《数理统计B》单元自测题(五)

合集下载

《概率论与数理统计答案》第五章

《概率论与数理统计答案》第五章
2 答案与提示:由于 X ~ N ( µ , σ / n) ,所以
P{ X − 8 > 3} = 0.1336
3.设 X 1 , X 2 , " , X n 为来自总体 X ~ P (λ ) 的一个样本, X 、 S 2 分别为样本均值 和样本方差。求 DX 及 ES 2 。 答案与提示:此题旨在考察样本均值的期望、方差以及样本方差的期望与总体 期望、总体方差的关系,显然应由定理 5-1 来解决这一问题。
2
=(
1
hd a
) e
n 2 − 1
n

2σ 2
2πσ 2
w. c
∑ ( xi − µ )2
i =1
om

8.设 X 1 , X 2 , " , X n 为来自正态总体 X ~ N ( µ , σ 2 ) 的一个样本, µ 已知,求 σ 2
第五章 习题参考答案与提示
⎧ ⎪λax a −1e − λx , x > 0, (2) f ( x, λ ) = ⎨ ⎪ x ≤ 0, ⎩ 0,
1 3 1 (3) X 1 + X 2Leabharlann + X 3 。 5 10 2
om
(1)
(2)
第五章 习题参考答案与提示
3,求 θ 的矩估计值和极大似然估计值。
ˆ = 1/ 4 。 答案与提示: θ 的矩估计值为 θ
对于给定的样本值,似然函数为 L(θ ) = 4θ 6 (1 − θ ) 2 (1 − 2θ ) 4 ,解得
其中 θ > −1 为未知参数。

9.设 X ~ N ( µ , 1) , X 1 , X 2 , " , X n 为来自正态总体 X 的一个样本,试求 µ 的极

西南交通大学概率论和数理统计第五次作业答案

西南交通大学概率论和数理统计第五次作业答案
8. 设 总 体 X N(, 4) , 有 样 本 X1, X2, , Xn , 求 当 样 本 容 量 n 为 多 大 时 , P{| X | 0.1} 0.95 。
3
西南交通大学 2019—2020 学年第(一)学期《概率论与数理统计 B》课程习题答案
解:因为 X n
N (0,1) ,所以
9. 设 X1, X 2,, X5 是独立且服从相同分布的随机变量,且每一个 Xi i 1,2,,5都服从
N
0,1
。(1)试给出常数 c
,使得
c
X12
X
2 2
服从 2 分布,并指出它的自由度;(2)试给
出常数 d ,使得 d X1 X 2 服从 t 分布,并指出它的自由度。
X
2 3
X
2 4
11. 设 X1, X 2 ,, X n 是取自总体 X 的一个样本,其中 X 服从参数为 的泊松分布,其
中 未知, 0 ,求 的矩估计与最大似然估计,如得到一组样本观测值:
X
0 1 2 34
频数 17 20 10 2 1
求 的矩估计值与最大似然估计值。
解: EX ,故 的矩估计量 ˆ X 。
X
另,X 的密度函数为
f X x
e x 0
x 0 x0
故似然函数为
L
对数似然函数为
n
en
Xi
i 1
0
X i 0, i 1,2,, n 其他
ln
L
n
ln
n
X
i
i 1
d
ln L
d
n
n
i 1
Xi
0
解得 的最大似然估计量 ˆ n 1 。

概率论与数理统计自测试卷及答案

概率论与数理统计自测试卷及答案

概率论与数理统计自测试卷一一、填空题(每题3分,共15分)1、已知随机变量X 服从参数为2的泊松(Poisson )分布,且随机变量22-=X Z ,则()=Z E ____________.2、设A 、B 是随机事件,()7.0=A P ,()3.0=-B A P ,则()=AB P3、设二维随机变量()Y X ,的分布列为若X 与Y 相互独立,则βα、的值分别为 。

4、设 ()()()4, 1, ,0.6D X D Y R X Y ===,则 ()D X Y -=___ _5、设12,,,n X X X 是取自总体),(2σμN 的样本,则统计量2211()ni i X μσ=-∑服从__________分布.二、选择题(每题3分,共15分)1. 一盒产品中有a 只正品,b 只次品,有放回地任取两次,第二次取到正品的概率为 【 】 (A)11a ab -+-; (B) (1)()(1)a a a b a b -++-; (C) a a b +; (D) 2a ab ⎛⎫ ⎪+⎝⎭. 2、设事件A 与B 互不相容,且()0≠A P ,()0≠B P ,则下面结论正确的是【 】(A) A 与B 互不相容; (B)()0>A B P ; (C) ()()()B P A P AB P =; (D)()()A P B A P =.3、设两个相互独立的随机变量X 与Y 分别服从正态分布()1,0N 和()1,1N ,则【 】(A)()210=≤+Y X P ; (B) ()211=≤+Y X P ; (C)()210=≤-Y X P ; (D)()211=≤-Y X P 。

4、 如果Y X ,满足()Y X D Y X D -=+)(,则必有【 】(A )X 与Y 独立;(B )X 与Y 不相关;(C )0=DY ;(D )0=DX5、设相互独立的两个随机变量X 与Y 具有同一分布律,且X 的分布律为YX1 2 31 61 91 181 231α β则随机变量()Y X Z ,max =的分布律为【 】(A)()()211,210====z P z P ; (B) ()()01,10====z P z P ; (C) ()()431,410====z P z P ;(D) ()()411,430====z P z P 。

数理统计试题5

数理统计试题5

<数理统计>试题一、填空题1.设1621,,,X X X 是来自总体X ),4(~2σN 的简单随机样本,2σ已知,令∑==161161i i X X ,则统计量σ-164X 服从分布为(必须写出分布的参数)。

2.设),(~2σμN X ,而1.70,1.75,1.70,1.65,1.75是从总体X 中抽取的样本,则μ的矩估计值为。

3.设]1,[~a U X ,n X X ,,1 是从总体X 中抽取的样本,求a 的矩估计为。

4.已知2)20,8(1.0=F ,则=)8,20(9.0F 。

5.θˆ和βˆ都是参数a 的无偏估计,如果有 成立 ,则称θˆ是比βˆ有效的估计。

6.设样本的频数分布为则样本方差2s =_____________________。

7.设总体X~N (μ,σ²),X 1,X 2,…,X n 为来自总体X 的样本,X 为样本均值,则D (X )=________________________。

8.设总体X 服从正态分布N (μ,σ²),其中μ未知,X 1,X 2,…,X n 为其样本。

若假设检验问题为1H 1H 2120≠↔σσ:=:,则采用的检验统计量应________________。

9.设某个假设检验问题的拒绝域为W ,且当原假设H 0成立时,样本值(x 1,x 2,…,x n )落入W 的概率为0.15,则犯第一类错误的概率为_____________________。

10.设样本X 1,X 2,…,X n 来自正态总体N (μ,1),假设检验问题为:,:=:0H 0H 10≠↔μμ 则在H 0成立的条件下,对显著水平α,拒绝域W 应为______________________。

11.设总体服从正态分布(,1)N μ,且μ未知,设1,,n X X 为来自该总体的一个样本,记11nii X X n ==∑,则μ的置信水平为1α-的置信区间公式是;若已知10.95α-=,则要使上面这个置信区间长度小于等于0.2,则样本容量n 至少要取____。

