2020届高三第一次质量检测数学试卷(含答案)

合集下载

2020届高三数学质量检测第一次联考试题文(含解析)

2020届高三数学质量检测第一次联考试题文(含解析)

2020届高三数学质量检测第一次联考试题文(含解析)注意事项:1.本试卷分第I卷(选择题)和第II卷(非选择题)两部分.答卷前,考生务必将自己的姓名、准考证号、座位号填写在答题卡相应位置上.2.请在答题卡上作答,写在本试卷上效.第I卷(选择题共60分)一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合,,则()A. B. C. D.【答案】D【解析】【分析】根据集合交集的定义直接求解即可.【详解】因为集合,,所以.故选:D【点睛】本题考查了集合的交集运算,属于基础题.2.若复数z满足,则复数z在复平面内对应的点在( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限【答案】A【解析】【分析】化简复数,求得,得到复数在复平面对应点的坐标,即可求解.【详解】由题意,复数z满足,可得,所以复数在复平面内对应点的坐标为位于第一象限故选:A.【点睛】本题主要考查了复数的运算,以及复数的几何表示方法,其中解答中熟记复数的运算法则,结合复数的表示方法求解是解答的关键,着重考查了推理与计算能力,属于基础题.3.已知a,b是两条不同的直线,α,β是两个不同的平面,且,,则“”是“”的()A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件【答案】C【解析】【分析】根据线面平行的性质定理和判定定理判断与的关系即可得到答案.【详解】若,根据线面平行的性质定理,可得;若,根据线面平行的判定定理,可得.故选:C.【点睛】本题主要考查了线面平行的性质定理和判定定理,属于基础题.4.体育教师指导4个学生训练转身动作,预备时,4个学生全部面朝正南方向站成一排.训练时,每次都让3个学生“向后转”,若4个学生全部转到面朝正北方向,则至少需要“向后转”的次数是()A. 3B. 4C. 5D. 6【答案】B【解析】【分析】通过列举法,列举出同学的朝向,然后即可求出需要向后转的次数.【详解】“正面朝南”“正面朝北”分别用“∧”“∨”表示,利用列举法,可得下表,可知需要的次数为4次.故选:B.【点睛】本题考查的是求最小推理次数,一般这类题型构造较为巧妙,可通过列举的方法直观感受,属于基础题.5.已知等比数列的各项均为正数,设其前n项和,若(),则()A. 30B.C.D. 62【答案】B【解析】【分析】根据,分别令,结合等比数列的通项公式,得到关于首项和公比的方程组,解方程组求出首项和公式,最后利用等比数列前n项和公式进行求解即可.【详解】设等比数列的公比为,由题意可知中:.由,分别令,可得、,由等比数列的通项公式可得:,因此.故选:B【点睛】本题考查了等比数列的通项公式和前n项和公式的应用,考查了数学运算能力.6.函数的大致图象是A. B. C.D.【答案】A【解析】【分析】利用函数的对称性及函数值的符号即可作出判断.【详解】由题意可知函数为奇函数,可排除B选项;当时,,可排除D选项;当时,,当时,,即,可排除C选项,故选A【点睛】本题考查了函数图象的判断,函数对称性的应用,属于中档题.7.德国数学家莱布尼兹(1646年-1716年)于1674年得到了第一个关于π的级数展开式,该公式于明朝初年传入我国.在我国科技水平业已落后的情况下,我国数学家、天文学家明安图(1692年-1765年)为提高我国的数学研究水平,从乾隆初年(1736年)开始,历时近30年,证明了包括这个公式在内的三个公式,同时求得了展开三角函数和反三角函数的6个新级数公式,著有《割圆密率捷法》一书,为我国用级数计算π开创了先河.如图所示的程序框图可以用莱布尼兹“关于π的级数展开式”计算π的近似值(其中P表示π的近似值),若输入,则输出的结果是( )A. B.C. D.【答案】B【解析】【分析】执行给定的程序框图,输入,逐次循环,找到计算的规律,即可求解.