圆锥曲线小结论

合集下载

高中数学圆锥曲线结论(最完美版本)

高中数学圆锥曲线结论(最完美版本)

圆锥曲线二级推论
5. 若 P0 (x0, y0 ) 在双曲线
x2 a2

y2 b2
1(a>0,b>0)上,则过
P0 的双曲线的切线方程是
x0 x a2

y0 y b2
1.
6. 若 P0 (x0, y0 ) 在双曲线 x2 y2 1(a>0,b>0)外 ,则过
a2 b2
Po 作双曲线的两条切线切点为
P1、P2,则切点弦 P1P2 的直线方程 是 x0 x y0 y 1.
a2 b2
7. 双曲线 x2 y2 1(a>0,b>o)的
a2 b2
左右焦点分别为 F1,F 2,点 P 为 双曲线上任意一点 F1PF2 ,则 双曲线的焦点角形的面积为
SF1PF2
b2co t 2
.
8.
双曲线
x2 a2

y2 b2
1(a>0,b>o)的
焦半径公式:( F1(c, 0) , F2 (c, 0) 当 M (x0, y0 ) 在右支上时, | MF1 | ex0 a ,| MF2 | ex0 a .
当 M (x0, y0 ) 在左支上时, | MF1 | ex0 a ,| MF2 | ex0 a
MF⊥NF.
11. AB 是双曲线
x2 a2

y2 b2
1(a>0,b>0)的不平行
于对称轴的弦,M (x0 , y0 ) 为 AB 的
中点,则 KOM
K AB

b2 x0 a2 y0
,即
K AB

b2 x0 a2 y0

12. 若 P0 (x0, y0 ) 在双曲线 x2 y2 1(a>0,b>0)内,则被

圆锥曲线常用结论

圆锥曲线常用结论

圆锥曲线常用结论1.圆锥曲线的定义:(1)定义中要重视“括号”内的限制条件:椭圆中,与两个定点F,F的距离的和等于常数,且此常数一定要大于,当常数等于时,轨迹是线段FF,当常数小于时,无轨迹;双曲线中,与两定点F,F的距离的差的绝对值等于常数,且此常数一定要小于|FF|,定义中的“绝对值”与<|FF|不可忽视。

若=|FF|,则轨迹是以F,F为端点的两条射线,若﹥|FF|,则轨迹不存在。

若去掉定义中的绝对值则轨迹仅表示双曲线的一支。

抛物线定义中,定点和定直线是焦点和准线,要注意定点不在定直线上,否则轨迹为过定点且和定直线垂直的直线.(2)抛物线定义给出了抛物线上的点到焦点距离与此点到准线距离间的关系,要善于运用定义对它们进行相互转化。

2.圆锥曲线的标准方程(标准方程是指中心(顶点)在原点,坐标轴为对称轴时的标准位置的方程):(1)椭圆:焦点在轴上时()(参数方程,其中为参数),焦点在轴上时=1()。

方程表示椭圆的充要条件是什么?(ABC≠0,且A,B,C同号,A≠B)。

(2)双曲线:焦点在轴上: =1,焦点在轴上:=1()。

方程表示双曲线的充要条件是什么?(ABC≠0,且A,B异号)。

(3)抛物线:开口向右时,开口向左时,开口向上时,开口向下时。

3.圆锥曲线焦点位置的判断(首先化成标准方程,然后再判断):(1)椭圆:由,分母的大小决定,焦点在分母大的坐标轴上。

(2)双曲线:由,项系数的正负决定,焦点在系数为正的坐标轴上;(3)抛物线:焦点在一次项的坐标轴上,一次项的符号决定开口方向。

特别提醒:(1)在求解椭圆、双曲线问题时,首先要判断焦点位置,焦点F,F的位置,是椭圆、双曲线的定位条件,它决定椭圆、双曲线标准方程的类型,而方程中的两个参数,确定椭圆、双曲线的形状和大小,是椭圆、双曲线的定形条件;在求解抛物线问题时,首先要判断开口方向;(2)在椭圆中,最大,,在双曲线中,最大,。

4.圆锥曲线的几何性质:(1)椭圆(以()为例):①范围:;②焦点:两个焦点;③对称性:两条对称轴,一个对称中心(0,0),四个顶点,其中长轴长为2,短轴长为2;④准线:两条准线;⑤离心率:,椭圆,越小,椭圆越圆;越大,椭圆越扁。

圆锥曲线点差法拓展的几个小结论,快速解题

圆锥曲线点差法拓展的几个小结论,快速解题

点差法拓展的常考结论点差法拓展的结论有四个,但是推导的方法都是高度一致的。

如下结论1:如下图,直线l 为任意直线,与椭圆22221x y a b+=有两个交点A 、B ,M 为线段AB的中点,则有结论22OM ABb k k a=-推导:根据点差法,设()11,A x y 和()22,B x y ,则1212,22x x y y M ++⎛⎫⎪⎝⎭则2212121222121212OM ABy y y y y y k k x x x x x x +--==+-- 又因为2211221x y a b +=和2222221x y a b +=,二者做差可得22221212220x x y y a b--+= 整理得2221222212y y b x x a-=--,即22OM AB b k k a =- 结论2:如下图,直线l 过原点,交椭圆22221x y a b+=于A 、B 两点,C 为椭圆上任意一点,则有结论22CA CBb k k a=-推导:因为直线过原点,所以必有点A 和点B 关于原点对称,因为可设()11,A x y 和()11,B x y --,设()22,C x y则2221212122212121CA CBy y y y y y k k x x x x x x -+-==-+- 剩下的就跟结论1的推导一模一样的,如下又因为2211221x y a b +=和2222221x y a b +=,二者做差可得22221212220x x y y a b--+= 整理得2221222212y y b x x a-=--,即22CA CB b k k a =- 结论3:如下图,l 为任意直线,交双曲线22221x y a b-=于A 、B 两点,M 为AB 的中点,则有结论22OM ABb k k a=推导:与结论1的过程一样。

根据点差法,设()11,A x y 和()22,B x y ,则1212,22x x y y M ++⎛⎫⎪⎝⎭则2212121222121212OM ABy y y y y y k k x x x x x x +--==+-- 又因为2211221x y a b -=和2222221x y a b -=,二者做差可得22221212220x x y y a b---= 整理得2221222212y y b x x a-=-,即22OM AB b k k a = 结论4:如下图,直线l 过原点,交双曲线22221x y a b-=于A 、B 两点,点C 为双曲线上任意一点,则有结论22CA CBb k k a=推导:推导与结论2一样。

圆锥曲线的经典结论

圆锥曲线的经典结论

当 M (x0, y0 ) 在左支上时, | MF1 | ex0 a , | MF2 | ex0 a (同上)
9. 设过双曲线焦点 F 作直线与双曲线相交 P 、Q 两点, A 为双曲线长轴上一个顶点, 连结 AP 和 AQ 分别交相应于焦点 F 的双曲线准线于 M 、 N 两点,则 MF NF .(同上)
1( a
0, b
0 )的左右焦点分别为
F , F2 ,点 P 为双曲线上任意一点:
F1PF2
,则双曲线的焦点角形的面积为
S F1PF2
b2co t .(同上) 2
x2 y2 8. 双曲线 a2 b 2 1 ( a 0, b 0 )的焦半径公式:
F1 ( c , 0 ) , F2 (c,0)
当 M (x0, y0 ) 在右支上时, | MF1 | ex0 a , | MF2 | ex0 a .
a2c2k 2 a2b2
xP xQ
, xP xQ
M
2 a 2k 2c
2b2 ck
2abkN
, yP yQ
, yP yQ

M
M
M
第 2 页,共 18 页
xP yQ xQ y P
2a 2b 2k , xP yQ
M
xQ ቤተ መጻሕፍቲ ባይዱP
再根据上一条性质可得结论。
2 abckN ,则 x
M
2a2b2k 2a2bkN
M 2abckN
M 2 ab2 ck
a
M
M
a2

c
11. (点差法)
kOM k AB 即 K AB
AB 是椭圆
x2 a2
b2 a2 ,
b 2x0 a2 y0

高中数学圆锥曲线常用98条结论

高中数学圆锥曲线常用98条结论

高中数学圆锥曲线常用98条结论1.椭圆的离心率小于1,且焦点在中心到长轴的垂线上。

2. 长轴和短轴的长度分别为2a和2b,则椭圆的标准方程为(x/a)+(y/b)=1。

3. 椭圆的焦距为c=√(a-b)。

4. 椭圆的面积为πab。

5. 椭圆的周长近似为2π√((a+b)/2)。

6. 椭圆的离心率为e=c/a。

7. 双曲线的离心率大于1,且焦点在中心到长轴的垂线上。

8. 长轴和短轴的长度分别为2a和2b,则双曲线的标准方程为(x/a)-(y/b)=1。

9. 双曲线的焦距为c=√(a+b)。

10. 双曲线的面积为πab。

11. 双曲线的渐近线方程为y=±(b/a)x。

12. 双曲线的离心率为e=c/a。

13. 抛物线的离心率等于1,且焦点在抛物线的顶点上。

14. 抛物线的标准方程为y=4ax。

15. 抛物线的焦距等于a。

16. 抛物线的面积为2/3×a×(4a/3)。

17. 抛物线的顶点坐标为(0,0)。

18. 抛物线的准线方程为y=-a。

19. 圆的标准方程为(x-a)+(y-b)=r。

20. 圆的直径为圆心的两倍半径。

21. 圆的周长为2πr。

22. 圆的面积为πr。

23. 直线与圆相交,切点到圆心的距离垂直于直线。

24. 切线方程为y-y=k(x-x),其中k为切线斜率。

25. 直线与圆相切,切点坐标为(x,y),则切线方程为(y-y)=k(x-x),其中k为直线斜率。

26. 椭圆的切线方程为(ay/b)+(x/a)=1。

27. 双曲线的切线方程为(ay/b)-(x/a)=1。

28. 抛物线的切线方程为y=2ax。

29. 椭圆的法线方程为(by/a)+(x/a)=1。

30. 双曲线的法线方程为(by/a)-(x/a)=1。

31. 抛物线的法线方程为y=-x/(2a)。

32. 椭圆的两条直径的交点在椭圆的中心点上。

33. 椭圆的两条直径的长度之和为2a。

34. 椭圆的两条直径的中垂线交于椭圆的中心点。

小学数学有关圆锥曲线的经典结论

小学数学有关圆锥曲线的经典结论

一、椭 圆1. 点P 处的切线PT 平分△PF 1F 2在点P 处的外角.2. PT 平分△PF 1F 2在点P 处的外角,则焦点在直线PT 上的射影H 点的轨迹是以长轴为直径的圆,除去长轴的两个端点.3. 以焦点弦PQ 为直径的圆必与对应准线相离.4. 以焦点半径PF 1为直径的圆必与以长轴为直径的圆内切.5. 若000(,)P x y 在椭圆22221x y a b +=上,则过0P 的椭圆的切线方程是00221x x y ya b +=.6. 若000(,)P x y 在椭圆22221x y a b +=外 ,则过Po 作椭圆的两条切线切点为P 1、P 2,则切点弦P 1P 2的直线方程是00221x x y ya b+=.7. 椭圆22221x y a b+= (a >b >0)的左右焦点分别为F 1,F 2,点P 为椭圆上任意一点12F PF γ∠=,则椭圆的焦点角形的面积为122tan2F PF S b γ∆=.8. 椭圆22221x y a b+=(a >b >0)的焦半径公式:10||MF a ex =+,20||MF a ex =-(1(,0)F c - , 2(,0)F c 00(,)M x y ).9. 设过椭圆焦点F 作直线与椭圆相交 P 、Q 两点,A 为椭圆长轴上一个顶点,连结AP 和AQ 分别交相应于焦点F 的椭圆准线于M 、N 两点,则MF ⊥NF.10. 过椭圆一个焦点F 的直线与椭圆交于两点P 、Q, A 1、A 2为椭圆长轴上的顶点,A 1P 和A 2Q交于点M ,A 2P 和A 1Q 交于点N ,则MF ⊥NF.11. AB 是椭圆22221x y a b +=的不平行于对称轴的弦,M ),(00y x 为AB 的中点,则22OM AB b k k a ⋅=-,即0202y a xb K AB -=。