概率论与数理统计B习题_百度文库

概率论与数理统计B习题_百度文库

练习一、选择题:(每题2分,2×10=20) 1.设A,B为两个事件,且B⊂A,则下列各式中正确的是()。

(A)P(A B)=P(A) (B)P(AB)=P(A) (C)P(B|A)=P(B) (D)P(B-A)=P(B)-P(A) 2.掷一枚质地均匀的骰子,则在出现偶数点的条件下出现2点的概率为()。

(A) 1/6 (B)2/3 (C)1/3 (D)1/2 3. 设随机变量X~e(2),则下列各项正确的是()。

(A) EX=0.5,DX=0.25 (B) EX=2,DX=4 (C) EX=0.5,DX=4 (D) EX=2,DX=0.25 Var(X-92274.如果X~N(3,16),则)等于()43(A)4 (B)25 (C) (D)1616y+565.设随机变量X的密度函数为fX(x),则Y=6X-5的密度函数.. fY(y)为(). (A)fX(5y-3) (B)5fX(y)-3 (C)6. 对任意随机变量X,则E(EX)等于()。

(A)0 (B)X (C) (EX)3 (D)EX 7.随机变量X~N(μ,σ2),则随σ增大,P{X-μ<σ}()。

(A)单调增大(B)保持不变 (C)单调减少(D)增减不定 8. 若ξ和η都服从正态分布, 且独立,则ξ+η服从().(A)正态分布;(B)t分布;(C)χ2分布(D)F分布 9. 设总体X~N(μ,σ是()(A)2X-X1;2fX(y)+5(D)fX()),X1,X2,…,Xn为来自总体的样本,用以下统计量作为μ的估计时,最有效的122316141214(B)X;(C)X1+X2-X3;(D)X1+X2+X310. 设X服从标准正态分布N(0,1),则X2服从().(A) 正态分布(B)指数分布(C)泊松分布 65 (D)卡方分布二.填空题:(每题2分,2×10=20)1.设A,B,C表示三个随机事件,用A,B,C分别表示事件“A,B,C三个事件不都发生”________。

概率论与数理统计习题解答 (5)

概率论与数理统计习题解答 (5)

解:在检验水平 α = 0.01 下,检验假设 H 0 : µ = µ 0 = 3.25 当假设 H 0 为真时,取检验统计量
H 1 : µ ≠ µ 0 = 3.25
T=
X − 3.25 S/ 5
~ t ( 4)

⎫ ⎧ ⎪ ⎪ X − 3.25 P⎨ > t 0.01 (4)⎬ = 0.01 ⎪ ⎪ 2 ⎭ ⎩ S/ 5
H 1 : µ1 ≠ µ 2
当假设 H 0 为真时,取检验统计量
T= Sω
X −Y 1 1 + 11 9
~ t (11 + 9 − 2)

⎧ ⎫ ⎪ ⎪ ⎪ X −Y ⎪ P⎨ > t 0.05 (18)⎬ = 0.05 1 1 ⎪S ⎪ 2 + ω ⎪ ⎪ 11 9 ⎩ ⎭
查表得: t 0.025 (18) = 2.1009 ,故接受域为 (−2.1009, 2.1009) . 代入样本值 x1 = 6,
概率论与数理统计
习题五解答
1. 正常人的脉搏平均为 72 次/分,现某医生测得 10 例慢性四乙基铅中毒者的脉搏 (次/分)如下: 54 67 68 78 70 66 67 70 65 69 问患者与正常人的脉搏有无显著差异(患者的脉搏可视为服从正态分布。 α = 0.05 ) 解:设患者的脉搏为 X , 计算其样本均值与样本方差分别为 x = 67.4, s = 5.93 在检验水平 α = 0.05 下,检验假设 H 0 : µ = µ 0 = 72 当假设 H 0 为真时,取检验统计量
H 1 : µ ≠ µ 0 = 72
T=
X − 72 S / 10
~ t (9)

⎧ ⎫ ⎪ X − 72 ⎪ P⎨ > t 0.05 (9)⎬ = 0.05 ⎪ ⎪ 2 ⎩ S / 10 ⎭

概率论与数理统计自测题

概率论与数理统计自测题

, 概率论与数理统计自测题(含答案,先自己做再对照)一、单项选择题1.设A 与B 互为对立事件,且P 〔A 〕>0,P 〔B 〕>0,那么以下各式中错误的选项是......〔 〕 A .0)|(=B A P B .P 〔B |A 〕=0 C .P 〔AB 〕=0D .P 〔A ∪B 〕=12.设A ,B 为两个随机事件,且P 〔AB 〕>0,那么P 〔A|AB 〕=〔 〕 A .P 〔A 〕 B .P 〔AB 〕 C .P 〔A|B 〕 D .13.设随机变量X 在区间[2,4]上服从均匀分布,那么P{2<X<3}=〔 〕 A .P{3.5<X<4.5} B .P{1.5<X<2.5} C .P{2.5<X<3.5} D .P{4.5<X<5.5} 4.设随机变量X 的概率密度为f (x )=⎪⎩⎪⎨⎧≤>,1,0;1,2x x x c 那么常数c 等于〔 〕A .-1B .21-C .21D .1 5.设二维随机变量〔X ,Y 〕的分布律为那么A .0.3 B .0.5 C .0.7 D .0.86.设随机变量X 服从参数为2的指数分布,那么以下各项中正确的选项是〔 〕 A .E 〔X 〕=0.5,D 〔X 〕=0.25 B .E 〔X 〕=2,D 〔X 〕=2 C .E 〔X 〕=0.5,D 〔X 〕=0.5 D .E 〔X 〕=2,D 〔X 〕=47.设随机变量X 服从参数为3的泊松分布,Y~B 〔8,31〕,且X ,Y 相互独立,那么D 〔X-3Y-4〕=〔 〕A .-13B .15C .19D .238.D 〔X 〕=1,D 〔Y 〕=25,ρXY =0.4,那么D 〔X-Y 〕=〔 〕 A .6 B .22 C .30 D .469.在假设检验问题中,犯第一类错误的概率α的意义是〔 〕 A .在H 0不成立的条件下,经检验H 0被拒绝的概率 B .在H 0不成立的条件下,经检验H 0被承受的概率 C .在H 0成立的条件下,经检验H 0被拒绝的概率 D .在H 0成立的条件下,经检验H 0被承受的概率10.设总体X 服从[0,2θ]上的均匀分布〔θ>0〕,x 1, x 2, …, x n 是来自该总体的样本,x 为样本均值,那么θ的矩估计θˆ=〔 〕A .x 2B .xC .2xD .x 21 1A 2.D 3.C4.D5.A6.A7.C8.B9.C10.B二、填空题11.设事件A 与B 互不相容,P 〔A 〕=0.2,P 〔B 〕=0.3,那么P 〔B A ⋃〕=____________. 12.一个盒子中有6颗黑棋子、9颗白棋子,从中任取两颗,那么这两颗棋子是不同色的概率为____________.13.甲、乙两门高射炮彼此独立地向一架飞机各发一炮,甲、乙击中飞机的概率分别为0.4,0.5,那么飞机至少被击中一炮的概率为____________.14.20件产品中,有2件次品,不放回地从中接连取两次,每次取一件产品,那么第二次取到的是正品的概率为____________. 15.设随机变量X~N 〔1,4〕,标准正态分布函数值Φ〔1〕=0.8413,为使P{X<a}<0.8413,那么常数a<____________.16.抛一枚均匀硬币5次,记正面向上的次数为X ,那么P{X ≥1}=____________. 17.随机变量X 的所有可能取值为0和x ,且P{X=0}=0.3,E 〔X 〕=1,那么x=____________. 18.设随机变量X 的分布律为那么D 〔X 〕=____________.19.设随机变量X 服从参数为3的指数分布,那么D 〔2X+1〕=____________. 20.设二维随机变量〔X ,Y 〕的概率密度为f (x, y)=⎩⎨⎧≤≤≤≤,,0;10,10,1其他y x那么P{X ≤21}=____________. 21.设二维随机变量〔X ,Y 〕的概率密度为 ⎪⎩⎪⎨⎧>>=+-,,0;0,0,),()(其他y x ey x f y x 那么当y>0时,〔X ,Y 〕关于Y 的边缘概率密度f Y (y )= ____________.25.设总体X~N 〔μ,σ2〕,x 1,x 2,x 3为来自X 的样本,那么当常数a=____________时,3212141ˆx ax x ++=μ是未知参数μ的无偏估计. 11. 0.5 12. 351813.0.7 14. 0.9 15. 3 16.323117.71018.1 19.9420.2121. ye - 25. 41三、计算题26.设二维随机变量〔X ,Y 〕的分布律为 试问:X 与Y 是否相互独立?为什么?因为对一切i,j 有}{}P{},P{j i j i Y Y P X X Y Y X X =⋅====所以X ,Y 独立。