【详解】由题意,执行给定的程序框图,输入,可得:第1次循环:;第2次循环:;第3次循环:;第10次循环:,此时满足判定条件,输出结果,故选:B.【点睛】本题主要考查了循环结构的程序框图的计算与输出,其中解答中认真审题,逐次计算,得到程序框图的计算功能是解答的关键,着重考查了分析问题和解答问题的能力,属于基础题.8.已知等差数列的前n项和为,且,,若(,且),则i的取值集合是()A. B. C. D.【答案】C【解析】【分析】首先求出等差数列的首先和公差,然后写出数列即可观察到满足的i的取值集合.【详解】设公差为d,由题知,,解得,,所以数列为,故.故选:C.【点睛】本题主要考查了等差数列的基本量的求解,属于基础题.9.若,,,则下列结论正确的是( )A. B. C. D.【答案】D【解析】【分析】根据指数函数的性质,取得的取值范围,即可求解,得到答案.【详解】由指数函数的性质,可得,即,又由,所以.故选:D.【点睛】本题主要考查了指数幂的比较大小,其中解答中熟记指数函数的性质,求得的取值范围是解答的关键,着重考查了计算能力,属于基础题.10.已知函数,若不等式对任意的恒成立,则实数k的取值范围是()A. B. C. D.【答案】A【解析】【分析】先求出函数在处的切线方程,在同一直角坐标系内画出函数和的图象,利用数形结合进行求解即可.【详解】当时,,所以函数在处的切线方程为:,令,它与横轴的交点坐标为.在同一直角坐标系内画出函数和的图象如下图的所示:利用数形结合思想可知:不等式对任意的恒成立,则实数k的取值范围是.故选:A【点睛】本题考查了利用数形结合思想解决不等式恒成立问题,考查了导数的应用,属于中档题.11.小王因上班繁忙,来不及做午饭,所以叫了外卖.假设小王和外卖小哥都在12:00~12:10之间随机到达小王所居住的楼下,则小王在楼下等候外卖小哥的时间不超过5分钟的概率是()A. B. C. D.【答案】C【解析】【分析】设出两人到达小王的时间,根据题意列出不等式组,利用几何概型计算公式进行求解即可.【详解】设小王和外卖小哥到达小王所居住的楼下的时间分别为,以12:00点为开始算起,则有,在平面直角坐标系内,如图所示:图中阴影部分表示该不等式组的所表示的平面区域,所以小王在楼下等候外卖小哥的时间不超过5分钟的概率为:.故选:C【点睛】本题考查了几何概型中的面积型公式,考查了不等式组表示的平面区域,考查了数学运算能力.12.已知双曲线C:()的左、右焦点分别为,过的直线l与双曲线C的左支交于A、B两点.若,则双曲线C的渐近线方程为()A. B. C. D.【答案】D【解析】【分析】设,利用余弦定理,结合双曲线的定义进行求解即可.【详解】设,由双曲线的定义可知:因此再由双曲线的定义可知:,在三角形中,由余弦定理可知:,因此双曲线的渐近线方程为:.故选:D【点睛】本题考查了双曲线的定义的应用,考查了余弦定理的应用,考查了双曲线的渐近线方程,考查了数学运算能力.二、填空题:本题共4小题.每小题5分,共20分.13.已知,是夹角为的两个单位向量,若,,则与的夹角为__________.【答案】【解析】【分析】首先求出与的数量积,然后直接根据与的夹角公式求解即可.【详解】由题知,,有,所以,所以.故答案为:.【点睛】本题主要考查了向量的数量积的运算,向量夹角的求解,属于基础题.14.若函数满足:①是偶函数;②的图象关于点对称.则同时满足①②的,的一组值可以分别是__________.【答案】,【解析】【分析】根据是偶函数和的图象关于点对称,即可求出满足条件的和.【详解】由是偶函数及,可取,则,由的图象关于点对称,得,,即,,可取.故,的一组值可以分别是,.故答案为:,.【点睛】本题主要考查了正弦型三角函数的性质,属于基础题.15.“北斗三号”卫星的运行轨道是以地心为一个焦点的椭圆.设地球半径为R,若其近地点、远地点离地面的距离大约分别是, ,则“北斗三号”卫星运行轨道的离心率为__________.【答案】【解析】【分析】画出图形,结合椭圆的定义和题设条件,求得的值,即可求得椭圆的离心率,得到答案.【详解】如图所示,设椭圆的长半轴为,半焦距为,因为地球半径为R,若其近地点、远地点离地面的距离大约分别是,,可得,解得,所以椭圆的离心率为.