北师大版九年级数学上菱形的性质与判定课堂

合集下载

北师大版九年级上册菱形的性质与判定课件

北师大版九年级上册菱形的性质与判定课件

想一想
菱形是特殊的平行四边形,它具有一般 平行四边形的所有性质。你能列举一些这样 的性质吗?
对边平行; 边 对边相等;
对角线 对角线互相平分;

对角相等; 邻角互补;
菱形是中心对称图形。
菱形还具有哪些特殊的性质
做一做
请同学们用菱形纸片折 一折,回答下列问题:
(1)菱形是轴对称图形吗?如果是,它有几 条对称轴?对称轴之间有什么位置关系?
B
C
同理: AC平分∠BCD;
BD平分∠ABC和∠ADC
边 菱形的两组对边平行且相等
A
菱形的四条边相等
菱形的两组对角分别相等
角 菱形的邻角互补
D
O
C
B
菱形的两条对角线互相垂直平分 对角线
并且每一条对角线平分一组对角.
2、菱形既是中心对称图形,又是轴对称图形。
当堂训练
1.如图1,菱形ABCD中∠ABC=60°,则∠BAC=__6_0_°_.
除此之外,菱形还有哪 些性质呢?我们一起来 解决知识技能第三题。
菱形的每一条对角线平分一组对角.
已知:菱形ABCD的对角线AC和BD相交于点O.
求证:AC平分∠BAD和∠BCD ; BD平分∠ABC和∠ADC .
证明:∵四边形ABCD是菱形
∴AB=AD
A
D
∴△ABD是等腰三角形,
O
又∵BO=DO
∴AC平分∠BAD
课堂小结
1、菱形的定义: 一组邻边相等的平行四边形是菱形。
2、菱形的性质 3、菱形具有平行四边形的所有性质。
作业
习题1.1
知识技能 1、2、3 数学理解 4
(4)对角线互相平分的四边形是平行四边形。 3.平行四边形是中心对称图形,其对角线的交点

北师大版九年级数学上册教学课件:1.1菱形的性质与判定 (共36张PPT)

北师大版九年级数学上册教学课件:1.1菱形的性质与判定 (共36张PPT)

拓展点一
拓展点二
拓展点三
拓展点一
拓展点二
拓展点三
拓展点二 菱形判定方法的综合应用 例2 (2016· 沈阳)如图,△ABC≌△ABD,点E在边AB上,CE∥BD,连 接DE.求证:
(1)∠CEB=∠CBE; (2)四边形BCED是菱形. 分析:(1)欲证明∠CEB=∠CBE,只要证明∠CEB=∠ABD, ∠CBE=∠ABD即可. (2)先证明四边形BCED是平行四边形,再根据BC=BD即可判定.
分析:根据AB=AD及AE为∠BAD的平分线可得出∠1=∠2,从而证 得△BAE≌△DAE,这样就得出四边形ABED为平行四边形,然后根据 菱形的判定定理即可得出结论.
知识点一
知识点二
知识点三
证明:如图,∵AE平分∠BAD, ∴∠1=∠2. ∵AB=AD,AE=AE, ∴△BAE≌△DAE.∴BE=DE. ∵AD∥BC,∴∠2=∠3=∠1. ∴AB=BE. ∴AB=BE=DE=AD. ∴四边形ABED是菱形.
1识点二
知识点三
知识点一 菱形的定义 有一组邻边相等的平行四边形叫做菱形. 名师解读 几何中的定义都有两重性:一是可作为一条性质,二是 可作为一条判定. (1)根据菱形的定义,判断一个四边形是菱形必须同时具备两个 条件: ①四边形是平行四边形; ②四边形有一组邻边相等. (2)由菱形的定义可知,一个四边形是菱形,则具有如下性质: ①菱形是平行四边形; ②菱形有一组邻边相等.
知识点一
知识点二
知识点三
例2 (2016· 淮安)已知:如图,在菱形ABCD中,点E,F分别为边 CD,AD的中点,连接AE,CF,求证:△ADE≌△CDF. 分析:由菱形的性质得出AD=CD,由中点的定义证出DE=DF,由 SAS证明△ADE≌△CDF即可. 证明:∵四边形ABCD是菱形, ∴AD=CD, ∵点E,F分别为边CD,AD的中点, ∴AD=2DF,CD=2DE,∴DE=DF,

北师大版九年级数学上册《菱形的性质与判定》优课件(共27张PPT)

北师大版九年级数学上册《菱形的性质与判定》优课件(共27张PPT)

菱形
有一组邻边相等的平行四边形
有一组邻边相等 的平行四边形叫做菱形
A
∵四边形ABCD
是平行四边形
B
D
AB=BC
C
∴四边形ABCD
是菱形
感受生活
你能举出生活中你看到的菱形吗?
菱形就在我们身边
感受生活
三菱汽车标志欣赏
活动三:折一折 剪一剪
如何利用折纸、剪切的方法,既快又准 确地剪出一个菱形的纸片?
同理: DB平分∠ABC;
(2)在△DAC中,又∵AO=CO AC平分∠DAB和∠DCB
D
O
A
C
B
(1)菱形具有平行四边形的一切性质;
(2)菱形的四条边都相等;
(3)菱形的两条对角线互相垂直, 并且每一条对角线平分一组对角;
D
边 菱形的两组对边平行且相等 A
O
C
菱形的四条边相等
B 数学语言
菱形的两组对角分别相等 ∵四边形ABCD是菱形
第一章特殊的平行四边形
第一节菱形
活动一:
边 平行四
边形的 性质:
对角线
平行四边形的对边平行; 平行四边形的对边相等;
平行四边形的对角线互相平分;

平行四边形的对角相等;
平行四边形的邻角互补;
活动二:
在平行四边形中,如果内角大小保持不 变仅改变边的长度,能否得到一个特殊 的平行四边形?