概率论与数理统计林文浩第五章习题

概率论与数理统计林文浩第五章习题

概率论与数理统计林⽂浩第五章习题习题五⼤数定律与中⼼极限定理B 组1.设随机变量12,,,n X X X 相互独⽴,且具有相同分布,它们的均值与⽅差分别为µ与2σ。

试证随机变量11n i i X X n ==∑(X 称为样本均值),满⾜()E X µ=,2()D X n σ=,22{}P X n σµεε-≥≤。

证111111()()()n n ni i i i i E X E X E X n n n µµ=======∑∑∑22221111111()()()n n n i i i i i D X D X D X n n n nσσ=======∑∑∑应⽤契⽐雪夫不等式,对于任意的0ε>,有222(){}D X P X n σµεεε-≥≤=2.设()g x 是正值⾮减函数,并且{()}E g X 存在,证明{()}{}()E g X P X a g a ≥≤。

证因为()g x 是正值⾮减函数,故当x a ≥时,有()()0g x g a ≥>,或()1()g x g a ≥所以(){}()()()aag x P X a f x dx f x dx g a +∞+∞≥=≤?1{()}()()()()E g X g x f x dx g a g a +∞-∞≤=?3.假设12,,,n X X X 是相互独⽴且在[,]a b 上服从均匀分布的随机变量,()f x 是在[,]a b 上连续的函数,试证明1()()n b pi n a i b a f X f x dx n →∞=-→∑? 证设 ()(1,2,,)i i Y f X i n == ,由已知,i X 的概率密度为1,,()0,a x b g x b a ?<=-其他.则11()()()bbi aa E Y f x dx f x dxb a b a==--?? (1,2,,)i n = 且111()()()nn b bi a a i i n E Y f x dx f x dx b a b a ====--∑∑?? 于是由契⽐雪夫⼤数定律,对于任意的0ε>,有1111lim {()}1n ni i n i i P Y E Y n n ε→∞==-<=∑∑ 即111lim {()()}1n bi an i P f X f x dx n b a ε→∞=-<=-∑?这意味着,当n 充分⼤时,必有111()()n bi a i f X f x dx n b aε=-<-∑? 即111()()n b pi n a i f X f x dx n b a→∞=→-∑? 或1()()n b pi n a i b a f X f x dx n →∞=-→∑?4.独⽴地测量⼀个物理量,每次测量产⽣的随机误差都服从[1,1]-的均匀分布。

(完整版)数理统计考试题及答案

(完整版)数理统计考试题及答案

(完整版)数理统计考试题及答案1、离散型随机变量X 的分布律为P (X=x i )=p i ,i=1.2…..,则11=∑=ni ip2、设两个随机变量X ,Y 的联合分布函数F (x ,y ),边际分布Fx (x ),Fy (y ),则X 、Y 相互独⽴的条件是)()(),(y F x F y x F Y X ?=3、 X 1,X 2,….X 10是总体X~N (0,1)的样本,若2102221X X X +++=ξ,则ξ的上侧分位数025.0ξ=解:因为X~N (0,1),所以2102221X X X +++=ξ~)10(2χ,查表得025.0ξ=20.54、设X~N (0,1),若Φ(x )=0.576,则Φ(-x )= 解:Φ(-x )=1-Φ(x )=1-0.576=0.4245、设X 1,X 2,….X n 是总体),(~2σµN X 的样本,∑=-=ni iXY 122)(1µσ,则EY=n解:∑=-=ni iXY 122)(1µσ~)(2n χ,E 2χ=n ,D 2χ=2n⼆、设设X 1,X 2,….X n 是总体),(~2σµN X 的样本,∑=-=612)(51i i X X s ,试求)5665.2(22σ≤s P 。

解:因为),(~2σµN X ,所以有)5(~)(126122χσ∑=-i i X X ,则≤-= ≤-=≤=≤∑∑==8325.12)(5665.25)()5665.2()5665.2(261226122222σσσσi ii i X X P X X P s P s P 查2χ分布表得=≤)5665.2(22σs P≤-∑=8325.12)(2612σi i X X P =1-α=1-0.0248=0.9752 三.设总体X 的概率密度为f(x)= (1),(01) 0a x x α?+<,其他,其中α>0,求参数α的矩估计和极⼤似然估计量。

《数理统计》测验卷答案

《数理统计》测验卷答案

《数理统计》测验卷1.设随机变量1021,,,X X X 相互独立,且1 i EX ,2 i DX (10,,2,1 i ),则对于任意给定的0 ,有 C A 、21011}|1{|i iXP B 、21011}|1{|i iXP C 、2101201}|10{|i iXP D 、2101201}|1{|i iXP2.设n 就是n 次重复试验中,事件A 出现的次数,p 就是事件A 在每次试验中出现的概率,则对于任意0 ,均有p n P n n lim B A 、0 B 、1 C 、0 D 、不存在3.设n X X X ,,,21 就是来自总体),(2N 的样本, 为未知参数,则 就是一个统计量。

A 、 n i i X n 121B 、 ni i X 12)( C 、 X D 、22)( X A4.n X X X ,,,21 就是来自总体的样本,记X 为样本均值,则 ni i X X n 12)(11就是 A 、样本矩 B 、二阶原点矩 C 、二阶中心矩 D 、统计量 D 5.设总体X 在区间]1,1[ 上服从均匀分布,n X X X ,,,21 为其样本,则样本均值 Xni i X n 11的方差 )(X D CA 、0B 、31C 、n31D 、36.1621,,,X X X 就是来自总体),2(~2N X 的一个样本, 161161i iX X ,则84 X ~ A 、)15(t B 、)16(t C 、)15(2D 、)1,0(N D7.设n X X X ,,,21 就是来自总体),(~2N X 的样本,令212)(ni iX XY ,其中X 为样本均值,则~Y A A 、)1(2n B 、)(2n C 、),(2N D 、),(2nN8.设总体),(~2N X ,n X X X ,,,21 为其样本,则ni iXY 122)(1服从分布A 、)1(2n B 、)(2n C 、)1( n t D 、)(n t B9.设总体),(~2N X ,n X X X ,,,21 为其样本, n i i X n X 11, n i i n X X n S 122)(1,则nS X n Y )(1服从的分布就是 CA 、)1(2n B 、)1,0(N C 、)1( n t D 、)(n t10.设总体),0(~2N X ,2为已知常数,n X X X ,,,21 为其样本, ni i X n X 11为样本均值,则服从2分布的统计量就是 ,(其中 ni i nX X n S 122)(1)。