故答案为:.【点睛】本题主要考查了椭圆的离心率的求解,其中解答中熟记椭圆的几何性质,列出方程组,求得的值是解答的关键,着重考查了推理与计算能力,属于基础题.16.在三棱锥中,,,,若PA 与底面ABC所成的角为,则点P到底面ABC的距离是______;三棱锥P-ABC的外接球的表面积_____.【答案】 (1). (2).【解析】【分析】首先补全三棱锥为长方体,即可求出点P到底面ABC的距离,同时长方体的体对角线就是三棱锥的外接球的直径,然后即可求出外接球的表面积.【详解】将三棱锥置于长方体中,其中平面,由与底面ABC所成的角为,可得,即为点P到底面ABC距离,由,得,如图,PB就是长方体(三条棱长分别为1,1,)外接球的直径,也是三棱锥外接球的直径,即,所以球的表面积为.故答案为:;.【点睛】本题考查了点到面的距离和三棱锥外接球的表面积,属于一般题.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.17.在中,角A,B,C的对边分别为a,b,c,且.(1)求B;(2)若的面积为,周长为8,求b.【答案】(1);(2)【解析】【分析】(1)通过正弦定理和内角和定理化简,再通过二倍角公式即可求出;(2)通过三角形面积公式和三角形的周长为8,求出b的表达式后即可求出b的值.详解】(1)由三角形内角和定理及诱导公式,得,结合正弦定理,得,由及二倍角公式,得,即,故;(2)由题设,得,从而,由余弦定理,得,即,又,所以,解得.【点睛】本题综合考查了正余弦定理,倍角公式,三角形面积公式,属于基础题.18.若养殖场每个月生猪的死亡率不超过,则该养殖场考核为合格,该养殖场在2019年1月到8月养殖生猪的相关数据如下表所示:(1)从该养殖场2019年2月到6月这5个月中任意选取3个月,求恰好有2个月考核获得合格的概率;(2)根据1月到8月的数据,求出月利润y(十万元)关于月养殖量x(千只)的线性回归方程(精确到0.001).(3)预计在今后的养殖中,月利润与月养殖量仍然服从(2)中的关系,若9月份的养殖量为1.5万只,试估计:该月利润约为多少万元?附:线性回归方程中斜率和截距用最小二乘法估计计算公式如下:,参考数据:.【答案】(1);(2);(3)利润约为111.2万元.【解析】【分析】(1)首先列出基本事件,然后根据古典概型求出恰好两个月合格的概率;(2)首先求出利润y和养殖量x的平均值,然后根据公式求出线性回归方程中的斜率和截距即可求出线性回归方程;(3)根据线性回归方程代入9月份的数据即可求出9月利润.【详解】(1)2月到6月中,合格的月份为2,3,4月份,则5个月份任意选取3个月份的基本事件有,,,,,,,,,,共计10个,故恰好有两个月考核合格的概率为;(2),,,,故;(3)当千只,(十万元)(万元),故9月份的利润约为111.2万元.【点睛】本题主要考查了古典概型,线性回归方程的求解和使用,属于基础题.19.在三棱柱中,四边形是菱形,,,,,点M、N分别是、的中点,且.(1)求证:平面平面;(2)求四棱锥的体积.【答案】(1)证明见解析;(2).【解析】【分析】(1)要证面面垂直需要先证明线面垂直,即证明出平面即可;(2)求出点A到平面的距离,然后根据棱锥的体积公式即可求出四棱锥的体积.【详解】(1)连接,由是平行四边形及N是的中点,得N也是的中点,因为点M是的中点,所以,因为,所以,又,,所以平面,又平面,所以平面平面;(2)过A作交于点O,因为平面平面,平面平面,所以平面,由是菱形及,得为三角形,则,由平面,得,从而侧面为矩形,所以.【点睛】本题主要考查了面面垂直的证明,求四棱锥的体积,属于一般题.20.在平面直角坐标系xOy中,已知抛物线的焦点为F,准线为l,P是抛物线E上一点,且点P的横坐标为2,.(1)求抛物线E的方程;(2)过点F的直线m与抛物线E交于A、B两点,过点F且与直线m垂直的直线n与准线l交于点M,设AB的中点为N,若O、M、N、F四点共圆,求直线m的方程.