12. 若000(,)P x y 在椭圆22221x y a b+=内,则被Po 所平分的中点弦的方程是2200002222x x y y x y a b a b +=+. 13. 若000(,)P x y 在椭圆22221x y a b+=内,则过Po 的弦中点的轨迹方程是22002222x x y yx y a b a b+=+.二、双曲线1. 点P 处的切线PT 平分△PF 1F 2在点P 处的内角.2. PT 平分△PF 1F 2在点P 处的内角,则焦点在直线PT 上的射影H 点的轨迹是以长轴为直径的圆,除去长轴的两个端点. 3. 以焦点弦PQ 为直径的圆必与对应准线相交.4. 以焦点半径PF 1为直径的圆必与以实轴为直径的圆相切.(内切:P 在右支;外切:P 在左支)5. 若000(,)P x y 在双曲线22221x y a b-=(a >0,b >0)上,则过0P 的双曲线的切线方程是00221x x y ya b-=. 6. 若000(,)P x y 在双曲线22221x y a b-=(a >0,b >0)外 ,则过Po 作双曲线的两条切线切点为P 1、P 2,则切点弦P 1P 2的直线方程是00221x x y ya b-=.7. 双曲线22221x y a b-=(a >0,b >o )的左右焦点分别为F 1,F 2,点P 为双曲线上任意一点12F PF γ∠=,则双曲线的焦点角形的面积为122t2F PF S b co γ∆=.8. 双曲线22221x y a b-=(a >0,b >o )的焦半径公式:(1(,0)F c - , 2(,0)F c当00(,)M x y 在右支上时,10||MF ex a =+,20||MF ex a =-.当00(,)M x y 在左支上时,10||MF ex a =-+,20||MF ex a =--9. 设过双曲线焦点F 作直线与双曲线相交 P 、Q 两点,A 为双曲线长轴上一个顶点,连结AP 和AQ 分别交相应于焦点F 的双曲线准线于M 、N 两点,则MF ⊥NF. 10. 过双曲线一个焦点F 的直线与双曲线交于两点P 、Q, A 1、A 2为双曲线实轴上的顶点,A 1P 和A 2Q 交于点M ,A 2P 和A 1Q 交于点N ,则MF ⊥NF.11. AB 是双曲线22221x y a b-=(a >0,b >0)的不平行于对称轴的弦,M ),(00y x 为AB的中点,则0202y a x b K K AB OM =⋅,即0202y a x b K AB =。

圆锥曲线常用的二级结论

圆锥曲线常用的二级结论

圆锥曲线常用的二级结论有:1.离心率定义式:$e = \frac{\sqrt{a^2 - b^2}}{a}$,其中$a$ 为长半轴,$b$ 为短半轴。

2.曲率公式:$\kappa = \frac{|\text{二阶导数}|}{(1 + y'^2)^{\frac{3}{2}}}$,其中$\kappa$ 为曲率,$y'$ 为导数。

3.两点之间的弦长公式:$L = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$,其中$(x_1,y_1)$ 和$(x_2, y_2)$ 为两点的坐标。

4.圆锥曲线的极坐标方程:$r = \frac{p}{1 + e\cos\theta}$,其中$r$ 为点到焦点的距离,$\theta$ 为点的极角,$p$ 为直线到焦点的距离,$e$ 为离心率。

5.焦点公式:$F = \sqrt{a^2 - b^2}$,其中$a$ 为长半轴,$b$ 为短半轴,$F$ 为焦点到中心的距离。

6.弦的中点公式:$(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2})$,其中$(x_1, y_1)$ 和$(x_2, y_2)$ 为弦两个端点的坐标。

7.椭圆的标准方程:$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$,其中$a$ 为长半轴,$b$ 为短半轴。

8.双曲线的标准方程:$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$,其中$a$ 为长半轴,$b$ 为短半轴。

9.抛物线的标准方程:$y = ax^2$,其中$a$ 为常数。

10.焦半径公式:$r_f = \frac{p}{e}$,其中$p$ 为直线到焦点的距离,$e$ 为离心率,$r_f$ 为以焦点为圆心,$p$ 为半径的圆的半径长度。

圆锥曲线常用的二级结论包括但不限于以下内容:1.设直线$l$ 与圆锥曲线$C$ 相交于两点$P,Q$,则$P,Q$ 间的线段垂直于轴线。

圆锥曲线常用的二级结论和椭圆与双曲线对偶结论

圆锥曲线常用的二级结论和椭圆与双曲线对偶结论

圆锥曲线常用的二级结论:
1.零点定理:设F1,F2为椭圆E的两个焦点,P为椭圆上一点,则PF1 + PF2 = 2a(a
为椭圆长轴的一半);对于双曲线,PF1 - PF2 = 2a,其中a为双曲线的长轴的一半。

2.切线定理:设点P(x0,y0)在曲线C上,则C在点P处的切线方程为F_x(x0,y0)
x + F_y(x0,y0)y = F(x0,y0),其中F(x,y)为曲线C的方程,F_x和F_y为它的偏导数。

3.法线定理:设点P(x0,y0)在曲线C上,则C在点P处的法线方程为F_y(x0,y0)
x - F_x(x0,y0)y = F_y(x0,y0)x0 - F_x(x0,y0)y0。

4.离心率计算公式:设椭圆E的长轴为a,短轴为b,则椭圆的离心率为e = √(a² - b²)
/ a。

5.弦长定理:对于椭圆E,设以焦点F1,F2为端点的弦所对应的直角顶点为P,则弦PF1
+ PF2的长度等于椭圆长轴的长度;对于双曲线,弦PF1 - PF2的长度等于双曲线长轴的长度。

椭圆与双曲线的对偶结论:
1.椭圆E的对称中心为它所包围的正方形的中心,长、短半轴分别为正方形的对角线之
一和另外一边。

2.椭圆的纵轴端点为它所包围正方形的中心连通它上下角的一条直线,椭圆的焦点在这
条直线上。

3.双曲线的渐近线为对应椭圆的渐近线的转置。

4.对于椭圆E的焦点F和双曲线H的焦距f,有e² = 1 + f² / b²。

把椭圆的参数a,b
换成双曲线的参数a,b,即可得到双曲线的离心率计算公式。

圆锥曲线知识要点及结论个人总结

圆锥曲线知识要点及结论个人总结

《圆锥曲线》知识要点及重要结论、椭圆1定义 平面内到两定点 F 「F 2的距离的和等于常数2a(2^|F^2)的点P 的轨迹叫做椭圆•若2a = F ,F 2,点P 的轨迹是线段F I F 2・若0 ::: 2a ::: F ,F 2,点P 不存在•2 2务 与=1(a b 0),两焦点为 R (_c,0), F 2(c,0). a b2 2X2 =1(ab ■ 0),两焦点为 F i (0,_c), F 2(0,C ).其中 a 2"2 cla b3几何性质椭圆是轴对称图形,有两条对称轴 .椭圆是中心对称图形,对称中心是椭圆的中心椭圆的顶点有四个,长轴长为2a ,短轴长为2b ,椭圆的焦点在长轴上•2 2若椭圆的标准方程为 务•与=1(a b ■ 0),则- a 空x 空a, -b 曲乞b ; a b2 2若椭圆的标准方程为 =1(a b 0),则-b 辽x 乞b,-a y 乞a .a 2b 2二、双曲线1定义 平面内到两定点 F 1, F 2的距离之差的绝对值等于常数 2a(0 ::: 2a :::R F ?)的点的轨迹叫做双曲线.若2^|F 1F 2,点P 的轨迹是两条射线.若2^|F 1F 2,点P 不存在.2 22 标准方程务 一―1(a ■ 0,b0),两焦点为 F 1(-c,0), F 2(C ,0).a b2 2令…占二“ 0,b 0),两焦点为 F 1 (0^c ), F 2(0, c ).其中 c 2 二 a 2 b 2. a b 3几何性质双曲线是轴对称图形,有两条对称轴;双曲线是中心对称图形,对称中心是双曲线的中心 双曲线的顶点有两个 A 1, A 2,实轴长为2a ,虚轴长为2b ,双曲线的焦点在实轴上2 2J 壬-1(a 0,b 0),则 x 乞-a 或x — a, y R ;a b2-牛=1(a 0,b 0),则 y — -a 或 y — a, x R .b 22标准方程 若双曲线的标准方程为 若双曲线的标准方程为2a4渐近线双曲线的渐进线是它的重要几何特征, 每一双曲线都对应确定双曲线的渐进线, 但对于同组渐进线却对应无数条双曲线 •2 2 2 2与双曲线 笃-与 "(a 0,b ■ 0)共渐进线的双曲线可表示为 笃一笃=,(・=0).a ba b直线与双曲线有两个交点的条件,一定要“消元后的方程的二次项系数 同时成立•5等轴双曲线:实轴长等于虚轴长的双曲线叫做等轴双曲线•2 2 2 2等轴双曲线的标准方程为 务一爲=1(a . 0)或爲-笃 "(a ■ 0).a aa a等轴双曲线的渐近线方程为 y =「x .6共轭双曲线:实轴为虚轴,虚轴为实轴的双曲线互为共轭双曲线2 2 2 2如:笃-与=1(a0,b - 0)的共轭双曲线为 每-务=1(a0,b - 0),它们的焦点到a bb a原点的距离相等,因而在以原点为圆心,.a 2 b 2为半径的圆上.且它们的渐近线都是b b y x 和 y x .aa三、抛物线1定义 平面内与一个定点 F 和一条定直线l(F 不在I 上)的距离相等的点的轨迹叫做抛物 线.定点F 叫做抛物线的焦点,定直线 I 叫做抛物线的准线. 2标准方程(1) y 2 =2px(p 0),焦点为(号,0),准线方程为x = -号,抛物线张口向右.⑵y 2 =-2px(p 0),焦点为(-p,0),准线方程为x =号,抛物线张口向左.⑶x 2 =2py (p 0),焦点为 (0导 ,准线方程为y = 一号,抛物线张口向上.⑷X 2 - -2 py (p 0),焦点为 (0』) ,准线方程为y = _p ,抛物线张口向下. 其中p 表示焦点到准线的距离. 3几何性质抛物线是轴对称图形,有一条对称轴.若方程为y 2 = 2 px( p - 0)或y 2 = -2 px( p - 0),2 2双曲线x y2 -.2ab2 2yx 2.2 a b=1(a 0, b 0)有两条渐近线y=1( a 0, b 0)有两条渐近线y a a x 和yx .即b b 2 2x y=02■ 2ab22yx2.2ab=0” 和“二.0双曲线则对称轴是x 轴,若方程为x 2 =2py(p . 0)或x 2 =_2py(p 0),则对称轴是y 轴.若抛物线方程为y 2 =2 px( p 0),则x 亠0, y 尸R . 若抛物线方程为y 2 - -2 px( p .0),则x _ 0, y• R .2若抛物线方程为x =2py(p . 0),则y_0,x ・R . 若抛物线方程为x 2 - -2 py( p .0),贝V y 込0, x 三R .圆锥曲线的一些重要结论【几个重要结论】2 21已知椭圆 笃•与 "(a b 0)的两焦点为F !^c,0),F 2(c,0),P(x °,y °)为椭圆上一a b点,则I PF.H c)*2冷冷心讪1一予)ms 丿 丿cx 0 cx 0因为 一a _ x 0 _ a , -c 仝乞 c,0 ::: a -c 0 a c ,aa所以 |PF^-cx ° +a .同理,PF 2 =2a — PF,| =a —也.a a. b sin a 2a L F!PF 2的面积为b tan .1 +cos^2解:根据椭圆的定义可得|PF_, +|PF 2| =2a ①由余弦定理可得 4c 2 = F J F 2 2 =|PFj 2 +|PF 2 2 — 2PF 」PF 2 COS 。