《概率论与数理统计》单元自测题及答案.doc

《概率论与数理统计》单元自测题及答案.doc

第一章随机事件与概率专业__________ 班级__________ 姓名__________ 学号_________一、填空题:1.设A, B 是随机事件,P(A) = 0.7 , P(B) = 0.5 , P(A - B) = 0.3 ,贝ij P(AB)=___________ , P(BA) = ______________ ;2•设A, B 是随机事件,P(A) = 0.4 , P(B) = 0.3, P(AB) = 0.1, M P(AB)=3.在区间(0,1)中随机地取两个数,则两数之和小于1的概率为 ____________ ;4.三台机器相互独立运转,设第一、第二、第三台机器发生故障的概率依次为0. 1, 0.2,0. 3,则这三台机器中至少有一台发生故障的概率为_______________ ;19 5.设在三次独立试验中,事件A出现的概率相等,若已知A至少出现一次的概率等于亍,27则事件A在每次试验屮出现的概率P(A)为_____________ 。

二、选择题:1.以A表示事件“甲种产品畅销,乙种产品滞销”,则对立事件方为( )(A) “甲种产品滞销,乙种产品畅销”;(B) “甲、乙产品均畅销”;(C) “甲种产品滞销或乙种产品畅销”;(D) “甲种产品滞销”。

2.设A, B为两个事件,则下面四个选项中正确的是( )(A) P( A u B) = P( A) + P(B);(B) P(AB) = P(A)P(B);(C) P(B-A) = P(B)-P(A) ;(D) P(AuB) = l-(P(AB)。

3.对于任意两事件A与B,与AuB=B不等价的是( )(A)AuB;(B)BuA;(C) AB =(/>;(D) AB =(/)O4.设P(A) = 0.6 , P(B) = 0.8 , P(B|A) = 0.8,则有( )(A)事件A与3互不相容;(B)事件A与B互逆;(C)事件4与B相互独立;(D) Bu A。

陈国华等主编概率论与数理统计第五章习题解答

陈国华等主编概率论与数理统计第五章习题解答

x>0 x≤0
(α > 0, β > 0)
a a 1 1 1 dx = ∫ cos(tx) ⋅ dx + ∫ sin(tx) ⋅ dx −a −a −a 2a 2a 2a 1 1 1 = ⋅ sin(tx) |a sin(at ) x =− a = at 2a t t −1 (2)参数为 λ 的指数分布的特征函数为, φ X (t ) = (1 − i ) ,参数为 λ 的指数分布可看做
1
π (1 + x 2 )
(−∞ < x < +∞) ;
⎧A ⎪ (D) X i 的概率函数为 : g ( x) = ⎨ x 3 ⎪0 ⎩
x ≥1 x <1
(i = 1,2,3, ) .
答案:CABAD 三.解答题
1.一颗骰子连续掷 4 次,点数总和记为 X ,估计 p (10 < X < 18) .
3.已知随机变量 X 的数学期望为 10,方差 DX 存在且 P (−20 < X < 40) ≤ 0.1 ,则
DX ≥ . 4.设 X 1 , X 2 , , X n, 为独立同分布的随机变量序列,且 X i (i = 1,2, ) 服从参数为 2 的
指数分布,则 n → ∞ 当时, Yn =
1 n 2 ∑ X i 依概率收敛于 n i =1
1 1 ln n + ln n = 0 2 2
n
DX n = EX n = ln n
n 1 1 D ( Xi) = 2 ∑ 2 n n i =1
2
∑ ln i → 0(n → ∞)
i =1
根据马尔可夫大数定律, {X n } 服从大数定律。
3 、 已 知 随 机 变 量 X 和 Y 的 数 学 期 望 、 方 差 以 及 相 关 系 数 分 别 为 E ( X ) = E (Y ) = 2 ,

概率论与数理统计第五章测试题

概率论与数理统计第五章测试题

第5章 数理统计的一些基本概念一、选择题1.设随机变量X 服从n 个自由度的t 分布,定义t α满足P(X ≤t α)=1-α,0<α<1。

若已知 P(|X|>x)=b ,b>0,则x 等于(A )t 1-b (B ) t 1-b/2 (C )t b (D )t b/22.设n X X X ,...,,21是来自标准正态总体的简单随机样本,X 和S 2为样本均值和样本方差,则(A )X 服从标准正态分布 (B )∑=ni iX12服从自由度为n-1的χ2分布(C )X n 服从标准正态分布 (D )2)1(S n -服从自由度为n-1的χ2分布 3.设n X X X ,...,,21是来自正态总体N(μ,σ2) 的简单随机样本,X 为其均值,记∑=-=n i i X n S 1221)(1μ,∑=-=n i i X X n S 1222)(1,∑=--=n i i X n S 1223)(11μ, ∑=--=ni i X X n S 1224)(11,服从自由度为n-1的t 分布的随机变量是 (A )1/1--=n S X T μ (B )1/2--=n S X T μ(C )1/3--=n S X T μ (D )1/4--=n S X T μ4.设21,X X 是来自正态总体N(μ,σ2) 的简单随机样本,则21X X +与21X X -必 (A )不相关 (B )线性相关 (C )相关但非线性相关 (D )不独立 5.设n X X X ,...,,21是来自正态总体N(μ,σ2) 的简单随机样本,统计量2⎪⎪⎭⎫ ⎝⎛-=S X n Y μ,则 (A )Y~χ2(n-1) (B )Y~t(n-1) (C )Y~F(n-1,1) (D )Y~F(1,n-1) 6.设随机变量X~N(0,1),Y~N(0,2),且X 与Y 相互独立,则(A )223231Y X +服从χ2分布 (B )2)(31Y X +服从χ2分布 (C )222121Y X +服从χ2分布 (D )2)(21Y X +服从χ2分布7.设X , 1021,...,,X X X 是来自正态总体N(0,σ2) 的简单随机样本,∑==ni i X Y 122101,则 (A )X 2~χ2(1) (B )Y 2~χ2(10) (C )X/Y~t(10) (D )X 2/Y 2 ~F(10,1)8.设总体X 与Y 相互独立且都服从正态分布N(μ,σ2) ,X ,Y 分别为来自总体X,Y 的容量为n 的样本均值,则当n 固定时,概率)|(|σ>-Y X P 的值随σ的增大而 (A )单调增大 (B )单调减小 (C )保持不变 (D )增减不定 9设随机变量X 和Y 都服从标准正态分布,则 (A )X+Y 服从正态分布 (B )22Y X+服从χ2分布(C )X 2和Y 2都服从χ2分布 (D )22/Y X 服从F 分布 填空题1.已知随机变量 X ,Y 的联合概率密度为)}4849(721exp{121),(22+-+-=y y x y x f π, 则22)1(49-Y X 服从参数为 的 分布。

《概率论与数理统计》(B)模拟试题(一)

