一容许值。该容许 值考虑了材料的疲劳特性。 r=rl(1-0.075lgN) (4) 路面表面的永久变形 路面表面因行车的 重复作用产 生的永久变 形应控制容 许值为 10mm(高速公路)。
沥青路面设计步骤全解
(三)拟定结构层组合与各层材料选择
1、结构组合设计基本原则
设计原则: 根据各结构层功能组合和强度组合 合理的层间组合 在各种自然因素作用下稳定性好 考虑适当的层数和厚度
三 层 式 面 层
细粒式 中粒式
粗粒式
结构示意图
山西太原至旧关高速公路全长140.7公里,路线所 经地区为山西黄土高原与太行山脉两大地貌地带, 横跨地势平缓的汾河河谷平原,穿越冲沟发育、 切割严重的重丘区,进入山势陡峻、高差悬殊的 山岭区,沿线地形极为复杂,工程条件十分困难, 是我国最早进入山岭重丘区的高速公路。太旧高 速公路1993年6月破土动工,于1996年6月25日 全线通
路面改造方案及新老路面拼接
新建路面结构
半刚性基层的强基 厚面式路面,既有半刚 性基层整体性强的优点, 又通过加大面层厚度抑 制了半刚性基层裂缝对 面层的影响,故值得继 续推广应用。
SMA13 SUP20
(4cm) (8cm)
SUP25
(8cm)
(36cm) (20cm)
水稳碎石 水稳再生料
1、结构组合设计原则
3、累计当量轴次
设计年限内一个方向上一个车道的BZZ-100累计当量轴次 Ne表示:
表1 车道系数
车道特征
Ne [(1 ) t 1] 365
车道系数 1.0
N1
单车道
两车道
四车道 六车道 八车道
0.6~0.7
0.4~0.5 0.3~0.4 0.25~0.35
4、确定交通等级
2、结构组合设计的基本步骤:
1)沥青面层结构
(1)沥青面层分层 沥青面层直接经受车轮荷载反复作用和各种自然因素的影响, 并将荷载传递到基层及以下的结构层。沥青面层可分为单层、 双层、三层结构。双层结构分为表面层、下面层;三层结构分 为表面层、中面层、下面层。 表面层应具有平整密实、抗滑耐磨、抗裂耐久的性能;中、下 面层应具有高温抗车辙、抗剪切、密实、基本不透水的性能; 下面层应具有耐疲劳开裂的性能。 高速公路、一级公路一般选择三层沥青面层结构;二级、三级 公路一般选用双层结构;三级、四级公路一般可采用双层沥青 表面处治结构。
高速公路沥青路面设计方案及施工实施措施
高速公路沥青路面设计方案及施工实施措施高速公路沥青路面设计方案是为了保证道路的平稳行驶和车辆安全而制定的路面结构和材料使用方案。
以下是对高速公路沥青路面设计方案及施工实施措施的详细描述。
1. 高速公路沥青路面设计方案:1.1 路面结构设计:根据交通流量、车辆类型和设计速度等因素确定路面的结构设计。
一般情况下,高速公路沥青路面采用三层结构,包括基层、底层和面层。
1.2 材料选择:根据路面设计要求和当地气候条件选择合适的材料。
常用的沥青材料有AC-13、AC-16和AC-20等级,其中AC代表沥青混凝土,后面的数字代表材料的抗压能力。
1.3 施工温度控制:根据沥青材料的特性和气温要求,在施工过程中控制沥青的温度。
通常情况下,沥青的施工温度应保持在135-165摄氏度之间。
2. 施工实施措施:2.1 基层处理:在进行沥青路面施工前,需要对基础路面进行处理,包括清理、修坑、加固和刷涂沥青素等,以确保基层的平整和强度。
2.2 沥青混凝土浇筑:选择合适的施工机械对沥青混凝土进行浇筑。
施工过程中,需注意均匀浇筑、振实和均匀铺铣等,以保证沥青层的质量和平整度。
2.3 摊铺压实:沥青混凝土浇筑完成后,需及时进行摊铺压实。