平行四边形
邻边相等
BD 2 BO 34 . 64 花坛的面积
S 菱形 ABCD
1 AC • BD 2
346 . 4 m 2
活动四:做一做
1、菱形ABCD两条对角线BD、AC长分
别是6cm和8cm,求菱形的周长和面积。

1.1菱形的性质与判定教学设计-2024-2025学年北师大版数学九年级上册

1.1菱形的性质与判定教学设计-2024-2025学年北师大版数学九年级上册
2. 评价方式单一:当前的评价方式过于注重考试成绩,忽视了学生的过程表现和创新能力,需要多元化评价学生的学习成果。
3. 教学内容与实际应用脱节:部分学生反映菱形的性质与判定知识与实际生活应用关联不大,需要加强与实际应用的结合,提高学生的学习动机。
(三)改进措施
1. 增加课堂互动:通过提问、小组讨论等方式,增加学生的参与度,鼓励学生积极思考和表达自己的观点。
(三)新课呈现(预计用时:25分钟)
知识讲解:
清晰、准确地讲解菱形的性质与判定知识点,结合实例帮助学生理解。
突出重点,强调难点,通过对比、归纳等方法帮助学生加深记忆。
互动探究:
设计小组讨论环节,让学生围绕菱形的性质与判定问题展开讨论,培养学生的合作精神和沟通能力。
鼓励学生提出自己的观点和疑问,引导学生深入思考,拓展思维。
知识拓展:
介绍与菱形的性质与判定内容相关的拓展知识,拓宽学生的知识视野。
引导学生关注学科前沿动态,培养学生的创新意识和探索精神。
情感升华:
结合菱形的性质与判定内容,引导学生思考学科与生活的联系,培养学生的社会责任感。
鼓励学生分享学习菱形的性质与判定的心得和体会,增进师生之间的情感交流。
(六)课堂小结(预计用时:2分钟)
3. 相邻角互补
4. 菱形中心对称
判定:
1. 四边相等的四边形
2. 对角线互相垂直平分的四边形
3. 相邻角互补的四边形
4. 中心对称的四边形
```
板书设计应根据实际教学情况和学生需求进行调整和优化,以达到最佳教学效果。
八、反思改进措施
(一)教学特色创新
1. 实践教学:在菱形的性质与判定教学中,通过实际操作和实验,让学生亲身体验菱形的性质和判定方法,提高学生的实践能力和解决问题的能力。

1.1 菱形的性质与判定 第2课时九年级上册数学北师大版

1.1 菱形的性质与判定 第2课时九年级上册数学北师大版
第一章 特殊平行四边形
1.1 菱形的性质与判定(第2课时)
1. 菱形的定义? 2. 如图1,已知四边形ABCD是一个菱形,则它的边有什么特 点?对角线有什么特点?
图1
3. 如图2,已知菱形ABCD的对角线AC,BD相交于点O, 并且AC=6 cm, BD=8 cm,则菱形ABCD的周长为
20 cm.
图2
根据菱形的定义,邻边相等的平行四边形是菱形. 除此之外,你认为还有什么条件可以判断一个平行四 边形是菱形?先想一想,再与同伴交流.
小明的想法 平行四边形的不少性质定理与判定定理都是互逆命题. 受此启 发,我猜想:四边相等的平行四边形是菱形,对角线垂直的平行 四边形是菱形.
小颖的想法
我觉得,对角线互相垂直的平行四边形有可能是菱形. 但“四 边相等的平行四边形是菱形”实际上与“邻边相等的平行四边形 是菱形”一样.
先将一张长方形的纸对折,再对折,然后沿图中的虚线剪下,将 纸展开,就得到了一个菱形.
对折
再对折 沿虚线剪开
你能说说这样做的道理吗?
上述方法是利用轴对称制作了一个四边相等的四边形, 因此一定是菱形.
例1 已知:如图9,在□ABCD中,对角线AC与BD交 于点O, AB= 5 ,OA=2,OB=1. 求证:□ABCD是菱形.
C
图5
以下是小刚的做法:
如图6,分别以A,C为圆心,以大于
1 2
A
AC的长度为半径作弧,两弧分别交于点B,
D,依次连接 A,B,C,D,四边形ABCD
看上去是菱形.
B
C D 图6
你是怎么做的?你认为小刚的做法正确吗?与同伴交流.
探究2 四条边相等的四边形是菱形吗?
已知:如图7,在四边形ABCD中,AB=BC=CD=DA.

1.1菱形的性质与判定课件初中数学北师大版九年级上册

1.1菱形的性质与判定课件初中数学北师大版九年级上册
∴ BD∥ CE. ∴∠ABO= ∠E=50°.
又∵四边形ABCD 是菱形,∴ AC⊥ BD. ∴∠ AOB=90°.
∴∠ BAO=180 °-∠ AOB-∠ ABO=40°.
感悟新知
知2-练
2-1. 如图, 在菱形ABCD 中, ∠ BAD=
80 °,AB 的垂直平分线交对角线
AC 于点F,E 为垂足,连接DF,
∴AB∥CD.∴∠BEC=∠DCE.
∵点O是AD的中点,∴AO=DO.
又∵∠AOE=∠DOC,
∴△AEO≌△DCO(AAS).∴AE=DC.
又∵AE∥DC,∴四边形ACDE是平行四边形.
感悟新知
知1-练
(2)若AB=AC, 判断四边形ACDE 的形状,并说明理由.