有关圆锥曲线的四组结论及其应用

有关圆锥曲线的四组结论及其应用

有关圆锥曲线的四组结论及其应用
1、圆锥曲线结论:一条圆锥曲线都可以表示为与轴成一定余角的
正弦曲线,它的焦点和轴向量成正比。

2、平面上的圆锥曲线有两个焦点。

在平面内,它的曲线的几何形状是
自相似的。

3、空间上的圆锥曲线也有两个焦点,它的曲线的几何形状不是自相似的,它的曲线会发生波动。

4、应用:圆锥曲线用于许多工程领域,如机械设计、结构设计和航空
航天等,也常用于几何学和动力学中。

例如,它用于圆锥组件的设计,如螺旋桨叶片、火花塞等,以及高速旋转盘、高精度机械装置、海上
风机等。

圆锥曲线也可以用于工作介质管道结构件的设计,如水管、
燃气管、液压系统等。

圆锥曲线的常用结论

圆锥曲线的常用结论

圆锥曲线常用的几个结论(一)焦半径1.椭园:P 是椭圆上一点,F 是一个焦点.(1)a c PF a c -≤≤+; (2)若PF ⊥长轴,则2b PF a =;→以PF 为直径的圆与以椭圆长轴为直径的圆相切2.双曲线:P 是双曲线上的点,F 是双曲线的一个焦点.(1)若P 与F 在同侧,则PF c a ≥-, 若P 与F 在异侧,则PF c a ≥+.(2) 若PF ⊥实轴,则2b PF a=;→以PF 为直径的圆与以双曲线实轴为直径的圆相切3.抛物线:(1)00(,)P x y 是抛物线px y 22±=上的点,F 是焦点 则 022p pPF x =±≥ → 以PF 为直径的圆与y 轴相切 (2)00(,)P x y 是抛物线py x 22±=上的点,F 是焦点 则 022p pPF y =±≥ → 以PF 为直径的圆与x 轴相切(二)焦点三角形1.椭园:P 是椭圆上的点,1F 、2F 是两焦点,12F PF θ∠=.(若B 为短轴端点,则120F BF θ≤≤∠). (1)①1212F F e PF PF =+; ②122tan2F PF S b θ∆=; ③212(1cos )2PF PF b θ⋅+=(2)P 与Q 是椭圆上关于短轴对称的点,F 是一个焦点,则2FP FQ a +=. 2.双曲线: P 是双曲线上的点,1F 、2F 是两焦点,12F PF θ∠=(1) ① 1212F F e PF PF =-; ② 122tan2F PF b S θ∆=; ③212(1cos )2PF PF b θ⋅-=(2)11F PF ∆内切圆圆心的轨迹是直线x a =±(或y a =±)(三)椭圆、双曲线上一点与相对顶点连线的斜率之积1.椭园:P 是椭圆上一点, 12,A A 是长轴的端点,12,B B 是短轴的端点.①若椭圆方程为22221x y a b +=, 则 12122221PA PA PB PB b k k k k e a ==-=-;②若椭圆方程为22221y x a b+=, 则 121222211PA PA PB PB a k k k k b e ==-=-;2.双曲线:P 是双曲线上一点, 12,A A 是双曲线的顶点.① 若双曲线方程为22221x y a b -=, 则 122221PA PA b k k e a ==-;② 若双曲线方程为22221y x a b-=, 则 1222211PA PA a k k b e ==-;(四)椭圆、双曲线弦的中点性质1.椭园:直线交椭圆于A B 、两点,M 是弦AB 的中点,O 为中心.①若椭圆方程为22221x y a b +=0)a b >>(,则2221OM AB b k k e a ⋅=-=-;②若椭圆方程为22221y x a b+=0)a b >>(,则22211OM AB a k k b e ⋅=-=-2.双曲线:直线交双曲线于A B 、两点,M 是弦AB 的中点,O 为中心.①若双曲线方程为22221x y a b -=,则2221OM AB b k k e a ==-②若双曲线方程为22221y x a b-=,则22211OM AB a k k b e ==-(五)圆锥曲线焦点弦的性质1.椭园:过椭圆焦点F 的直线与曲线交于A 、B 两点,若直线的斜率为k ,倾斜角为θ,椭圆的离心率为e ,且AF FB λ= (或FAFBλ=)①若F 在x 轴,则:222221cos )11(k e e +==+-θλλ; ②若F 在y 轴,则:222222221()sin 1111e e k e k kλθλ-===+++.2.双曲线:过双曲线焦点F 的直线与双曲线交于A 、B 两点,若直线的斜率为k ,倾斜角为θ, 双曲线的离心率为e ,且AF FB λ=①若F 在x 轴,则:222221cos )11(ke e +==+-θλλ; ②若F 在y 轴,则:222222221()sin 1111e e k e k kλθλ-===+++.注:若A 、B 在双曲线同一支上,则FA FB λ=;若A 、B 在双曲线不同支上,则FAFBλ=-. 3.抛物线:【1】过焦点F 的直线l 与抛物线交于A 、B 两点,直线l 的斜率为k ,倾斜角为θ. (1)对于22y px =±:①122221()(1)2sin p AB x x p p kθ=±++==+⋅, ②θsin 22p S AOB =∆; (2)对于22x py =±:①21222()(1)2cos p AB y y p k p θ=±++==+⋅ , ②θcos 22p S AOB =∆.→以AB 为直径的圆与准线相切【2】(1)过焦点F 的直线l 与抛物线交于A 、B 两点;与准线交于点C 记l 的斜率为k ,倾斜角为θ,若FB AF λ=(注:CBCA FBFA ==λ)①若焦点F 在x 轴,则:22211()cos 11k λθλ-==++; ②若焦点F 在y 轴,则:22221()sin 11k k λθλ-==++. (2)设抛物线的准线与对称轴交于点E ,过E 的直线l 与抛物线交于A 、B 两点. 记l 的斜率为k ,抛物线的焦点为F ,若EB EA λ=(注:FBFA EBEA ==λ)①若E 在x 轴,则:221()11k λλ-=-+; ②若E 在y 轴,则:2211()11kλλ-=-+.(六)过圆锥曲线对称轴上一定点的弦P 、Q 是圆锥曲线上两点,A 为圆锥曲线的一个为顶点.直线AP 与AQ 的斜率之积为定值⇔直线PQ 过对称轴上的一定点.。

