基本不等式及应用PPT课件
合集下载
2.2.1 基本不等式-(新教材人教版必修第一册)(35张PPT)
利用基本不等式比较大小
【例 2】 (1)已知 a,b∈R+,则下列各式中不一定成立的是( )
A.a+b≥2 ab
B.ba+ab≥2
C.a2+abb2≥2 ab
D.a2+abb≥ ab
(2)已知 a,b,c 是两两不等的实数,则 p=a2+b2+c2 与 q=ab+bc
+ca 的大小关系是________.
B [当a2+1=2a,即(a-1)2=0 1.不等式a2+1≥2a中等号成立 即a=1时,“=”成立.] 的条件是( ) A.a=±1 B.a=1 C.a=-1 D.a=0
2.已知a,b∈(0,1),且a≠b,
D [∵a,b∈(0,1),∴a2<a,
下列各式中最大的是( )
b2<b,
A.a2+b2
一定成立的是( )
A.a-b<0
B.0<ab<1
C.
a+b ab< 2
D.ab>a+b
C [∵a>b>0,由基本不等式知 ab<a+2 b一定成立.]
3.不等式x-9 2+(x-2)≥6(其 中x>2)中等号成立的条件是( )
A.x=3 B.x=-3
C [由基本不等式知等号成立 的条件为x-9 2=x-2,即x=5(x=- 1舍去).]
∴a2+b2<a+b,又a2+b2>
B.2 ab
2ab(∵a≠b),
C.2ab
∴2ab<a2+b2<a+b.
D.a+b
又∵a+b>2 ab(∵a≠b),∴a
+b最大.]
3.已知ab=1,a>0,b>0,则a
B [∵a>0,b>0,∴a+
+b的最小值为( )
b≥2 ab=2,当且仅当a=b=1时取
2.2.1 基本不等式 课件(28张)
【定向训练】
已知a,b,c都是非负实数,试比较 a2+b2+ b2+c2+ c2+a2 与 2 (a+b+c)的大小. 【解析】因为a2+b2≥2ab,
所以2(a2+b2)≥a2+b2+2ab=(a+b)2,
所以 a2+b2(a+b2 ),
2
同理 b2+c2(b +c2),
2
c(2c++aa2), 2
xyz
【证明】因为x,y,z是互不相等的正数,且x+y+z=1,
所以 1-1=1-x= y+z 2 yz ,①
x
x
x
x
1-1=1-y=x+z 2 xz ,②
y
yy
y
1-1=1-z=x+y 2 xy ,③
z
zz
z
又x,y,z为互不相等的正数,由①×②×③,
得 ( 1-1)( 1-1)( 1-1>) 8.
【定向训练】
已知a,b,c为正数,
求证: b+c-a+c+a-b+a+b-c 3.
a
b
c
课堂素养达标
1.下列不等式中,正确的是
()
A.a+ 16 ≥8
B.a2+b2≥4ab
a
C. ab a+b
2
D.
x
2+
3 x2
2
3
【解析】选D.若a<0,则a+ 16 ≥8不成立,故A错;若a=1,b=1,a2+b2<4ab,故B错,
x
C.当x≥2时,x+ 1 的最小值为2
x
D.当0<x≤2时,x-
1
2.4 基本不等式及其应用.ppt
若 a、b∈R+,且 ab=P,P 为定值,则 a b 2 P ,
等号当且仅当 a=b 时成立。
例 5、
(1)若 x 0 ,则 4x 9 的最小值是
;
x
(2) 若 x 1,则 4x 9 的最小值是
;
x 1
(3)若 x 1 ,则 2x2 9x 10 的最小值 x 1
是
。
例 6、已知 a 0,b 0, c 0,
我们把 a b 和 ab 分别叫做正数 a、b 的算术平均数和几何平 2
均数.
几何解释:
A
B
C
DE
3、例题
例 1、(1)设 a,b, c R ,求证:
a2 b2 c2 ab ac bc ; (2)已知 x, y R ,求证:
(x y)(x2 y2 )(x3 y3 ) 8x3 y3 .
例 2、(1)已知 xy 0 ,求证: y x 2 ; xy
(2)已知 xy 0 ,求证: y x 2 ; xy
(3)试比较 y x 与 2 的大小。 xy
例 3、已知 x 0, y 0 ,求证: x2 y2 x y 。 yx
4、练习 1、用不等号填空:
若 x 0 ,则 x 1 2 ,若 x 0 ,则 x 1 2 。
2、新课 基本不等式 1:
如果 a,b R,那么a2 b2 2ab,当且仅当a b时等号成立 .