解:四边形ACDE是菱形.理由如下:
学习目标
第一章 特殊平行四边形
1 菱形的性质与判定
学习目标
1 课时讲授 菱形的定义
菱形的性质
菱形的判定
2 课时流程 菱形的面积
逐点
导讲练
课堂
小结
作业
提升
感悟新知
知识点 1 菱形的定义
知1-讲
两个条件缺一不可.
有一组邻边相等的平行四边形叫做菱形.
如图1-1-1,在ABCD 中,若
AB=BC( 或BC=CD 或CD=DA 或DA=AB),
B.1
D. 3
D )
感悟新知ቤተ መጻሕፍቲ ባይዱ
知3-讲
知识点 3 菱形的判定
感悟新知


文字语言
边 定 有一组邻边相
义 等的平行四边
法 形叫做菱形
定 四边相等的四
理 边形是菱形
对 定 对角线互相垂

北师大版九年级上册1.1菱形的性质与判定(第1课时)课件

北师大版九年级上册1.1菱形的性质与判定(第1课时)课件


定理(对角线的性质): 菱形的对角线互相
垂直.
所有对角线互相垂直的四边形的面积都 等于其两条对角线乘积的一半.
教学过程
分层作业

第一层:第4页习题1、2题.


第二层:第4页习题1、2、3、4题.

教学过程
结 束
感谢聆听


定理(对角线的性质): 菱形的对角线互相垂直. 有两条对称轴,它们互相垂直.
将△ABO沿点A到点C的方向平移, 通过上面的折纸活动,我们可以发现:
已知:如图 ,在菱形 ABCD 中,AB = AD,对角线 AC 与 BD 相交于点O.
精 得到△A'B'O'.当点A'与点C重合 定理(边的性质): 菱形的四条边相等. 析 时,点A与点B'之间的距离为 如图,菱形ABCD的对角线AC,BD交于点O,AC=4,BD=16,将△ABO沿点A到点C的方向平移,得到△A'B'O'.
A
授 (2)AC⊥BD.
B
O
C
D
教学过程
证一证
用菱形纸片折一折,回答下列问题:
你能列举一些这样的性质吗?
菱形的四条边相等,对角线互相垂直.
证明:(1)∵四边形 ABCD 是菱形, 定理(边的性质): 菱形的四条边相等.
通过上面的折纸活动和证明,菱形有如下的性质: (2)菱形中有哪些相等的线段?
新 ∴AB=CD,AD=BC(菱形的对边相等). 定理(边的性质): 菱形的四条边相等.
新 对称图形.

定理(边的性质): 菱形的四条边相等.
定理(对角线的性质): 菱形的对角线互相
垂直.

北师大版九年级数学上册第1章1.1菱形的性质与判定(3)优秀教学案例

北师大版九年级数学上册第1章1.1菱形的性质与判定(3)优秀教学案例
2.引导学生通过交流、分享、互相评价,共同发现和证明菱形的性质,提高学生的学习效果。
3.鼓励学生提出问题,培养学生的批判性思维和探究精神。
(四)总结归纳
1.引导学生总结菱形的性质和判定方法,加深学生对菱形知识的理解。
2.学生通过自我评价、同伴评价和教师的评价,全面了解自己的学习成果和进步。
3.教师根据学生的表现,及时给予反馈和指导,帮助学生提高学习能力,达到学习目标。
1.引导学生观察菱形的图形,发现菱形的性质,如四条边相等、对角线互相垂直平分等。
2.通过几何画板或实物模型,演示菱形的性质,让学生直观地理解菱形的特征。
3.引导学生探究菱形的判定方法,如对角线互相垂直平分且四条边相等的四边形是菱形。
(三)学生小组讨论
1.设计具有挑战性的数学问题,让学生在小组内进行讨论和探究,如计算菱形的面积、证明菱形的性质等。
(五)作业小结
1.设计具有针对性的作业,让学生巩固所学知识,提高学生的应用能力。
2.学生完成作业后,进行自我检查和反思,发现自己的优点和不足,制定改进的措施。
3.教师对学生的作业进行批改和评价,及时了解学生的学习情况,为下一步的教学提供参考。
在教学过程中,我注重启发学生思考,引导学生发现知识之间的联系,培养学生独立思考和合作交流的能力。同时,我运用多媒体教学手段,为学生提供丰富的学习资源,增强学生的直观感受,使学生在轻松愉快的氛围中学习,提高学生的学习效果。通过本节课的学习,学生不仅能够掌握菱形的性质和判定方法,还能够培养自己的几何直观能力、逻辑思维能力和解决问题的能力。
五、案例亮点
1.生活情境导入:通过展示实物和图片,让学生直观地感受到菱形的实际应用,激发了学生的学习兴趣,增强了学生的学习动力。这种生活情境的导入方式,使学生能够更好地理解菱形的实际意义,为后续的学习打下了坚实的基础。

北师大版九年级数学上册1.1.1菱形的性质与判定优秀教学案例

北师大版九年级数学上册1.1.1菱形的性质与判定优秀教学案例
本节课的内容与学生的生活实际紧密相连,便于激发学生的学习兴趣。同时,本节课的教学内容也是中考的热点,对于提高学生的数学素养具有重要意义。因此,在教学过程中,教师需要注重引导学生发现规律,概括结论,并通过大量的练习,让学生在实践中掌握菱形的性质与判定方法。
二、教学目标
(一)知识与技能
1.学生能够理解菱形的定义,掌握菱形的性质,包括对角线互相垂直平分、四条边相等、对角相等等。
3.教师对学生的作业进行及时批改,给予评价和反馈,关注学生的成长和进步。
作为一名特级教师,我深知教学内容与过程的重要性,它不仅能提高学生的学习效果,也能提升教师的教学水平。在教学过程中,我将注重导入新课、讲授新知、学生小组讨论、总结归纳和作业小结等环节,以有效地提升学生的数学素养。同时,我也会关注学生的情感态度与价值观的培养,让数学教学真正融入到学生的日常生活中。
四、教学内容与过程
(一)导入新课
1.教师通过展示一些实际的图形,如钻石、蜂巢等,引导学生发现这些图形都具有菱形的特征,从而引出本节课的主题——菱形的性质与判定。
2.教师提出问题:“你们认为菱形有哪些性质?”,“如何判断一个四边形是否为菱形?”引导学生思考,激发学生的学习兴趣。
3.教师展示一个菱形的实物模型,让学生直观地感受菱形的形状和特点,为接下来的学习做好铺垫。
5.关注学生情感态度与价值观的培养:在整个教学过程中,教师不仅注重知识的传授,还关注学生的情感态度与价值观的培养。通过引导学生发现菱形的实际应用,让学生体验到数学与生活的紧密联系,提高学生对数学的兴趣和热情。同时,教师还注重培养学生的团队合作意识,让他们在学习过程中感受到合作的重要性。
三、教学策略
(一)情景创设
1.结合生活实际,创设与菱形相关的问题情境,如在PPT中展示一些实际的图形,如钻石、蜂巢等,引导学生发现这些图形都具有菱形的特征。

北师大版数学九年级上册 菱形的性质与判定 第3课时

北师大版数学九年级上册    菱形的性质与判定 第3课时

回忆:菱形有哪些性质?
