浙教新版 八年级数学上学期 第3章 一元一次不等式 单元测试卷 (含解析)
初中数学浙教版八年级上册第3章《一元一次不等式》测试卷含答案解析和双向细目表-八上3
浙教版数学八年级上册第3章《一元一次不等式》测试考生须知:●本试卷满分120分,考试时间100分钟。
●必须使用黑色字迹的钢笔或签字笔书写,字迹工整,笔迹清楚。
●请在试卷上各题目的答题区域内作答,选择题答案写在题中的括号内,填空题答案写在题中的横线上,解答题写在题后的空白处。
●保持清洁,不要折叠,不要弄破。
一.选择题:本大题有10个小题,每小题3分,共30分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1. 下列是不等式的是( ) A.2x+yB.3x>11C.2x+3=7D.x 2y 22.若x <0,xy ≥0,则y 的取值范围是( ) A.y >0B.y <0C.y ≥0D.y ≤03.关于x 的不等式12-4x >0的非负整数解共有( )个。
A.2B.3C.4D.54.“x 的3倍与x 的相反数的差不小于1”,用不等式表示为( ) A.3x-x ≥1 B.3x-(-x )≥1 C.3x-x >1D.3x-(-x )>15.不等式125323-+≤+x x 的解集表示在数轴上是( ) A.B. C. D.6.如果关于x 的不等式(a+2020)x-a >2020的解集为x <1,那么a 的取值范围是( ) A .a >-2020B.a <-2020C.a >2020D.a <20207.已知关于x 、y 的方程组⎩⎨⎧=--=+ay x ay x 343,其中-3≤a ≤1,给出下列说法:①当a=1时,方程组的解也是x+y=2-a 方程的解;②当a=-2时,x 、y 的值互为相反数;③若x ≤1,则1≤y ≤4;④⎩⎨⎧-==14y x 是方程组的解.其中说法正确的是( ) A.①②③④B.①②③C.②④D.②③8.小明网购了一本《好玩的数学》,同学们想知道书的价格,小明让他们猜。
甲说:“至少12元。
”乙说“至多10元。
”丙说“至多8元.”小明说:“你们三个人都说错了。
浙教版 八年级上册数学 第3章 一元一次不等式 单元测试卷 (含解析)
八年级(上)数学第3章一元一次不等式单元测试卷一.选择题(共10小题)1.若,则下列式子中正确的是A.B.C.D.2.不等式的解是A.B.C.D.3.若关于的方程的解是非负数,则的取值范围是A.B.C.D.4.关于的不等式的解集为,那么的取值范围是A.B.C.D.5.不等式的正整数解有A.1个B.2个C.3个D.4个6.不等式的解集在数轴上表示正确的为A.B.C.D.7.若不等式组无解,则的取值范围为A.B.C.D.8.已知是关于的一元一次不等式,则不等式的解集是A.B.C.D.9.若关于的不等式组的解集为,则的取值范围为A.B.C.D.10.关于的不等式组有四个整数解,则的取值范围是A.B.C.D.二.填空题(共8小题)11.的与的2倍的和是非正数,用不等式表示为.12.若实数3是不等式的一个解,则可取的最小正整数为.13.若关于的不等式组的解集在数轴上表示如图,请写出此解集为.14.小明说不等式永远不会成立,因为如果在这个不等式两边同时除以,就会出现这样的错误结论.小明的说法(填写正确或不正确);如果正确请说明理由,不正确请举一个反例说明:.15.不等式组的整数解的个数是.16.一水果商某次按每千克3.2元购进一批苹果,销售过程中有的苹果正常损耗,为避免亏本,该水果商应将这批苹果的售价至少定为每千克元.17.某租赁公司有,型两种客车,它们的载客量和租金标准如下:客车类型载客量(人辆)租金(元辆)型45400型30280如果某学校计划组织195名师生到培训基地参加社会实践活动,那么租车的总费用最低为元.18.对于有理数,我们规定表示不大于的最大整数,例如,,,若,则整数的取值是.三.解答题(共8小题)19.解不等式,并写出它的所有正整数解.20.解一元一次不等式组:.21.取何正整数时,代数式的值不小于代数式的值?22.解不等式组:,并把解集在数轴上表示出来,并写出它的所有负整数解.23.已知关于的方程的解是负数.(1)求的取值范围;(2)当取最小整数时,解关于的不等式:24.健康药店为了满足不同客户的需求,计划购进,两种规格的酒精,若购进3瓶酒精和5瓶酒精需用98元,若购进8瓶酒精和3瓶酒精需用158元.(1)求购进每瓶酒精和每瓶酒精各需多少元?(2)该药店决定购进酒精和酒精共40瓶,总费用不超过550元,那么最多可以购进多少瓶酒精?25.规定表示,中较小的数,均为实数,且,例如:,,、据此解决下列问题:(1);(2)若,求的取值范围;(3)若,,求的值.26.为了更好地保护环境,污水处理公司决定购买10台甲、乙两种型号的污水处理设备,经调查,购买一台甲型设备比购买一台乙型设备多2万元,购买2台甲型设备比购买3台乙型设备少6万元.(1)求甲、乙两种型号设备每台各多少万元?(2)已知甲型设备每月处理污水240吨,乙型设备每月处理污水200吨,该地每月需要处理的污水不低于2040吨.若污水处理公司购买污水处理设备的资金不超过105万元,请你为污水处理公司设计一种最省钱的购买方案.参考答案一.选择题(共10小题)1.若,则下列式子中正确的是A.B.C.D.解:、由可得:,正确;、由可得:,错误;、由可得:,错误;、由可得:,错误;故选:.2.不等式的解是A.B.C.D.解:移项得,,合并同类项得,,化系数为1得,.故选:.3.若关于的方程的解是非负数,则的取值范围是A.B.C.D.解:解方程得:,则,解得:.故选:.4.关于的不等式的解集为,那么的取值范围是A.B.C.D.解:不等式的解集为,,即,故选:.5.不等式的正整数解有A.1个B.2个C.3个D.4个解:,则,解得:,故不等式的正整数解有:1,2共2个.故选:.6.不等式的解集在数轴上表示正确的为A.B.C.D.解:,,,故选:.7.若不等式组无解,则的取值范围为A.B.C.D.解:解不等式,得:,又且不等式组无解,,解得,故选:.8.已知是关于的一元一次不等式,则不等式的解集是A.B.C.D.解:是关于的一元一次不等式,且,解得,则不等式为,解得,故选:.9.若关于的不等式组的解集为,则的取值范围为A.B.C.D.解:不等式整理得:,由不等式组的解集为,得到的范围是,故选:.10.关于的不等式组有四个整数解,则的取值范围是A.B.C.D.解:,解不等式①得:,解不等式②得:,不等式组的解集是,关于的不等式组有四个整数解,是9、10、11、12,,解得:,故选:.二.填空题(共8小题)11.的与的2倍的和是非正数,用不等式表示为.解:由题意得:,故答案为:.12.若实数3是不等式的一个解,则可取的最小正整数为5.解:由不等式,得,实数3是不等式的一个解,,得,可取的最小正整数为5,故答案为:5.13.若关于的不等式组的解集在数轴上表示如图,请写出此解集为.解:由图示可看出,从1出发向左画出的线且1处是实心圆,表示;从出发向右画出的线且处是空心圆,表示,不等式组的解集是指它们的公共部分.所以这个不等式组的解集是.故答案为:.14.小明说不等式永远不会成立,因为如果在这个不等式两边同时除以,就会出现这样的错误结论.小明的说法不正确(填写正确或不正确);如果正确请说明理由,不正确请举一个反例说明:.解:这种说法不对.理由如下:当时,;当时,由得.故答案是:不正确;当时,.15.不等式组的整数解的个数是7.解:由不等式①,得由不等式②,得故原不等式组的解集是,该不等式组的整数解是:,,0,1,2,3,4,即该不等式组的整数解得个数是7,故答案为:7.16.一水果商某次按每千克3.2元购进一批苹果,销售过程中有的苹果正常损耗,为避免亏本,该水果商应将这批苹果的售价至少定为每千克4元.解:设水果商把售价应该定为每千克元,根据题意得:,解得,,故为避免亏本,水果商把售价应该至少定为每千克4元.故答案为:4.17.某租赁公司有,型两种客车,它们的载客量和租金标准如下:客车类型载客量(人辆)租金(元辆)型45400型30280如果某学校计划组织195名师生到培训基地参加社会实践活动,那么租车的总费用最低为1760元.解:设租赁型客车辆,租赁型客车辆,依题意有,,都为非负整数,,,满座情况多租赁型客车租车的总费用最低,,,租车的总费用最低为(元.故答案为:1760.18.对于有理数,我们规定表示不大于的最大整数,例如,,,若,则整数的取值是,,.解:表示不大于的最大整数,,解得:,整数为,,,故答案为,,.三.解答题(共8小题)19.解不等式,并写出它的所有正整数解.解:去分母,得,去括号,得,移项,得,合并同类项,得,系数化为1,得,则不等式的正整数解为:1,2,3.20.解一元一次不等式组:.解:,由①得:,由②得:,则不等式组的解集为.21.取何正整数时,代数式的值不小于代数式的值?解:由题意得解得,是正整数,可以取1、2、3.22.解不等式组:,并把解集在数轴上表示出来,并写出它的所有负整数解.解:解①得:,解②得:,不等式组的解集为:,则它的所有负整数解为,,.在数轴上表示:.23.已知关于的方程的解是负数.(1)求的取值范围;(2)当取最小整数时,解关于的不等式:解:(1)解得,根据题意得,,,(2)是最小整数,当时,则解得:.24.健康药店为了满足不同客户的需求,计划购进,两种规格的酒精,若购进3瓶酒精和5瓶酒精需用98元,若购进8瓶酒精和3瓶酒精需用158元.(1)求购进每瓶酒精和每瓶酒精各需多少元?(2)该药店决定购进酒精和酒精共40瓶,总费用不超过550元,那么最多可以购进多少瓶酒精?解:(1)设购进每瓶酒精需要元,每瓶酒精需要元,依题意,得:,解得:.答:购进每瓶酒精需要16元,每瓶酒精需要10元.(2)设购进酒精瓶,则购进酒精瓶,依题意,得:,解得:.答:最多可以购进25瓶酒精.25.规定表示,中较小的数,均为实数,且,例如:,,、据此解决下列问题:(1);(2)若,求的取值范围;(3)若,,求的值.解:(1)根据题中的新定义得:;故答案为:;(2)由题意,解得:;(3)若,解得:,此时,满足题意;若,解得:,此时,不符合题意,综上,.26.为了更好地保护环境,污水处理公司决定购买10台甲、乙两种型号的污水处理设备,经调查,购买一台甲型设备比购买一台乙型设备多2万元,购买2台甲型设备比购买3台乙型设备少6万元.(1)求甲、乙两种型号设备每台各多少万元?(2)已知甲型设备每月处理污水240吨,乙型设备每月处理污水200吨,该地每月需要处理的污水不低于2040吨.若污水处理公司购买污水处理设备的资金不超过105万元,请你为污水处理公司设计一种最省钱的购买方案.解:(1)设每台甲型设备的价格为万元,则每台乙型设备的价格为万元,依题意,得:, 解得:,.答:每台甲型设备的价格为12万元,每台乙型设备的价格为10万元. (2)设购买台甲型设备,则购买台乙型设备, 依题意,得:, 解得:.为非负整数,或2.当时,,此时购买金额为(万元); 当时,,此时购买金额为(万元).,购买1台甲型设备、9台乙型设备最省钱.1、最困难的事就是认识自己。