可以采用压路机、平板振动机等设备对沥青层进行压实,确保沥青与基层之间的粘结性和稳定性。
2.4 线形标志和标线施工:在沥青路面施工完成后,需进行线形标志和标线的施工。
可以使用沥青漆、热熔塑料漆等材料进行标线的划定,以提高道路的安全性和可视性。
2.5 养护及保养:完成施工后,需对沥青路面进行养护和保养工作。
常见的养护方法包括定期清扫、除草、填补裂缝和修复坑洞等,以延长路面的使用寿命和保持路面的平整度。
通过以上设计方案和施工实施措施,可以确保高速公路沥青路面的质量和寿命。
同时,施工过程中需注意安全措施,确保施工人员和路面使用者的安全。
(最新整理)沥青路面设计步骤全解
N
K
C1
i1
C2ni(PPi)4.35
式中:N ── 标准轴载的当量轴次(次/日); C1 ── 轴数系数;C1=1+1.2(m-1) m ── 轴数。
C2 ── 轮组系数, 双轮组为1, 单轮组为6.4 , 四 轮组为0.38。
2021/7/26
17
2)以半刚性基层层底拉应力为指标时,轴载换算公式:
N i K1C1 C2ni(PPi)8
式中: N ── 标准轴载的当量轴次(次/日); C1 ── 轴数系数;C1=1+1.2(m-1) m ── 轴数。
0.3C82。── 轮组系数, 双轮组为1, 单轮组为6.4 , 四轮组为
2021/7/26
18
3、累计当量轴次
设计年限内一个方向上一个车道的BZZ-100累计当量轴 次Ne表示:
2021/7/26
3
二、我国沥青路面的设计理论
▪ 公路沥青路面设计规范采用双圆垂直均布荷载作 用下的多层弹性层状体系理论,以设计弯沉值为
路面整体刚度的设计指标,计算路面结构层厚度。 对高速公路、一级公路、二级公路的沥青混凝土
面层和半刚性材料基层、底基层应进行弯拉应力
验算。
▪ 用多层弹性体系理论进行路面结构计算时,应考
本着“路基稳定、基层坚实、面层耐用”的要求, 把路基(土基)、垫层、基层和面层作为一个整体, 进行路基路面综合设计 。
1)根据各结构层功能组合和强度组合
轮载作用于路面表面,其竖向应力和应变随深度而递减, 因而对各层材料的强度(模量)的要求,也可随深度而相 应减少,因此,路面各结构层应按强度自上而下递减的方 式组合
>2.5×10
2021/7/26
20
沥青混凝土路面工程施工组织设计
沥青混凝土路面工程施工组织设计沥青混凝土路面工程是指在基础层上铺设一层沥青混凝土的路面结构,以提供平稳的行车面和良好的交通条件。
施工组织设计是指对整个工程施工过程进行规划、安排和管理的过程,目的是确保施工质量、工期和安全。
以下是沥青混凝土路面工程施工组织设计的一般内容。
1.施工组织机构设计:施工组织机构是指整个施工过程中的人员组织结构和职责分工。
根据工程规模和难度,确定施工单位的组织结构,明确各个部门的职责并制定相应的管理措施。
2.施工方法与技术方案设计:根据工程地质条件、施工性质和工期要求,选择适当的施工方法和技术方案,并制定详细的施工工艺流程。
包括挖掘基层、铺设沥青混凝土、压实、养护等环节的施工方法和要点。
3.施工设备与材料准备设计:根据工程规模和施工计划,确定所需的施工设备和材料,包括挖掘机、摊铺机、碾压机等施工设备,以及沥青混凝土、矿粉等施工材料。
制定相应的采购、调配和使用计划。
4.施工进度计划设计:根据施工工艺流程和工期要求,编制施工进度计划。
确定各个施工环节的开始与结束时间,合理安排施工序列,确保施工任务按时完成。
5.施工质量控制设计:制定施工质量控制计划,明确质量控制的目标和要求,制定相关的检测标准与方法。