2. 如图2所示,在□ABCD中添加一个条件使其成为菱形:
添加方式 1:一组邻边相等;
B
添加方式 2:AC⊥BD.
A
C
D 图2
回忆:菱形有哪些判定定理?
例1 如图3,四边形ABCD是边长为13 cm的菱形,其中 对角线BD长为10 cm.
求:(1)对角线AC的长度;
图3
解:(1)∵四边形ABCD是菱形,
D
图7
3. 已知:如图8,在四边形ABCD中,AD=BC,点E,F,G, H
分别是AB,CD,AC,BD的中点,则四边形EGFH是( B )
A.矩形
B.菱形
C.等腰梯形 D.正方形
图8
4. 如图9,在Rt△ABC中, ∠ACB=90°,∠BAC=60°,BC的
垂直平分线分别交BC和AB于点D,E,点F在DE的延长线上,
1. 如图6所示,菱形ABCD的周长为40 cm,它的一条对角 线BD长为10 cm,则∠ABC= 120 °,AC= 10 3 cm.
B
A
C
D 图6
2. 已知:如图7,四边形ABCD是菱形,对角线AC 和BD相交于
点O,AC=4 cm,BD=8 cm,则这个菱形的面积是 16 cm².
A O B C
图4
答案:(1) 10 cm,(2) 9.6 cm . 思考:求菱形面积的方法有几种? 重大发现:菱形的面积等于其对角线乘积的一半.
做一做
如图5,两张等宽的纸条交叉重叠在一起, 重叠部分ABCD是菱形吗?为什么?
图5
图5
重叠的部分ABCD是菱形. 首先要根据纸条的两边长 互相平行说明四边形ABCD是平行四边形;然后由纸条等 宽说明两条邻边上的高相等,进而利用平行四边形的面 积说明两邻边相等.

北师大九上数学菱形的性质和判定课堂讲义及练习(含答案)

北师大九上数学菱形的性质和判定课堂讲义及练习(含答案)

1.1菱形的性质和判定【菱形的性质】1.菱形的定义有一组邻边相等的平行四边形叫做菱形.符号语言:∵四边形ABCD是平行四边形,且AB=BC,∴四边形ABCD是菱形 .温馨提示:①菱形必须满足两个条件:一是平行四边形;二是一组邻边相等;②菱形是特殊的平行四边形,即当一个平行四边形满足一组邻边相等时,该平行四边形是菱形,不能错误地认为有一组邻边相等的四边形就是菱形;③菱形的定义既提供了菱形的基本性质,也提供了基本判定方法。

2.菱形的性质(1)菱形具有平行四边形的所有性质.(2)菱形的四条边都相等.(3)菱形的两条对角线互相垂直,并且每一条对角线平分一组对角.(4)菱形是轴对称图形,它有两条对称轴,对角线所在直线就是它的对称轴.菱形又是中心对称图形,对角线的交点为对称中心.菱形中相等的线段:AB = CD = AD = BC.OA = OC ,OB = OD.菱形中相等的角:∠AOB = ∠DOC = ∠AOD = ∠BOC = 90°.∠ADC=∠ABC.∠DAB=∠DCB∠1 = ∠2 = ∠3 = ∠4,∠5 = ∠6 = ∠7 = ∠8.菱形中的全等三角形:全等的等腰三角形有:,全等的直角三角形有:点拨:有关菱形问题可转化为直角三角形或等腰三角形的问题来解决(转化思想).温馨提示:①菱形具有平行四边形的一切性质;②“菱形的对角线互相垂直”这一性质可用来证明两条线段互相垂直,“菱形的每一条对角线平分一组对角”这一性质可用来证明角相等;③菱形的两条对角线分菱形为四个全等的直角三角形。

1、下列四边形中不一定为菱形的是()A. 对角线相等的平行四边形B. 对角线平分一组对角的平行四边形C. 对角线互相垂直的平行四边形D. 用两个全等的等边三角形拼成的四边形2.如图,菱形的两条对角线相交于O,若AC=6,BD=4,则菱形ABCD的周长是。

3.菱形ABCD的两条对角线长分别为6和8,则它的周长和面积分别为()A. 28、48B.20、24C.28、24D.20、484.如图,在菱形ABCD中,AB=5,∠B:∠BCD=1:2,则对角线AC等于()A. 5B. 10C. 15D. 205.如图,已知菱形ABCD的周长为16,面积为,E为AB的中点,若P为对角线BD上一动点,则EP+AP的最小值为( )A. 2B. 2C. 4D. 4第2题第3题第4题第5题6.如图,已知四边形ABCD是菱形,DE⊥AB,DF⊥BC,求证:△ADE≌△CDF.7.如图,已知E、F分别是▱ABCD的边BC、AD上的点,且BE=DF .(1)求证:四边形AECF是平行四边形;(2)若四边形AECF是菱形,且BC=10,∠BAC=90°,求BE的长.8.如图,在菱形ABCD中,AC和BD相交于点O,过点O的线段EF与一组对边AB,CD分别相交于点E,F.(1)求证:AE=CF;(2)若AB=2,点E是AB中点,求EF的长.【菱形的判定】1. 菱形的判定定理(1)定义法:有一组邻边相等的平行四边形是菱形.(2)对角线互相垂直的平行四边形是菱形 .(3)四边相等的四边形是菱形 .①证明一个四边形是菱形,一般情况下,先证明它是一个平行四边形,然后要么证明“一组邻边相等”,要么证明“对角线互相垂直”.若要直接证明一个四边形是菱形,只要证明“四条边相等”即可;②对角线互相垂直平分的四边形是菱形;③对角线平分一个内角的平行四边形是菱形。