浙教版八年级数学上:第三章一元一次不等式单元测试题含答案
【浙教版】八年级数学上:第三章-一元一次不等式单元测试题(含答案)第三章一元一次不等式单元测试题一、单选题(共10题;共30分)1、下列不等式一定成立的是()A、4a>3aB、3-x<4-xC、-a>-3aD、>2、若a>b且c为实数.则()A、ac>bcB、ac<bcC、ac2>b c2D、ac2≥b c23、式子:①3<5;②4x+5>0;③x=3;④x2+x;⑤x≠﹣4;⑥x+2≥x+1.其中是不等式的有()A、2个B、3个C、4个D、5个4、已知a,b为实数,则下列结论正确的是()A、若a>b,则a﹣c<b﹣cB、若a>b,则﹣a+c>﹣b+cC、若a>b,则ac2>bc2D、若ac2>bc2,则a>b5、下列式子中,是不等式的有()①2x=7;②3x+4y;③﹣3<2;④2a﹣3≥0;⑤x>1;⑥a﹣b>1.A、5个B、4个C、3个D、1个6、下列说法正确的是()A、x=4是不等式2x>﹣8的一个解B、x=﹣4是不等式2x>﹣8的解集C、不等式2x>﹣8的解集是x>4D、2x>﹣8的解集是x<﹣47、若a<b,则下列各式中不成立的是()A、a+2<b+2B、﹣3a<﹣3bC、2﹣a>2﹣bD、3a<3b8、下列不等式中是一元一次不等式的是()A、x﹣y<1B、x2+5x﹣1≥0C、>3D、x<﹣x9、下列各式不是一元一次不等式组的是()A、 B、 C、 D、10、不等式组的解集是()A、x≥8B、x>2C、0<x<2D、2<x≤8二、填空题(共8题;共25分)11、用不等式表示:5与x的和比x的3倍小________。
12、我市冬季某一天的最高气温为﹣1℃,最低气温为﹣6℃,那么这一天我市气温t(℃)的取值范围是________13、若(m﹣1)x≥m﹣1的解集是x≤1,则m的取值范围是________ .14、幼儿园把新购进的一批玩具分给小朋友,若每人3件,那么还剩余59件;若每人5件,那么最后一个小朋友能分到玩具,但不足4件,共有小朋友________人,这批玩具共有________ 件.15、若2+ 是一元一次不等式,则m=________.16、不等式19﹣5x>2的正整数解是________.17、若关于x的不等式x﹣b>0恰有两个负整数解,则b的取值范围为________.18、关于x的不等式组有三个整数解,则a 的取值范围是________.三、解答题(共5题;共35分)19、当k满足条件时,关于x的一元二次方程kx2+(k﹣1)x+k2+3k=0是否存在实数根x=0?若存在求出k值,若不存在请说明理由.20、嘉年华小区准备新建50个停车位.以解决小区停车难的问题.已知新建1个地上停车位和1个地下停车位需0.7万元;新建3个地上停车位和2个地下停车位需1.6万元.(1)该小区新建1个地上停车位和1个地下停车位各需多少万元?(2)若该小区预计投资金额超过15万元而不超过16万元,请提供两种建造方案.21、若不等式x﹣<2x﹣+1的最小整数解是方程2x﹣ax=4的解,求a的值.22、A型轿车每辆15万元,B型轿车每辆10万元,销售一辆A型轿车可获利8 000元,销售一辆B型轿车可获利5 000元.某公司用400万元购进A、B两种型号轿车30辆,且全部售出后总获利不低于20.4万元,问有几种购车方案?这几种方案中分别获利多少万元?23、一堆有红、白两种颜色的球若干个,已知白球的个数比红球少,但白球的2倍比红球多.若把每一个白球都记作“2”,每一个红球都记作“3”,则总数为“60”,那么这两种球各有多少个?四、综合题(共1题;共10分)24、解下列不等式(组)(1)5x>3(x﹣2)+2(2).答案解析一、单选题1、【答案】 B【考点】不等式的性质【解析】【分析】根据不等式的基本性质即可作出判断.【解答】A、当a=0时,4a=3a,故选项错误;B、有3<4,根据不等式的性质可得,正确;C、当a=0时,-a=-3a,故选项错误;D、当a<0时,<.故选B.【点评】主要考查了不等式的基本性质.“0”是很特殊的一个数,因此,解答不等式的问题时,应密切关注“0”存在与否,以防掉进“0”的陷阱.不等式的基本性质:(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变.(2)不等式两边乘(或除以)同一个正数,不等号的方向不变.(3)不等式两边乘(或除以)同一个负数,不等号的方向改变.2、【答案】 D【考点】不等式的性质【解析】【分析】当c>0时ac>bc,因而ac<bc不成立,反之,c<0时ac<bc成立,ac>bc不成立.当c=0时:ac2>bc2不成立;不论c是什么值,都有c2≥0,因而ac2≥bc2一定成立.【解答】当c>0时,ac>bc;当c<0时,ac<bc;当c=0时,ac2=bc2;又∵c2≥0,∴ac2≥bc2一定成立;故选D.【点评】本题考查了不等式的性质.不等式的性质运用时注意:必须是加上,减去或乘以或除以同一个数或式子;另外要注意不等号的方向是否变化.3、【答案】C【考点】不等式的解集【解析】【解答】解:①3<5;②4x+5>0;⑤x≠﹣4;⑥x+2≥x+1是不等式,∴共4个不等式.故选C.【分析】根据不等式的概念:用“>”或“<”号表示大小关系的式子,叫做不等式,用“≠”号表示不等关系的式子也是不等式进行分析即可.4、【答案】D【考点】不等式的性质【解析】【解答】解:A、在不等式a>b的两边同时减去c,不等式仍成立,即a﹣c>b﹣c,故本选项错误;B、在不等式a>b的两边同时乘以﹣1,不等号方向改变,即﹣a<﹣b,则﹣a+c<﹣b+c,故本选项错误;C、若c=0时,不等式ac2>bc2不成立,故本选项错误;D、ac2>bc2,则c≠0,则在该不等式的两边同时除以正数c2,不等式仍成立,即a>b,故本选项正确.故选:D.【分析】根据不等式的性质进行判断.5、【答案】B【考点】不等式的解集【解析】【解答】解:①2x=7是等式;②3x+4y不是不等式;③﹣3<2是不等式;④2a﹣3≥0是不等式;⑤x >1是不等式;⑥a﹣b>1是不等式,故选B【分析】要依据不等式的定义﹣﹣﹣﹣﹣用“>”、“≥”、“<”、“≤”、“≠”等不等号表示不相等关系的式子是不等式来判断.6、【答案】A【考点】不等式的解集【解析】【解答】解:因为2x>﹣8的解为x>﹣4,所以A、x=4是不等式2x>﹣8的一个解,正确;B、x=﹣4是不等式2x>﹣8的解集,错误;C、不等式2x>﹣8的解集是x>4,错误;D、2x>﹣8的解集是x<﹣4,错误.故选A.【分析】据题意只要解出不等式2x>﹣8的解,再用排除法解题即可.7、【答案】B【考点】不等式的性质【解析】【解答】解:A、a<b,a+2<b+2,故A成立;B、a<b,﹣3a>﹣3b,故B错误;C、a<b,2﹣a>2﹣b,故C正确;D a<b,3a<3b,故D成立;故选:B.【分析】根据不等式的性质1,可判断A、C;根据不等式的性质2,可判断D;根据不等式的性质3,可判断B.8、【答案】D【考点】一元一次不等式的定义【解析】【解答】解:A、x﹣y<1,含有两个未知数,故此选项错误;B、x2+5x﹣1≥0,未知数的次数为2,故此选项错误;C、>3是分式,故此选项错误;D、x<﹣x ,是一元一次不等式.故选:D.【分析】根据含有一个未知数,未知数的次数是1的不等式,叫做一元一次不等式,进而判断得出即可.9、【答案】C【考点】一元一次不等式组的定义【解析】【解答】解:A、符合一元一次不等式组的定义,不符合题意;B、符合一元一次不等式组的定义,不符合题意;C、含2个未知数,不符合一元一次不等式组的定义,符合题意;D、符合一元一次不等式组的定义,不符合题意;故选C.【分析】根据一元一次不等式组的定义,只要含有一个未知数,并且未知数的次数是1的不等式就可.10、【答案】 D【考点】解一元一次不等式组【解析】【解答】解:∵解不等式①得:x>2,解不等式②得:x≤8,∴不等式组的解集为2<x≤8,故选D.【分析】先求出不等式的解集,再根据不等式的解集找出不等式组的解集即可.二、填空题11、【答案】5+x< 3x【考点】一元一次不等式的定义【解析】【解答】可列不等式为:5+x<3x.【分析】5与x的和为:5+x;x的3倍为3x,5与x的和小,用“<”连接即可.12、【答案】﹣6≤t≤﹣1【考点】不等式的解集【解析】【解答】解:∵冬季某一天的最高气温为﹣1℃,∴t≤﹣1;∵最低气温为﹣6℃,∴t≥﹣5,∴﹣6≤t≤﹣1.故答案为:﹣6≤t≤﹣1【分析】根据题意列出关于t的不等式即可.13、【答案】m<1【考点】不等式的性质【解析】【解答】解:∵(m﹣1)x≥m﹣1的解集是x≤1,∴m﹣1<0,则m的取值范围是:m<1.故答案为:m<1.【分析】根据不等式的性质,不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变,进而得出m﹣1的取值范围,进而得出答案.14、【答案】31;152【考点】一元一次不等式组的应用【解析】【解答】解:设共有x个小朋友,则玩具有3x+59个.∵最后一个小朋友不足4件,∴3x+59<5(x﹣1)+4,∵最后一个小朋友最少1件,∴3x+59≥5(x﹣1)+1,联立得解得30<x≤31.5.∵x取正整数31,∴玩具数为3x+59=152.故答案为:31,152.【分析】本题可设共有x个小朋友,则玩具有3x+59个,令其<5(x﹣1)+4,令其≥5(x﹣1)+1,化解不等式组得出x的取值范围,则x即为其中的最小的整数.15、【答案】1【考点】一元一次不等式的定义【解析】【解答】解:根据题意2m﹣1=1,解得m=1.故答案为:1.【分析】根据一元一次不等式的定义,未知数的次数是1,所以2m﹣1=1,求解即可.16、【答案】 1,2,3【考点】一元一次不等式的整数解【解析】【解答】解:不等式的解集是x<3.4,故不等式19﹣5x>2的正整数解为1,2,3.故答案为1,2,3.【分析】首先利用不等式的基本性质解不等式,再从不等式的解集中找出适合条件的正整数即可.17、【答案】﹣3≤b<﹣2【考点】一元一次不等式的整数解【解析】【解答】解:∵x﹣b>0,∴x>b,∵不等式x﹣b>0恰有两个负整数解,∴﹣3≤b<﹣2.故答案为﹣3≤b<﹣2.