《概率论与数理统计》(B)模拟试题(一)

《概率论与数理统计》(B )模拟试题(一)一 判断题(2分ⅹ5=10分)1.其概率为1的事件,必定是必然事件.2.若事件A,B 相互独立,则,A B 也相互独立.3.若事件X,Y 都服从正态分布,则(X,Y)也服从正态分布.4.连续型随机变量X,Y 相互独立的充要条件是f(x,y)=()()X Y f x f y ⋅.5.设12,,,n X X X ⋅⋅⋅是来自总体X 的样本,且E(X)=μ,(1)X t n -. 二 单选题(3分ⅹ5=15分)1.若事件A,B 相互独立,则概率P(A B)= .(A) P(A+B) (B) 1-P(A )P(B ) (C) P(A )+P(B ) (D) 1-P(A)P(B)2. 设X 的概率密度为:当x ≥0时,()f x =3x Ae -;当x<0时, ()f x =0,则A= .(A) 1/3 (B) –1/3 (C) 3 (D) --33. 设X,Y 相互独立,且P(X=0)=13,P(X=1)=23, P(Y=0)=13, P(Y=1)=23, 则P(X=Y)= 。

(A)59 (B) 49 (C) 29 (D) 19 4 . 设X 在[2,4]上服从均匀分布,则E (2X+1)= .(A) 1 (B) 3 (C) 5 (D) 75. 设总体X N(2,μσ), 其中2,μσ为未知参数, 1,2,,n X X X ⋅⋅⋅是来自总体X 的一个样本,则可作为2σ的无偏估计的是 . (A) 11n - 21()n i i X μ=-∑ (B) 1n 21()n i i X μ=-∑ (C) 11n -21()n i i X X =-∑ (D) 1n 21()n i i X X =-∑三、填空题(4分ⅹ5=20分)1. 设A,B,C 为任意事件,则“A,B,C 中至少有两个事件出现”可表示为 。

2 设A,B 为随机事件,且P(B)=, P(AB)=, 则条件概率P(A ∕B)= . 3已知离散型变量X 的分布律为P(X=k)=a k b (k=1,2,….),则b= .4 设X,Y 相互独立,且D(X)=D(Y)=1, 则D(2X-3Y)= .5. 设X U[0,3θ], (0θ≥,未知), 1,2,,n X X X ⋅⋅⋅是来自总体X 的一个样本,且11ni i X X n ==∑,则参数θ的估计量为 . 四 (10分) 已知事件A,B 相互独立,且P(A)=, P(B)=, 求P(A ∪B), P(A-B).五 (10分). 一袋中共有3个黑球,7个白球,今从中任意抽球两次,每次抽取一个,抽后不放回,求第二次抽出的是黑球的概率.六 (10分). 已知电源电压X 服从正态分布N(220,225), 在电源电压处于以下三种状态: X ≤200V, 200V ≤X ≤240V, X ≥240V 时,某电子元件损坏的概率分别为, , . 试求: (1) 该电子元件损坏的概率; (2) 该电子元件损坏时, 电压在200—240V 之间的概率. (已知:0(0.8)0.7881Φ=).七(12分).已知X,Y 相互独立, (X,Y)的分布律为: P(X=1,Y=1)=318, P(X=1,Y=2)=218, P(X=1,Y=3)=118, P(X=2,Y=1)= 618, P(X=2,Y=2)=α, P(X=2,Y=3)=β. 试求: (1) ,αβ的值; (2) X,Y 的边缘分布;.八 (13分) 设1,2,,n X X X ⋅⋅⋅是来自总体X 的一个样本, X 的概率密度为f(x)=其中θ>1的未知参数,试求θ的矩估计量和极大似然估计量.《概率论与数理统计》(B )模拟试题(二)一、 判断题(2分ⅹ5=10分)1. 其概率为0的事件,必定是不可能事件. ( )2. 若事件A,B 相互独立,则AB=∅. ( )3. 若(X,Y)的联合分布密度为f(x,y), 则Y 的边缘分布密度为()(,)Y f y f x y dx +∞-∞=⎰.( ).4. 若X,Y 相互独立, 都服从正态分布, 则(X,Y)服从二维正态分布. ( )5. 设1,2,,n X X X ⋅⋅⋅是来自总体X 的一个样本, 且E (X )=μ,则(1)X t n -。

概率论与数理统计(B)试题及答案

概率论与数理统计(B)试题及答案

概率论与数理统计(B)试题及答案陕西科技⼤学2010级试题纸课程概率论与数理统计(B )班级学号姓名1、A B C 表⽰随机事件,,A B C ⾄少有⼀个不发⽣. ()2、若()1P A =,则A 是必然事件. ()3、若2~(2,1),~(2,0.5)X N Y N -,则(0)0.5P X Y >=+. ()4、X 为随机变量,当12x x <时,则有12()()P X x P X x >≤>.. ( )5、设(,)X Y 是⼆维正态随机变量,则随机变量X 与Y 独⽴的充要条件是cov(,)0X Y =. ..( )⼆、填空题(每⼩题3分,共15分) 1、设,A B 为随机事件,()0.6P A =,()0.4P B =,()0.8P A B = ,则()P B A = .2、在区间(0,1)上随机取两个数,x y ,则关于t 的⼀元⼆次⽅程220t xt y -+=有实根的概率为 .3、设随机变量~()X P λ,且3(0)P X e -==,21Y X =-,则()D Y = .4、设随机变量~(0,1),~(2,1)X N Y N ,且X ,Y 相互独⽴,设随机变量21Z X Y =-+,则Z ~ _ .5、设随机变量X~U[1,2],由切⽐雪夫不等式可得32P X ?-≥≤??.三、选择题(每⼩题3分,共15分)1、对事件,A B ,下列命题中正确的是()A 、若,AB 互斥,则,A B 也互斥. B 、若,A B 互斥,且()0,()0P A P B >>,则,A B 独⽴.C 、若,A B 不互斥,则,A B 也不互斥D 、若,A B 相互独⽴,则,A B 也相互独⽴. 2、设随机变量X 服从正态分布2(2,)N σ,则随σ的增⼤,概率(22)P X σ-<是() A 、单调增加 B 、单调减⼩ C 、保持不变 D 、⽆法判断 3、设(,)F x y 为(,)X Y 的分布函数,则以下结论不成⽴的是()A 、0(,)1F x y ≤≤B 、 (,)1F -∞+∞=C 、(,)0F -∞+∞=D 、 (,)0F -∞-∞=4、把10本书任意地放在书架上,则其中指定的3本书放在⼀起的概率为() A 、115B 、112C 、110D 、185、若121000,...X X X 是相互独⽴的随机变量,且(1,)(1,2,,1000)i X B p i = 则下列说法中不正确的是()A 、1000111000i i X p =≈∑ B 、10001()()()i i P a X b b a =<<≈Φ-Φ∑ C 、10001~(1000,)i i X B p =∑ D、10001()i i P a X b =<<≈Φ-Φ∑四、(12分)设(,)X Y 的联合概率分布如下,求:①()()E X E Y 、②()E XY 、(,)COV X Y③Z X Y =+的概率分布.五、(10分)甲、⼄、丙三⼈同时独⽴地向某⽬标射击,命中率分别为0.3、0.2、0.5,⽬标被命中⼀发⽽被击毁的概率为0.2,⽬标被命中两发⽽被击毁的概率为0.6,⽬标被被命中三发则⼀定被击毁,求三⼈在⼀次射击中击毁⽬标的概率.六、(16分)设随机变量X 的概率密度为()2,100,10Ax f x x x ?>?=??≤?,求:①A ; ②(15)P x <; ③求X 的分布函数()F x ; ④设2Y X =,求Y 的概率密度.七、(16分)设⼆维随机变量()Y X ,的概率密度为()22,01,0,0,y e x y f x y -?≤≤>=??其它求:① (2)P Y X ≥; ②关于X 与Y 的边缘概率密度; ③X 与Y 是否独⽴?为什么?④(24)E X Y +.⼋、(6分)设X 与Y 相互独⽴,其分布函数分别为()X F x 、()Y F x .证明:随机变量X 与Y 的最⼤值max(,)U X Y =分布函数为()()X Y F u F u ?.2010级概率论与数理统计(B )试题答案⼀、√; ×; ×; ×; √ ⼆、1/3; 1/3; 12;N(-1,5); 1/6 三、D ; C ; B ; A ;B 四·(,)()()()5/144COV X Y E XY E X E Y =-=-…………………………2分五、解:设A :甲击中;B :⼄击中;C :丙击中 i D :击中i 发,(1,2,3)i =;E :击毁⽬标1()()0.47P D P ABC ABC ABC =++= 2()()0.22P D P ABC ABC ABC =+++=3()()0.03P D P ABC ==………………………………………………5分31()()()0.470.20.220.60.0310.256i i i P E P D P E D ===?+?+?=∑…………………………5分5/12EX =…………………………2分1/12EY =…………………………2分②()0E XY =…………………………2分③……………………………4分六、①2101Adx x +∞=?,则A =10 ……………………………………………4分②1521010(15)1/3P x dx x <==?……………………………………………4分③ 10,()0x F x <=210101010,()()1xxx F x f x dx dx x x -∞≥===-?…………………………4分④20,()0Y y F y <=22101020,()()()2yY y y F y P Y y P X dxx ≥=≤=≤=?20,20()[()]20/,20Y Y y f y F y y y ≤?'==?>? ………………………………… 4分七、①412021(2)24yxe P Y x dx edy -+∞--≥==………………………………… 4分②1,01()(,)0,X x f x f x y dy +∞-∞≤≤?==?其它22,0()(,)0,0y Y e y f y f x y dx y -+∞-∞>==≤??…………………………… 4分③ X 与Y 独⽴. 因为(,)()()X Y f x y f x f y = …………………………… 4分④ 11(24)2424322E X Y EX EY +=+=?+?= ……………………… 4分⼋、证明:()()(max(,))(,)U F u P U u P X Y u P X u Y u =≤=≤=≤≤………… 3分()()()()X Y P X U P Y U F u F u =≤≤= ……………………… 3 分陕西科技⼤学2011级试题纸课程概率论与数理统计(B )班级学号姓名1.设()1P AB =,则事件A 必然发⽣且事件B 必然不发⽣。