北师大版九年级数学上册《菱形的性质与判定》第3课时示范公开课教学设计

北师大版九年级数学上册《菱形的性质与判定》第3课时示范公开课教学设计

第一章特殊的平行四边形1 菱形的性质与判定第3课时一、教学目标1.能灵活运用菱形的性质定理及判定定理解决一些相关问题,并掌握菱形面积的求法.2.运用菱形知识解决具体问题,培养逻辑推理能力和演绎能力.3.经历菱形性质定理及判定定理的应用过程,体会数形结合、转化等思想方法.4.体验数学活动来源于生活又服务于生活,体会菱形的图形美,提高学生的学习兴趣.二、教学重难点重点:理解并掌握菱形的面积公式.难点:运用菱形的性质定理与判定定理解决具体问题..三、教学用具电脑、多媒体、课件、教学用具等四、教学过程设计【复习回顾】教师活动:先提出问题让学生自由说一说,并填写表格,动画出示图形和符号语言.问题1:什么是菱形,菱形的性质有哪些?预设答案:菱形的定义:一组邻边相等的平行四边形叫做菱形.菱形的性质:①具有平行四边形的所有性质,是轴对称图形②菱形的四条边都相等③菱形的对角线互相垂直且平分追问:菱形的判定方法有哪些?预设答案:菱形的判定:①一组邻边相等的平行四边形是菱形②四边都相等的四边形是菱形③对角线互相垂直的平行四边形是菱形【试一试】如图所示:在 ABCD中添加一个条件使其成为菱形:添加方式1:_________________ .添加方式2:_________________ .预设答案:方式1:一组邻边相等;方式2:AC⊥BD【合作探究】预设答案:求菜地的面积实际上是求菱形的面积.想一想:菱形的面积怎么求?预设答案:菱形是特殊的平行四边形,可以根据求平行四边形的面积方法来求.教师引导学生作出菱形另一边上的高,并交流反馈.预设答案:过点A作AE⊥BC于点ES菱形ABCD=底×高=BC·AE追问:你还有别的方法吗?教师提示学生,菱形的对角线具有什么样的关系,能否从对角线的角度进行探究.【思考】菱形的对角线互相垂直,能否利用对角线来计算菱形的面积呢?预设答案:每一条对角线将菱形分成两个全等的三角形.解:⊥四边形ABCD是菱形,⊥AC⊥BD,⊥S菱形ABCD=S⊥ABC+S⊥ADC=1122AC BO AC DO ⋅+⋅()1=21=2AC BO DO AC BD +⋅追问:你发现了什么? 【归纳】求菱形面积的方法:菱形的面积=底×高菱形的面积=对角线乘积的一半.【典型例题】预设答案:重叠的部分ABCD是菱形.思考:说一说你的理由?预设答案:根据纸条的两长边互相平行得ABCD是平行四边形;再由纸条等宽得两条邻边上的高相等,进而利用平行四边形的面积得两邻边相等;从而可证ABCD是菱形.教师给出练习,随时观察学生完成情况并相应思维导图的形式呈现本节课的主要内容:教科书第9页。

北师大版九年级数学上册第1章1.1菱形的性质与判定优秀教学案例

北师大版九年级数学上册第1章1.1菱形的性质与判定优秀教学案例
最后,我结合学生的实际水平和课程要求,设计了丰富多样的教学活动,如观察实物、分组讨论、动手操作、解答问题等,使学生在实践中学习,提高他们的学习兴趣和参与度。同时,我注重发挥教师的主导作用,引导学生掌握学习方法,培养他们的自主学习能力。
二、教学目标
(一)知识与技能
1.学生能够理解菱形的定义,掌握菱形的性质,并能够运用菱形的性质解决实际问题。
2.引导学生通过观察、操作、思考、交流等途径,合作解决实际问题,培养他们的合作意识和问题解决能力。
3.教师巡回指导,给予学生必要的帮助和指导,促进他们的学习进程。
(四)总结归纳
1.教师引导学生进行小组讨论,总结菱形的性质和判定方法,归纳出关键点。
2.学生分享并汇报本小组的讨论成果,教பைடு நூலகம்进行点评和补充。
2.学生能够掌握菱形的判定方法,并能够运用判定方法判断一个四边形是否为菱形。
3.学生能够了解菱形与矩形、正方形的联系和区别,提高他们对平行四边形性质的理解和应用能力。
(二)过程与方法
1.学生通过观察实物和几何图形,培养他们的空间想象能力和观察能力。
2.学生通过分组讨论和动手操作,培养他们的合作意识和问题解决能力。
五、案例亮点
1.生活情境的创设:通过展示实际生活中的菱形物体,如菱形宝石、菱形海报等,引发学生对菱形的兴趣和好奇心。这种生活情境的创设使学生能够更好地理解和应用菱形的性质和判定方法,提高他们的学习兴趣和实际问题解决能力。
2.问题导向的教学策略:设计富有挑战性和实际意义的问题,引导学生思考和探索菱形的性质和判定方法。这种问题导向的教学策略能够激发学生的思维活跃度,培养他们的critical thinking能力和problem-solving能力。
3.设计有趣的教学游戏,如菱形拼图游戏,让学生在游戏中体验菱形的性质和判定方法,提高他们的学习兴趣。

北师大版初三上册菱形的性质与判定讲义

北师大版初三上册菱形的性质与判定讲义