【分析】首先解不等式,然后根据条件即可确定b的值.18、【答案】﹣<a≤﹣【考点】一元一次不等式组的整数解【解析】【解答】解:∵解不等式①得:x >2,解不等式②得:x<10+6a,∴不等式组的解集为2<x<10+6a,方程组有三个整数解,则整数解一定是3,4,5.根据题意得:5<10+6a≤6,解得:﹣<a≤﹣.故答案是:﹣<a≤﹣.【分析】首先确定不等式组的解集,先利用含a的式子表示,根据整数解的个数就可以确定有哪些整数解,根据解的情况可以得到关于a的不等式,从而求出a的范围.三、解答题19、【答案】解:,解①得:k≤4,解②得:k≥﹣7,则不等式组的解集是:﹣7≤k≤4,把x=0代入方程解得k=0或k=﹣3,∵k=0不满足方程为一元二次方程,∴k=﹣3.【考点】解一元一次不等式组【解析】【分析】首先解不等式求得k的范围,然后把x=0代入方程求得k的值,根据解不等式组得到的k的范围进行判断.20、【答案】解:(1)设新建一个地上停车位需x万元,新建一个地下停车位需y万元,则依题意得:,解得.答:新建一个地上停车位需0.2万元,新建一个地下停车位需0.5万元;(2)设建a个地上车位,(50﹣a)个地下车位.则15<0.2a+0.5(50﹣a)≤16,解得30≤a<33.则①a=30,50﹣a=20;②a=31,50﹣a=19;③a=32,50﹣a=18;④a=33,50﹣a=17;因此有4种方案.【考点】一元一次不等式组的应用【解析】【分析】(1)设新建一个地上停车位需x万元,新建一个地下停车位需y万元,根据新建1个地上停车位和1个地下停车位需0.7万元;新建3个地上停车位和2个地下停车位需1.6万元,可列出方程组求解.(2)设新建m个地上停车位,根据小区预计投资金额超过15万元而不超过16万元,可列出不等式求解.21、【答案】解:由不等式x﹣<2x﹣+1得x>0,所以最小整数解为x=1,将x=1代入2x﹣ax=4中,解得a=﹣2.【考点】一元一次不等式的整数解【解析】【分析】此题可先将不等式化简求出x的取值,然后取x的最小整数解代入方程2x﹣ax=4,化为关于a 的一元一次方程,解方程即可得出a的值.22、【答案】解:设购进A种型号轿车a辆,则购进B 种型号轿车(30﹣a)辆.根据题意得解此不等式组得18≤a≤20.∵a为整数,∴a=18,19,20.∴有三种购车方案.方案一:购进A型号轿车18辆,购进B型号轿车12辆;方案二:购进A型号轿车19辆,购进B型号车辆11辆;方案三:购进A型号轿车20辆,购进B型号轿车10辆.汽车销售公司将这些轿车全部售出后:方案一获利18×0.8+12×0.5=20.4(万元);方案二获利19×0.8+11×0.5=20.7(万元);方案三获利20×0.8+10×0.5=21(万元).答:有三种购车方案,在这三种购车方案中,汽车销售公司将这些轿车全部售出后分别获利为20.4万元,20.7万元,21万元【考点】一元一次不等式组的应用【解析】【分析】据关键语“用不超过400万元购进A、B两种型号轿车共30辆,且这两种轿车全部售出后总获利不低于20.4万元”列出不等式组,判断出不同的购车方案,进而求出不同方案的获利的多少即可.23、【答案】解:设白球有x个,红球有y个,由题意得,,由第一个不等式得:3x<3y<6x,由第二个个式子得,3y=60﹣2x,则有3x<60﹣2x<6x,∴7.5<x<12,∴x可取8,9,10,11.又∵2x=60﹣3y=3(20﹣y),∴2x应是3的倍数,∴x只能取9,此时y= =14.答:白球有9个,红球有14个【考点】一元一次不等式组的应用【解析】【分析】设白球有x个,红球有y个,根据白球的个数比红球少,但白球的2倍比红球多,列出不等式,然后根据总数为60,列出方程,综合求解即可.四、综合题24、【答案】(1)解:去括号,得:5x>3x﹣6+2,移项,得:5x﹣3x>﹣6+2,合并同类项,得:2x>﹣4,系数化为1,得:x>﹣2;(2)解:解不等式﹣>﹣1得:x>﹣6,解不等式2(x﹣3)﹣3(x﹣2)>﹣6,得:x<6,∴不等式组的解集为:﹣6<x<6.【考点】解一元一次不等式,解一元一次不等式组【解析】【分析】(1)根据解一元一次不等式基本步骤:去分母、去括号、移项、合并同类项、系数化为1可得;(2)分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.。
浙教版八年级数学上册 第3章 一元一次不等式 单元测试卷(有答案)
浙教版八年级数学上册第3章一元一次不等式单元测试卷题号一二三四总分得分一、选择题(本大题共10小题,共30分)1.下列式子,其中不等式有()①2>0;②4x+y≤1;③x+3=0;④y−7;⑤m−2.5>3.A. 1B. 2C. 3个D. 4个2.已知a<b,则下列不等式变形不正确的是().A. 4a<4bB. −2a+4<−2b+4C. −4a>−4bD. 3a−4<3b−43.已知x>y,则下列不等式成立的是()A. x−1<y−1B. 3x<3yC. −x<−yD. x2<y24.下列说法正确的是().A. x=1是不等式−2x<1的解B. x=1是不等式−2x<1的解集C. x=−12是不等式−2x<1的解 D. 不等式−2x<1的解是x=15.不等式组{2x+13−3x+22>1,3−x≥2的解集在数轴上表示正确的是().A. B.C. D.6.解不等式x+23>1−x−32时,去分母后结果正确的为()A. 2(x+2)>1−3(x−3)B. 2x+4>6−3x−9C. 2x+4>6−3x+3D. 2(x+2)>6−3(x−3)7.不等式−x>1−x2的最大整数解为().A. −2B. −3C. −4D. −58.x的2倍减去7的差不大于−1,可列关系式为()A. 2x−7≤−1B. 2x−7<−1C. 2x−7=−1D. 2x−7≥−1第2页,共17页9. 若不等式组的解集是1<x <2,则a +b =( ) A. −0.5B. −1C. 2D. 410. 某商店将定价为3元的商品,按下列方式优惠销售:若购买不超过5件,按原价付款;若一次性购买5件以上,超过部分打八折.小聪有27元钱想购买该种商品,那么最多可以购买多少件呢?若设小聪可以购买该种商品x 件,则根据题意,可列不等式为( )A. 3×5+3×0.8x ≤27B. 3×5+3×0.8x ≥27C. 3×5+3×0.8(x −5)≤27D. 3×5+3×0.8(x −5)≥27二、填空题(本大题共10小题,共30分)11. x 的2倍与y 的和大于5,用不等式表示为______. 12. 如果(m +1)x |m|>2是一元一次不等式,则m = ______ . 13. 已知x >y ,则2x ______2y(填“>”“<”或“=“)14. 如果a >b ,那么a(a −b) b(a −b)(填“>”或“<”). 15. 12.不等式2x −3≥0的解集是______. 16. 当x 时,代数式6x−14−2x 的值小于−2.17. 已知关于x 的不等式组{2x +5<0x −m >0的整数解有且只有2个,则m 的取值范围是______ .18. 等腰三角形底边为6,则腰长m 范围是_____.19. 一次数学知识竞赛中,竞赛题共30题.规定:答对一道题得4分,不答或答错一道题倒扣2分,甲同学答对25道题,答错5道题,则甲同学得________分;若得分不低于60分者获奖,则获奖者至少应答对________道题.20. 为确保信息安全,信息需加密传输,发送方由明文→密文(加密),接收方由密文→明文(解密),已知加密规则为:明文x ,y ,z 对应密文2x +3y ,3x +4y ,3z.例如:明文1,2,3对应密文8,11,9.当接收方收到密文12,17,27时,则解密得到的明文为_________。
浙教版2020-2021学年八年级数学上册第三章:一元一次不等式单元检测题(含答案)
第三章:一元一次不等式单元测试卷一.选择题:(本题共10小题,每小题3分,共30分)温馨提示:每一题的四个答案中只有一个是正确的,请将正确的答案选择出来!1.下列说法中错误的是( )A. 如果b a <,那么c b c a -<-B. 如果a >b ,c >0,那么ac >bcC. 如果m <n ,p <0,那么p n p m >D. 如果x >y ,z <0,那么xz >yz 2.关于x 的不等式组⎩⎨⎧>+-<012x a x 只有4个整数解,则a 的取值范围是( )A. 5≤a ≤6B. 5≤a <6C. 5<a ≤6D. 5<a <63.不等式组()()⎪⎩⎪⎨⎧-≤++≤-x x x x 421312532所有整数解的和是( )A .﹣1B .0C .1D .2 4.方程组⎩⎨⎧=+=+1553y x m y x 有正数解,则m 的取值范围( ) A .3<m <5B .m >3C .m <5D .m <3或m >5 5.已知关于x 的不等式7<a x 的解也是不等式12572->-a a x 的解,则a 的取值范围是( ) A .910-≥a B .910->a C .0910<≤-a D .0910<<-a 6.如果不等式组⎩⎨⎧<-≥-0809b x a x 的整数解仅为1,2,3,那么适合这个不等式组的整数a 、b 的有序数对 (a 、b )共有( )A. 17个 B .64个 C .72个 D .81个7.不等式组()⎪⎩⎪⎨⎧<--≤-7230131x x 的解集在数轴上表示正确的是( )8.若不等式组⎪⎩⎪⎨⎧<-<+mx x x 41231无解,则m 的取值范围为( )A .m ≤2B .m <2C .m ≥2D .m >29.为了落实精准扶贫政策,某单位针对某山区贫困村的实际情况,特向该村提供优质种羊若干只.在 准备配发的过程中发现:公羊刚好每户1只;若每户发放母羊5只,则多出17只母羊,若每户发放母羊7只,则有一户可分得母羊但不足3只.这批种羊共( )只A .55B .72C .83D .8910.若a 使关于x 的不等式组()⎪⎩⎪⎨⎧≥++<+233213x a x x 有两个整数解,且使关于x 的方程2132-=+x a x 有负 数解,则符合题意的整数a 的个数有( )A .1个B .2个C .3个D .4个二.填空题(本题共6小题,每题4分,共24分)温馨提示:填空题必须是最简洁最正确的答案!11.不等式2x +3<-1的解集为________12.不等式组⎪⎩⎪⎨⎧+<-+≥-361112x x x x 的解为___________________ 13.已知关于x 的不等式组⎩⎨⎧+<-≥-122b a x b a x 的解集为53<≤x ,则a b 的值为 ________ 14.