圆锥曲线结论192条

圆锥曲线结论192条

超全圆锥曲线结论总结结论1:过圆2222x y a +=上任意点P 作圆222x y a +=的两条切线,则两条切线垂直.结论2:过圆2222x y a b +=+上任意点P 作⿰木阴圆22221(0)x y a b a b+=>>的两条切线,则两条切线垂直.结论3:过圆2222(0)x y a b a b +=->>上任意点P 作双曲线22221x y a b-=的两条切线,则两条切线垂直.结论4:过圆222x y a +=上任意不同两点,A B 作圆的切线,如果切线垂直且相交于P ,则动点P 的轨迹为圆:2222x y a +=.结论5:过椭圆22221(0)x y a b a b+=>>上任意不同两点,A B 作椭圆的切线,如果切线垂直且相交于P ,则动点P 的轨迹为圆2222x y a b +=+.结论6:过双曲线22221(0)x y a b a b-=>>上任意不同两点,A B 作双曲线的切线,如果切线垂直.且相交于P ,则动点P 的轨迹为圆2222x y a b +=-.结论7:点()00,M x y 在椭圆22221(0)x y a b a b +=>>上,过点M 作椭圆的切线方程为00221x x y ya b+= 结论8:点()00,M x y 在椭圆22221 0x y a b a b+=>>()外,过点M 作椭圆的两条切线,切点分别为 ,A B 则切点弦AB 的直线方程为00221x x y ya b+=. 结论8:(补充)点()00,M x y 在椭圆22221 0x y a b a b+=>>()内,过点M 作椭圆的弦AB (不过椭圆中心),分别过,A B 作椭圆的切线,则两条切线的交点P 的轨迹方程为直线:00221x x y ya b+=. 结论9:点()00,M x y 在双曲线22221(0,0)x y a b a b -=>>上,过点M 作双曲线的切线方程为00221x x y ya b-= 结论10:点()00,M x y 在双曲线22221(0,0)x y a b a b-=>>外,过点M 作双曲线的两条切线,切点分别为,A B 则切点弦AB 的直线方程为00221x x y ya b-=. 结论10:(补充)点()00,M x y 在双曲线22221(0,0)x y a b a b-=>>内,过点M 作双曲线的弦AB (不过双曲线中心),分别过,A B 作双曲线的切线,则两条切线的交点P 的轨迹方程为直线:00221x x y ya b-= 结论11:点()00,M x y 在抛物线22(0)y px p =>上,过点M 作抛物线的切线方程为()00y y p x x =+.结论12:点()00,M x y 在抛物线22(0)y px p =>外,过点M 作抛物线的两条切线,切点分别为,A B 则切点弦AB 的直线方程为()00y y p x x =+.结论12:(补充)点()00,M x y 在抛物线22(0)y px p =>内,过点M 作抛物线的弦AB ,分别过,A B 作抛物线的切线,则两条切线的交点P 的轨迹方程为直线:()00y y p x x =+.结论13:点()00,M x y 在椭圆2222()()1x m y n a b--+=上,过点M 作椭圆的切线方程为()()0022()()1x m x m y n y n a b ----+=结论14:点()00,M x y 在双曲线2222()()1x m y n a b---=上,过点M 作双曲线的切线方程为()()0022()()1x m x m y n y n a b -----=结论15:点()00,M x y 在抛物线2()2()y n p x m -=-上,过点M 作抛物线的切线方程为()()00()2y n y n p x x m --=+-.结论16:点()00,M x y 在椭圆2222()()1x m y n a b--+=外,过点M 作椭圆的两条切线,切点分别为,A B 则切点弦AB 的直线方程为()()0022()()1x m x m y n y n a b ----+=.结论17:点()00,M x y 在双曲线2222()()1x m y n a b---=外,过点M 作双曲线的两条切线,切点分别为,A B ,则切点弦AB 的直线方程为()()0022()() 1.x m x m y n y n a b -----=结论18:点()00,M x y 在抛物线2()2()y n p x m -=-外,过点M 作抛物线的两条切线,切点分别为,A B 则切点弦AB 的直线方程为()()00()2y n y n p x x m --=+-.结论16:(补充)点()00,M x y 在椭圆2222()()1x m y n a b --+=内,过点M 作椭圆的弦AB (不过椭圆中心),分别过,A B 作椭圆的切线,则两条切线的交点P 的轨迹方程为直线:()()0022()()1x m x m y n y n ab----+=.结论17:(补充)点()00,M x y 在双曲线2222()()1x m y n a b ---=内,过点M 作双曲线的弦AB (不过双曲线中心),分别过,A B 作双曲线的切线,则两条切线的交点P 的轨迹方程为直线:()()0022()()1x m x m y n y n a b -----=结论18:(补充)点()00,M x y 在抛物线2()2()y n p x m -=-内,过点M 作抛物线的弦AB ,分别过,A B 作抛物线的切线,则两条切线的交点P 的轨迹方程为直线:()()00()2y n y n p x x m --=+-.结论19:过椭圆准线上一点M 作椭圆的两条切线,切点分别为,A B ,则切点弦AB 的直线必过相应的焦点F ,且MF 垂直切点弦AB .结论20:过双曲线准线上一点M 作双曲线的两条切线,切点分别为,A B 则切点弦AB 的直线必过相应的焦点F ,且MF 垂直切点弦AB .结论21:过抛物线准线上一点M 作抛物线的两条切线,切点分别为,A B ,则切点弦AB 的直线必过焦点F ,且MF 垂直切点弦AB .结论22:AB 为椭圆的焦点弦,则过,A B 的切线的交点M 必在相应的准线上. 结论23:AB 为双曲线的焦点弦,则过,A B 的切线的交点M 必在相应的准线上. 结论24:AB 为抛物线的焦点弦,则过,A B 的切线的交点M 必在准线上.结论25:点M 是椭圆准线与长轴的交点,过点M 作椭圆的两条切线,切点分别为,A B ,则切点弦AB 就是通径.结论26:点M 是双曲线准线与实轴的交点,过点M 作双曲线的两条切线,切点分别为,A B ,则切点弦AB 就是通径.结论27:M 为抛物线的准线与其对称轴的交点,过点M 作抛物线的两条切线,切点分别为,A B ,则切点弦AB 就是其通径.结论28:过抛物线22(0)y px p =>的对称轴上任意一点(,0)(0)M m m ->作抛物线的两条切线,切点分别为,A B 则切点弦AB 所在的直线必过点(,0)N m .结论29:过椭圆22221(0,0)x y a b a b+=>>的对称轴上任意一点(,)M m n 作⿰木阴圆的两条切线,切点分别为,A B .(1)当0,||n m a =>时,则切点弦AB 所在的直线必过点2,0a P m ⎛⎫⎪⎝⎭; (2)当0,||m n b =>时,则切点弦AB 所在的直线必过点20,b Q n ⎛⎫⎪⎝⎭.结论30:过双曲线22221(0,0)x y a b a b-=>>的实轴上任意一点(,0)(||)M m m a <作双曲线(单支)的两条切线,切点分别为,A B ,则切点弦AB 所在的直线必过点2,0a P m ⎛⎫⎪⎝⎭. 结论31:过抛物线22(0)y px p =>外任意一点M 作抛物线的两条切线,切点分别为,A B ,弦AB 的中点为N ,则直线MN 必与其对称轴平行.结论32:若椭圆22221(0)x y a b a b +=>>与双曲线22221(0,0)x y m n m n-=>>共焦点,则在它们交点处的切线相互垂直.结论33:过椭圆外一定点P 作其一条割线,交点为,A B ,则满足||||||||AP BQ AQ BP ⋅=⋅的动点Q 的轨迹就是过P 作椭圆两条切线形成的切点弦所在的直线方程上.结论34:过双曲线外一定点P 作其一条割线,交点为,A B 则满足||||||||AP BQ AQ BP ⋅=⋅的动点Q 的轨迹就是过P 作双曲线两条切线形成的切点弦所在的直线方程上.结论35:过抛物线外一定点P 作其一条割线,交点为,A B 则满足||||||||AP BQ AQ BP ⋅=⋅的动点Q 的轨迹就是过P 作抛物线两条切线形成的切点弦所在的直线方程上.结论36:过双曲线外一点P 作其一条割线,交点为,A B ,过,A B 分别作双曲线的切线相交于点Q ,则动点Q 的轨迹就是过P 作双曲线两条切线形成的切点弦所在的直线方程上. 结论37:过椭圆外一点P 作其一条割线,交点为,A B 过,A B 分别作椭圆的切线相交于点Q ,则动点Q 的轨迹就是过P 作椭圆两条切线形成的切点弦所在的直线方程上.结论38:过抛物线外一点P 作其一条割线,交点为,A B ,过,A B 分别作抛物线的切线相交于点Q ,则动点Q 的轨迹就是过P 作抛物线两条切线形成的切点弦所在的直线方程上.结论39:从椭圆22221(0)x y a b a b +=>>的右焦点向椭圆的动切线引垂线,则垂足的轨迹为圆:222x y a +=.结论40:从双曲线22221(0,0)x y a b a b-=>>的右焦点向双曲线的动切线引垂线,则垂足的轨迹为圆:222x y a +=.结论41:F 是椭圆22221(0)x y a b a b +=>>的一个焦点,M 是椭圆上任意一点,则焦半径[,]MF a c a c ∈-+.结论42:F 是双曲线22221(0)x y a b a b-=>>的右焦点,M 是双曲线上任意一点.(1)当点M 在双曲线右支上,则焦半径MF c a ≥-;(2)当点M 在双曲线左支上,则焦半径MF c a ≥+.结论43:F 是抛物线22(0)y px p =>的焦点,M 是抛物线上任意一点,则焦半径022p p MF x =+≥. 结论44:椭圆上任一点M 处的法线平分过该点的两条焦半径的夹角(或者说M 处的切线平分过该点的两条焦半径的夹角的外角),亦即椭圆的光学性质.结论45:双曲线上任一点M 处的切线平分过该点的两条焦半径的夹角(或者说M 处的法线平分过该点的两条焦半径的夹角的外角),亦即双曲线的光学性质.结论46:抛物线上任一点M 处的切线平分该点的焦半径与该点向准线所作的垂线的夹角,亦即抛物线的光学性质.结论47:椭圆的准线上任一点M 处的切点弦PQ 过其相应的焦点F ,且MF PQ ⊥. 结论48:双曲线的准线上任一点M 处的切点弦PQ 过其相应的焦点F ,且MF PQ ⊥. 结论49:抛物线的准线上任一点M 处的切点弦PQ 过其焦点F ,且MF PQ ⊥.结论50:椭圆上任一点P 处的切线交准线于,M P 与相应的焦点F 的连线交椭圆于Q ,则MQ 必与该椭圆相切,且MF PQ ⊥.结论51:双曲线上任一点P 处的切线交准线于,M P 与相应的焦点F 的连线交双曲线于Q ,则MQ 必与该双曲线相切,且MF PQ ⊥.结论52:抛物线上任一点P 处的切线交准线于,M P 与焦点F 的连线交抛物线于Q ,则MQ 必与该抛物线相切,且MF PQ ⊥.结论53:焦点在x 轴上的椭圆(或焦点在y 轴)上三点,,P Q M 的焦半径成等差数列的充要条件为,,P Q M 的横坐标(纵坐标)成等差数列.结论54:焦点在x 轴上的双曲线(或焦点在y 轴)上三点,,P Q M 的焦半径成等差数列的充要条件为,,P Q M 的横坐标(纵坐标)成等差数列.结论55:焦点在x 轴上的抛物线(或焦点在y 轴)上三点,,P Q M 的焦半径成等差数列的充要条件为,,P Q M 的横坐标(纵坐标)成等差数列.结论56:椭圆上一个焦点2F 关于椭圆上任一点P 处的切线的对称点为Q ,则直线PQ 必过该椭圆的另一个焦点1F .结论57:双曲线上一个焦点2F 关于双曲线上任一点P 处的切线的对称点为Q ,则直线PQ 必过该双曲线的另一个焦点1F .结论58:椭圆上任一点P (非顶点),过P 的切线和法线分别与短轴相交于£, ?Q S 则有,,P Q S 及两个焦点共于一圆上.结论59:双曲线上任一点P (非顶点),过P 的切线和法线分别与短轴相交于,Q S ,则有,P Q ,S 及两个焦点共于一圆上.结论60:椭圆上任一点P (非顶点)处的切线与过长轴两个顶点,A A '的切线相交于,M M ',则必得到以MM '为直径的圆经过该椭圆的两个焦点.结论61:双曲线上任一点P (非顶点)处的切线与过实轴两个顶点,A A '的切线相交于,M M ',则必得到以MM '为直径的圆经过该双曲线的两个焦点.结论62:以椭圆的任一焦半径为直径的圆内切于以长轴为直径的圆. 结论63:以双曲线的任一焦半径为直径的圆外切于以实轴为直径的圆. 结论64:以抛物线的任一焦半径为直径的圆与非对称轴的轴相切.结论65:焦点在x 轴上的椭圆(或焦点在y 轴上)上任一点M (非短轴顶点)与短轴的两个顶点B ,B '的连线分别交x 轴(或y 轴)于,P Q ,则2P Q x x a =(或)2P Q y y a =.结论66:焦点在x 轴上的双曲线(或焦点在y 轴上)上任一点M (非顶点)与实轴的两个顶点,B B '的连线分别交y 轴(或x 轴)于,P Q ,则(2P Q y y b =-或)2P Q x x b =-.结论67:P 为焦点在x 轴上的椭圆上任一点(非长轴顶点),则12PF F ∆与边2PF (或1PF )相切的旁切圆与x 轴相切于右顶点A (或左顶点A ').