北师大版初三上册1要点一、菱形的定义有一组邻边相等的平行四边形叫做菱形.要点二、菱形的性质菱形除了具有平行四边形的一切性质外,还有一些专门性质:1、.菱形的四条边都相等;2、菱形的两条对角线互相垂直,同时每一条对角线平分一组对角.3、菱形也是轴对称图形,有两条对称轴(对角线所在的直线),对称轴的交点确实是对称中心.菱形的面积:(1)一种是平行四边形的面积公式:底×高(2)另一种是两条对角线乘积的一半要点三、菱形的判定菱形的判定方法有三种:1.定义:有一组邻边相等的平行四边形是菱形.2.对角线互相垂直的平行四边形是菱形.3.四条边相等的四边形是菱形.典型例题:例1、下列四边形中不一定为菱形的是()A. 对角线相等的平行四边形B. 对角线平分一组对角的平行四边形C. 对角线互相垂直的平行四边形D. 用两个全等的等边三角形拼成的四边形【答案】A【解析】A. 对角线相等的平行四边形是矩形而不一定是菱形;B. 对角线平分一组对角的平行四边形是菱形;C. 对角线互相垂直的平行四边形是菱形;D. 用两个全等的等边三角形拼成的四边形四条边形等是菱形;例2、菱形的一个内角为60°,较短的一条对角线长4,则菱形的周长为_____________。

【答案】16【解析】菱形有一个内角为60°,则较短对角线与菱形的一组邻边构成一个等边三角形,∴可得边长为4,则菱形周长为16.【点睛】此题要紧考查菱形的性质和等边三角形的判定的运用,难度不大,关键熟练把握若菱形有一个内角为60°,则较短对角线与菱形的一组邻边构成一个等边三角形.例3、菱形的两条对角线长分别是14cm 和20cm ,则它的面积为__.【答案】140cm2【解析】∵菱形的面积等于对角线乘积的一半,∴面积S=12×14×20=140(cm2). 例4、如图所示,在菱形ABCD 中,AC =8,BD =10.求:(1)AB 的长.(2)菱形ABCD 的面积.解:(1)∵ 四边形ABCD 是菱形.∴ AC ⊥BD ,AO =12AC ,OB =12BD .又∵ AC =8,BD =10.∴ AO =12×8=4,OB =12×10=5.在Rt △ABO 中,222AB OA OB =+ (2)由菱形的性质可知: 118104022S AC BD ==⨯⨯=菱形ABCD . 例5、菱形的两条对角线长为6和8,则菱形的边长为________. 解:设该菱形为ABCD ,对角线相交于O ,AC =8,BD =6,由菱形性质知:AC 与BD 互相垂直平分,例6、菱形ABCD 中,∠A ∶∠B =1∶5,若周长为8,则此菱形的高等于( ).A.21B.4 C .1 D .2【答案】C ;提示:由题意,∠A =30°,边长为2,菱形的高等于12×2=1.例7、如图,在ABCD 中,对角线AC ,BD 相交于点O ,AB=5,AC =6,BD=8.(1)求证:四边形ABCD是菱形;(2)过点A作AH⊥BC于点H,求AH的长.【答案】(1)证明见解析(2) 245【解析】试题分析:(1)由平行四边形的对角线互相平分得到△AOB 的两条边OA、OB的长度,则依照勾股定理的逆定理判定∠AOB=90°,即平行四边形的对角线互相垂直平分,故四边形ABCD是菱形.(2)依照菱形的不变性,用不同方法求面积:平行四边形的面积=菱形的面积,可求解.试题解析:(1)证明:∵在ABCD中,对角线AC,BD相交于点O,AB=5,AC=6,BD=8,∴AO=AC=3,BO=BD=4,∵AB=5,且32+42=52,∴AO2+BO2=AB2,∴△AOB是直角三角形,且∠AOB=90°,∴AC⊥BD,∴四边形ABCD是菱形;(2)解:如图所示:∵四边形ABCD是菱形,∴BC=AB=5,∵S△ABC=AC•BO=BC•AH,∴×6×4=×5×AH,解得:AH=.例8、在四边形ABCD中,AB//CD,∠B=∠D.(1)求证:四边形ABCD为平行四边形;(2)若点P为对角线AC上的一点,PE⊥AB于E,PF⊥AD于F,且PE=PF,求证:四边形ABCD是菱形.【解析】试题分析:(1)依照平行线的性质和平行四边形的判定证明即可;(2)依照角平分线的性质和菱形的判定证明即可.试题解析:(1)∵AB∥CD,∴∠DCA=∠BAC,在△ADC与△ABC中,∴△ADC≌△ABC(AAS),∴AB=DC,∵AB∥CD,∴四边形ABCD为平行四边形;(2)∵四边形ABCD为平行四边形,∴∠DAB=∠DCB,∵PE⊥AB于E,PF⊥AD于F,且PE=PF,∴∠DAC=∠BAC=∠DCA=∠BCA,∴AB=BC,∴四边形ABCD是菱形.课后习题:1.在下列说法中,菱形对角线不具有的性质是( )A. 对角线互相垂直;B. 对角线所在的直线是对称轴;C. 对角线相等;D. 对角线互相平分.【解析】菱形的对角线互相垂直平分,菱形是轴对称图形,每一条对角线所在的直线确实是菱形的一条对称轴,故选C.2.如图,在菱形ABCD中,对角线AC、BD相交于点O,E为AB的中点,且OE=2,则菱形ABCD的周长为()A. 12B. 16C. 8D. 4【解析】试题解析:∵四边形ABCD为菱形,∴AC⊥BD,AB=BC=CD=DA,∴△AOB为直角三角形.∵OE=2,且点E为线段AB的中点,∴AB=2OE=4.C菱形ABCD=4AB= 4×4=16.故选B.3.已知菱形的周长为40cm,两条对角线之比3:4,则菱形面积为()A. 96cm2B. 48cm2C. 24cm2D. 12cm2【答案】A如图,设3AO xcm = , 4BO xcm = .∵菱形的周长为40cm ,有勾股定理得, ()()2223410x x += ,21=1216=96cm 2S ∴⨯⨯菱形 ,故选A. 4.菱形的一个内角为60°,较短的一条对角线长4,则菱形的周长为_____________。