变形:
如果 a,b R,那么a2 b2 2ab,当且仅当a b时等号成立 .
如果 a,bR,那么a2 b2 2 ab ,当且仅当 a b 时等号成立 .
基本不等式 2:
如果 a,b R ,那么 a b ab,当且仅当a b时等号成立 . 2
1
2 1
ab a b 2
等号当且仅当 a=b 时成立。
例 5、
(1)若 x 0 ,则 4x 9 的最小值是
;
x
(2) 若 x 1,则 4x 9 的最小值是
;
x 1
(3)若 x 1 ,则 2x2 9x 10 的最小值 x 1
是
。
例 6、已知 a 0,b 0, c 0,
我们把 a b 和 ab 分别叫做正数 a、b 的算术平均数和几何平 2
均数.
几何解释:
A
B
C
DE
3、例题
例 1、(1)设 a,b, c R ,求证:
a2 b2 c2 ab ac bc ; (2)已知 x, y R ,求证:
(x y)(x2 y2 )(x3 y3 ) 8x3 y3 .
例 2、(1)已知 xy 0 ,求证: y x 2 ; xy
(2)已知 xy 0 ,求证: y x 2 ; xy
(3)试比较 y x 与 2 的大小。 xy
例 3、已知 x 0, y 0 ,求证: x2 y2 x y 。 yx
4、练习 1、用不等号填空:
若 x 0 ,则 x 1 2 ,若 x 0 ,则 x 1 2 。
2、新课 基本不等式 1:
如果 a,b R,那么a2 b2 2ab,当且仅当a b时等号成立 .
变形:
如果 a,b R,那么a2 b2 2ab,当且仅当a b时等号成立 .
如果 a,bR,那么a2 b2 2 ab ,当且仅当 a b 时等号成立 .
基本不等式 2:
如果 a,b R ,那么 a b ab,当且仅当a b时等号成立 . 2
1
2 1
ab a b 2
基本不等式课件(共43张PPT)
02
基本不等式的证明方法
综合法证明基本不等式
利用已知的基本不等式推导
01
通过已知的不等式关系,结合不等式的性质(如传递性、可加
性等),推导出目标不等式。
构造辅助函数
02
根据不等式的特点,构造一个辅助函数,通过对辅助函数的分
析来证明原不等式。
利用数学归纳法
03
对于涉及自然数n的不等式,可以考虑使用数学归纳法进行证明。
分析法证明基本不等式
寻找反例
通过寻找反例来证明某个不等式不成 立,从而推导出原不等式。
利数,可以利用中间值定理 来证明存在某个点使得函数值满足给 定的不等式。
通过分析不等式在极限情况下的性质, 来证明原不等式。
归纳法证明基本不等式
第一数学归纳法
通过对n=1和n=k+1时的情况进行归纳假设和推导,来证 明对于所有正整数n,原不等式都成立。
拓展公式及其应用
要点一
幂平均不等式
对于正实数$a, b$和实数$p, q$,且$p < q$,有 $left(frac{a^p + b^p}{2}right)^{1/p} leq left(frac{a^q + b^q}{2}right)^{1/q}$,用于比较不同幂次的平均值大小。
要点二
切比雪夫不等式
算术-几何平均不等式(AM-GM不等式):对于非负实数$a_1, a_2, ldots, a_n$,有 $frac{a_1 + a_2 + ldots + a_n}{n} geq sqrt[n]{a_1a_2ldots a_n}$,用于求解最值问题。
柯西-施瓦茨不等式(Cauchy-Schwarz不等式):对于任意实数序列${a_i}$和${b_i}$,有 $left(sum_{i=1}^{n}a_i^2right)left(sum_{i=1}^{n}b_i^2right) geq left(sum_{i=1}^{n}a_ib_iright)^2$,用于证明与内积有关的不等式问题。
基本不等式ppt课件
对于任意实数a和b,$(a-b)^2 \geq 0$,即 $a^2 - 2ab + b^2 \geq 0$。
利用均值不等式证明
对于任意实数a和b,$a^2 + b^2 \geq 2ab$,即$(a-b)^2 \geq 0$。
利用导数证明