结论68:P 为焦点在x 轴上的双曲线右支(或左支)上任一点,则12PF F ∆的内切圆与x 轴相切于右顶点A (或左顶点A ').结论69:AB 是过椭圆22221(0)x y a b a b+=>>的焦点F 的一条弦(非通径),弦AB 的中垂线交x 轴于N ,则||2||AB NF e=. 结论70:AB 是过双曲线22221(0,0)x y a b a b-=>>的焦点F 的一条弦(非通径,且为单支弦),弦AB 的中垂线交x 轴于M ,则||2||AB MF e=. 结论71:AB 是过抛物线22(0)y px p =>的焦点F 的一条弦(非通径),弦AB 的中垂线交x 轴于M ,则||2||AB MF =. 结论72:AB 为抛物线的焦点弦,分别过,A B 作抛物线的切线,则两条切线的交点P 在其准线上.结论73:AB 为椭圆的焦点弦,分别过,A B 作椭圆的切线,则两条切线的交点P 在其相应的准线上.结论74:AB 为双曲线的焦点弦,分别过,A B 作双曲线的切线,则两条切线的交点P 在其相应的准线上.结论75:AB 为过抛物线焦点F 的焦点弦,以AB 为直径的圆必与其准线相切.结论76:AB 为过椭圆焦点F 的焦点弦,以AB 为直径的圆必与其相应的准线相离(当然与另一条准线更相离).结论77:AB 为过双曲线焦点F 的焦点弦,以AB 为直径的圆必与其相应的准线相交,截得的圆弧度数为定值,且为12arccos e. 结论78:以圆锥曲线的焦点弦AB 为直径作圆,若该圆与其相应的准线相切,则该曲线必为抛物线.结论79:以圆雉曲线的焦点弦AB 为直径作圆,若该圆与其相应的准线相离,则该曲线必为椭圆.结论80:以圆锥曲线的焦点弦AB 为直径作圆,若该圆与其相应的准线相交,则该曲线必为双曲线,此时截得的圆弧度数为定值,且为12arccose结论81:AB 为过抛物线22(0)y px p =>焦点F 的焦点弦,()()1122,,,A x y B x y ,则||AB =12x x p ++结论82:AB 为过椭圆22221(0)x y a b a b +=>>焦点F 的焦点弦,()()1122,,,A x y B x y ,则||AB 122a e x x =-+结论83:AB 为过双曲线22221(0,0)x y a b a b-=>>焦点F 的焦点弦,()()1122,,,A x y B x y .若AB 为单支弦,则12||2AB e x x a =+-;若AB 为双支弦,则|12|||2AB e x x a =++ 结论84:F 为抛物线的焦点,,A B 是抛物线上不同的两点,直线AB 交其准线l 于M ,则FM 平分AFB ∠的外角.结论85:F 为椭圆的一个焦点,,A B 是椭圆上不同的两点,直线AB 交其相应的准线l 于M ,则FM 平分AFB ∠的外角.结论86:F 为双曲线的一个焦点,,A B 是双曲线上不同的两点(同一支上),直线AB 交其相应的准线l 于M ,则FM 平分AFB ∠的外角.结论87:F 为双曲线的一个焦点,,A B 是双曲线上不同的两点(左右支各一点),直线AB 交其相应的准线l 于M ,则FM 平分AFB ∠.结论88:AB 是椭圆22221(0)x y a b a b+=>>过焦点F 的弦,点P 是椭圆上异于,A B 的任一点,直线PA PB 、分别交相应于焦点F 的准线l 于M N 、,则点M 与点N 的纵坐标之积为定值,且为42b c-.结论89:AB 是双曲线22221(0,0)x y a b a b-=>>过焦点F 的弦,点P 是双曲线上异于,A B任一点,直线PA 、PB 分别交相应于焦点F 的准线l 于M N 、,则点M 与点N 的纵坐标之积为定值,且为42b c-.结论90:AB 是抛物线22(0)y px p =>过焦点F 的弦,点P 是抛物线上异于,A B 的任一点,直线PA PB 、分别交准线l 于M N 、,则点M 与点N 的纵坐标之积为定值,且为2p -.结论91:,A B 为椭圆22221(0)x y a b a b +=>>的长轴顶点,P 为椭圆任一点(非长轴顶点),若直线PA PB 、分别交直线2(0)a x m a m=<<于M N 、,则M N y y ⋅为定值,且有()2222M N b m a y y m -⋅=结论92:,A B 为椭圆22221(0)x y a b a b +=>>的长轴顶点,(,0),(,0),(0)E m F m m a -<<,P 为椭圆任一点(非长轴顶点),若直线,AP BP 分别交直线2a x m=于M N 、,则EM FN ⋅为定值,且有()()222222a m a mb EM FN m -+-⋅=.结论93:,A B 为椭圆22221(0)x y a b a b +=>>的长轴顶点,(,0),(,0),(0)E m F m m a -<<,P 为椭圆上任一点(非长轴顶点),若直线,AP BP 分别交直线2a x m=于M N 、,则EN FM ⋅为定值,且有()()222222a m a mb EN FM m -+-⋅=结论94:,A B 为椭圆22221(0)x y a b a b +=>>的长轴顶点,(,0),(,0),(0)E m F m m a -<<,P 为椭圆任一点(非长轴顶点),若直线,AP BP 分别交直线2a x m=于M N 、,则FM FN ⋅为定值,且有()()222222am a m b FM FN m -+-⋅=结论95:,A B 为椭圆22221(0)x y a b a b +=>>的长轴顶点,(,0),(,0),(0)E m F m m a -<<,P 为椭圆任一点(非长轴顶点),若直线,AP BP 分别交直线2a x m=于M N 、,则EM EN ⋅为定值,且有()()2222222a mb a m EM EN m +--⋅=结论96:,A B 为椭圆22221(0)x y a b a b +=>>的长轴顶点,(,0),(,0),(0)E m F m m a -<<,P 为椭圆任一点(非长轴顶点),若直线,AP BP 分别交直线2a x m=于M N 、,则BM FN ⋅为定值,且有()()22222a m a amb BM FN m -+-⋅=结论97:,A B 为椭圆22221(0)x y a b a b +=>>的长轴顶点,(,0),(,0),(0)E m F m m a -<<,P为椭圆任一点(非长轴顶点),若直线,AP BP 分别交直线2a x m=于M N 、,则AM FN ⋅为定值,且有()()22222am a am b AM FN m ---⋅=结论98:,A B 为椭圆221(0)a b a b +=>>的长轴顶点,(,0),(,0),(0)E m F m m a -<<,P 为椭圆任一点(非长轴顶点),若直线,AP BP 分别交直线2a x m=于M N 、,则AM BN ⋅为定值,且有()()22222a m ab AM BN m --⋅=结论99:,A B 为双曲线22221(0,0)x y a b a b -=>>的顶点,(,0),(,0),(0)E m F m m a -<<,P 为双曲线上任一点(非实轴顶点),若直线,AP BP 分别交直线2a x m =于M N 、,则M N y y ⋅为定值,且有()2222M N b m a y y m -⋅=.结论100:,A B 为双曲线22221(0,0)x y a b a b -=>>的顶点,(,0),(,0),(),E m F m m a P ->为双曲线上任一点(非实轴顶点),若直线,AP BP 分别交直线2a x m=于M N 、,则EM FN ⋅为定值,且有()()222222a m ab m EM FN m -++⋅=结论101:,A B 为双曲线22221(0,0)x y a b a b -=>>的顶点,(,0),(,0),(),E m F m m a P ->为双曲线上任一点(非实轴顶点),若直线,AP BP 分别交直线2a x m=于M N 、,则EN FM ⋅为定值,且有()()222222a m ab m EN FM m -++⋅=结论102:,A B 为双曲线22221(0,0)x y a b a b -=>>的顶点,(,0),(,0),(),E m F m m a P ->为双曲线上任一点(非实轴顶点),若直线,AP BP 分别交直线2a x m=于M N 、,则FM FN ⋅为定值,且有()()222222am a b m FM FN m -+-⋅=结论103:,A B 为双曲线221(0,0)a b a b -=>>的顶点,(,0),(,0),(),E m F m m a P ->为双曲线上任一点(非实轴顶点,若直线,AP BP 分别交直线2a x m=于M N 、,则EM EN ⋅为定值,且有()()2222222a mb a m EM EN m ++-⋅=结论104:,A B 为双曲线22221(0,0)x y a b a b -=>>的顶点,(,0),(,0),(),E m F m m a P ->为双曲线上任一点(非实轴顶点),若直线,AP BP 分别交直线2a x m=于M N 、,则BM FN ⋅为定值,且有()()22222am a b amBM FN m -++⋅=结论105:,A B 为双曲线22221(0,0)x y a b a b -=>>的顶点,(,0),(,0),(),E m F m m a P ->为双曲线上任一点(非实轴顶点),若直线,AP BP 分别交直线2a x m=于M N 、,则AM FN ⋅为定值,且有()()22222a m ab amAM FN m -+-⋅=结论106:,A B 为双曲线22221(0,0)x y a b a b -=>>的顶点,(,0),(,0),()E m F m m a ->,P 为双曲线上任一点(非实轴顶点),若直线,AP BP 分别交直线2a x m=于M N 、,则AM BN ⋅为定值,且有()()22222a m ab AM BN m -+⋅=结论107:,A B 为椭圆22221(0)x y a b a b +=>>的长轴顶点,P 为椭圆任一点(非长轴顶点),若直线,AP BP 分别交直线2a x m =于M N 、,则AP BP k k ⋅为定值,且有2221AP BP AM BNb k k k k e a⋅=⋅=-=-结论108:,A B 为椭圆221(0)a b a b +=>>长轴顶点,P 为椭圆任一点(非长轴顶点),若直线,AP BP 分别交直线2a x m =于M N 、,则AN BM k k ⋅为定值,且有2221AN BM b k k e a ⋅=-=-结论109:,A B 为椭圆22221(0)x y a b a b +=>>的长轴顶点,P 为椭圆任一点(非长轴顶点),若直线,AP BP 分别交直线2a x m =于M N 、,则AM AN k k ⋅为定值,且有()21AM AN a m k k e a m+⋅=--结论110:,A B 为椭圆22221(0)x y a b a b +=>>的长轴顶点,P 为椭圆任一点(非长轴顶点),若直线,AP BP 分别交直线2a x m =于M N 、,则BM BN k k ⋅为定值,且有()21BM BN a m k k e a m-⋅=-+结论111:,A B 为椭圆22221(0)x y a b a b +=>>的长轴顶点,(,0),(,0),()E m F m m a ->,P 为椭圆任一点(非长轴顶点),若直线,AP BP 分别交直线2a x m=于M N 、,则EM FN k k ⋅为定值,且有222EM FNb k k a m ⋅=-+结论112:,A B 为椭圆22221(0)x y a b a b +=>>的长轴顶点,(,0),(,0),()E m F m m a ->,P 为椭圆任一点(非长轴顶点),若直线,AP BP 分别交直线2a x m =于M N 、,则EN FM k k ⋅为定值,结论113:,A B 为椭圆22221(0)x y a b a b +=>>的任一直径(中心弦),P 为椭圆上任一点(不与,A B 点重合),则PA PB k k ⋅为定值,且有2221PA PBb k k e a⋅=-=-结论114:,A B 为椭圆221(0)a b a b+=>>的任一弦(不过原点且不与对称轴平行),M为弦AB 的中点,若OM k 与AB k 均存在,则OM AB k k ⋅为定值,且有2221OM ABb k k e a⋅=-=-结论115:AB 为椭圆22221(0)x y a b a b+=>>的任一弦(不与对称轴平行),若平行于AB 的弦的中点的轨迹为直线PQ ,则有2221PQ ABb k k e a⋅=-=-结论116:过椭圆22221(0)x y a b a b +=>>上任意一点(P 不是其顶点)作椭圆的切线PA ,则有2221PA OPb k k e a⋅=-=-结论117:椭圆22221(0)x y a b a b +=>>及定点(,0),()F m a m a -<<,过F 的弦的端点为A ,B ,过点A ,B 分别作直线2a x m =的垂线,垂足分别为,DC ,直线2a x m=与x 轴相交于E ,则直线AC 与BD 恒过EF 的中点,且有0AE BE k k +=.