北师大版数学九年级上册优秀教学案例:1.1菱形的性质与判定

北师大版数学九年级上册优秀教学案例:1.1菱形的性质与判定
教师在课前进行了充分的准备,通过查阅相关资料,设计了丰富的教学活动,旨在引导学生通过自主探究、合作交流的方式,发现并掌握菱形的性质与判定方法。同时,教师也注意到学生的学习差异,因此在教学过程中,采取了个性化的教学策略,尽量让每个学生都能在课堂上得到锻炼和提升。
二、教学目标
(一)知识与技能
1.让学生掌握菱形的定义及其性质,能够运用菱形的性质解决一些简单的问题。
3.教师总结学生提出的问题,引出本节课的主题:“菱形的性质与判定”。
(二)讲授新知
1.教师引导学生观察菱形的图形,引导学生发现菱形的定义及其性质。
2.教师通过几何画板等工具,演示菱形的性质,如对角线互相垂直平分、四边相等等。
3.教师引导学生理解菱形的判定方法,如对角线互相垂直平分且四边相等的四边形为菱形。
(三)学生小组讨论
1.教师将学生分成若干小组,每组学生共同探讨菱形的性质和判定方法。
2.教师设计小组讨论任务,如绘制菱形、验证菱形性质等,培养学生的团队协作能力。,提高学生的沟通能力。
(四)总结归纳
1.教师引导学生对自己的学习过程进行反思,总结菱形的性质和判定方法。
2.问题导向,培养学生独立思考能力:教师在教学过程中提出一系列具有挑战性的问题,引导学生进行思考、探究。学生通过独立思考、解决问题,提高了自己的逻辑思维能力和独立解决问题的能力。
3.小组合作,培养团队协作精神:教师将学生分成若干小组,进行合作学习。学生在小组内共同探讨菱形的性质和判定方法,分享学习心得,既培养了学生的团队协作能力,又提高了学生的沟通能力。
4.教育学生学会关爱集体,培养学生的团队协作精神。
三、教学策略
(一)情景创设
1.教师通过向学生展示生活中的菱形实例,如珠宝、瓷砖等,让学生感受到菱形的美感,激发学生学习菱形的兴趣。

北师大版九年级数学上册第1章1.1菱形的性质与判定说课稿

北师大版九年级数学上册第1章1.1菱形的性质与判定说课稿
2.多媒体资源:PPT、动画、视频等,展示菱形在实际生活中的应用,提高学生的学习兴趣;
3.技术工具:电子白板、课堂互动软件等,方便师生互动,实时反馈学生的学习情况。
(三)互动方式
为促进学生的参与和合作,我计划设计以下师生互动和生生互动环节:
1.师生互动:教师提问,引导学生思考,鼓励学生表达自己的观点,对学生的回答给予积极评价;
2.生生互动:组织学生进行小组讨论、合作探究,互相交流想法,共同解决问题;
3.课堂竞赛:设置小组竞赛,鼓励学生积极参与,提高学生的合作意识和竞争意识;
4.课后交流:利用网络平台,让学生在课后继续讨论、分享学习心得,拓宽学生的知识视野。
四、教学过程设计
(一)导入新课
为了快速吸引学生的注意力和兴趣,我将以生活中的实际例子导入新课。首先,展示一组包含菱形的图片,如菱形饰品、建筑物的菱形结构等,让学生观察并思考这些图片中的共同特征。然后,提出问题:“你们在生活中还见过哪些形状像这样的图形?”引导学生发现菱形在生活中的广泛应用,从而引出本节课的主题——菱形的性质与判定。
(二)学习障碍
学生在学习本节课之前,已经掌握了矩形、三角形的性质和判定方法,具备了一定的几何图形分析能力。但在学习菱形的性质与判定时,可能存在以下学习障碍:
1.对菱形性质的理解和记忆不够深刻,容易与其他图形混淆;
2.对菱形判定定理的运用不够熟练,难以判断复杂的四边形是否为菱形;
3.在解决实际问题中,缺乏将菱形性质和判定应用于问题求解的能力。
2.探究式教学:鼓励学生主动探究、发现、总结规律,有助于培养学生的创新精神和实践能力;
3.任务驱动法:以具体任务为驱动,促使学生积极参与,提高学生解决问题的能力和团队合作意识。
(二)媒体资源
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

又∵四边形ABCD是菱形
∴OB=OD (菱形的对角线互相平分)
在等腰三角形ABD中,
∵OB=OD
∴AO⊥BD
即AC⊥BD
9
菱形是特殊的平行四边形,它除具有平行四 边形的所有性质外,还有平行四边形所没 有的特殊性质:
定理
菱形的四条边都相等。
定理
菱形的两条对角线互相垂直。
10
例1 如图,在菱形ABCD中,对角线AC与BD相交于 点O,∠BAD=60°,BD=6,求菱形的边长AB和对角 线AC的长。
(1)菱形是轴对称图形吗?如果是,它有几条对 称轴?对称轴之间有什么位置关系?