【答案】(1)(2)【解析】【分析】(1)首先根据抛物线的定义和题中条件求出抛物线的焦准距,即可得到抛物线的方程;(2)首先设直线m方程,然后与抛物线联立,利用韦达定理求出点N坐标,然后设直线n的方程求出点M的坐标,最后利用O、M、N、F四点共圆即可求出直线m的方程.【详解】(1)由抛物线定义,得,解得,所以抛物线F的方程为;(2)设直线m的方程为,代入,得,设,,则,,由,,得,所以,因为直线m的斜率为,所以直线n的斜率为,则直线n的方程为,由解得,若O、M、N、F四点共圆,再结合,得,则,解得,所以直线m的方程为.【点睛】本题主要考查了抛物线的定理,直线与抛物线的交点问题,属于一般题.21.已知函数存在一个极大值点和一个极小值点.(1)求实数a的取值范围;(2)若函数极大值点和极小值点分别为和,且,求实数a的取值范围.(e是自然对数的底数)【答案】(1);(2).【解析】【分析】(1)首先对函数求导,根据函数存在一个极大值点和一个极小值点求出a的取值范围;(2)首先求出的值,再根据求出实数a的取值范围.【详解】(1)函数的定义域为是,,若有两个极值点,则方程一定有两个不等的正根,设为和,且,所以解得,此时,当时,,当时,,当时,,故是极大值点,是极小值点,故实数a的取值范围是;(2)由(1)知,,,则,,,由,得,即,令,考虑到,所以可化为,而,所以在上为增函数,由,得,故实数a的取值范围是.【点睛】本题主要考查了利用导数研究函数的极值点和单调性,利用函数单调性证明不等式,属于难题.(二)选考题:共10分.请考生在第22、23题中任选一题作答,如果多做,则按所做的第一题计分,作答时用2B铅笔在答题卡上把所选题号后的方框涂黑.22.在平面直角坐标系xOy中,曲线C的参数方程为(为参数).以原点O为极点,x轴的正半轴为极轴,且两个坐标系取相等的长度单位,建立极坐标系.(1)设直线l的极坐标方程为,若直线l与曲线C交于两点A.B,求AB的长;(2)设M、N是曲线C上的两点,若,求面积的最大值.【答案】(1);(2)1.【解析】【分析】(1)利用参数方程、普通方程、极坐标方程间的互化公式即可;(2),,由(1)通过计算得到,即最大值为1.【详解】(1)将曲线C的参数方程化为普通方程为,即;再将,,代入上式,得,故曲线C的极坐标方程为,显然直线l与曲线C相交的两点中,必有一个原点O,不妨设O与A重合,即.(2)不妨设,,则面积为当,即取时,.【点睛】本题考查参数方程、普通方程、极坐标方程间的互化,三角形面积的最值问题,是一道容易题.23.已知不等式对于任意的恒成立.(1)求实数m的取值范围;(2)若m的最大值为M,且正实数a,b,c满足.求证.【答案】(1)(2)证明见解析【解析】【分析】(1)法一:,,得,则,由此可得答案;法二:由题意,令,易知是偶函数,且时为增函数,由此可得出答案;(2)由(1)知,,即,结合“1”的代换,利用基本不等式即可证明结论.【详解】解:(1)法一:(当且仅当时取等号),又(当且仅当时取等号),所以(当且仅当时取等号),由題意得,则,解得,故的取值范围是;法二:因为对于任意恒有成立,即,令,易知是偶函数,且时为增函数,所以,即,则,解得,故的取值范围是;(2)由(1)知,,即,∴,故不等式成立.【点睛】本题主要考查绝对值不等式的恒成立问题,考查基本不等式的应用,属于中档题.2020届高三数学质量检测第一次联考试题文(含解析)注意事项:1.本试卷分第I卷(选择题)和第II卷(非选择题)两部分.答卷前,考生务必将自己的姓名、准考证号、座位号填写在答题卡相应位置上.2.请在答题卡上作答,写在本试卷上效.第I卷(选择题共60分)一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合,,则()A. B. C. D.【答案】D【解析】【分析】根据集合交集的定义直接求解即可.【详解】因为集合,,所以.故选:D【点睛】本题考查了集合的交集运算,属于基础题.2.若复数z满足,则复数z在复平面内对应的点在( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限【答案】A【解析】【分析】化简复数,求得,得到复数在复平面对应点的坐标,即可求解.