八年级某班级部分同学去植树,若每人平均植树7棵,还剩9棵,若每人平均植树9棵,则有1位同学植树的棵数不到8棵.若设同学人数为x 人,植树的棵数为(7x+9)棵,下列各项能准确的求出同学人数与种植的树木的数量的不等式组为___________________________15.已知关于x 的不等式组⎩⎨⎧>->-0230x a x 的整数解共有5个,则a 的取值范围是_____________ 16.若关于x 的不等式组⎪⎩⎪⎨⎧+≤-≥-64221k k x k x 有解,且关于x 的方程()()2322+--=x x kx 有非负整数解,则符合条件的所有整数k 的和为______________三.解答题(共6题,共66分)温馨提示:解答题应将必要的解答过程呈现出来!17.(本题6分)解不等式(组)(1)1643312--≤-x x (2)()⎪⎩⎪⎨⎧->++≤--1223134122x x x x x18.(本题8分)若式子645+x 的值不小于3187x --的值,求满足条件的x 的最小整数值.19(本题8分)若a 、b 、c 是△ABC 的三边,且a 、b 满足关系式|a ﹣3|+(b ﹣4)2=0,c 是不等式组 ⎪⎪⎩⎪⎪⎨⎧+<+->-21632433x x x x 的最大整数解,求△ABC 的周长.20(本题10分).现计划把甲种货物1240吨和乙种货物880吨用一列货车运往某地,已知这列货车挂在A 、B 两种不同规格的货车厢共40节,使用A 型车厢每节费用为6000元,使用B 型车厢每节费用为8000元.(1)设运送这批货物的总费用为y 万元,这列货车挂A 型车厢x 节,试定出用车厢节数x 表示总费用y 的公式.(2)如果每节A 型车厢最多可装甲种货物35吨和乙种货物15吨,每节B 型车厢最多可装甲种货物25吨和乙种货物35吨,装货时按此要求安排A 、B 两种车厢的节数,那么共有哪几种安排车厢的方案?21(本题10分)已知关于y x ,的方程组⎩⎨⎧+=---=+137m y x m y x 的解满足0≤x ,0<y . (1)用含m 的代数式分别表示x 和y ;(2)求m 的取值范围;(3)在m 的取值范围内,当m 为何整数时,不等式122+<+m x mx 的解为1>x ?22(本题12分)有甲、乙两种客车,2辆甲种客车与3辆乙种客车的总载客量为180人,1辆甲种客 车与2辆乙种客车的总载客量为105人.(1)请问1辆甲种客车与1辆乙种客车的载客量分别为多少人?(2)某学校组织240名师生集体外出活动,拟租用甲、乙两种客车共6辆,一次将全部师生送到指定地点.若每辆甲种客车的租金为400元,每辆乙种客车的租金为280元,请给出最节省费用的租车方案,并求出最低费用.23(本题12分).(1)若三角形的三边长分别是2、x 、8,且x 是不等式32122x x -->+的正整数解,试求第三边x 的长. (2)若不等式组⎩⎨⎧>-+<+-053202b a x b a x ,的解集为61<<-x ,求b a ,的值. (3)已知不等式689312+≤-x x ,该不等式的所有负整数解的和是关于y 的方程2y -3a =6的解,求a 的值.答案三.选择题:(本题共10小题,每小题3分,共30分)温馨提示:每一题的四个答案中只有一个是正确的,请将正确的答案选择出来!1.答案:D解析:∵b a <,∴c b c a -<-,故A 选项正确;∵a >b ,c >0,∴ac >bc ,故B 选项正确;∵m <n ,p <0,∴pn p m >,故C 选项正确; ∵x >y ,z <0,∴yz xz <,故D 选项错误,故选择D2.答案:C解析:解不等式组⎩⎨⎧>+-<012x a x 得:21-<<-a x∵只有4个整数解,4223≤-<,∴65≤<a ,故选择C3.答案:B 解析:解不等式组()()⎪⎩⎪⎨⎧-≤++≤-x x x x 421312532得:11≤≤-x ,∴所有整数解是:1-,0,1,∴和为0,故选择B4.答案:A解析:解这个关于x ,y 的方程组得⎪⎪⎩⎪⎪⎨⎧-=-=23152155my m x ∴得到不等式组⎪⎪⎩⎪⎪⎨⎧>->-0231502155m m 解得3<m <5, 故选:A .5.答案:C解析:关于x 的不等式12572->-a a x ,解得25419->a x , ∵关于x 的不等式7<a x 的解也是不等式12572->-a a x 的解,故a <0, ∴不等式7<ax 的解集是x >7a . ∴254197-≥a a , 解得,910-≥a , ∵a <0, ∴0910<≤-a ,故选择C6.答案:C解析:由原不等式组可得:89b x a <≤. 在数轴上画出这个不等式组解集的可能区间,如下图根据数轴可得:190≤<a ,483<≤b . 由90≤<a ,∴a=1,2,3…9,共9个.由3224<≤b ,∴b=24,.25,26,27,…,31.共8个.∴有序数对(a 、b )共有9×8=72(个)故选:C .7.答案:C 解析:解不等式组()⎪⎩⎪⎨⎧<--≤-7230131x x 得:32≤<-x ,故选择C8.答案:A解析:解不等式组⎪⎩⎪⎨⎧<-<+mx x x 41231得:m x 48<<,∵不等式组无解,∴4m ≤8,解得m ≤2,故选:A .9.答案:C解析:设该村共有x 户,则母羊共有(5x +17)只,由题意知,()()⎩⎨⎧<--+>--+31175017175x x x x , 解得:221<x <12, ∵x 为整数,∴x =11,则这批种羊共有11+5×11+17=83(只),故选:C .10.答案:B 解析:解方程2132-=+x a x 得:12--=a x , ∵方程2132-=+x a x 有负数解,21->a 解不等式组()⎪⎩⎪⎨⎧≥++<+233213x a x x 得:⎪⎪⎩⎪⎪⎨⎧-≥-<232321x a x ∵不等式组()⎪⎩⎪⎨⎧≥++>+233213x a x x 有两个整数解,∴123210≤-<a ∴53≤<a ,∴⎪⎩⎪⎨⎧≤<->5321a a ,∴满足条件的a 值为4,5两个,故选择B四.填空题(本题共6小题,每题4分,共24分)温馨提示:填空题必须是最简洁最正确的答案!11.答案:2-<x解析:解不等式2x +3<-1得:2-<x12.答案:292<≤x 解析:解不等式组⎪⎩⎪⎨⎧+<-+≥-361112x x x x 得:292<≤x13.答案:2-解析 :解不等式组⎩⎨⎧+<-≥-122b a x b a x 得:212++<≤+b a x b a ∵ 该不等式组的解集为 :3≤x<5 , ∴⎪⎩⎪⎨⎧=++=+52123b a b a , 解得 :3-=a ,6=b ,∴236-=-=a b 故答案为 :-2.14.答案:()⎩⎨⎧-≥+-+<+)1(99719897x x x x 解析:(x ﹣1)位同学植树棵树为9×(x ﹣1),∵有1位同学植树的棵数不到8棵.植树的棵数为(7x+9)棵, ∴可列方程组为:()⎩⎨⎧-≥+-+<+)1(99719897x x x x 15.答案:﹣4≤a <﹣3解析:解不等式x ﹣a >0,得:x >a ,解不等式3﹣2x >0,得:x <1.5,∵不等式组的整数解有5个,∴﹣4≤a <﹣3.16.答案:9- 解析:解不等式组⎪⎩⎪⎨⎧+≤-≥-64221k k x k x 得:1+4k ≤x ≤6+5k , ∵不等式组⎪⎩⎪⎨⎧+≤-≥-64221k k x k x 有解∴5-≥k解关于x 的方程()()2322+--=x x kx 得,16+-=k x , ∵关于x 的方程()()2322+--=x x kx 有非负整数解,当k=﹣4时,x=2,当k=﹣3时,x=3,当k=﹣2时,x=6,∴﹣4﹣3﹣2=﹣9;三.解答题(共6题,共66分)温馨提示:解答题应将必要的解答过程呈现出来!17.(1)解析:去分母得:()643122--≤-x x去括号得:10324-≤-x x ,移项合并得:8-≤x(2)()2142313221x x x x x -+⎧-≤⎪⎨⎪+>-⎩①②解不等式①得:54≥x 解不等式②得:3<x ∴不等式组的解为:354<≤x18.解析:∵式子645+x 的值不小于3187x --的值, ∴3187645x x --≥+,解得:41-≥x ∴满足条件的x 的最小整数值为019.解析:∵a 、b 满足关系式|a ﹣3|+(b ﹣4)2=0, ∴a=3,b=4, 解不等式⎪⎪⎩⎪⎪⎨⎧+<+->-21632433x x x x 得:2925<<x , 最大整数解为4,故△ABC 的周长=3+4+4=11.即△ABC 的周长为1120.解析:(1)6000元=0.6万元,8000元=0.8万元,设用A 型车厢x 节,则用B 型车厢(40−x)节,总运费为y 万元,依题意,得y=0.6x+0.8(40−x)=−0.2x+32(2)解:依题意,得()()⎩⎨⎧≥-+≥-+8804035151240402535x x x x , 解得:⎩⎨⎧≤≥2624x x ,∴2624≤≤x ,∵x 取整数,故A 型车厢可用24节或25节或26节,相应有三种装车方案: ①24节A 型车厢和16节B 型车厢;②25节A 型车厢和15节B 型车厢; ③26节A 型车厢和14节B 型车厢.21.解析:(1)解方程组方程组⎩⎨⎧+=---=+137m y x m y x 得⎩⎨⎧--=-=423m y m x (2)∵0≤x , 0<y∴⎩⎨⎧<--≤-04203m m 解得:32≤<-m(3)不等式 122+<+m x mx∵原不等式的解集是1>x∴012<+m∴ 21-<m 又∵32≤<-m ,∴212-≤<-m ∵ m 为整数∴1-=m22.解析:(1)设辆甲种客车与1辆乙种客车的载客量分别为x 人,y 人,⎩⎨⎧=+=+105218032y x y x ,解得:⎩⎨⎧==3045y x , 答:1辆甲种客车与1辆乙种客车的载客量分别为45人和30人;(2)设租用甲种客车x 辆,依题意有:()⎩⎨⎧<≥-+624063045x x x 解得:64<≤x ,因为x 取整数,所以x =4或5,当x =4时,租车费用最低,为4×400+2×280=2160.23.解析:(1)原不等式可化为3(x+2)>-2(1-2x ),解得x <8,∵x 是它的正整数解,∴x 可取1,2,3,5,6,7,再根据三角形第三边的取值范围,得6<x <10,∴x=7(2)不等式组可化为⎪⎩⎪⎨⎧+->-<.2532b a x b a x , 因为它的解集为61<<-x , 所以⎪⎩⎪⎨⎧-=+-=-,,125362b a b a 解得⎩⎨⎧==.24b a , (3)解不等式689312+≤-x x 得:x ≥-2; ∵x ≥-2,∴不等式的所有负整数解为-2,-1,y =-2+(-1)=-3,把y =-3代入2y -3a =6得-6-3a =6,解得a =-4.1、人生如逆旅,我亦是行人。