对于任意实数a和b,设f(x) = x^2 - 2x(a+b) + (a+b)^2,则f'(x) = 2x - 2(a+b) = 2(x-ab),当x≥a+b时,f'(x) ≥0;当x ≤ a+b时, f'(x) ≤0。故f(x)在区间[a+b, +\infty)上单调 递增,在区间(-\infty, a+b]上单调递减。于 是有f(x) ≥ f(a+b) = a^2 - 2ab + b^2 ≥0 。
02
基本不等式的应用
几何意义
直线和圆
利用基本不等式可以判断直线和圆的 位置关系,以及求解圆中弦长等几何 问题。
面积和体积
利用基本不等式可以求解一些涉及面 积和体积的问题,例如在给定周长的 条件下,求矩形或立方体的最大面积 或体积等。
代数意义
方程
利用基本不等式可以求解一些涉及方程的问题,例如利用基本不等式求根,判 断方程解的个数等。
证明方法
利用代数公式和实数的性质进行 证明。
基本不等式的性质
非负性
对于任意实数a和b,总有$(a-b)^2 \geq 0$,即$a^2 - 2ab + b^2 \geq 0$。
等号成立条件
当且仅当a=b时,基本不等式取等号。
传递性
若a≥b,c≥d,则ac≥bd。
基本不等式的证明
利用均值不等式证明
对于任意实数a和b,$a^2 + b^2 \geq 2ab$,即$(a-b)^2 \geq 0$。
利用导数证明
对于任意实数a和b,设f(x) = x^2 - 2x(a+b) + (a+b)^2,则f'(x) = 2x - 2(a+b) = 2(x-ab),当x≥a+b时,f'(x) ≥0;当x ≤ a+b时, f'(x) ≤0。故f(x)在区间[a+b, +\infty)上单调 递增,在区间(-\infty, a+b]上单调递减。于 是有f(x) ≥ f(a+b) = a^2 - 2ab + b^2 ≥0 。
02
基本不等式的应用
几何意义
直线和圆
利用基本不等式可以判断直线和圆的 位置关系,以及求解圆中弦长等几何 问题。
面积和体积
利用基本不等式可以求解一些涉及面 积和体积的问题,例如在给定周长的 条件下,求矩形或立方体的最大面积 或体积等。
代数意义
方程
利用基本不等式可以求解一些涉及方程的问题,例如利用基本不等式求根,判 断方程解的个数等。
证明方法
利用代数公式和实数的性质进行 证明。
基本不等式的性质
非负性
对于任意实数a和b,总有$(a-b)^2 \geq 0$,即$a^2 - 2ab + b^2 \geq 0$。
等号成立条件
当且仅当a=b时,基本不等式取等号。
传递性
若a≥b,c≥d,则ac≥bd。
基本不等式的证明
高中数学人教版必修五:基本不等式(共23张PPT)
基本不等式:
ab
a
b 2
(第一课时)
2019/10/5
一、情境创设 导入课题
第24届国际数学家大会(ICM2002)的会标
问题 :你能在这个图中找出一些相等关系或不 等关系吗?
二、自主探究 推导公式
问题 1:在正方形 ABCD 中有4个全等的直角三角形.设直角三角形的
两条直角边长为a,b,正方形ABCD的面积为 S ,4个直角三角形的面积和
2
又称为基本不等式
4、从数列角度看:
把
ab 2
看做两个正数a,b 的等差中项,
ab 看做正数a,b的等比中项,
那么上面不等式可以叙述为:
两个正数的等差中项不小于它们的等比 中项。
还有没有其它的证明方法证明均值 不等式呢?
二、自主探究 推导公式 探究:如图,AB 是圆的直径,点 C 是 AB上一点,
显然,④是成立的.当且仅当 a b 时,④中的等号成立.
2019/10/5
析 : a 0,b 0,
a b ab a b 2 ab ( a b)2 0
2
2
2
即 a b ab 2
当且仅当 a b即a b等号成立
上面所证结论通常称为均值不等式
(2)设矩形的长、宽分别为x(m),y(m),
依题意有2(x+y)=36,即x+y=18, 因为x>0,y>0,所以, xy ≤ x y
2
因此 xy ≤9
将这个正值不等式的两边平方,得xy≤81, 当且仅当x=y时,式中等号成立,此时x=y=9,
因此,当这个矩形的长与宽都是9m时,它的 面积最大,最大值是81m2。
ab
a
b 2
(第一课时)
2019/10/5
一、情境创设 导入课题
第24届国际数学家大会(ICM2002)的会标
问题 :你能在这个图中找出一些相等关系或不 等关系吗?