并安排专人负责施工质量的检查和验收,及时整改施工中出现的质量问题。
6.施工安全措施设计:制定施工安全控制计划,明确各个施工环节的安全注意事项和防范措施。
培训操作人员安全意识,并配备必要的防护设备和应急救援措施,确保施工过程安全可控。
7.环境保护措施设计:针对施工过程可能对周边环境产生的污染和破坏,制定环境保护计划。
包括噪音、尘土、废弃物处理等方面的措施,减少对周边环境的影响。
8.资源利用与节约设计:合理利用和节约施工过程中所需的各种资源,包括人力、物力、财力等。
有效管理施工废弃物和能源消耗,降低成本和环境负荷。
9.施工费用预算设计:根据工程量和施工计划,编制施工费用预算,确定各个费用项目和金额。
路基路面工程第14章沥青路面的设计
层低拉应力
我国沥青路面是设计规范规定沥青面层、半刚性基层、下 基层、刚性基层层底拉应力作为沥青路面结构设计的第2 项设计控制指标:
σR= σsp/Ks
路面结构厚度设计方程式与设计参数
路面厚度验算阶段主要考察拟定的路面结构在经受设计使 用期当量标准轴载的反复作用之后,是否满足两项设计指 标的要求:
结构层材料抗弯拉强度
按照试验规程测得,也可采用劈裂试验
计算弯沉和层底拉应力的计算
应用弹性层状体系理论计算双轮隙的路表弯沉时,由于弹 性层状体系理论计算过程的复杂性,一般均需通过计算机 进行求解。早期在计算机未能遍及时,许多科技工作者通 过大量的研究工作,提出了多种图解法和表解法以及简化 公式方法。
1、三层路面结构计算弯沉和拉应力的简化计算公式 ld=1000l1F
2、查图法 理论弯沉
aL为理论弯沉,取泊松比μ1= μ1=0.25, μ0=0.35
新建路面厚度设计
1)设计步骤 2)设计示例
路面竣工验收指标
要求在竣工后第一年的不利季节,用标准轴载BZZ-100 轮隙下实测弯沉代表值lr必须小于验收弯沉值la。
(4)测定者吹哨发令指挥汽车缓慢前进,百分表随路面 变形的增加而持续向前移动。当表针转动到最大值时,迅 速读取初读数L1。汽车仍在继续前进,表针反向回转,待 汽车驶出弯沉影响半径(约3cm以上)后,吹口哨或挥动 指挥红旗,汽车停止。待表针回转稳定后,再次读取终读 数L2。汽车前进的速度宜为5km/h左右。
沥青路面结构设计原则
(1)因地制宜,合理选材 路面各结构层所用的材料,尤其是用量大的基、垫层材料, 应充分利用当地的天然材料、加工材料或工业副产品,以 减少运输费用和降低工程造价。同时还要注意吸取和应用 当地路面设计在选择材料方面的成功经验。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
沥青路面结构设计方法的简介摘要:针对沥青路面结构设计方法进行调研,重点对AASHTO沥青路面设计法、壳牌( SHELL)设计法和我国沥青路面结构设计法进行深入分析.对沥青路面结构设计方法的形成及发展、各沥青路面设计方法的特点进行评述、关键词:沥青路面:结构设计:AASHTO:路面力学模型1 引言沥青路而设计方法随着路而技术、交通状况及人们对路而破坏状态认识的变化而不断发展,经历了古典理论法、经验设计法和理论分析法三个阶段。
2沥青路面设计方法的形成及发展从1901年美国麻省道路委员会第八次年会上提出的第一个路而设计方法的公式,至1940年的Goldbeck公式,沥青路而设计法均属于古典理论法,其特点是以土基顶而的应力大小为依据设计路而厚度。
随着路而结构形式、施工技术水平、以及路而力学理论和计算手段的发展,古典理论法逐渐被淘汰。