【详解】由题意,复数z满足,可得,所以复数在复平面内对应点的坐标为位于第一象限故选:A.【点睛】本题主要考查了复数的运算,以及复数的几何表示方法,其中解答中熟记复数的运算法则,结合复数的表示方法求解是解答的关键,着重考查了推理与计算能力,属于基础题. 3.已知a,b是两条不同的直线,α,β是两个不同的平面,且,,则“”是“”的()A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件【答案】C【解析】【分析】根据线面平行的性质定理和判定定理判断与的关系即可得到答案.【详解】若,根据线面平行的性质定理,可得;若,根据线面平行的判定定理,可得.故选:C.【点睛】本题主要考查了线面平行的性质定理和判定定理,属于基础题.4.体育教师指导4个学生训练转身动作,预备时,4个学生全部面朝正南方向站成一排.训练时,每次都让3个学生“向后转”,若4个学生全部转到面朝正北方向,则至少需要“向后转”的次数是()A. 3B. 4C. 5D. 6【答案】B【解析】【分析】通过列举法,列举出同学的朝向,然后即可求出需要向后转的次数.【详解】“正面朝南”“正面朝北”分别用“∧”“∨”表示,利用列举法,可得下表,可知需要的次数为4次.故选:B.【点睛】本题考查的是求最小推理次数,一般这类题型构造较为巧妙,可通过列举的方法直观感受,属于基础题.5.已知等比数列的各项均为正数,设其前n项和,若(),则()A. 30B.C.D. 62【答案】B【解析】【分析】根据,分别令,结合等比数列的通项公式,得到关于首项和公比的方程组,解方程组求出首项和公式,最后利用等比数列前n项和公式进行求解即可.【详解】设等比数列的公比为,由题意可知中:.由,分别令,可得、,由等比数列的通项公式可得:,因此.故选:B【点睛】本题考查了等比数列的通项公式和前n项和公式的应用,考查了数学运算能力.6.函数的大致图象是A. B. C. D.【答案】A【解析】【分析】利用函数的对称性及函数值的符号即可作出判断.【详解】由题意可知函数为奇函数,可排除B选项;当时,,可排除D选项;当时,,当时,,即,可排除C选项,故选A【点睛】本题考查了函数图象的判断,函数对称性的应用,属于中档题.7.德国数学家莱布尼兹(1646年-1716年)于1674年得到了第一个关于π的级数展开式,该公式于明朝初年传入我国.在我国科技水平业已落后的情况下,我国数学家、天文学家明安图(1692年-1765年)为提高我国的数学研究水平,从乾隆初年(1736年)开始,历时近30年,证明了包括这个公式在内的三个公式,同时求得了展开三角函数和反三角函数的6个新级数公式,著有《割圆密率捷法》一书,为我国用级数计算π开创了先河.如图所示的程序框图可以用莱布尼兹“关于π的级数展开式”计算π的近似值(其中P表示π的近似值),若输入,则输出的结果是( )A. B.C. D.【答案】B【解析】【分析】执行给定的程序框图,输入,逐次循环,找到计算的规律,即可求解.【详解】由题意,执行给定的程序框图,输入,可得:第1次循环:;第2次循环:;第3次循环:;第10次循环:,此时满足判定条件,输出结果,故选:B.【点睛】本题主要考查了循环结构的程序框图的计算与输出,其中解答中认真审题,逐次计算,得到程序框图的计算功能是解答的关键,着重考查了分析问题和解答问题的能力,属于基础题.8.已知等差数列的前n项和为,且,,若(,且),则i的取值集合是()A. B. C. D.【答案】C【解析】【分析】首先求出等差数列的首先和公差,然后写出数列即可观察到满足的i的取值集合.【详解】设公差为d,由题知,,解得,,所以数列为,故.故选:C.【点睛】本题主要考查了等差数列的基本量的求解,属于基础题.9.若,,,则下列结论正确的是( )A. B. C. D.【答案】D【解析】【分析】根据指数函数的性质,取得的取值范围,即可求解,得到答案.【详解】由指数函数的性质,可得,即,又由,所以.故选:D.【点睛】本题主要考查了指数幂的比较大小,其中解答中熟记指数函数的性质,求得的取值范围是解答的关键,着重考查了计算能力,属于基础题.10.已知函数,若不等式对任意的恒成立,则实数k的取值范围是()A. B. C. D.