二、自主探究 推导公式
问题 1:在正方形 ABCD 中有4个全等的直角三角形.设直角三角形的
两条直角边长为a,b,正方形ABCD的面积为 S ,4个直角三角形的面积和
2
又称为基本不等式
4、从数列角度看:
把
ab 2
看做两个正数a,b 的等差中项,
ab 看做正数a,b的等比中项,
那么上面不等式可以叙述为:
两个正数的等差中项不小于它们的等比 中项。
还有没有其它的证明方法证明均值 不等式呢?
二、自主探究 推导公式 探究:如图,AB 是圆的直径,点 C 是 AB上一点,
显然,④是成立的.当且仅当 a b 时,④中的等号成立.
2019/10/5
析 : a 0,b 0,
a b ab a b 2 ab ( a b)2 0
2
2
2
即 a b ab 2
当且仅当 a b即a b等号成立
上面所证结论通常称为均值不等式
(2)设矩形的长、宽分别为x(m),y(m),
依题意有2(x+y)=36,即x+y=18, 因为x>0,y>0,所以, xy ≤ x y
2
因此 xy ≤9
将这个正值不等式的两边平方,得xy≤81, 当且仅当x=y时,式中等号成立,此时x=y=9,
因此,当这个矩形的长与宽都是9m时,它的 面积最大,最大值是81m2。
基本不等式及其应用ppt课件
【解析】 x+x-4 1=(x-1)+x-4 1+1≥ 2 x-1·x-4 1+1=5.(当且仅当 x=3 时取等号)
易错点睛:(1)忽略基本不等式成立的前提条件致误. (2)忽略“定值”致误.
课堂考点突破
——精析考题 提升能力
考点一 利用基本不等式求最值
角度 1:拼凑法求最值
2
【例 1】 (1)已知 0<x<1,则 x(4-3x)取得最大值时 x 的值为_3_______.
A.5
B.6
C.7
D.8
【解析】 因为每台机器生产的产品可获得的总利润 s(单位:万元)与机器运转时间
t(单位:年,t∈N*)的关系为 s=-t2+23t-64,所以年平均利润 y=st=-t-6t4+23=-
t+6t4+23≤-2 t·6t4+23=7,当且仅当 t=8 时等号成立,故要使年平均利润最大,则 每台机器运转的时间 t 为 8,故选 D.
即该厂家 2022 年的促销费用投入 3 万元时,厂家的利润最大,最大为 21 万元.
『变式训练』
4.某公司购买了一批机器投入生产,若每台机器生产的产品可获得的总利润 s(单位:
万元)与机器运转时间 t(单位:年,t∈N*)的关系为 s=-t2+23t-64,要使年平均利润最
大,则每台机器运转的时间 t 为( D )
【解析】 (1)因为函数 f(x)=4x3-ax2-2bx 在 x=1 处有极值,所以 f ′(1)=12-2a -2b=0,即 a+b=6,又 a>0,b>0,则4a+1b=16(a+b)·4a+1b=165+ab+4ab≥5+6 4=32 当且仅当ab=4ab,即a=2b=4时取“=”,故选 C.
【解析】 解法一(换元消元法): 由已知得 x+3y=9-xy, 因为 x>0,y>0,所以 x+3y≥2 3xy, 所以 3xy≤x+23y2,当且仅当 x=3y,即 x=3,y=1 时取等号,即(x+3y)2+12(x+3y) -108≥0. 令 x+3y=t,则 t>0 且 t2+12t-108≥0, 得 t≥6,即 x+3y 的最小值为 6.
易错点睛:(1)忽略基本不等式成立的前提条件致误. (2)忽略“定值”致误.
课堂考点突破
——精析考题 提升能力
考点一 利用基本不等式求最值
角度 1:拼凑法求最值
2
【例 1】 (1)已知 0<x<1,则 x(4-3x)取得最大值时 x 的值为_3_______.