结论118:椭圆22221(0)x y a b a b +=>>及定点(,0),()F m m c =±,过F 任作一条弦,AB E 为椭圆上任一点,连接,AE BE ,且分别与准线2a x m =相交于,P Q ,则有1FP FQ k k ⋅=-结论119:椭圆22221(0)x y a b a b +=>>及定点(,0),(,0)F m a m a m -<<≠,过F 任作一条弦,AB E 为椭圆上任一点,连接AE BE 、,且分别与直线2a x m =相交于,P Q ,则有222FP FQb k k m a⋅=- 结论120:,A B 为双曲线22221(0,0)x y a b a b-=>>的顶点,P 为双曲线上任一点(非实轴顶点),若直线,AP BP 分别交直线2a x m =于M N 、,则AP BP k k ⋅为定值,且有2221AP BP AM BNb k k k k e a⋅=⋅=-=结论121:,A B 为双曲线22221(0)x y a b a b +=>>的顶点,P 为双曲线上任一点(非实轴顶点),若直线,AP BP 分别交直线2a x m =于M N 、,则AN BM k k ⋅为定值,且有21AN BM k k e ⋅=-结论122:,A B 双曲线22221(0)x y a b a b +=>>的顶点,P 为双曲线上任一点(非实轴顶点),若直线,AP BP 分别交直线2a x m =于M N 、,则AM AN k k ⋅为定值,且有()21AM AN a m k k e a m+⋅=--结论123:,A B 为双曲线22221(0,0)x y a b a b -=>>的顶点,P 为双曲线上任一点(非实轴顶点),若直线AP BP 、分别交直线2a x m =于M N 、,则BM BN k k ⋅为定值,且有()21BM BN a m k k e a m-⋅=-+结论124:,A B 为双曲线22221(0,0)x y a b a b -=>>的顶点,(,0),(,0),(),E m F m m a P ->为双曲线上任一点(非实轴顶点),若直线,AP BP 分别交直线2a x m=于M N 、,则EM FN k k ⋅为定值,且有222EM FNb k k a m ⋅=+ 结论125:,A B 为双曲线22221(0,0)x y a b a b -=>>的顶点,(,0),(,0),(),E m F m m a P ->为双曲线上任一点(非长轴顶点),若直线,AP BP 分别交直线2a x m=于M N 、,则EN FM k k ⋅为定值,且有222EN FMb k k a m ⋅=+ 结论126:AB 为双曲线22221(0,0)x y a b a b -=>>的任一直径,P 为双曲线上任一点(不与,A B 点重合),则PA PB k k ⋅为定值,且有2221PA PBb k k e a⋅==- 结论127:AB 为双曲线22221(0,0)x y a b a b -=>>的任一弦(不过原点且不与对称轴平行),M 为弦AB 的中点,若OM k 与AB k 均存在,则AB OM k k ⋅为定值,且有22AB OMb k k a⋅= 结论128:AB 为双曲线22221(0,0)x y a b a b-=>>的任一弦(不与对称轴平行),若平行于AB 的弦的中点的轨迹为直线PQ ,则有2221AB PQb k k e a⋅==- 结论129:过双曲线22221(0,0)x y a b a b-=>>上任意一点P (不是其顶点)作双曲线的切线PA ,则有2221PA OPb k k e a⋅==- 结论130:双曲线22221(0,0)x y a b a b -=>>及定点(,0),(F m m a >或)m a <-,过F 的弦的䇄山端点为,A B ,过,A B 分别作直线2a x m =的垂线,垂足分别为,D C ,直线2a x m=与x 轴相交于E ,则直线AC 与BD 恒过EF 的中点,且有0AE BE k k +=.结论131:双曲线22221(0,0)x y a b a b -=>>及定点(,0),()F m m c =±,过F 任作一条弦AB ,E 为双曲线上任一点,连接,AE BE ,且分别与准线2a x m =相交于,P Q ,则有1FP FQ k k ⋅=- 结论132:双曲线22221(0,0)x y a b a b-=>>及定点(,0),(F m m a >或)m a <-,过F 任作一条弦,AB E 为双曲线上任一点,连接,AE BE ,且分别与直线2a x m =相交于,P Q ,则有222FP FQb k k a m⋅=- 结论133:抛物线22(0)y px p =>及定点(,0),(0)F m m >,过F 的弦的端点为,A B 过A ,B分别作直线x m =-的垂线,垂足分别为,D C ,直线x m =-与x 轴相交于E ,则直线AC 与BD 恒过EF 的中点,且有0AE BE k k +=.结论134:抛物线22(0)y px p =>及定点(,0),2p F m m ⎛⎫=⎪⎝⎭,过F 任作一条弦,AB E 为抛物线上任一点,连接AE BE 、,分别与准线x m =-相交,P Q ,则1FP FQ k k ⋅=-结论135:抛物线22(0)y px p =>及定点(,0),(0)F m m >,过F 任作一条弦,AB E 为抛物线上任一点,连接AE BE 、分别与直线x m =-相交,P Q ,则2FP FQ p k k m⋅=-结论136:过抛物线22(0)y px p =>的焦点,02p F ⎛⎫⎪⎝⎭的弦(焦点弦)与抛物线相交于A ,B ,过B 作直线BC 与x 轴平行,且交准线于C ,则直线AC 必过原点(即其准线与x 轴交点E 与焦点F 的线段的中点).结论137:AB 为椭圆22221(0)x y a b a b+=>>的焦点F 的弦,其相应的准线与x 轴交点为E ,过A ,B 作x 轴的平行线与其相应的准线分别相交于,M N ,则直线,AN BM 均过线段EF 的中点.结论138:AB 为双曲线22221(0,0)x y a b a b-=>>的焦点F 的弦,其相应的准线与x 轴交点为E ,过A ,B 作x 轴的平行线与其相应的准线分别相交于,M N ,则直线,AN BM 均过线段EF 的中点.结论139:过圆锥物线(可以是非标准状态下)焦点弦的一个䇄山端点向其相应的准线作垂线,垂足与另一个弦的端点的连线必经过焦点到相应的准线的垂线段的中点.结论140:AB 为垂直于椭圆22221(0,0,)x y a b a b a b+=>>≠长轴上的动弦,其准线与x 轴相交于Q ,则直线AF 与BQ (或直线BF 与AQ )的交点M 必在该椭圆上.结论141:AB 为垂直于双曲线2222(0)x y a bλλ-=≠实轴的动弦,其准线与x 轴相交于Q ,则直线AF 与BQ (或直线BF 与AQ )的交点M 必在该双曲线上.结论142:AB 为垂直于抛物线2y tx =或()2(0)x ty t =≠对称轴的动弦,其准线与x 轴相交于Q ,则直线AF 与BQ (或直线BF 与AQ )的交点M 必在该抛物线上.结论143:AB 为垂直于圆锥曲线的长轴(椭圆)(或实轴(双曲线)或对称轴(抛物线))的动弦,其准线与x 轴相交于Q ,则直线AF 与BQ (或直线BF 与AQ )的交点M 必在该圆锥曲线上.结论144:圆锥曲线的焦点弦AM (不为通径,若双曲线则为单支弦),则在x 轴上有且只有一点Q 使AQF MQF ∠=∠.结论145:过F 任作圆锥曲线的一条弦AB (若是双曲线则为单支弦),分别过,A B 作准线l 的垂线(Q 是其相应准线与x 轴的交点),垂足为11A B 、,则直线1AB 与直线1A B 都经过QF 的中点K ,即A 、1K B 、及1B K A 、、三点共线.结论146:若AM BM 、是圆锥曲线过点F 且关于长轴(椭圆)对称的两条动弦(或实轴(双曲线)或对称轴(抛物线)),则四线1111AM BN NB MA 、、、共点于K .结论147:,A B 分别为椭圆22221(0)x y a b a b +=>>的右顶点和左顶点,P 为椭圆任一点(非长轴顶点),若直线,AP BP 分别交直线2a x m=于,M N ,则以线段MN 为直径的圆必过两个定点,且椭圆外定点为2,0a Q m ⎛⎫+ ⎪ ⎪ ⎪⎝⎭及椭圆内定点为2,0a R m ⎛⎫- ⎪⎪ ⎪⎝⎭结论148:,A B 分别为双曲线22221(0,0)x y a b a b -=>>的右顶点和左顶点,P 为双曲线上任一点(非实轴顶点),若直线,AP BP 分别交直线2()a x m a m=>于,M N ,则以线段MN 为直径的圆必过两个定点,且双曲线内定点为2,0aQm⎛⎫+⎪⎪⎪⎝⎭及双曲线外定点为2,0aRm⎛⎫-⎪⎪⎪⎝⎭结论149:过直线(0)x m m=≠上但在椭圆22221(0)x ya ba b+=>>外一点M向椭圆引两条切线,切点分别为,A B,则直线AB必过定点2,0aNm⎛⎫⎪⎝⎭,且有()22222AB MNb mk ka a m⋅=-.结论150:过直线(0)x m m=≠上但在双曲线222210,0)(x ya ba b-=>>外(即双曲线中心所在区域)一点M向双曲线引两条切线,切点分别为,A B,则直线AB必过定点2,0aNm⎛⎫⎪⎝⎭,且有()22222AB MNb mk ka m a⋅=-.结论151:过直线0x m m=≠()上但在抛物线22(0)y px p=>外(即抛物线准线所在区域)一点M向抛物线引两条切线,切点分别为,A B,则直线AB必过定点(,0)N m-,且有2AB MNpk km⋅=结论152:设点M是圆锥曲线的准线上一点(不在双曲线的渐近线上),过点M向圆锥曲线引两条切线,切点分别为,A B,则直线AB必过准线对应的焦点F,且FM AB⊥.结论153:过直线1mx ny+=上但在椭圆22221(0)x ya ba b+=>>外一点M向椭圆引两条切线,切点分别为,A B则直线AB必过定点()22,N ma nb.结论154:过直线1mx ny+=上但在双曲线22221(0,0)x ya ba b-=>>外(即双曲线中心所在区域)一点M向双曲线引两条切线,切点分别为,A B,则直线AB必过定点()22,N ma nb.结论155:过直线10mx ny m+=≠)(上但在抛物线22(0)y px p=>外(即抛物线准线所在区域)一点M 向抛物线引两条切线,切点分别为,A B ,则直线AB 必过定点1,pn N mm ⎛⎫-- ⎪⎝⎭结论156:,A B ,是椭圆22221(0)x y a b a b+=>>的左右顶点,点P 是直线(||,0)x t t a t =≠≠上的一个动点(P 不在椭圆上),直线PA 及PB 分别与椭圆相交于,M N ,则直线MN 必与x轴相交于定点2,0a Q t ⎛⎫⎪⎝⎭.结论157:,A B 是在双曲线22221(0,0)x y a b a b-=>>的顶点,点P 是直线(||,0)x t t a t =≠≠上的一个动点(P 不在双曲线上),直线PA 及PB 分别与双曲线相交于,M N ,则直线MN 必与x 轴相交于定点2,0a Q t ⎛⎫⎪⎝⎭.结论158:,A B 是抛物线22(0)y px p =>上异于顶点O 的两个动点,若直线AB 过定点(2,0)N p ,则OA OB ⊥,且A ,B 的横坐标之积及纵坐标之积均为定值.结论159:,A B 是抛物线22(0)y px p =>上异于顶点O 的两个动点,若OA OB ⊥,则直线AB 必过定点(2,0)N p ,且,A B 的横坐标之积及纵坐标之积均为定值.结论160:,A B 是抛物线22(0)y px p =>上异于顶点O 的两个动点,若OA OB ⊥,过O 作OM AB ⊥,则动点M 的轨迹方程为2220(0)x y px x +-=≠.结论161:,A B 是抛物线22(0)y px p =>上异于顶点O 的两个动点,若OA OB ⊥,则()2min 4AOB S p ∆=结论162:过抛物线22(0)y px p =>上任一点()00,M x y 作两条弦,MA MB ,则MA MB⊥的充要条件是直线AB 过定点()002,N x p y +-结论163:过抛物线22(0)y px p =>上任一点()00,M x y 作两条弦,MA MB ,则(0)MA MB k k λλ=≠的充要条件是直线AB 过定点002,p N x y λ⎛⎫-- ⎪⎝⎭结论164:过椭圆22221(0)x y a b a b+=>>上任一点()00,M x y 作两条弦,MA MB ,则MA MB ⊥的充要条件是直线AB 过定点2222002222,a b b a N x y a b a b ⎛⎫-- ⎪++⎝⎭特别地,(1)当M 为左、右顶点时,即00,0x a y =±=时,MA MB ⊥的充要条件是直线AB 过定点()2222,0a a b N a b ⎛⎫±- ⎪ ⎪+⎝⎭(2)当M 为上、下顶点时,即000,x y b ==±时,MA MB ⊥的充要条件是直线AB 过定点()22220,b b a N b a ⎛⎫±- ⎪ ⎪+⎝⎭结论165:过双曲线22221(0,0)x y a b a b-=>>上任一点()00,M x y 作两条弦,MA MB ,则MA ⊥MB 的充要条件是直线AB 过定点2222002222,a b b a N x y a b b a ⎛⎫++ ⎪--⎝⎭特别地,当M 为左、右顶点时,即00,0x a y =±=时,MA MB ⊥的充要条件是直线AB 过定点()2222,0a a b N a b ⎛⎫±+ ⎪ ⎪-⎝⎭结论166:过二次曲线:22,,,,Ax By Cx Dy E A B C D E +++=(为常数,0A B +≠)上任一点()00,M x y 作两条弦,MA MB ,若MA MB ⊥,则直线AB 恒过定点000022,Ax C By D N x y A B A B ++⎛⎫-- ⎪++⎝⎭ 值得注意的是:在结论166中(1)令000,1,2,0A D B C p x y ====-==就是结论159;(2)令0,1,2A D B C p ====-就是结论162;(3)令22,,0A a B b C D ====就得到结论164;(4)令22,,0A b B a C D ==-==就得到结论165.。