【答案】A【解析】【分析】先求出函数在处的切线方程,在同一直角坐标系内画出函数和的图象,利用数形结合进行求解即可.【详解】当时,,所以函数在处的切线方程为:,令,它与横轴的交点坐标为.在同一直角坐标系内画出函数和的图象如下图的所示:利用数形结合思想可知:不等式对任意的恒成立,则实数k的取值范围是.故选:A【点睛】本题考查了利用数形结合思想解决不等式恒成立问题,考查了导数的应用,属于中档题.11.小王因上班繁忙,来不及做午饭,所以叫了外卖.假设小王和外卖小哥都在12:00~12:10之间随机到达小王所居住的楼下,则小王在楼下等候外卖小哥的时间不超过5分钟的概率是()A. B. C. D.【答案】C【解析】【分析】设出两人到达小王的时间,根据题意列出不等式组,利用几何概型计算公式进行求解即可.【详解】设小王和外卖小哥到达小王所居住的楼下的时间分别为,以12:00点为开始算起,则有,在平面直角坐标系内,如图所示:图中阴影部分表示该不等式组的所表示的平面区域,所以小王在楼下等候外卖小哥的时间不超过5分钟的概率为:.故选:C【点睛】本题考查了几何概型中的面积型公式,考查了不等式组表示的平面区域,考查了数学运算能力.12.已知双曲线C:()的左、右焦点分别为,过的直线l与双曲线C的左支交于A、B两点.若,则双曲线C的渐近线方程为()A. B. C. D.【答案】D【解析】【分析】设,利用余弦定理,结合双曲线的定义进行求解即可.【详解】设,由双曲线的定义可知:因此再由双曲线的定义可知:,在三角形中,由余弦定理可知:,因此双曲线的渐近线方程为:.故选:D【点睛】本题考查了双曲线的定义的应用,考查了余弦定理的应用,考查了双曲线的渐近线方程,考查了数学运算能力.二、填空题:本题共4小题.每小题5分,共20分.13.已知,是夹角为的两个单位向量,若,,则与的夹角为__________.【答案】【解析】【分析】首先求出与的数量积,然后直接根据与的夹角公式求解即可.【详解】由题知,,有,所以,所以.故答案为:.【点睛】本题主要考查了向量的数量积的运算,向量夹角的求解,属于基础题.14.若函数满足:①是偶函数;②的图象关于点对称.则同时满足①②的,的一组值可以分别是__________.【答案】,【解析】【分析】根据是偶函数和的图象关于点对称,即可求出满足条件的和.【详解】由是偶函数及,可取,则,由的图象关于点对称,得,,即,,可取.故,的一组值可以分别是,.故答案为:,.【点睛】本题主要考查了正弦型三角函数的性质,属于基础题.15.“北斗三号”卫星的运行轨道是以地心为一个焦点的椭圆.设地球半径为R,若其近地点、远地点离地面的距离大约分别是,,则“北斗三号”卫星运行轨道的离心率为__________.【答案】【解析】【分析】画出图形,结合椭圆的定义和题设条件,求得的值,即可求得椭圆的离心率,得到答案.【详解】如图所示,设椭圆的长半轴为,半焦距为,因为地球半径为R,若其近地点、远地点离地面的距离大约分别是,,。

2020届徐州高三 一检数学试卷参考答案

2020届徐州高三 一检数学试卷参考答案

徐州市2019~2020学年度高三年级第一次质量检测数学I 参考答案与评分标准一、填空题:1.{12}x x −<< 2.2i − 3.45 4.20 5.[4,+)∞ 6.127.48.14 9.135 10.3π 11.22(2)8x y ++= 12.3 13.47 14.34二、解答题: 15.(1)在PBC △中,因为M ,N 分别为棱PB ,PC 的中点,所以MN // BC . ………………………………3分 又MN ⊂平面AMN ,BC ⊄平面AMN ,所以BC //平面AMN .…………………………6分 (2)在PAB △中,因为AP AB =,M 为棱PB 的中点,所以AM PB ⊥.………………………………8分 又因为平面P AB ⊥平面PBC ,平面P AB平面PBC PB =,AM ⊂平面P AB ,所以AM ⊥平面PBC .…………………………………………………………12分 又AM ⊂平面AMN ,所以平面AMN ⊥平面PBC . …………………………14分 16.