A.5
B.6
C.7
D.8
【解析】 因为每台机器生产的产品可获得的总利润 s(单位:万元)与机器运转时间
t(单位:年,t∈N*)的关系为 s=-t2+23t-64,所以年平均利润 y=st=-t-6t4+23=-
t+6t4+23≤-2 t·6t4+23=7,当且仅当 t=8 时等号成立,故要使年平均利润最大,则 每台机器运转的时间 t 为 8,故选 D.
即该厂家 2022 年的促销费用投入 3 万元时,厂家的利润最大,最大为 21 万元.
『变式训练』
4.某公司购买了一批机器投入生产,若每台机器生产的产品可获得的总利润 s(单位:
万元)与机器运转时间 t(单位:年,t∈N*)的关系为 s=-t2+23t-64,要使年平均利润最
大,则每台机器运转的时间 t 为( D )
【解析】 (1)因为函数 f(x)=4x3-ax2-2bx 在 x=1 处有极值,所以 f ′(1)=12-2a -2b=0,即 a+b=6,又 a>0,b>0,则4a+1b=16(a+b)·4a+1b=165+ab+4ab≥5+6 4=32 当且仅当ab=4ab,即a=2b=4时取“=”,故选 C.
【解析】 解法一(换元消元法): 由已知得 x+3y=9-xy, 因为 x>0,y>0,所以 x+3y≥2 3xy, 所以 3xy≤x+23y2,当且仅当 x=3y,即 x=3,y=1 时取等号,即(x+3y)2+12(x+3y) -108≥0. 令 x+3y=t,则 t>0 且 t2+12t-108≥0, 得 t≥6,即 x+3y 的最小值为 6.
基本不等式(共43张)ppt课件
解法步骤与技巧
01
02
03
移项
将不等式两边的同类项进 行合并,并把未知数移到 不等式的一边,常数移到 另一边。
合并同类项
将移项后的不等式两边的 同类项进行合并。
系数化为1
将不等式两边的系数化为 1,得到不等式的解集。
解法步骤与技巧
注意不等号的方向
在解不等式时,要注意不等号的方向,特别是在乘以或除以一个负数时,不等 号的方向要发生变化。
基本不等式(共43张)ppt课件
目录
• 基本不等式概念及性质 • 一元一次不等式解法 • 一元二次不等式解法 • 绝对值不等式解法 • 分式不等式和无理不等式解法 • 基本不等式在几何中的应用 • 基本不等式在函数中的应用 • 总结回顾与拓展延伸
01
基本不等式概念及性质
不等式定义与分类
不等式定义
根);
04
05
当 $Delta < 0$ 时,方程无 实根,有两个共轭复根。
04
绝对值不等式解法
绝对值概念及性质
绝对值定义
对于任意实数$x$,其绝对值$|x|$定义为:若$x geq 0$,则$|x| = x$;若$x < 0$,则$|x| = -x$。
绝对值的性质
非负性、对称性、三角不等式。
绝对值不等式解法步骤
将不等式左边进行因式分解,找出不 等式的临界点。
无理不等式解法
第一步
确定无理不等式的定义域,即根 号内的表达式必须大于等于零。
第二步
通过平方消去根号,将无理不等式 转化为有理不等式。
第三步
利用有理不等式的解法,求解转化 后的不等式,得到原无理不等式的 解集。
综合应用举例
例1
基本不等式课件(共43张PPT)
重要不等式:一般地,对于任意实数a、b,总有
立
a2 b2≥2ab 当且仅当a=b时,等号成
适用范围: a,b∈R
文字叙述为: 两数的平方和不小于它们积的2倍.
如果a 0,b 0,我们用 a, b分别代替a,b, 可得到什么结论?
即: a b≥ ab (a 0,b 0) 2
通常我们把上式写作: ab≤ a b (a 0,b 0) 2
课堂练习: 已知 a,b,c∈{正实数},且 a+b+c=1.
求证:1a+1b+1c≥9.
解:证明:1a+1b+
1c = a+ab+c + a+bb+c +
a+b+c c
=3+
(ba+ab)+(ac+ac)+(bc+bc)
≥3+2+2+2=9.
当且仅当a=b=c=13时取等号.
小结 基本不等式 ab a b (a 0,b 0)
第三章 不等式
§3.4 基本不等式
这是2002年在北京召开的第24届国际数 学家大会会标.会标根据中国古代数学家赵爽 的弦图设计的,颜色的明暗使它看上去象一个 风车,代表中国人民热情好客。
D
a2 b2
b
G
F
A
a HE
探究1:
1、正方形ABCD的
面积S=_a__2 __b2
C 2、四个直角三角形的
例1.(1) 已知 x 0, 求证x 1 2, 并指出等号
成立的条件.
x
(2) 已知 ab 0, 寻找 a b 与2的大小关系, ba
并说明理由.