数理统计B答案2020-2021

数理统计B答案2020-2021
(3)当样本均值为7.8时:
所以不能拒绝原假设,应该接受原假设(2)
四、应用题(15+10+13=38)
13.(1) (2分)
利用t统计量 ,
拒绝域 (4分)
认为型号A的计算器平均使用时间比型号B来得长(2分)
(拒绝原假设,认为两总体方差相等(2分)
14.A表示有无高血压,有两个水平,A1表示有高血压,A2表示无高血压,,B表示谮短结果,B1表示诊断为冠心病以及可疑者,B2表示结果正常
一、选择题(每题2分,共10分)
DCCAC
二、填空题(每题2分,共10分)
6、 ,7、0.5 8、 9、 10、拒绝
三、计算题(20+15=35)
11.(1) (5分)
所以矩估计为无偏估计(5分)
(2)似然函数 (3)
为的单调增函数,所以 (2分)
的密度函数为
(3分)
12
.(1)
(2)
当 时,犯第二类错误的概率
16 和 分别是来自 和 的样本,
(3分)
(4分)
拒绝原假设,高血压与冠心病有关联
15.
(1)因为因子自由度为3,所以4个水平(2分)
来源平方和自由度均方 比
因子A 4604.375 3 1534.7917 8.46
误差e 5081.5 28 181.4821
总和T 9685.875
(2) ,各车间生产的酸乳酪中脂肪含量的均值有显著差异
五、证明题(7分)