浙教版八年级数学上册《第三章一元一次不等式》单元测试卷及答案
浙教版八年级数学上册《第三章一元一次不等式》单元测试卷及答案一、选择题:本题共10小题,每小题3分,共30分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.y 与2的差不大于0,用不等式表示为( )A. y −2>0B. y −2<0C. y −2≥0D. y −2≤02.不等式0≤x <2的解( )A. 为0,1,2B. 为0,1C. 为1,2D. 有无数个3.已知a <b ,则下列不等式一定成立的是( )A. a +5>b +5B. 1−2a >1−2bC. 32a >32bD. 4a −4b >0 4.在−1,0,1,12中,能使不等式2x −1<x 成立的数有( )A. 1个B. 2个C. 3个D. 4个5.若不等式组{x −1<1,▫的解集为x <2,则▫表示的不等式可以是( ) A. x <1 B. x >1 C. x <3 D. x >36.下列不等式与x >1的解表示在数轴上无公共部分的是( )A. x ≥1B. x ≤−1C. x ≤2D. x >−27.某校班级篮球联赛中,每场比赛都要分出胜负,每队胜1场得2分,负1场得1分.某班预计在全部12场比赛中至少要得到16分,才有希望进入总决赛.假设这个班在将要举行的联赛中胜x 场,如果该班要进入总决赛,那么x 应满足的不等式是( )A. 2x+(12−x)≥16B. 2x−(12−x)≥16C. 2x+(12−x)≤16D. 2x≥168.某运行程序如图所示,规定:从“输入一个值x”到“结果是否大于21”为一次程序操作,如果程序操作进行了2次后停止,那么满足条件的所有整数x的和为( )A. 45B. 50C. 56D. 639.已知△ABC的边长分别为2x+1,3x,5,则△ABC的周长l的取值范围是( )A. 6<l<36B. 10<l≤11C. 11≤l<36D. 10<l<3610.P,Q,R,S四人去公园玩跷跷板,由下面的示意图,对P,Q,R,S四人的轻重判断正确的是( )A. R>S>P>QB. S>P>Q>RC. R>Q>S>PD. S>P>R>Q二、填空题:本题共6小题,每小题3分,共18分。
第3章 一元一次不等式 浙教版数学八年级上册单元测试卷(含答案)
一元一次不等式单元测试一、选择题1.下列命题是真命题的是( )A .若ab >0,则a >0,b >0B .若ab <0,则a <0,b <0C .若a >b ,则ac >bcD .若a >b ,则―5a <―5b2.若x <y 成立,则下列不等式成立的是( )A .x 2>y 2B .x ―2>y ―2C .―2x >―2yD .x ―y >03.将不等式组x <1x ≥2的解集表示在数轴上,下列正确的是( )A .B .C .D .4. 若一个三角形的三条边长分别为3,2a-1,6,则整数a 的值可能是( )A .2,3B .3,4C .2,3,4D .3,4,55.下列各式:①x 2+2>5;②a +b ;③x3≥2x ―15;④x ―1;⑤x +2≤3.其中是一元一次不等式的有( )A .2个B .3个C .4个D .5个6. 若关于x 的不等式组2x +3>12x ―a <0恰有3个整数解,则实数a 的取值范围是( )A .7<a <8B .7≤a <8C .7<a ≤8D .7≤a ≤87.已知0≤a ﹣b ≤1且1≤a +b ≤4,则a 的取值范围是( )A .1≤a ≤2B .2≤a ≤3C .12⩽a⩽52D .32⩽a⩽528.若x <y ,且ax >ay ,当x ≥―1时,关于x 的代数式ax ―2恰好能取到两个非负整数值,则a 的取值范围是( )A .―4<a ≤―3B .―4≤a <―3C .―4<a <0D .a ≤―39.若整数m使得关于x的方程mx―1=21―x+3的解为非负整数,且关于y的不等式组4y―1<3(y+3)y―m⩾0至少有3个整数解,则所有符合条件的整数m的和为( )A.7 B.5 C.0 D.-210.对于任意实数p、q,定义一种运算:p@q=p-q+pq,例如2@3=2-3+2×3.请根据上述定义解决问题:若关于x的不等式组2@x<4x@2≥m有3个整数解,则m的取值范围为是( )A.-8≤m<-5B.-8<m≤-5C.-8≤m≤-5D.-8<m<-5二、填空题11.关于x的不等式3⩾k―x的解集在数轴上表示如图,则k的值为 .12.小明用200元钱去购买笔记本和钢笔共30件,已知每本笔记本4元,每支钢笔10元,则小明至少能买笔记本 本.13.在数轴上存在点M=3x、N=2―8x,且M、N不重合,M―N<0,则x的取值范围是 .14.关于x的不等式组x>m―1x<m+2的整数解只有0和1,则m= .15.关于x的不等式组a―x>3,2x+8>4a无解,则a的取值范围是 .16.若数a既使得关于x、y的二元一次方程组x+y=63x―2y=a+3有正整数解,又使得关于x x+a―3的解集为x≥15,那么所有满足条件的a的值之和为 .三、计算题17.(1)解一元一次不等式组:x+3(x―2)⩽6 x―1<2x+13.(2)解不等式组:3(x+1)≥x―1x+152>3x,并写出它的所有正整数解.四、解答题18.先化简:a2―1a2―2a+1÷a+1a―1―aa―1;再在不等式组3―(a+1)>02a+2⩾0的整数解中选取一个合适的解作为a的取值,代入求值.19.解不等式组2―3x≤4―x,①1―2x―12>x4.②下面是某同学的部分解答过程,请认真阅读并完成任务:解:解不等式①,得―3x+x≤4―2第1步合并同类项,得―2x≤2第2步两边都除以―2,得x≤―1第3步任务一:该同学的解答过程中第▲步出现了错误,这一步的依据是▲,不等式①的正确解是▲.任务二:解不等式②,并写出该不等式组的解集.20.由于受到手机更新换代的影响,某手机店经销的甲种型号手机二月份售价比一份月每台降价500元.如果卖出相同数量的甲种型号手机,那么一月销售额为9万元,二月销售额只有8万元.(1)一月甲种型号手机每台售价为多少元?(2)为了提高利润,该店计划三月购进乙种型号手机销售,已知甲种型号每台进价为3500元,乙种型号每台进价为4000元,预计用不多于7.6万元且不少于7.5万元的资金购进这两种手机共20台,请问有几种进货方案?21.新定义:若某一元一次方程的解在某一元一次不等式组解集范围内,则称该一元一次方程为该不等式组的“关联方程”,例如:方程x―1=3的解为x=4,而不等式组x―1>2x+2<7的解集为3<x<5,不难发现x=4在3<x<5的范围内,所以方程x―1=3是不等式组x―1>2x+2<7的“关联方程”.(1)在方程①3(x+1)―x=9;②4x―8=0;③x―12+1=x中,关于x的不等式组2x―2>x―13(x―2)―x≤4的“关联方程”是;(填序号)(2)若关于x的方程2x+k=61≤2x2≤x―12的“关联方程”,求k的取值范围;22.若不等式(组)①的解集中的任意解都满足不等式(组)②,则称不等式(组)①被不等式(组)②“容纳”,其中不等式(组)①与不等式(组)②均有解.例如:不等式x>1被不等式x>0“容纳”;(1)下列不等式(组)中,能被不等式x<―3“容纳”的是________;A.3x―2<0B.―2x+2<0C.―19<2x<―6D.3x<―84―x<3(2)若关于x的不等式3x―m>5x―4m被x≤3“容纳”,求m的取值范围;(3)若关于x的不等式a―2<x<―2a―3被x>2a+3“容纳”,若M=5a+4b+2c 且a+b+c=3,3a+b―c=5,求M的最小值.答案解析部分1.【答案】D2.【答案】C3.【答案】B4.【答案】B5.【答案】A6.【答案】C7.【答案】C8.【答案】A9.【答案】A10.【答案】B11.【答案】212.【答案】1713.【答案】x<21114.【答案】015.【答案】a≥116.【答案】―1517.【答案】解:解不等式x+3(x﹣2)≤6,x+3x-6≤6,4x≤12,x≤3,∴不等式x+3(x﹣2)≤6的解为:x≤3,,解不等式x﹣1 <2x+133(x-1)<2x+1,3x-3<2x+1,x<4,的解为:x<4,∴不等式x﹣1 <2x+13∴不等式组的解集为x≤3.(2)【答案】解:3(x+1)≥x―1①x+152>3x②,由①得,x≥―2,由②得,x<3,∴不等式组的解集为―2≤x<3,所有正整数解有:1、2.18.【答案】解:解不等式3-(a+1)>0,得:a<2,解不等式2a+2≥0,得:a≥-1,则不等式组的解集为-1≤a<2,其整数解有-1、0、1,∵a≠±1,∴a=0,则原式=1.19.【答案】解:任务一:该同学的解答过程中第3步出现了错误,这一步的依据是不等式的基本性质3,不等式①的正确解是故答案为:3,不等式的基本性质3,x≥―1任务二:解不等式②,得x<65,∴不等式组的解为―1≤x<65.20.【答案】(1)解:设一份月甲种型号手机每台售价为x元.由题意得90000x=80000 x―500解得x=4500经检验x=4500是方程的解.答:一份月甲种型号手机每台售价为4500元.(2)解:设甲种型号进a台,则乙种型号进(20―a)台.由题意得75000≤3500a+4000(20―a)≤76000解得8≤a≤10a为整数,a为8,9,10有三种进货方案:甲型号8台,乙型号12台;甲型号9台,乙型号11台;甲型号10台,乙型号10台.21.【答案】(1)①②(2)k≥8 22.【答案】(1)C (2)m≤2(3)19。
【浙教版】八年级数学上《第3章一元一次不等式》单元试卷含答案
的解为 1<x< 3,
a-x>1
∴ a- 1= 3, ∴ a= 4.
( 第 15 题 )
x>a,
x< a ,
15.若关于 x 的不等式组
的解如图所示,则关于 x 的不等式组
的解是 x<a.
x>b
x≤ b
【解】 ∵ a<b,小小取小 ,
∴ x<a.
16.若代数式
1- 2x 的值不大于代数式 4
8- x的值,则 x 的最小整数解是 - 5. 2
1 >0,
得
2 x>- 5.
解不等式
x+
5a+4 4 3 >3(x+ 1)+ a,
得
x<
2a.
∵原不等式组有解 ,
∴原不等式组的解为-
2 5< x<2a .
∵该不等式组恰好有两个整数解 ,
∴整数解为 0 和 1,
∴ 1< 2a≤ 2, ∴12<a≤ 1.
24.(7 分 )已知关于 x 的不等式组 出不等式组的解.