(3) 已知 ab 0, a b 能得到什么结论? 请说明理由. b a
[例 2] 若 a>b>1,P= lga·lgb,Q=lga+2 lgb,R=lg(a+2 b), 试比较 P、Q、R 的大小.
1 第1课时 基本不等式(共42张PPT)
解析:因为 a>0,且 2x+ax≥2 当且仅当 2x=ax,
2x·ax=2 2a,
即 x= 22a时,2x+ax取得最小值, 所以 22a=3, 解得 a=18. 答案:18
5.已知 x,y 为正实数,且 x+y=4,求1x+3y的最小值. 解:因为 x,y 为正实数, 所以(x+y)1x+3y =4+xy+3yx≥4+2 3. 当且仅当xy=3yx,
(1)若 a+b=S(和为定值),当 a=b 时,积 ab 有最大值S42,可以用基本不等 式 ab≤a+2 b求得. (2)若 ab=P(积为定值),则当 a=b 时,和 a+b 有最小值 2 P,可以用基本 不等式 a+b≥2 ab求得. 不论哪种情况都要注意取得等号的条件是否成立.
1.已知 x>0,y>0,且 x+y=8,则(1+x)(1+y)的最大值为
【解析】 对于选项 A,当 x<0 时,4x+x≥4 显然不成立;对于选项 B,符 合应用基本不等式的三个基本条件“一正,二定,三相等”;对于选项 C, 忽视了验证等号成立的条件,即 x=1x,则 x=±1,均不满足 x≥2;对于选 项 D,x-1x在 0<x≤2 的范围内单调递增,有最大值 2-12=32. 【答案】 B
A.7
B.8
C.9
D.10
()
解析:选 C.因为 a,b 都是正数,所以1+ba1+4ba=5+ba+4ba≥5+2 =9,当且仅当 b=2a 时取等号.
ab·4ba
探究点 3 利用基本不等式求最值 (1)已知 x>2,则 y=x+x-4 2的最小值为________.
(2)若 0<x<12,则函数 y=12x(1-2x)的最大值是________. (3)若 x,y∈(0,+∞),且 x+4y=1,则1x+1y的最小值为________.
基本不等式及其应用PPT教学课件
2.要通过拆、分来构造使用基本不等式的 条件
2、求 x, y, z
0, x 2 y 3z
0, 则
y2 xz
的
最小值为
。
问题:1.目标式中有多个变量,求 范围及最值时先怎么变形?
2. 应消去 x, y, z 中的哪个变量?
3.符合使用基本不等式的条件吗?
已知实数 x, a1, a2, y 成等差数列,x,b1,b2, y 成等比数列,
解不等式
恒成立
4.第 一 问 中 的 不 等 式 解 是 不 是 确 定 的 ? 与 那 个 有 关?能否举出与该问题同一种类型的问题?
解关于 x 的不等式: x2 ax 1 0
a 与 m 的地位相比有无差别?
课前热身:
4、某公司一年购买某种货物 400 吨,每次
都购买 x 吨,运费为每次 4 万元,一年的总
一、课前热身:
1、函数 y loga (x 3) 1(a 0,且a 1) 的图像恒
过定点 A,若点 A 在直线 mx ny 1 0 上其中
mn
0
,则
1 m
2 n
的最小值
。
条件的实质是什么?
这个条件的作用是 什么?
什么时候取到最小值?
变式 1:已知 x 0 、 y 0,且 x y 1则 1 4 的最小值
中听回的,并没有真的看到,到底空中花园是否纯粹传说呢? 空中花园位于Euphrates河东面,伊拉克首都巴格达以南50里外左 右,四大文明古国之一巴比伦中。巴比伦的空中花园当然不是吊于 空中,这个名字的由来纯粹是因为人们把原本除有“吊”之外,还 有“突出”之意的希腊“kremastos”及拉丁文“pensilis”错误翻译
存储费用为 4 x 万元,要使一年的总费用与
2、求 x, y, z
0, x 2 y 3z
0, 则
y2 xz
的
最小值为
。
问题:1.目标式中有多个变量,求 范围及最值时先怎么变形?