菱形是轴对称图 形,有两条对称 轴,分别是两条 对角线所在的直 线,两条对称轴 互相垂直。
(2)菱形中有哪些相等的线段?
菱形的四条边相等。
5
结论
菱形是轴对称图形,有两条对称轴,是菱形领条 对角线所在的直线。两条对称轴互相垂直。 菱形的邻边相等,对边相等,四条边都相等。 通过上面的折纸活动,我们可以发现菱形的四条 边相等,对角线互相垂直。下面我们证明这些结 论。
18
已知,如图,在菱形ABCD 中,对角线AC 与BD 相 交于点O。求证:AC平分∠BAD 和∠BCD,BD 平分 ∠ABC 和∠ADC. 通过本题你 又能得到菱 形有什么性 质?
菱形的每条对角线平分一组对角。 19
如图,在菱形ABCD 中,对角线AC与BD相交于点 O,图中有多少个等腰三角形和直角三角形?
6
已知:如图,在菱形ABCD中,AB=AD,对角线AC与 BD相交于点O. 求证:(1)AB=BC=CD=AD;(2)AC⊥BD.
7
证明:(1)∵四边形ABCD是菱形, ∴AB = CD,AD= BC (菱形的对边相等)
又∵AB=AD ∴AB=BC=CD=AD
8
(2)∵AB=AD
∴△ABD是等腰三角形
20
1、菱形的周长是24,四个角的度数比是 1∶2∶1∶2,求两条对角线的长度。 2、菱形的一条对角线长是8,周长是32,求菱 形四个角的度数。 3、从菱形的钝角顶点向对边引垂线,如果垂线 平分对边,求菱形四个角的度数。 4、菱形的两条对角线的长度比是3∶4,且菱形 的周长是20,求菱形一组对边的距离。
2
15
已知菱形ABCD的两条对角线AC与BD相交于点O,且
AC=8cm,BD=6cm,求菱形的周长和面积.
解得: 菱形的周长为 20cm ,面积为24cm2
16
已知,如图,在菱形ABCD中,∠BAD=2 ∠B. 求证:△ABC 是等边三角形。
17
如图,在菱形ABCD中,BD=6,AC=8,求菱形 的周长。
21
已知:如图,四边形ABCD 是菱形,F是AB 上一 点,DF交AC于E,连接BE. 求证:∠AFD=∠CBE.
B
F
C
A E
D
22
在菱形ABCD 中,AE⊥BC于点E,AF⊥CD于点F, 且E,F分别为BC,CD的中点,求∠EAF的度数。
A D
F
B
EC
23
已知菱形ABCD 的两条对角线分别为6和8,M,N分 别是边BC,CD 的中点,P是对角线BD 上一点,求 PM+PN的最小值。
26
A D
P
N
B
M
C
24
课堂小结
1、菱形的定义:一组邻边相等的平行四边形 是菱形。
2、菱形的性质:①菱形是轴对称图形,对称轴 是两条对角线所在的直线;②菱形的四条边都 相等;③菱形的对角线互相垂直平分。
3、菱形具有平行四边形的所有,应用菱形的 性质可以进行计算和推理。
25
作业
? 习题1.1
知识技能 1、2、3 数学理解 4
第一章 特殊平行四边形
第1节 菱形的性质与判定(一)
1
下面几幅图片中都含有一些平行四边形。观察这些 平行四边形,你能发现它们有什么样的共同特征? 与下图相比较,这些平行四边形特殊在哪里?
这些平行四边形的邻边相等。 像这样的平行四边形叫做菱形。 你能给菱形下定义吗? 有一组邻边相等的平行四边形叫做菱形。
2
你图能片举中出有一你些熟生悉活的中图菱形形吗的?例子吗?与同交流。
3
想一想
(1)菱形是特殊的平行四边形,它具有一般平行 四边形的所有性质。你能列举一些这样的性质 吗?
菱形的对边平行且相等,对角相等,对角线互相 平分。中心对称图形。 (2)你认为菱形还具有哪些特殊的性质?与同 伴交流。
4
做一做 用菱形纸片折一折,回答下列问题:
11
12
随堂练习 如图,在菱形ABCD中,对角线AC与BD 相交于点O.
已知AB=5cm,AO=4cm,求 BD的长.
13
14
已对知角线:如B图D长,四10边cm形. ABCD是边长菱为形13性cm质的的菱应形用,其中
解:(1)∵四边形ABCD是菱形,
D∴求E∠:?((A121))E..DB对菱=D9角 形0?0线A,1BCA?DC1的 的0长 面? 度 积5?c;.m?.
2
2
? AE ? AD2 ? DE 2 ? 132 ? 52 ? 12?cm?.
∴AC=2AE=2×12=24(cm).
(2)菱形ABCD的面积=△ABD的面积+△CBD的面积
=2×△ABD的面积
? 2 ? 1 ? BD ? ? 2 ? 12? 10 ? 12
AE
? 120
?cm
?2 .
菱形的面积等于两条 对角线乘积的一半
相关文档
最新文档