32x- 93> 35, ∴
16x-45≤ 35, 解得 4< x≤ 5. 三、解答题 (共 60 分) 21. (12 分 )解下列不等式或不等式组: (1)3( x+2) -1≤ 11-2( x- 2)(在数轴上表示它的解 ). 【解】 3x+ 6- 1≤ 11- 2x+ 4, 5x≤10, ∴ x≤2.在数轴上表示如下:
x≥1
A. a<1 B. a≤ 1
C. a≥ 1 D. a>1
4.不等式 3(x- 1)≤ 5- x 的非负整数解有 (C)
A. 1 个 B. 2 个
C. 3 个 D. 4 个
5.在等腰三角形 ABC 中, AB= AC,其周长为 20 cm,则 AB 边的取值范围是 (B)
浙教版八年级上第3章 一元一次不等式单元测试(含答案)
单元测试(三) 一元一次不等式一、选择题(每小题3分,共30分)1.下列不等式是一元一次不等式的是( D )A .x +3<x +4B .x 2-2x -1<0C .12+13>16D .2(1-y )+y <4y +22.在-2,-1,0,1,2中,不等式x +3>2的解有( C )A .1个B .2个C .3个D .4个3.(长沙中考)一个关于x 的一元一次不等式组的解集在数轴上的表示如图,则该不等式组的解集是( C )A .x >1B .x ≥1C .x >3D .x ≥34.把不等式x +3>4的解表示在数轴上,正确的是( C )A B CD5.下列各不等式的变形中,正确的是( C )A .3x +6>10+2x ,变形得5x >4B .1-x -16<2x +13,变形得6-x -1<2(2x +1)C .x +7>3x -3,变形得2x <10D .3x -2<1+4x ,变形得x <-36.实数a ,b 在数轴上的位置如图所示,下列各式正确的是( D )A .a -b >0B .ab >0C .|a |+b <0D .a +b >07.(雅安中考)不等式组⎩⎪⎨⎪⎧x -1≥0,1-12x<0的最小整数解是( C )A .1B .2C .3D .48.小红读一本500页的书,计划10天内读完,前5天因种种原因只读了100页,为了按计划读完,则从第六天起平均每天至少要读( C )A .50页B .60页C .80页D .100页9.若不等式组⎩⎪⎨⎪⎧1+x>a ,2x -4≤0有解,则a 的取值范围是( B )A .a ≤3B .a <3C .a <2D .a ≤210.运行程序如图所示,规定:从“输入一个值x ”到“结果是否>95”为一次程序操作,如果程序操作进行了三次才停止,那么x 的取值范围是( C )A .x ≥11B .11≤x <23C .11<x ≤23D .x ≤23 二、填空题(每小题4分,共24分)11.用不等号“>、<、≥、≤”填空:a 2+1>0.12.用不等式表示“比x 的5倍大1的数不小于x 的一半与4的差”:5x +1≥12x -4.13.不等式2x +9≥3(x +2)的正整数解是1,2,3.14.不等式组⎩⎪⎨⎪⎧2-x ≥0,x 4<x +15的解集是x ≤2.15.某种商品的进价为800元,出售时标价为1 200元,后来由于该商品积压,商店准备打折销售,但要保证利润率不低于5%,则至多可打7折. 16.如果关于x 的分式方程ax +1-3=1-x x +1有负分数解,且关于x 的不等式组⎩⎪⎨⎪⎧2(a -x )≥-x -4,3x +42<x +1的解集为x <-2,那么符合条件的所有整数a 的积是9. 三、解答题(共66分)17.(6分)(南京中考)解不等式2(x +1)-1≥3x +2,并把它的解集在数轴上表示出来.解:去括号,得2x +2-1≥3x +2.移项,得2x -3x ≥2-2+1. 合并同类项,得-x ≥1. 系数化为1,得x ≤-1.这个不等式的解集在数轴上表示略.18.(8分)解不等式组⎩⎪⎨⎪⎧x +13>0,①2(x +5)≥6(x -1),②并在数轴上表示其解集.解:解不等式①,得x >-1. 解不等式②,得x ≤4.∴不等式组的解集为-1<x ≤4. 解集在数轴上表示略.19.(8分)若代数式3(2k +5)2的值不大于代数式5k +1的值,求k 的取值范围.解:由题意,得 3(2k +5)2≤5k +1. 解得k ≥134.20.(10分)(呼和浩特中考)已知实数a 是不等于3的常数,解不等式组⎩⎪⎨⎪⎧-2x +3≥-3,①12(x -2a )+12x<0.②并依据a 的取值范围写出其解集.解:解不等式①,得x ≤3. 解不等式②,得x <a . ∵a 是不等于3的常数,∴当a >3时,不等式组的解集为x ≤3; 当a <3时,不等式组的解集为x <a .21.(10分)某中学的高中部在A 校区,初中部在B 校区,学校学生会计划在3月12日植树节当天安排部分学生到郊区公园参加植树活动,已知A 校区的每位高中学生往返车费是6元,B 校区的每位初中学生往返的车费是10元,要求初、高中均有学生参加,且参加活动的初中学生比参加活动的高中学生多4人,本次活动的往返车费总和不超过210元,求初、高中最多有多少学生参加.解:设高中有x 名学生参加,初中有(x +4)名学生参加.依题意,得6x +10(x +4)≤210. 解得x ≤1058.∵x 为整数,∴x 最多为10.∴x +4=14.答:初中最多有14名学生参加,高中最多有10名学生参加.22.(12分)定义新运算:对于任意实数a ,b ,都有a ⊕b =a (a -b )+1,等式右边是通常的加法、减法及乘法运算.比如:2⊕5=2×(2-5)+1=2×(-3)+1 =-6+1 =-5.(1)求(-2)⊕3的值;(2)若3⊕x 的值小于13,求x 的取值范围,并在数轴上表示出来. 解:(1)(-2)⊕3=-2×(-2-3)+1 =-2×(-5)+1 =10+1 =11.(2)∵3⊕x <13, ∴3(3-x )+1<13. 解得x >-1.解集在数轴表示略.23.(12分)(达州中考改编)学校为了奖励初三优秀毕业生,计划购买一批平板电脑和一批学习机,经投标,购买1台平板电脑3 000元,购买1台学习机800元.(1)学校根据实际情况,决定购买平板电脑和学习机共100台,要求购买的总费用不超过168 000元,则购买平板电脑最多多少台?(2)在(1)的条件下,购买学习机的台数不超过平板电脑台数的1.7倍.请问有哪几种购买方案?哪种方案最省钱?解:(1)设购买平板电脑a 台,则购买学习机(100-a )台,由题意,得3 000a +800(100-a )≤168 000.解得a ≤40. 答:平板电脑最多购买40台. (2)根据题意,得 100-a ≤1.7a . 解得a ≥1 00027.∵a 为正整数,∴a =38,39,40,则学习机依次买62台,61台,60台. 因此该校有三种购买方案:。
第3章 一元一次不等式数学八年级上册-单元测试卷-浙教版(含答案)
第3章一元一次不等式数学八年级上册-单元测试卷-浙教版(含答案)一、单选题(共15题,共计45分)1、已知a>b,若c是任意实数,则下列不等式中总是成立的是( )A.a+c<b+cB.a﹣c>b﹣cC.ac<bcD.ac>bc2、不等式组的解集在数轴上表示正确的是()A. B. C.D.3、不等式组的解集是()A.x>﹣2B.﹣2<x<C.x>D.无解4、不等式组的解集在数轴上表示正确的是()A. B. C. D.5、不等式组的解集在数轴上表示正确的是()A. B. C.D.6、如果不等式组的解集是3<x<5,那么a,b的值分别为()A.3,5B.-3,-5C.-3,5D.3,-57、不等式组的解集在数轴上表示正确的是()A. B. C.D.8、按如图的程序进行操作,规定:程序运行从“输入一个值x”到“结果是否大于365”为一次操作.如果必须进行3次操作才能得到输出值,那么输入值x必须满足()A.x<50B.x<95C.50<x<95D.50<x≤959、若关于x的分式方程=1的解为正数,则字母a的取值范围是()A.a<2B.a≠2C.a>1D.a>1且a≠210、如果,,那么下列不等式成立的是A. B. C. D.11、不等式2x﹣2<0的解集是()A.x<1 B.x<﹣1C.x>1D.x>﹣112、已知不等式,其解集在数轴上表示正确的是()A. B. C. D.13、不等式2x+3≥1的解集在数轴上表示为()A. B. C.D.14、不等式组的解集在数轴上表示正确的是( )A. B. C.D.15、知a>b,则下列不等式中,正确的是( )A.-4a>-4bB.a-4>4-bC.4-a>4-bD.a-4>b-4二、填空题(共10题,共计30分)16、不等式组的解集为________.17、a________时,不等式(a﹣3)x>1的解集是x<.18、邮政部门规定:信函重100g以内(包括100g)每20g贴邮票0.8元,不足20g重以20g计算;超过100g,先贴邮票4元,超过100g部分每100g加贴邮票2元,不足100g重以100g计算.八(9)班有11位同学参加项目化学习知识竞赛,若每份答卷重12g,每个信封重4g,将这11份答卷分装在两个信封中寄出,所贴邮票的总金额最少是________元.19、商场有一种小商品进价为元,出售标价为元,后来由于积压,准备打折销售,但要保证利润率不低于,则最多可打________折.20、不等式的解集为,则m的值为________.21、若关于x的分式方程=1的解为正数,那么字母a的取值范围是________.22、不等式的正整数解为________.23、不等式的解为________.24、若关于的不等式的整数解共有个,则的取值范围是________.25、不等式的最小整数解是________.三、解答题(共5题,共计25分)26、解不等式组并把它的解集表示在数轴上.27、解不等式:4x+5≥1﹣2x.28、(1)解方程:;(2)解不等式组:.29、解不等式组:,并在数轴上表示出不等式组的解集.30、解不等式组:,并把解集在数轴上表示出来.参考答案一、单选题(共15题,共计45分)1、B2、C3、C4、D5、B6、D7、B8、D9、D10、D11、A12、A13、C14、A15、D二、填空题(共10题,共计30分)16、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)26、28、29、30、。
浙教版八年级数学上册第3章一元一次不等式单元测试题含答案