2. 应消去 x, y, z 中的哪个变量?
3.符合使用基本不等式的条件吗?
已知实数 x, a1, a2, y 成等差数列,x,b1,b2, y 成等比数列,
解不等式
恒成立
4.第 一 问 中 的 不 等 式 解 是 不 是 确 定 的 ? 与 那 个 有 关?能否举出与该问题同一种类型的问题?
解关于 x 的不等式: x2 ax 1 0
a 与 m 的地位相比有无差别?
课前热身:
4、某公司一年购买某种货物 400 吨,每次
都购买 x 吨,运费为每次 4 万元,一年的总
一、课前热身:
1、函数 y loga (x 3) 1(a 0,且a 1) 的图像恒
过定点 A,若点 A 在直线 mx ny 1 0 上其中
mn
0
,则
1 m
2 n
的最小值
。
条件的实质是什么?
这个条件的作用是 什么?
什么时候取到最小值?
变式 1:已知 x 0 、 y 0,且 x y 1则 1 4 的最小值
中听回的,并没有真的看到,到底空中花园是否纯粹传说呢? 空中花园位于Euphrates河东面,伊拉克首都巴格达以南50里外左 右,四大文明古国之一巴比伦中。巴比伦的空中花园当然不是吊于 空中,这个名字的由来纯粹是因为人们把原本除有“吊”之外,还 有“突出”之意的希腊“kremastos”及拉丁文“pensilis”错误翻译
存储费用为 4 x 万元,要使一年的总费用与
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
5
2020年10月2日
6
2020年10月2日
7
Dห้องสมุดไป่ตู้
a2 b2
b
G
F
A
aH E
B
2020年10月2日
探究1:
1、正方形ABCD的
面积S=_a_2___b2
C 2、四个直角三角形的
面积和S’ =_2a_b
3、S与S’有什么 样的不等关系?
S≥S’ 8
探究:
D
A
a Cb
1、如图,AB是圆的直径,C 是AB上与A、B不重合的一 点,AC=a,CB=b,过点C作垂 直于AB的弦DE,连AD,BD,
ab
B 则CD=__ab,半径=___2_
E
半弦不大于半径
2020年10月2日
2、你能用这个图形得出
基本不等式
abab(a>0,b>0) 2
几何解释吗?
9
10月23日作业:
2020年10月2日
10
演讲完毕,谢谢观看!
Thank you for reading! In order to facilitate learning and use, the content of this document can be modified, adjusted and printed at will after downloading. Welcome to download!
2.4(1)基本不等式及其应用
要点:
1.学习两个重要(基本)不等式 2.应用这两个不等式(的有关应用) 求代数式的最值
2020年10月2日
1
两个重要不等式
2020年10月2日
2
两个重要不等式的有关应用
2020年10月2日
3
一正
二定 等号
2020年10月2日
4
2020年10月2日
一正 二定 等号
汇报人:XXX 汇报日期:20XX年10月10日
11
2020年10月2日
6
2020年10月2日
7
Dห้องสมุดไป่ตู้
a2 b2
b
G
F
A
aH E
B
2020年10月2日
探究1:
1、正方形ABCD的
面积S=_a_2___b2
C 2、四个直角三角形的
面积和S’ =_2a_b
3、S与S’有什么 样的不等关系?
S≥S’ 8
探究:
D
A
a Cb
1、如图,AB是圆的直径,C 是AB上与A、B不重合的一 点,AC=a,CB=b,过点C作垂 直于AB的弦DE,连AD,BD,
ab
B 则CD=__ab,半径=___2_
E
半弦不大于半径
2020年10月2日
2、你能用这个图形得出
基本不等式
abab(a>0,b>0) 2
几何解释吗?
9
10月23日作业:
2020年10月2日
10
演讲完毕,谢谢观看!
Thank you for reading! In order to facilitate learning and use, the content of this document can be modified, adjusted and printed at will after downloading. Welcome to download!
2.4(1)基本不等式及其应用
要点:
1.学习两个重要(基本)不等式 2.应用这两个不等式(的有关应用) 求代数式的最值
2020年10月2日
1
两个重要不等式
2020年10月2日
2
两个重要不等式的有关应用
2020年10月2日
3
一正
二定 等号
2020年10月2日
4
2020年10月2日
一正 二定 等号
汇报人:XXX 汇报日期:20XX年10月10日
11