圆锥曲线的一些经典结论

圆锥曲线的一些经典结论

圆锥曲线的一些经典结论1. 圆锥曲线有四种类型:椭圆、抛物线、双曲线和圆。

2. 椭圆:椭圆是圆锥曲线的一种,它由离心率小于1的点构成。

椭圆具有两个焦点和一个长轴和短轴。

3. 抛物线:抛物线是圆锥曲线的一种,它具有一个焦点和一个直线作为其轴线。

所有的点到焦点的距离都等于其到轴线的距离。

4. 双曲线:双曲线是圆锥曲线的一种,它由离心率大于1的点构成。

双曲线具有两个焦点和两个分离的曲线枝。

5. 圆:圆是圆锥曲线的一种特殊情况,它的离心率为零,所有的点到圆心的距离相等。

6. 圆锥曲线的方程:圆锥曲线可以通过方程来表示。

例如,椭圆的标准方程为(x-h)²/a² + (y-k)²/b² = 1,其中(h,k)是椭圆的中心点,a 和b分别是长轴和短轴的长度。

7. 长轴和短轴:圆锥曲线具有两个轴,它们都通过曲线的中心点。

长轴是椭圆或双曲线的主轴,它的长度是贯穿曲线的最长距离。

短轴是与长轴垂直的轴,它的长度是贯穿曲线的最短距离。

8. 离心率:离心率是一个非常重要的指标,用来描述圆锥曲线的形状。

离心率通常用字母e表示,可以通过离心率的定义公式e =c/a来计算,其中c是焦点离中心的距离,a是长轴的长度。

9. 集点定理:集点定理是圆锥曲线研究的基本定理之一。

它表明,对于一个椭圆或双曲线,所有点到两个焦点的距离之和是常数,等于长轴的长度。

10. 曲率:曲率是描述曲线弯曲程度的属性。

圆锥曲线的曲率在不同点上有不同的值,它可以通过曲线的方程来计算。

这些是圆锥曲线的一些经典结论,它们是圆锥曲线理论的基础,可以应用在许多科学和工程领域,如天文学、物理学和工程学等。

圆锥曲线通用结论

圆锥曲线通用结论

圆锥曲线常用结论(自己选择)一、椭 圆1. 点P 处的切线PT 平分△PF 1F 2在点P 处的外角.2. PT 平分△PF 1F 2在点P 处的外角,则焦点在直线PT 上的射影H 点的轨迹是以长轴为直径的圆,除去长轴的两个端点.3. 以焦点弦PQ 为直径的圆必与对应准线相离.4. 以焦点半径PF 1为直径的圆必与以长轴为直径的圆内切.5. 若000(,)P x y 在椭圆22221x y a b +=上,则过0P 的椭圆的切线方程是00221x x y ya b +=.6. 若000(,)P x y 在椭圆22221x y a b+=外 ,则过Po 作椭圆的两条切线切点为P 1、P 2,则切点弦P 1P 2的直线方程是00221x x y ya b+=.7. 椭圆22221x y a b+= (a >b >0)的左右焦点分别为F 1,F 2,点P 为椭圆上任意一点12F PF γ∠=,则椭圆的焦点角形的面积为122tan2F PF S b γ∆=.8. 椭圆22221x y a b+=(a >b >0)的焦半径公式:10||MF a ex =+,20||MF a ex =-(1(,0)F c - , 2(,0)F c 00(,)M x y ).9. 设过椭圆焦点F 作直线与椭圆相交 P 、Q 两点,A 为椭圆长轴上一个顶点,连结AP 和AQ 分别交相应于焦点F 的椭圆准线于M 、N 两点,则MF ⊥NF.10. 过椭圆一个焦点F 的直线与椭圆交于两点P 、Q, A 1、A 2为椭圆长轴上的顶点,A 1P 和A 2Q 交于点M ,A 2P 和A 1Q 交于点N ,则MF ⊥NF.11. AB 是椭圆22221x y a b +=的不平行于对称轴的弦,M ),(00y x 为AB 的中点,则22OM AB b k k a ⋅=-,即0202y a x b K AB -=。