(1)在中,由余弦定理2222cos b c bc A a +−=得,2520225255b b +−⨯⨯=,即2450b b −−=, …………………………4分 解得5b =或1b =−(舍),所以5b =. ………………………………………6分 (2)由5cos A =及0A <<π得,22525sin 1cos 1()5A A =−=−=,…8分 所以210cos cos(())cos()(cos sin )42C A B A A A π=π−+=−+=−−=, 又因为0C <<π,所以2210310sin 1cos 1()10C C =−=−=, 从而310sin 10tan 3cos 1010C C C ===,………………………………………………12分所以222tan 233tan 21tan 134C C C ⨯===−−−.………………………………………14分 17.(1)在SAO △中,2222534SO SA AO =−=−=, …………………………2分由1SNO △∽SAO △可知,1SO r SO R=,所以143SO r =,……………………4分所以1443OO r =−,所以223144()π(4)π(3),03339V r r r r r r =−=−<<.…7分(2)由(1)得234()π(3),039V r r r r =−<<,所以24()π(63)9V r r r '=−,令()0V r '=,得2r =,………………………9分当(0,2)r ∈时,()0V r '>,所以()V r 在(0,2)上单调递增;ABC △AP NMCB当(2,3)r ∈时,()0V r '<,所以()V r 在(2,3)上单调递减. 所以当2r =时,()V r 取得最大值16π(2)9V =. 答:小圆锥的体积V 的最大值为16π9.………………………………………14分 18.(1)直线l 的方程为)(a x k y −=,即0=−−ak y kx ,因为直线l 与圆222b y x O =+:相切,所以b k ak=+−12,故2222b a b k −=. 所以椭圆C的离心率e ==4分(2)设椭圆C 的焦距为2c ,则右准线方程为2a x c=, 由⎪⎩⎪⎨⎧=−=c ax a x k y 2)(得c ac a k a c a k y −=−=22)(,所以))(,(22c ac a k c a Q −,…6分 由⎪⎩⎪⎨⎧−==+)(12222a x k y b y a x 得02)(2224232222=−+−+b a k a x k a x k a b , 解得222223k a b ab k a x p +−=,则22222222232)(k a b k ab a k a b ab k a k y p +−=−+−=, 所以)2-2222222223ka b kab k a b ab k a P ++−,(,……………………………………………10分 因为0=⋅,所以02)(222222222232=+−⋅−++−⋅k a b kab c ac a k k a b ab k a c a ,即)(2)(22222c a k b b k a a −=−,………………………………………………12分由(1)知,2222b a b k −=,所以22422222)(2)(ba c ab b b a b a a −−=−−, 所以c a a 22−=,即c a 2=,所以21=a c ,故椭圆C 的离心率为21.……16分19.(1)()2111()ln f x x a x x x'=+−,因为曲线()y f x =在点(1,(1))f 处的切线方程为10x y +−=,所以(1)11f a '=−=−,得0a =.……………………………………………2分(2)因为21ln ()ax x f x x−+'=存在两个不相等的零点. 所以()1ln g x ax x =−+存在两个不相等的零点,则1()g x a x'=+.①当0a ≥时,()0g x '>,所以()g x 单调递增,至多有一个零点.