《概率论与数理统计》习题五答案

《概率论与数理统计》习题五答案

《概率论与数理统计》习题及答案习题五1.一颗骰子连续掷4次,点数总和记为X .估计P {10<X <18}.【解】设i X 表每次掷的点数,则41i i X X==∑22222221111117()123456,666666211111191()123456,6666666i i E X E X =⨯+⨯+⨯+⨯+⨯+⨯==⨯+⨯+⨯+⨯+⨯+⨯= 从而 22291735()()[()].6212i i i D X E X E X ⎛⎫=-=-= ⎪⎝⎭ 又X 1,X 2,X 3,X 4独立同分布.从而44117()()()414,2i i i i E X E X E X =====⨯=∑∑ 44113535()()()4.123i i i i D X D X D X =====⨯=∑∑ 所以 235/3{1018}{|14|4}10.271,4P X P X <<=-<≥-≈ 2. 假设一条生产线生产的产品合格率是0.8.要使一批产品的合格率达到在76%与84%之间的概率不小于90%,问这批产品至少要生产多少件?【解】令1,,0,i i X ⎧⎨⎩若第个产品是合格品其他情形.而至少要生产n 件,则i =1,2,…,n ,且X 1,X 2,…,X n 独立同分布,p =P {X i =1}=0.8.现要求n ,使得1{0.760.84}0.9.n i i X P n =≤≤≥∑即0.80.9ni X n P -≤≤≥∑ 由中心极限定理得0.840.80.760.80.9,0.160.16n n n n n n --⎛⎫⎛⎫Φ-Φ≥ ⎪ ⎪⎝⎭⎝⎭ 整理得0.95,10n ⎛⎫Φ≥ ⎪ ⎪⎝⎭查表 1.64,10n ≥ n ≥268.96, 故取n =269.3. 某车间有同型号机床200部,每部机床开动的概率为0.7,假定各机床开动与否互不影响,开动时每部机床消耗电能15个单位.问至少供应多少单位电能才可以95%的概率保证不致因供电不足而影响生产.【解】要确定最低的供应的电能量,应先确定此车间同时开动的机床数目最大值m ,而m要满足200部机床中同时开动的机床数目不超过m 的概率为95%,于是我们只要供应15m 单位电能就可满足要求.令X 表同时开动机床数目,则X ~B (200,0.7),()140,()42,E X D X ==1400.95{0}().42m P X m P X m -⎛⎫=≤≤=≤=Φ ⎪⎝⎭查表知 140 1.64,42m -= ,m =151. 所以供电能151×15=2265(单位).4. 一加法器同时收到20个噪声电压V k (k =1,2,…,20),设它们是相互独立的随机变量,且都在区间(0,10)上服从均匀分布.记V =∑=201k k V,求P {V >105}的近似值.【解】易知:E (V k )=5,D (V k )=10012,k =1,2,…,20 由中心极限定理知,随机变量201205~(0,1).10010020201212k k V Z N =-⨯==⨯⨯∑近似的 于是105205{105}1010020201212P V P ⎧⎫⎪⎪-⨯⎪>=>⎨⎬⎪⎪⨯⎪⎪⎩⎭1000.3871(0.387)0.348,102012V P ⎧⎫⎪⎪-⎪⎪=>≈-Φ=⎨⎬⎪⎪⎭即有 P {V >105}≈0.3485. 有一批建筑房屋用的木柱,其中80%的长度不小于3m.现从这批木柱中随机地取出100根,问其中至少有30根短于3m 的概率是多少?【解】设100根中有X 根短于3m ,则X ~B (100,0.2)从而{30}1{30}11000.20.8P X P X ≥=-<≈-Φ⨯⨯ 1(2.5)10.99380.0062.=-Φ=-=6. 某药厂断言,该厂生产的某种药品对于医治一种疑难的血液病的治愈率为0.8.医院检验员任意抽查100个服用此药品的病人,如果其中多于75人治愈,就接受这一断言,否则就拒绝这一断言.(1) 若实际上此药品对这种疾病的治愈率是0.8,问接受这一断言的概率是多少?(2) 若实际上此药品对这种疾病的治愈率是0.7,问接受这一断言的概率是多少?【解】1,,1,2,,100.0,.i i X i ⎧==⎨⎩第人治愈其他令1001.ii X X ==∑ (1) X ~B (100,0.8),1001{75}1{75}11000.80.2i i P X P X =>=-≤≈-Φ⨯⨯∑1( 1.25)(1.25)0.8944.=-Φ-=Φ=(2) X ~B (100,0.7), 1001{75}1{75}11000.70.3i i P X P X =>=-≤≈-Φ⨯⨯∑1(1(1.09)0.1379.21=-Φ=-Φ= 7. 用Laplace 中心极限定理近似计算从一批废品率为0.05的产品中,任取1000件,其中有20件废品的概率.【解】令1000件中废品数X ,则 p =0.05,n =1000,X ~B (1000,0.05),E (X )=50,D (X )=47.5.故130{20} 6.895 6.89547.547.5P X ϕ⎛⎫===- ⎪⎝⎭6130 4.510.6.895 6.895ϕ-⎛⎫==⨯ ⎪⎝⎭8. 设有30个电子器件.它们的使用寿命T 1,…,T 30服从参数λ=0.1[单位:(小时)-1]的指数分布,其使用情况是第一个损坏第二个立即使用,以此类推.令T 为30个器件使用的总计时间,求T 超过350小时的概率. 【解】11()10,0.1i E T λ=== 21()100,i D T λ== ()1030300,E T =⨯= ()3000.D T =故{350}111(0.913)0.1814.P T >≈-Φ=-Φ=-Φ= 9. 上题中的电子器件若每件为a 元,那么在年计划中一年至少需多少元才能以95%的概率保证够用(假定一年有306个工作日,每个工作日为8小时).【解】设至少需n 件才够用.则E (T i )=10,D (T i )=100,E (T )=10n ,D (T )=100n .从而1{3068}0.95,n i i P T =≥⨯=∑即0.05.≈Φ 故0.95, 1.64272.n =Φ=≈所以需272a 元.10. 对于一个学生而言,来参加家长会的家长人数是一个随机变量,设一个学生无家长、1名家长、2名家长来参加会议的概率分别为0.05,0.8,0.15.若学校共有400名学生,设各学生参加会议的家长数相与独立,且服从同一分布.(1) 求参加会议的家长数X 超过450的概率?(2) 求有1名家长来参加会议的学生数不多于340的概率.易知E (X i =1.1),D (X i )=0.19,i =1,2, (400)而400i i X X=∑,由中心极限定理得400400 1.1~(0,1).i X N -⨯=∑近似地 于是{450}1{450}1P X P X >=-≤≈-Φ1(1.147)0.1357.=-Φ=(2) 以Y 记有一名家长来参加会议的学生数.则Y ~B (400,0.8)由拉普拉斯中心极限定理得3404000.8{340(2.5)0.9938.4000.80.2P Y -⨯⎛⎫≤≈Φ=Φ= ⎪⨯⨯⎝⎭11. 设男孩出生率为0.515,求在10000个新生婴儿中女孩不少于男孩的概率?【解】用X 表10000个婴儿中男孩的个数,则X ~B (10000,0.515)要求女孩个数不少于男孩个数的概率,即求P {X ≤5000}. 由中心极限定理有5000100000.515{5000}(3)1(3)0.00135.100000.5150.485P X -⨯⎛⎫≤≈Φ=Φ-=-Φ= ⎪⨯⨯⎝⎭12. 设有1000个人独立行动,每个人能够按时进入掩蔽体的概率为0.9.以95%概率估计,在一次行动中:(1)至少有多少个人能够进入?(2)至多有多少人能够进入?【解】用X i 表第i 个人能够按时进入掩蔽体(i =1,2,…,1000).令 S n =X 1+X 2+…+X 1000.(1) 设至少有m 人能够进入掩蔽体,要求P {m ≤S n ≤1000}≥0.95,事件90010000.9{}.10000.90.190n n S m m S --⨯⎛⎫≤=≤ ⎪⨯⨯⎝⎭ 由中心极限定理知:10000.9{}1{}10.95.10000.90.1n n m P m S P S m -⨯⎛⎫≤=-<≈-Φ≥ ⎪⨯⨯⎝⎭从而 9000.05,90m -⎛⎫Φ≤ ⎪⎝⎭ 故900 1.65,90m -=- 所以 m =900-15.65=884.35≈884人(2) 设至多有M 人能进入掩蔽体,要求P {0≤S n ≤M }≥0.95.{}0.95.90n P S M ≤≈Φ= 90M =900+15.65=915.65≈916人. 13. 在一定保险公司里有10000人参加保险,每人每年付12元保险费,在一年内一个人死亡的概率为0.006,死亡者其家属可向保险公司领得1000元赔偿费.求:(1) 保险公司没有利润的概率为多大;(2) 保险公司一年的利润不少于60000元的概率为多大?【解】设X 为在一年中参加保险者的死亡人数,则X ~B (10000,0.006).(1) 公司没有利润当且仅当“1000X =10000×12”即“X =120”.于是所求概率为1120100000.006{120}100000.0060.994100000.0060.994P X ϕ-⨯⎛⎫=≈ ⎪⨯⨯⨯⨯⎝⎭21(60/59.64)230.181116011e 59.6459.64259.640.0517e 0ϕπ--⎛⎫== ⎪⎝⎭=⨯≈(2) 因为“公司利润≥60000”当且仅当“0≤X ≤60”于是所求概率为{060}100000.0060.994100000.0060.994P X ≤≤≈Φ-Φ⨯⨯⨯⨯ (0)0.5.59.64⎛=Φ-Φ≈ ⎝ 14. 设随机变量X 和Y 的数学期望都是2,方差分别为1和4,而相关系数为0.5试根据契比雪夫不等式给出P {|X -Y |≥6}的估计. (2001研考)【解】令Z =X -Y ,有()0,()()()()2()() 3.E Z D Z D X Y D X D Y D X D Y ρ==-=+-=所以 2()31{|()|6}{||6}.63612D X Y P ZE Z P X Y --≥=-≥≤== 15. 某保险公司多年统计资料表明,在索赔户中,被盗索赔户占20%,以X 表示在随机抽查的100个索赔户中,因被盗向保险公司索赔的户数.(1) 写出X 的概率分布;(2) 利用中心极限定理,求被盗索赔户不少于14户且不多于30户的概率近似值.(1988研考)【解】(1) X 可看作100次重复独立试验中,被盗户数出现的次数,而在每次试验中被盗户出现的概率是0.2,因此,X ~B (100,0.2),故X 的概率分布是100100{}C 0.20.8,1,2,,100.k k k P X k k -===(2) 被盗索赔户不少于14户且不多于30户的概率即为事件{14≤X≤30}的概率.由中心极限定理,得{1430}1000.20.81000.20.8P X ≤≤≈Φ-Φ⨯⨯⨯⨯ (2.5)( 1.5)0.994[9.33]0.927.=Φ-Φ-=--=16. 一生产线生产的产品成箱包装,每箱的重量是随机的.假设每箱平均重50千克,标准差为5千克,若用最大载重量为5吨的汽车承运,试利用中心极限定理说明每辆车最多可以装多少箱,才能保障不超载的概率大于0.977.【解】设X i (i =1,2,…,n )是装运i 箱的重量(单位:千克),n 为所求的箱数,由条件知,可把X 1,X 2,…,X n 视为独立同分布的随机变量,而n 箱的总重量T n =X 1+X 2+…+X n 是独立同分布随机变量之和,由条件知:()50,i E X = 5,=()50,n E T n = =依中心极限定理,当n ~(0,1)N 近似地,故箱数n 取决于条件{5000}n P T P ≤=≤0.977(2).≈Φ>=Φ 2>解出n <98.0199,即最多可装98箱.。