经验法和理论分析法是目前常用的路而设计方法。
经验法是建立在大量实际道路和试验路调查基础上的设计方法,典型的有AASHTO沥青路而设计法、CBR设计法等。
经验法通过路而调查提出路而破坏标准、设计指标以及交通作用与设计指标的关系,以此为基础进行厚度计算。
经验法建立在实践的基础上,因此在路而设计因素变化不大的情况下,经验法的设计结果比较容易接近实际要求。
但是,由于经验法设计曲线或设计公式是由一定时期的路而调查得到的,随着路而结构、材料、施工养护以及交通情况的变化,其对以后路而设计的适用性往往受到限制,需要根据各种影响因素的变化不断修订,但由于其参数、指标有很大的主观性,理论基础模糊,修订工作比较困难。
随着路而力学和计算技术的发展逐渐产生了理论分析法。
理论分析法典型的有壳牌(SHELL)法、美国地沥青协会(TAI)法等,我国沥青路而设计法也属于理论法的范畴。
当然,沥青路而设计中任何理论分析法都不是纯理论的,都必须与路而调查、室内试验结论相结合,包含有经验法的部分成果。
理论分析法的特征是通过路而力学模型计算结构层厚度,其优点是理论基础清晰,便于修订更新,缺点是路而模型对实际路而的大量简化会引起一些误差,而误差的修正系数与经验法的指标一样,是比较模糊的,带有一定的经验性。
同经验法一样,理论分析法也要随着路而实践的发展而修订。
近年来,随着人们对路而破坏特性认识的深入,逐渐产生了长寿命路而的设计思想。
长寿命路而的设计思路是:保证路而足够的整体强度,把病害限制在路而表层,通过定期(10 -20年)的表而修复,防比表而病害影响路而结构安全,保证路而在相当长的设计年限内不发生结构性损坏(40年以上)。
以下针对国内外主流的沥青路而设计方法做介绍。
3美国AASHT093沥青路面设计方法3.1 AASHT093沥青路而设计方法简介AASHT093设计方法是在20世纪50年代美国AASHTO试验路成果的基础上提出的路而设计指南。
AASHTO于1961及1962年分别提出柔性路而与水泥混凝土路而的中期设计指南,1972年出版第一版《AASHTO路而中期设计指南》,经过1986年和1993年两次修改,正式推出《AASHTO 路而设计指南》(1993),开始推广应用。
3.2 AASHT093路而设计方法的主要优点首次将耐用性指数引进路而设计方法,而且提出不同道路等级应有不同的设计标准,使路而设计与使用要求形成密切联系。
建立了不同轴载间的等效关系,使轴载轻、重与交通量多寡对路而的作用建立了合理的关系,解决了过去设计方法中一直未能解决的交通荷载问题。
提出了路而结构数SN与加权轴载通过次数N之间关系的基本方程,此结果是AASHO方法的精华。
3.3 AASHT093路而设计方法的主要不足缺少科学合理的材料强度指标。
AASHO试验路而而层材料采用高稳定性的厂拌沥青混凝土,底基层用的是砂砾料,基层则用4种基本材料:碎石、砾石、水泥稳定砾石、沥青稳定砾石。
经过研究提出结构数5、的结构层系数,后来AASHO设计委员会又推广到其他材料,提出建议值。
路面各层材料的结构层系数反映各层材料的相对强度或相对耐久性,是一个比较模糊的概念,缺少定量的研究。
当各层材料本身的材质、组成及施工工艺发生变化时,材料的强度、耐久性都会发生变化时,结构层系数也应随之变化,但材料的强度或耐久性与其结构层系数之间的关系并不明确。
这样,AASHTO设计法就缺少了对新材料、新工艺、新结构的适应性。