第3章一元一次不等式 第Ⅰ卷 (选择题 共30分)一、选择题(本题共10小题,每小题3分,共30分) 1.若a>b ,则下列不等式中,不成立的是( ) A .a -3>b -3 B .-3a>-3bC .a 3>b 3D .-a<-b2.若m 是非负数,则用不等式表示正确的是( ) A .m <0 B .m >0 C .m ≤0 D .m ≥03.已知关于x 的不等式2x -a>-3的解在数轴上表示如图,则a 的值为()A .2B .1C .0D .-14.不等式组⎩⎪⎨⎪⎧2-x ≥1,2x -1>-7的解表示在数轴上正确的是()5.不等式组⎩⎪⎨⎪⎧3x +1<4,12(x +3)-34<0的最大整数解是( )A .x =0B .x =-1C .x =-2D .x =16.若关于x 的方程5x -2m =-4-x 的解在2与10之间(不包括2和10),则m 的取值范围是( )A .m>8B .m<32C .8<m<32D .m<8或m>327.已知不等式2x +a ≥0的负整数解恰好是-3,-2,-1,那么a 满足条件( ) A .a =6 B .a ≥6 C .a ≤6 D .6≤a <88.若不等式组⎩⎪⎨⎪⎧x >7a +2x <4a -7无解,则a 的取值范围是( )A .a ≥-3B .a >-3C .a ≤-3D .a <-39.某种毛巾原零售价为每条6元,凡一次性购买两条以上(不含两条),商家推出两种优惠销售办法,第一种:两条按原价,其余按七折优惠;第二种:全部按原价的八折优惠.若在购买相同数量的情况下,要使第一种办法比第二种办法得到的优惠多,最少要购买毛巾( )A .4条B .5条C .6条D .7条10.已知△ABC 的边长分别为2x +1,3x ,5,则△ABC 的周长L 的取值范围是( ) A .6<L <36 B .10<L ≤11 C .11≤L <36 D .10<L <36 请将选择题答案填入下表:二、填空题(本题共6小题,每小题4分,共24分)11.x 的13与-2的和不大于4,用不等式表示为____________.12.当a 满足条件________时,由ax>8可得x<8a.13.已知关于x 的不等式组⎩⎪⎨⎪⎧x -a>0,1-x>0的整数解只有0和-1,则a 的取值范围是__________.14.不等式组-1≤3-2x <6的所有整数解的和是________,所有整数解的积是________.15.运行程序如图所示,从“输入实数x ”到“结果是否<18”为一次程序操作,若输入x 后程序操作仅进行了一次就停止,则x 的取值范围是________.16.对于整数a ,b ,c ,d ,现规定符号⎪⎪⎪⎪⎪⎪ab dc 表示运算ac -bd.已知1<⎪⎪⎪⎪⎪⎪1b d4<3,则b +d =________.三、解答题(本题共8小题,共66分)17.(6分)解不等式组:⎩⎪⎨⎪⎧2x -1≥x +1,x +8<4x -1.18.(6分)解不等式-5+x 3≥4x +18-72,并把解表示在数轴上.19.(6分)在一次“人与自然”知识竞赛中,共有25道选择题,要求学生把正确答案选出,每题选对得10分,选错或不选倒扣5分.如果一个学生在本次竞赛中的得分不低于200分,那么他至少要选对多少道题?20.(8分)如果不等式组⎩⎪⎨⎪⎧x >2m +1,x >m +2的解是x >-1,求m 的值.21.(8分)东风商场文具部出售某种毛笔每支25元,书法练习本每本5元.为了促销,该商场制定了两种优惠.方案一:买一支毛笔就赠送一本练习本;方案二:按购买金额打九折销售.某校书法兴趣小组购买这种毛笔10支,书法练习本x(x ≥10)本.(1)若按方案一购买,则需要________元,按方案二购买,需要________元.(用含x 的代数式表示)(2)购买多少本书法练习本时,按方案二付款更省钱?22.(10分)为了对学生进行爱国主义教育,某校组织学生去看演出,有甲、乙两种票,已知甲、乙两种票的单价比为4∶3,单价和为42元.(1)甲、乙两种票的单价分别是多少元?(2)学校计划拿出不超过750元的资金,让七年级一班的36名学生首先观看,则甲种票最多买多少张?23.(10分)阅读下面的材料,再解答问题. 例:解不等式x2x -1>1.解:把不等式x2x -1>1进行整理,得x 2x -1-1>0,即1-x 2x -1>0. 则有①⎩⎪⎨⎪⎧1-x>0,2x -1>0或②⎩⎪⎨⎪⎧1-x<0,2x -1<0. 解不等式组①,得12<x <1,解不等式组②知其无解,所以原不等式的解为12<x <1.请根据以上思想方法解不等式3x +2x -2<2.24.(12分)某公交公司有A ,B 两种客车,它们的载客量和租金如下表:红星中学根据实际情况,计划租用,两种客车共5辆,同时送八年级师生到某基地参加社会实践活动.设租用A 种客车x(x 为正整数)辆,根据要求回答下列问题:(1)用含x 的式子填写下表:(2)若要保证租车费用不超过1900元,求x 的最大值;(3)在(2)的条件下,若八年级师生共有195人,写出所有可能的租车方案,并确定最省钱的租车方案.答案1. B 2. D 3. D 4. D 5. C 6. C 7. D 8. A 9. D 10. D 11. x3-2≤412. a <0 13. -2≤a <-1 14. 2 0 15. x <8 16. ±317.解:由2x -1≥x +1,得x ≥2, 由x +8<4x -1,得x >3, 因此不等式组的解为x >3.18.解:解不等式得x ≤-394.在数轴上表示如下:19.解:设该学生选对了x 道题. 由题可知10x -5(25-x )≥200, 解得x ≥653,因此x 的最小整数解是22.故该学生至少要选对22道题.20.解:∵该不等式组的解是x >-1,∴2m +1=-1或m +2=-1.当2m +1=-1时,m =-1,此时m +2=1,则不等式组的解应为x >1,不符合要求; 当m +2=-1时,m =-3,此时2m +1=-5,则不等式组的解为x >-1,符合要求. 故m =-3.21.解:(1)按方案一购买,需付:10×25+5(x -10)=(5x +200)元, 按方案二购买,需付:0.9×(5x +25×10)=(4.5x +225)元. 故答案为5x +200,4.5x +225.(2)依题意可得,5x +200>4.5x +225,解得x >50.答:购买超过50本书法练习本时,按方案二付款更省钱. 22.解:(1)设甲种票价为4x 元,乙种为3x 元. ∴3x +4x =42,解得x =6, ∴4x =24,3x =18,答:甲、乙两种票的单价分别是24元、18元.(2)设甲种票买y 张,则乙种票买(36-y )张,根据题意,得 24y +18(36-y )≤750, 解得y ≤17,答:甲种票最多买17张.23.解:把不等式3x +2x -2<2进行整理,得3x +2x -2-2<0,即x +6x -2<0,则有①⎩⎪⎨⎪⎧x +6>0,x -2<0,或②⎩⎪⎨⎪⎧x +6<0,x -2>0,解不等式组①,得-6<x <2,解不等式组②无解. 所以原不等式的解为-6<x <2. 24.解:(1)30(5-x ) 280(5-x )(2)根据题意,得400x +280(5-x )≤1900,解得x ≤416,∴x 的最大值为4.(3)由(2)可知,x ≤416,又因为x 为正整数,故x 的可能取值为1,2,3,4.①租A 种客车1辆,B 种客车4辆,载客量为45×1+30×4=165(人)<195人,故不合题意,舍去;②租A 种客车2辆,B 种客车3辆,载客量为45×2+30×3=180(人)<195人,故不合题意,舍去;③租A 种客车3辆,B 种客车2辆,租车费用为400×3+280×2=1760(元),且载客量为45×3+30×2=195(人),符合题意;④租A 种客车4辆,B 种客车1辆,租车费用为400×4+280×1=1880(元),且载客量为45×4+30×1=210(人)>195人,符合题意,故所有可能的租车方案有③④两种,最省钱的方案是租A 种客车3辆,B 种客车2辆.。
浙教版初中数学八年级上册第三单元《一元一次不等式》单元测试卷(标准难度)《含答案解析》
浙教版初中数学八年级上册第三单元《一元一次不等式》单元测试卷考试范围:第三章;考试时间:120分钟;总分:120分学校:___________姓名:___________班级:___________考号:___________第I卷(选择题)一、选择题(本大题共12小题,共36.0分。
在每小题列出的选项中,选出符合题目的一项)1.下列说法中,正确的是( )A. 若a≠b,则a2≠b2B. 若a>|b|,则a>bC. 若|a|=|b|,则a=bD. 若|a|>|b|,则a>b2.不等式−2x+1≤4的最小整数解是( )A. 1B. 2C. −1D. −23.有下列式子: ①3<5; ②4x+5>0; ③x=3; ④x2+x; ⑤x≠−4; ⑥x+2≥x+1.其中属于不等式的是( )A. ① ② ⑥B. ① ③ ④C. ① ② ⑤ ⑥D. ② ③ ⑤ ⑥4.如果a<b,那么下列不等式中一定成立的是.( )A. a−2b<−bB. a2<abC. ab<b2D. a2<b25.如图,已知P是△ABC内任一点,AB=12,BC=10,AC=6,则PA+PB+PC的值一定大于( )A. 14B. 15C. 16D. 286.若实数a,b,c满足a+b+c>0,a+c=2b,则下列结论中正确的是( )A. b<0,b2−ac≥0B. b>0,b2−ac≤0C. b>0,b2−ac≥0D. b<0,b2−ac≤07. 小明准备用40元钱购买作业本和签字笔.已知每本作业本6元,每枝签字笔2.2元,小明买了7枝签字笔,他最多还可以买的作业本的本数为( )A. 5B. 4C. 3D. 28. 不等式4x −6≥7x −12的正整数解个数为( )A. 0个B. 1个C. 2个D. 3个 9. 某市居民用电的电价实行阶梯收费,收费标准如下表:一户居民每月用电量x(度)电费价格(元/度) 0<x ≤2000.48 200<x ≤4000.53 x >400 0.78七月份是用电高峰期,李叔计划七月份电费支出不超过200元,则李叔家七月份最多可用电的度数是( )A. 100B. 400C. 396D. 39710. 某校学生志愿服务小组在“学雷锋”活动中购买了一批牛奶到敬老院慰问老人.如果分给每位老人4盒牛奶,那么剩下28盒牛奶;如果分给每位老人5盒牛奶,那么最后一位老人分得的牛奶不足4盒,但至少1盒.则这个敬老院的老人最少有( )A. 29人B. 30人C. 31人D. 32人11. 三个连续自然数的和小于15,这样的自然数组共有( )A. 6组B. 5组C. 4组D. 3组12. 不等式组{3(x −2)≤x −43x >2x −1的解集在数轴上表示正确的是( ) A.B. C. D.第II 卷(非选择题)二、填空题(本大题共4小题,共12.0分)13. 小亮从家到学校的路程为2400米,他早晨8时离开家,要在8时30分到8时50分之间到学校,如果用x 表示他的速度(单位:米/分),则x 的取值范围为______ .14. 已知a =2m 2−mn ,b =mn −2n 2,c =m 2−n 2(m ≠n),用“<”表示a 、b 、c 的大小关系为______.15. 关于x 的不等式−2x +a ≥2的解如图所示,则a 的值为 .16. 若不等式组{x −b <0,x +a >0的解集为2<x <3,则a = ,b = .三、解答题(本大题共9小题,共72.0分。
浙教版八年级上册数学第3章 一元一次不等式单元测试卷(含答案)
浙教版八年级上册数学第3章一元一次不等式单元测试卷(含答案)一、单选题(共11题;共22分)1.若a<b,则下列结论不一定成立的是()。
A.a-1<b-1B.2a<2bC.D.2.九年级某班的部分同学去植树,若每人平均植树7棵,则还剩9棵;若每人平均植树9棵,则有1名同学植树的棵数不到8棵.若设同学人数为x人,则下列能准确求出同学人数与植树总棵数的是()A.7x+9-9(x-1)>0B.7x+9-9(x-1)<8C.D.3.x与的差的一半是正数,用不等式表示为()A.(x﹣)>0B.x﹣<0C.x﹣>0D.(x﹣)<04.若某汽车租赁公司要购买轿车和面包车共10辆,其中轿车至少要购买3辆,轿车每辆7万元,面包车每辆4万元,公司可投入的购车款不超过55万元,则符合该公司要求的购买方式有()A.3种B.4种C.5种D.6种5.关于x的不等式组只有4个整数解,则a的取值范围是()A.5≤a≤6B.5≤a<6C.5<a≤6D.5<a<66.若不等式组无解,则a的取值范围是()A.a≥﹣3B.a>﹣3C.a≤﹣3D.a<﹣37.已知关于x的不等式组仅有三个整数解,则a的取值范围是()。