数理统计习题及答案

数理统计习题及答案

数理统计习题及答案数理统计是应用数学的一个分支,它利用概率论的基本原理来分析和解释数据。

在数理统计中,我们经常需要解决各种习题来巩固和深化对统计概念和方法的理解。

以下是一些数理统计的习题以及相应的答案。

习题1:假设有一个正态分布的总体,其均值为μ=100,标准差为σ=15。

如果从中随机抽取一个样本大小为n=36,求样本均值的期望值和方差。

答案:样本均值的期望值等于总体均值,即E(\(\bar{X}\)) = μ = 100。

样本均值的方差由以下公式给出:Var(\(\bar{X}\)) = σ²/n = 15²/36 = 6.25。

习题2:一个工厂生产的灯泡寿命服从指数分布,其平均寿命为1000小时。

如果工厂每天生产1000个灯泡,求在接下来的30天内,工厂生产的灯泡中至少有一个灯泡寿命少于700小时的概率。

答案:灯泡寿命的指数分布参数λ=1/1000。

我们首先计算单个灯泡寿命超过700小时的概率,即P(X > 700) = e^(-λ*700)。

然后,我们计算1000个灯泡中所有灯泡寿命都超过700小时的概率,即(P(X > 700))^1000。

所以,至少有一个灯泡寿命少于700小时的概率为1 - (P(X > 700))^1000。

习题3:假设有一批产品,其中有5%的产品是次品。

如果从这批产品中随机抽取100个进行检验,求恰好有5个是次品的概率。

答案:这是一个二项分布问题,其中n=100,p=0.05。

使用二项分布概率公式P(X=k) = C(n, k) * p^k * (1-p)^(n-k),我们可以计算出恰好有5个次品的概率。

这里C(n, k)是组合数,表示从n个不同元素中取k个元素的组合数。

习题4:如果一个随机变量X服从正态分布N(0,1),求P(-1 < X < 1)。

答案:由于X服从标准正态分布,我们可以使用标准正态分布表来查找P(-1 < X < 1)的值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《数理统计B》单元自测题(五)一、填空题
1)设X i,X2, ,X n,是独立同分布的随机变量序列,且均值为,方差为2,那
么当n
充分大时,近似有X〜_________ 或
n X〜_____________ 。

特别是,当同为正态分布时,对于任意的n,都精确有X 〜______________________________ 或存〜

2)设X1,X2,,X n,是独立同分布的随机变量序列且EX i , DX i 2(i 1,2,)
1 n
那么;i1 X:依概率收敛于 _________ .
i 1
3)设X"2,X3,X4是来自正态总体 N(0,2 )的样本,令丫(X i X2)2(X3 X4)2, 则当C __________________ 时CY〜2(2)o
4) 设容量n = 10的样本的观察值为
7, 6,9, ,7,5,9, 6),则样本均值 _______ ,样本方差= ______________ 5)设X1,X2,…X n为来自正态总体:N( , 2)
的一个简单随机样本,则样本均值
服从______________
二、选择题
1 )设X 〜N( ,2)其中已知, 本,贝U 下列选项中不是统
计量 的是 _
A )X i X 2 X 3 D ) X
i 2)设X 〜(1,p) ,X i ,X 2, ,X n
,是来自X 的样本,那 么下列选项中不正确的是 _ A ) 当n 充分大 时, 近似有X 〜N p,
p(1 p) B ) P{X k} C n k p k (1 n k
P) , k 0,1,2, ,n C ) P{X
k } n C p k (1 n k 1 P) , k 0,1,2, ,n D ) P{X i k} k k C n P (1 n k “ p) ,1 i n
3)若 X 〜 t(n)
那么 2 A ) F(1,n) B ) F(n,1)
C ) 2(n)
D ) t(n) 未知,X i ,X 2,X 3样 B ) max{X i ,X 2,X 3
}
4)设X1,X2, X n为来自正态总体N( , 2)简单随机
样本,X是样本均值,记S12七n
(X i X)2,
n 1
S;
n』X)2, n 1i1(Xi
S 42 1 n (X i )2,则服从自由度为n 1的t 分布的随
7
机变量是 ________
A) t X B) t X C)
S/、_n 1 S 2/, n 1
5)设 X l ,X 2,…X n , X n+1,…,X n+m 是来自
正态总体N (O , 2)的容量为n+m 的样本,则统
2
-服从的分布是 _____ 2
i
S 3 / n D) X
S 4
计量V n
m LJ
n m n i n 1 A) F(m, n) F(n, m) B) F(n 1,m 1)
D) F(m 1,n 1) C)
三、解答题
1)设供电网有1000盏电灯,夜晚每盏电灯开灯的概率均为0.7,并且彼此开闭与否相互独立,试用切比雪夫不等式和中心极限定理分别估算夜晚同时开灯数在6800到7200之间的概率。

2)一系统是由n 个相互独立起作用的部件组成,每个部件正常工作的概率为0.9 ,且必须至少由80%的部件正常工作,系统才能正常工作,问n 至少为多大时,才能使系统正常工作的概率不低于0.95?
3)甲乙两电影院在竞争1000名观众,假设每位观众在选择时随机的,且彼此相互独立,问甲至少应设多少个座位,才能使观众因无座位而离去的概率小于1%。

4)设总体X服从正态分布,又设X与S2分别为样本均值和样本方差,又设X ni: N( , 2),且X n1与X i,X2, ,X n相互独立,求统计量¥层的分布。

5)在天平上重复称量一重为的物品,假设各次称量结果相互独立且同服从正态分布
N( ,0.22),若以X n表示n次称量结果的算术平均值,为使P |X n a 0.1 0.95成立,求n的最小值应不小于的自然数?
四、证明题
设X1,X2, ,X n是来自总体X的简单样本,E(XJ
a(i 1,2,3,4)存在佃a;0),证明当n充分大时, 1 X2近似服从正态分布。

n。

相关文档
最新文档