AASHT093路而设计方法是以AASHTO 试验路为基础,经过多次改进后提出的设计方法,AASHT093设计方法在交通量(ESAL)、土基强度、设计可靠度与路而结构系数之间的模型,是建立在50年代交通量及试验路所在地区气候特点基础上,存在很大的局限性,同时AASHT093设计方法对路而结构缺乏理论分析计算、缺乏对路而破损模型的预测,是一种经验性的设计方法。
近年来.AASHTO将力学分析引入经验法的设计过程,实现了经验、理论法的融合,与以前的纯经验法相比有如下优点: 1可以模拟荷载条件变化对路而的影响;2可以对现实中实际存在和使用的材料与其将来的使用性能建立联系;3在预测路而使用性能时能考虑材料老化的影响;4路而结构设计性能预估与沥青混合料性能评价联系起来;5可以预估环境因素对路而性能的影响。
4 Shell设计法Shell设计方法是由英、荷壳牌石油公司研究所研究、发展和完善起来的设计方法。
在该设计方法中,路面结构分为3层,即路基、基层和沥青层,各层材料以动态模量劫度表征,以厚度、模量和泊松比表示路面特征。
混合料的粘弹性性质以其劲度模量体现,其值取决于沥青含量、沥青劲度和沥青混合料的空隙率。
路基模量受应力影响,路基动态模量可以通过现场的动态弯沉试验在道路实际湿度条件和荷载条件下测定,也可在室内通过三轴仪测定。
当有困难时,也可根据(BR或承载板试验结合工程经验选择。
无机结合料基层模量依赖于它的受力状态,其值取决于路基模量和基层厚度。
环境因素的影响以温度对沥青混合料材料特性的影响来表征。
此方法中交通荷载以标准双轮轴载次数为代表,设计年限内的累计轴次即为设计寿命。
临界荷位的应力应变由计算机程序BISAR 计算。
标准轴载为单轴双轮,轴重80 kN ,单轮轴载为20 kN ,双圆接地半径R -105 mm ,轮际间距315 mm 。
在计算中,沥青层、无机结合料基层及路基的泊松比都为0.35,计算应力与应变的最不利位置都取2处,即沥青层底部和路基顶部的轮中心下及轮际中心下。
Shell 设计法考虑了2项主要设计标准和2项次要设计标准。
2项主要设计标准是控制疲劳开裂的沥青层底面的容许水平拉应变fat ε,和控制永久变形的路基顶面的容许竖向压应变z ε。
控制标准分别如下式:式中,N f 为累计标准荷载作用次数;V bit为结合料的体积比;S mix 为沥青的劲度模量。
可靠度为50%时,a 取0.028;可靠度为8500时,a 取0.021;可靠度为95%时,a 取0.01802项次要标准是水泥稳定类材料底面的弯拉应力和路表面的永久变形。
水泥稳定类材料底面的弯拉应力采用下式控制:式中,σr2为容许弯拉应力; σ为材料的极限弯拉强度。
由于沥青层具有粘弹性特性,因此会产生永久变形。
为了控制所设计的路面结构在使用中不出现过大车辙,即高速公路不超过10 mm ,普通道路不高于30 mm 。
SPDM 建立了基于静态蠕变试验的车辙预估模型一沥青层厚度、沥青层平均应力、沥青混合料劲度模量的函数。
沥青层永久变形公式如下式:式中,Z 为应力分布系数;δ为轴载压应力,标准轴载80 kN 的为6×105Pa; S m-i 为i 层沥青混合料的单轴静态蠕变劲度模量;C m 为动态修正系数,反映动态轮辙试验及静态蠕变试验的差异,同混合料类型有关。
将各层的永久变形相加即为沥青层的永久变形,沥青层永久变形同基层与路基变形之和即为车辙。
5美国地沥青协会AI 法Al 设计法也把路面看成多层弹性体系,材料特性主要包括土基、粒料基层和沥青层的回弹模量和泊松比。
路基土的泊松比假设为0.45,其它材料的泊松比假设为0. 35。