12. 若000(,)P x y 在椭圆22221x y a b+=内,则被Po 所平分的中点弦的方程是2200002222x x y y x y a b a b+=+. 13. 若000(,)P x y 在椭圆22221x y a b+=内,则过Po 的弦中点的轨迹方程是22002222x x y yx y a b a b+=+. 二、双曲线1. 点P 处的切线PT 平分△PF 1F 2在点P 处的内角.2. PT 平分△PF 1F 2在点P 处的内角,则焦点在直线PT 上的射影H 点的轨迹是以长轴为直径的圆,除去长轴的两个端点. 3. 以焦点弦PQ 为直径的圆必与对应准线相交.4. 以焦点半径PF 1为直径的圆必与以实轴为直径的圆相切.(内切:P 在右支;外切:P 在左支)5. 若000(,)P x y 在双曲线22221x y a b-=(a >0,b >0)上,则过0P 的双曲线的切线方程是00221x x y ya b-=. 6. 若000(,)P x y 在双曲线22221x y a b-=(a >0,b >0)外 ,则过Po 作双曲线的两条切线切点为P 1、P 2,则切点弦P 1P 2的直线方程是00221x x y ya b-=.7. 双曲线22221x y a b-=(a >0,b >o )的左右焦点分别为F 1,F 2,点P 为双曲线上任意一点12F PF γ∠=,则双曲线的焦点角形的面积为122t2F PF S b co γ∆=.8. 双曲线22221x y a b-=(a >0,b >o )的焦半径公式:(1(,0)F c - , 2(,0)F c当00(,)M x y 在右支上时,10||MF ex a =+,20||MF ex a =-.当00(,)M x y 在左支上时,10||MF ex a =-+,20||MF ex a =--9. 设过双曲线焦点F 作直线与双曲线相交 P 、Q 两点,A 为双曲线长轴上一个顶点,连结AP 和AQ 分别交相应于焦点F 的双曲线准线于M 、N 两点,则MF ⊥NF. 10. 过双曲线一个焦点F 的直线与双曲线交于两点P 、Q, A 1、A 2为双曲线实轴上的顶点,A 1P 和A 2Q 交于点M ,A 2P 和A 1Q 交于点N ,则MF ⊥NF.11. AB 是双曲线22221x y a b-=(a >0,b >0)的不平行于对称轴的弦,M ),(00y x 为AB的中点,则0202y a x b K K AB OM =⋅,即0202y a x b K AB =。

高中数学圆锥曲线小结论

高中数学圆锥曲线小结论

椭 圆1. 点P 处的切线PT 平分△PF 1F 2在点P 处的外角.2.PT 平分△PF 1F 2在点P 处的外角,则焦点在直线PT 上的射影H 点的轨迹是以长轴为直径的圆,除去长轴的两个端点. 3. 以焦点弦PQ 为直径的圆必与对应准线相离.4.以焦点半径PF 1为直径的圆必与以长轴为直径的圆内切.5. 若000(,)P x y 在椭圆22221x y a b +=上,则过0P 的椭圆的切线方程是00221x x y ya b +=. 6. 若000(,)P x y 在椭圆22221x y a b +=外 ,则过Po 作椭圆的两条切线切点为P 1、P 2,则切点弦P 1P 2的直线方程是00221x x y ya b+=.7. 椭圆22221x y a b+= (a >b >0)的左右焦点分别为F 1,F 2,点P 为椭圆上任意一点12F PF γ∠=,则椭圆的焦点角形的面积为122tan2F PF S b γ∆=.8. 椭圆22221x y a b+=(a >b >0)的焦半径公式:10||MF a ex =+,20||MF a ex =-(1(,0)F c - , 2(,0)F c 00(,)M x y ).9.设过椭圆焦点F 作直线与椭圆相交 P 、Q 两点,A 为椭圆长轴上一个顶点,连结AP 和AQ 分别交相应于焦点F 的椭圆准线于M 、N 两点,则MF ⊥NF.10. 过椭圆一个焦点F 的直线与椭圆交于两点P 、Q, A 1、A 2为椭圆长轴上的顶点,A 1P 和A 2Q交于点M ,A 2P 和A 1Q 交于点N ,则MF ⊥NF.11. AB 是椭圆22221x y a b +=的不平行于对称轴的弦,M ),(00y x 为AB 的中点,则22OM AB b k k a ⋅=-,即0202y a x b K AB -=。

双曲线1. 点P 处的切线PT 平分△PF 1F 2在点P 处的内角.2.PT 平分△PF 1F 2在点P 处的内角,则焦点在直线PT 上的射影H 点的轨迹是以长轴为直径的圆,除去长轴的两个端点. 3.以焦点弦PQ 为直径的圆必与对应准线相交.4. 以焦点半径PF 1为直径的圆必与以实轴为直径的圆相切.(内切:P 在右支;外切:P 在左支)5. 若000(,)P x y 在双曲线22221x y a b-=(a >0,b >0)上,则过0P 的双曲线的切线方程是00221x x y ya b-=. 6. 若000(,)P x y 在双曲线22221x y a b-=(a >0,b >0)外 ,则过Po 作双曲线的两条切线切点为P 1、P 2,则切点弦P 1P 2的直线方程是00221x x y ya b-=.7. 双曲线22221x y a b-=(a >0,b >o )的左右焦点分别为F 1,F 2,点P 为双曲线上任意一点12F PF γ∠=,则双曲线的焦点角形的面积为122t2F PF S b co γ∆=.8. 双曲线22221x y a b-=(a >0,b >o )的焦半径公式:(1(,0)F c - , 2(,0)F c当00(,)M x y 在右支上时,10||MF ex a =+,20||MF ex a =-.当00(,)M x y 在左支上时,10||MF ex a =-+,20||MF ex a =-- 9.设过双曲线焦点F 作直线与双曲线相交 P 、Q 两点,A 为双曲线长轴上一个顶点,连结AP 和AQ 分别交相应于焦点F 的双曲线准线于M 、N 两点,则MF ⊥NF. 10. 过双曲线一个焦点F 的直线与双曲线交于两点P 、Q, A 1、A 2为双曲线实轴上的顶点,A 1P 和A 2Q 交于点M ,A 2P 和A 1Q 交于点N ,则MF ⊥NF.11. AB 是双曲线22221x y a b-=(a >0,b >0)的不平行于对称轴的弦,M ),(00y x 为AB 的中点,则0202y a x b K K AB OM =⋅,即0202y a x b K AB =。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

椭圆问题小结论:
(1)与椭圆22
221x y a b +=共焦点的椭圆的方程可设为()2222
21,0x y b a b λλλ+=+>++ (2)与椭圆22
221x y a b +=有相同的离心率的椭圆可设为()2222,0x y a b λλ+=>
或()22
22,0x y b a
λλ+=> (3)直线l 与椭圆22
221x y a b +=相交与()()1122,y ,,A x B x y 两点,其中点(),P x y ,则有:
22AB OP
b K K a ⋅=-;若椭圆方程为22221y x a b +=时,2
2AB OP a K K b
⋅=-;
(4)椭圆的光学性质:从一个焦点发出的一束光线,照在椭圆上,其反射光线必经过另一个焦点,例:椭圆上一点P 到椭圆内一点A 和2F 的距离之和的最小值为12a AF -,最大值为12a AF +。

(5) 若000(,)P x y 在椭圆22
221x y a b +=上,则过0P 的椭圆的切线方程是00221x x y y a b +=.
(6) 若000(,)P x y 在椭圆22
221x y a b +=外 ,则过Po 作椭圆的两条切线切点为P 1、P 2,则切点
弦P 1P 2的直线方程是00221x x y y
a b
+=.
(7) 椭圆22
221x y a b += (a >b >0)的左右焦点分别为F 1,F 2,点P 为椭圆上任意一点
12F PF γ∠=,则椭圆的焦点角形的面积为122tan
2
F PF S b γ
∆=.
(8) 椭圆22
221x y a b
+=(a >b >0)的焦半径公式:
10||MF a ex =+,20||MF a ex =-(1(,0)F c - , 2(,0)F c 00(,)M x y ).
(9) 设过椭圆焦点F 作直线与椭圆相交 P 、Q 两点,A 为椭圆长轴上一个顶点,连结AP 和AQ 分别交相应于焦点F 的椭圆准线于M 、N 两点,则MF ⊥NF.
(10) 过椭圆一个焦点F 的直线与椭圆交于两点P 、Q, A 1、A 2为椭圆长轴上的顶点,A 1P 和A 2Q 交于点M ,A 2P 和A 1Q 交于点N ,则MF ⊥NF.
(11) 若000(,)P x y 在椭圆22
221x y a b
+=内,则被Po 所平分的中点弦的方程是
22
00002222x x y y x y a b a b
+=+ (12) 若000(,)P x y 在椭圆22
221x y a b
+=内,则过Po 的弦中点的轨迹方程是
22002222x x y y
x y a b a b
+=+. 双曲线问题小结论:
(1)与22
221x y a b
-=共轭的双曲线方程为22221x y a b -=-,①它们有公共的渐近线;②四个
焦点都在以原点为圆心,C 为半径的圆上;③
2
212
11
1e e +=。

(2)与22
221x y a b
-=有相同焦点的双曲线方程为
()2222
22
1,0,0,0x y a b a b
λλλλλ-=≠->+>-+ (3)与22
221x y a b
-=有相同焦点的椭圆方程为:
()2222
22
1,0,0x y a b a b
λλλλλ+=≠+>->+- (4)与22
221x y a b
+=有相同焦点的双曲线方程为:
()2222
22
1,0,0,0x y a b a b
λλλλλ-=≠->->-- (5)与22
221x y a b
-=有相同离心率的双曲线方程为:
①焦点在x 轴上时:()22
22,0,1x y a b λλλ-=>≠
②焦点在y 轴上时:()22
22,0y x a b
λλ-=>
(6)与22
221x y a b
-=有相同的渐近线方程为:()2222,0,1x y a b λλλ-=≠≠;
(7)双曲线的光学性质:从一个焦点发出的一束光线,照在双曲线上,其反射光线的反向
延长线必经过另一个焦点,例:双曲线上一点P 到双曲线位于Y 轴右侧的一点A 和右焦点
2F 的距离之和没有最大值,其最小值为12AF a -。

(8)直线y kx m =+与椭圆22
221x y a b
+=相交于()()1122,,,A x y B x y ,其中点(),P x y ,
则22AB OP
b K K a ⋅=,若双曲线的焦点在y 轴上时,2
2AB OP a K K b
⋅=。

(9)焦点在x 轴的双曲线来说,焦点到渐近线的距离是b 。

(10)双曲线上任意一点P ,使得12F PF θ∠=,则122tan
2
PF F b S θ
∆=
抛物线的小结论
抛物线的光学性质:从一个焦点发出的一束光,照在双曲线的一支上,其反射光线的反向延
长线必经过另外一个焦点。

(1)抛物线的通径长为2P ,弦的端点坐标为,2P A p ⎛⎫
⎪⎝⎭和,2P B P ⎛⎫
⎪⎝⎭
,设准线与x 轴的交点为,02P E ⎛⎫
-
⎪⎝⎭
,则1,1,0AE BE AE BE K K K K ==-+=,1AE BE K K ⋅=-, 所以AE BE ⊥,以通径AB 为直径的圆与准线相切于点E ;
(2)抛物线过焦点的弦AB ,则12AB x x P =++,若该弦的倾斜角为θ,
则221212,4P x x y y P ==-,22sin P AB θ
=,以AB 为直径的圆与准线相切于CD 的中点2O ,所以22AO BO ⊥;弦长最短的是通径,
112
AF BF P
+=; (3)AO 的延长线与准线相交于点C ,则CB x 轴;若经过点B 向准线作垂线,交准线于点C ,则,,A O C 三点共线;
(4)过点,A B 分别作准线的垂线,垂足分别为,D C ,则以CD 为直径的圆与AB 相切于点F ,则CF DF ⊥。

相关文档
最新文档