A.≤a<1B.≤a≤1C.<a≤1D.a<18.不等式组的解集为()A.x>B.x>1C.<x<1D.空集9.下列说法中错误的是()A.如果a<b,那么a﹣c<b﹣cB.如果a>b,c>0,那么ac>bcC.如果m<n,p<0,那么>D.如果x>y,z<0,那么xz>yz10.不等式1-x≥2的解在数轴上表示正确的是()A. B.C. D.11.不等式组的解集在数轴上表示正确的是()A. B.C. D.二、填空题(共8题;共8分)12.2018年国内航空公司规定:旅客乘机时,免费携带行李箱的长,宽,高三者之和不超过115cm.某厂家生产符合该规定的行李箱.已知行李箱的宽为20cm,长与高的比为8:11,则符合此规定的行李箱的高的最大值为________cm.13.不等式x+1≥0的解集是________.14.不等式组的最小整数解是________.15.不等式组的整数解是x=________.16.已知,,若,则实数的值为________.17.不等式组的解集为________.18.(2017•黑龙江)不等式组的解集是x>﹣1,则a的取值范围是________.19.关于x的不等式组只有4个整数解,则a的取值范围是________.三、解答题(共7题;共49分)20.一次普法知识竞赛共有30道题,规定答对一道题得4分,答错或不答一道题扣1分.在这次竞赛中,小明获得优秀(90或90分以上),则小明至少答对了多少道题?21.今年中考期间,我县部分乡镇学校的九年级考生选择在一中、二中的学生宿舍住宿,某学校将若干间宿舍分配给该校九年级一班的女生住宿,已知该班女生少于25人,若每个房间住4人,则剩下3人没处住;若每个房间住6人,则空一间房,并且还有一间房有人住但住不满。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
八年级(上)数学第3章一元一次不等式单元测试卷一.选择题(共10小题)1.若,则下列各式中一定成立的是A.B.C.D.2.铺设木地板时,每两块地板之间的缝隙不低于且不超过,缝隙的宽度可以是A.B.C.D.3.不等式的解集是A.B.C.D.4.不等式组的整数解有A.1个B.2个C.3个D.4个5.解集在数轴上表示为如图所示的不等式组是A.B.C.D.6.已知关于的不等式的解集为,则的取值范围是A.B.C.D.7.一个矩形苗圃园,其中一边靠墙,墙长,另外三边由篱笆围成,篱笆长度为,则垂直于墙的一边的长度取值范围为A.B.C.D.8.某次知识竞赛共有20道题,规定答对一道题得10分,答错或不答一道题扣5分,小明得分要超过140分,则他至少要答对道题.A.15B.16C.17D.189.某单位为响应政府号召,需要购买分类垃圾桶6个,市场上有型和型两种分类垃圾桶,型分类垃圾桶500元个,型分类垃圾桶550元个,总费用不超过3100元,则不同的购买方式有A.2种B.3种C.4种D.5种10.对于任意实数、,定义一种运算:※.例如,2※.请根据上述的定义解决问题:若不等式2※,则不等式的解集为A.B.C.D.二.填空题(共6小题)11.的4倍与3的差不小于7,用不等式表示为.12.不等式的解集是.13.若式子的值大于的值,则的取值范围是.14.已知关于的方程的解是负数,则的取值范围是.15.不等式组无解,则的取值范围是.16.航空公司规定:旅客乘机时,免费携带行李箱的长、宽、高之和不超过.某厂家准备生产符合规定的行李箱,已知行李箱的宽为,长与高的比为,则该行李箱最高不能超过.三.解答题(共8小题)17.解不等式:,并把解集在数轴上表示出来.18.解不等式组,并求出它的正整数解.19.解不等式组,并将它的解集在数轴上表示出来.20.解不等式组.请结合题意,完成本题的解答.(1)解不等式①,得.(2)解不等式③,得.(3)把不等式①、②和③的解集在数轴上表示出来.(4)从图中可以找出三个不等式解集的公共部分,得不等式组的解集.21.为响应市政府“创建国家森林城市”的号召,某小区计划购进、两种树苗.已知2棵种树苗和3棵种树苗共需270元,3棵种树苗和6棵种树苗共需480元.(1)、两种树苗的单价分别是多少元?(2)该小区计划购进两种树苗共50棵,总费用不超过2700元,问最多可以购进种树苗多少棵?22.已知一件文化衫价格为28元,一个书包的价格比一件文化衫价格的2倍少6元.(1)求一个书包的价格是多少元?(2)“同一蓝天”爱心社出资3000元,拿出不少于400元但不超过500元的经费奖励山区小学的优秀学生,剩余经费还能为多少名山区小学的学生每人购买一个书包和一件文化衫?23.根据市场调查,某种消毒液的大瓶装和小瓶装两种产品的销售数量(按瓶计算)比为.某厂每天生产这种消毒液.(1)这些消毒液应该分装大、小瓶两种产品各多少瓶?(2)若大、小瓶两种产品的消毒液单价分别为25元、13元,某公司需购买大、小瓶两种产品共100瓶,且购置费不多于1660元,则大瓶的消毒液最多购买多少瓶?24.“便民仓买”账目记录显示,某天进货50个牙刷和20个牙膏共支出650元,另一天,以同样的价格进货40个牙刷和30个牙膏共支出800元.(1)求每一个牙刷和每一个牙膏的进货价各多少元;(2)有一天,仓买店又要进货这两种品牌的牙刷和牙膏共80个,但是牙刷的进货价增加了,牙膏的进货价增加了,而采购员仅剩960元进货款,那么该“便民仓买”最多可进货牙膏多少个?参考答案一.选择题(共10小题)1.若,则下列各式中一定成立的是A.B.C.D.解:,,,,.故选:.2.铺设木地板时,每两块地板之间的缝隙不低于且不超过,缝隙的宽度可以是A.B.C.D.解:设缝隙的宽度为,根据题意得:,则缝隙的宽度可以是.故选:.3.不等式的解集是A.B.C.D.解:不等式,左右两边除以2得:.故选:.4.不等式组的整数解有A.1个B.2个C.3个D.4个解:解不等式,得:,解不等式,得:,则不等式组的解集为,所以不等式组的整数解为,0,1,2,一共4个.故选:.5.解集在数轴上表示为如图所示的不等式组是A.B.C.D.解:观察数轴可知:解集在数轴上表示为如图所示的不等式组是:.故选:.6.已知关于的不等式的解集为,则的取值范围是A.B.C.D.解:不等式的解集为,又不等号方向改变了,,;故选:.7.一个矩形苗圃园,其中一边靠墙,墙长,另外三边由篱笆围成,篱笆长度为,则垂直于墙的一边的长度取值范围为A.B.C.D.解:垂直于墙的一边的长度为,平行于墙的一边的长度为.又墙长,,.故选:.8.某次知识竞赛共有20道题,规定答对一道题得10分,答错或不答一道题扣5分,小明得分要超过140分,则他至少要答对道题.A.15B.16C.17D.18由题意可得:,解得:,根据必须为整数,故取最小整数17,故选:.9.某单位为响应政府号召,需要购买分类垃圾桶6个,市场上有型和型两种分类垃圾桶,型分类垃圾桶500元个,型分类垃圾桶550元个,总费用不超过3100元,则不同的购买方式有A.2种B.3种C.4种D.5种解:设购买型分类垃圾桶个,则购买型分类垃圾桶个,依题意,得:,解得:.,均为非负整数,可以为4,5,6,共有3种购买方案.故选:.10.对于任意实数、,定义一种运算:※.例如,2※.请根据上述的定义解决问题:若不等式2※,则不等式的解集为A.B.C.D.解:※,,解得,故选:.二.填空题(共6小题)11.的4倍与3的差不小于7,用不等式表示为.解:由题意得:.故答案为:.12.不等式的解集是.去括号,得,移项,得合并同类项,得系数化为1,得,故答案为.13.若式子的值大于的值,则的取值范围是.解:根据题意得,,,,.故答案为:.14.已知关于的方程的解是负数,则的取值范围是.解:由,得.关于的方程的解是负数,,解得.故答案是:.15.不等式组无解,则的取值范围是.解:不等式组整理得:,由不等式组无解,得到,解得:,则的取值范围是.故答案为:.16.航空公司规定:旅客乘机时,免费携带行李箱的长、宽、高之和不超过.某厂家准备生产符合规定的行李箱,已知行李箱的宽为,长与高的比为,则该行李箱最高不能超过55.解:设该行李箱的高为,则长为,依题意,得:,解得:.故答案为:55.三.解答题(共8小题)17.解不等式:,并把解集在数轴上表示出来.解:去分母,得:,去括号,得:,移项,合并同类项,得:,则.在数轴上表示为:.18.解不等式组,并求出它的正整数解.解:解不等式,得:,解不等式,得:,所以不等式组的解集为,则不等式组的正整数解为1,2.19.解不等式组,并将它的解集在数轴上表示出来.解:,由①得:;由②得:;不等式组的解集为:,不等组的解集在数轴上表示为:.20.解不等式组.请结合题意,完成本题的解答.(1)解不等式①,得.(2)解不等式③,得.(3)把不等式①、②和③的解集在数轴上表示出来.(4)从图中可以找出三个不等式解集的公共部分,得不等式组的解集.解:(1)解不等式①,得,依据是:不等式的基本性质.(2)解不等式③,得.(3)把不等式①,②和③的解集在数轴上表示出来.(4)从图中可以找出三个不等式解集的公共部分,得不等式组的解集为:,故答案为:(1);(2);(4).21.为响应市政府“创建国家森林城市”的号召,某小区计划购进、两种树苗.已知2棵种树苗和3棵种树苗共需270元,3棵种树苗和6棵种树苗共需480元.(1)、两种树苗的单价分别是多少元?(2)该小区计划购进两种树苗共50棵,总费用不超过2700元,问最多可以购进种树苗多少棵?解:(1)设、两种树苗的单价分别是元和元.由题意得:,解得:,答:、两种树苗的单价分别是60元和50元;(2)设小区购进种树苗棵,则购进种树苗棵,由题意得:,解得:,为整数,的最大值为20,即最多可以购进种树苗20棵.22.已知一件文化衫价格为28元,一个书包的价格比一件文化衫价格的2倍少6元.(1)求一个书包的价格是多少元?(2)“同一蓝天”爱心社出资3000元,拿出不少于400元但不超过500元的经费奖励山区小学的优秀学生,剩余经费还能为多少名山区小学的学生每人购买一个书包和一件文化衫?解:(1)设一个书包的价格是元,依题意,得:,解得:.答:一个书包的价格是50元.(2)设剩余经费还能为名山区小学的学生每人购买一个书包和一件文化衫,依题意,得:,解得:.又为正整数,的值为33.答:剩余经费还能为33名山区小学的学生每人购买一个书包和一件文化衫.23.根据市场调查,某种消毒液的大瓶装和小瓶装两种产品的销售数量(按瓶计算)比为.某厂每天生产这种消毒液.(1)这些消毒液应该分装大、小瓶两种产品各多少瓶?(2)若大、小瓶两种产品的消毒液单价分别为25元、13元,某公司需购买大、小瓶两种产品共100瓶,且购置费不多于1660元,则大瓶的消毒液最多购买多少瓶?解:(1)设这些消毒液应该分装大瓶产品瓶,、小瓶产品瓶,依题意有,解得,,.故这些消毒液应该分装大瓶产品20000瓶,、小瓶产品50000瓶;(2)设大瓶的消毒液购买瓶,依题意有,解得.故大瓶的消毒液最多购买30瓶.24.“便民仓买”账目记录显示,某天进货50个牙刷和20个牙膏共支出650元,另一天,以同样的价格进货40个牙刷和30个牙膏共支出800元.(1)求每一个牙刷和每一个牙膏的进货价各多少元;(2)有一天,仓买店又要进货这两种品牌的牙刷和牙膏共80个,但是牙刷的进货价增加了,牙膏的进货价增加了,而采购员仅剩960元进货款,那么该“便民仓买”最多可进货牙膏多少个?解:(1)设购进每个牙刷元,每个牙膏元.则解得.答:购进一个牙刷5 元,购进一个牙膏20 元;(2)设购进牙膏个,则购进牙刷个,列不等式:.解得.答:该仓买最多购进30 个牙膏.。