路基土的回弹模量的确定可由室内重复三轴抗压试验确定,或根据其与(BR (或R)的关系式估计而得;粒料材料的回弹模量与应力水平相关,其值可根据多变量回归的预测方程计算;热拌沥青混合料的动态模量由室内60种不同的沥青混合料试验得到的计算公式确定。
环境的影响通过面层温度对沥青混合料劲度值的影响来体现,以面层厚1 /3深处的温度作为沥青层的设计温度,由月平均气温和路面温度的关系式计算得到。
沥青混凝土面层、沥青混凝土(全厚式)或乳化沥青基层采用3层弹性层状连续体系,当其下还有粒料基层时,采用4层弹性层状连续体系。
荷载模型为双圆垂直荷载,不考虑水平荷载,以80 kN单轴荷载为标准轴载,单圆当量圆半径为δ=11. 43 cm,两轮中心间距为3δ力学计算须计算各层沥青层底、路基土顶面以下单圆中心点,单圆内侧边缘、双圆间隙中心点3个点的最大应力、应变值。
AI法采用的设计标准与Shell法相同,即控制疲劳开裂的沥青层底部的水平拉应变:。
和控制永久变形的土基表面的竖向压应变zε。
SHELL和AI设计法是公认的力学-经验法的典型代表,很多国家都借鉴了SHELL 法和AI法的研究成果。
如澳大利亚的沥青混合料疲劳方程采用的就是Shell 1978年提出的室内疲劳试验关系式,预估野外疲劳寿命时,乘以修正系数5;日本的疲劳破坏标准采用的是AI的破坏标准。
但这2种方法都没有考虑湿度对路面设计的影响,也没有考虑低温断裂问题。
世界上很多国家(如澳大利亚、日本、南非、法国等)的路面设计都有自己的力学-经验法,且大部分的力学-经验法都是以裂缝和永久变形作为设计标准的。
现在AASHTO正在研究制定的采用力学-经验法的新设计指南AASHTO 200X将考虑疲劳开裂、永久变形、低温断裂和不平整度4种损坏模型。
其中沥青混合料的疲劳方程是在AI疲劳方程的基础上根据不同开裂方式(自上向下和自下向上开裂)进行修正得到的。
永久变形是分别考虑各结构层永久变形的总和而得到路表面的永久变形(车辙),这将使以后的路面设计更加完善。
6我国沥青路而设计方法我国沥青路而设计方法是一种以理论分析为基础的设计方法,其主要是针对半刚性基层沥青路而提出的。
在设计参数、路而模型等方而存在一些不足,表现为: 1路而是多层次复合结构,可以由不同的结构层组合,选择不同类型的材料组成,具有不同的应力和应变状况和相应的损坏形态,因而,路而结构设计宜采用多个单项指标,分别针对和控制相应的特定损坏类型;2路表弯沉是一项整体性、综合性和表观性的指标,对于结构层组合和材料类型多样化的路而结构,采用路表弯沉作为主要设计指标,无法反映和包容路而结构的多样性及各种损坏类型,也难以协调平衡各单项设计指标;3沥青而层底而或半刚性基层底而的应力状况和大小,主要随上下层的刚度比和层间接触条件而变,它们受路表弯沉大小的影响很小;因而,路表弯沉指标无法控制而层底而或基层底而的应力状况和大小;4半刚性基层上的沥青路而,在层间接触为连续的情况下,沥青而层底而的应力处于受压状态;在层间接触为滑动的情况下,沥青而层底而的应力虽有可能处于受拉状态,但沥青而层的疲劳寿命仍大于半刚性基层,因而,沥青而层底而拉应力验算指标在设计中不会起控制作用,对于半刚性基层沥青路而结构厚度起控制作用的是半刚性基层底而的拉应力指标;5柔性基层上沥青路而结构的而层底而拉应力验算指标,由于现行规范公式概念和推演上的不正确,须重新建立;6路表弯沉指标的作用主要在于控制路基顶而的竖向压应变(永久变形),但二者并不能在不同路而结构组合时完全对应,因而,不如直接采用路基顶而的竖向压应变作为设计指标。