……4分 ②当0a <时,因为当1(0)x a∈−,时,()0g x '>,()g x 单调递增,当1(+)x a∈−∞,时,()0g x '<,()g x 单调递减,所以1x a =−时,max 11()()ln()2g x g a a=−=−−. …………………………6分因为()g x 存在两个零点,所以1ln()20a−−>,解得2e 0a −−<<.………7分因为2e 0a −−<<,所以21e 1a−>>.因为(1)10g a =−<,所以()g x 在1(0)a−,上存在一个零点. …………8分因为2e 0a −−<<,所以211()a a−>−.因为22111[()]ln()1g a a a −=−+−,设1t a=−,则22ln 1(e )y t t t =−−>,因为20t y t−'=<,所以22ln 1(e )y t t t =−−>单调递减,所以()2222ln e e 13e 0y <−−=−<,所以22111[()]ln()10g a a a−=−+−<,所以()g x 在1()a−+∞,上存在一个零点.综上可知,实数a 的取值范围为2(e ,0)−−.…………………………………10分 (3)当2a =时,1()(2)ln f x x x =−,()2211121ln ()ln 2x x f x x x x x x−+'=+−=, 设()21ln g x x x =−+,则1()20g x x'=+>.所以()g x 单调递增,且11()ln 022g =<,(1)10g =>,所以存在01(1)2x ∈,使得0()0g x =,……12分 因为当0(0)x x ∈,时,()0g x <,即()0f x '<,所以()f x 单调递减;当0(+)x x ∈∞,时,()0g x >,即()0f x '>,所以()f x 单调递增, 所以0x x =时,()f x 取得极小值,也是最小值,此时()0000000111()(2)ln (2)12(4)4f x x x x x x x =−=−−=−++,……………14分因为01(1)2x ∈,,所以0()(10)f x ∈−,, 因为()f x λ≥,且λ为整数,所以1λ−≤,即λ的最大值为1−.………16分20.(1)由11n n a ka +=−,13a =可知,231a k =−,2331a k k =−−,因为{1}n a −为等比数列,所以2213(1)(1)(1)a a a −=−−,即22(32)2(32)k k k −=⨯−−,即231080k k −+=,解得2k =或43k =,…2分 当43k =时,143(3)3n n a a +−=−,所以3n a =,则12n a −=,所以数列{1}n a −的公比为1,不符合题意;当2k =时,112(1)n n a a +−=−,所以数列{1}n a −的公比1121n n a q a +−==−,所以实数k 的值为2. …………………………………………………………4分(2)由(1)知12n n a −=,所以4n n n n b n − , ⎧⎪=⎨2, ⎪⎩为奇数,为偶数,则22(41)4(43)4[4(21)]4m m S m =−++−+++−−+2(41)(43)[4(21)]444m m =−+−++−−++++144(4)3m m m +−=−+,……………………………………………………6分则212244(4)3m m m m S S b m m −−=−=−+,因为22+1324m m m b b m +=−+,又222+322+1()()3420m m m m m b b b b ++−+=⨯−>, 且2350b b +=>,130b =>,所以210m S −>,则20m S >,设2210,m t m Sb t S −=>∈*N ,…………………………………………………………8分 则1,3t =或t 为偶数,因为31b =不可能,所以1t =或t 为偶数,①当2121=m m S b S −时,144(4)3344(4)3m mm m m m +−−+=−−+,化简得2624844m m m −+=−−≤, 即242m m −+≤0,所以m 可取值为1,2,3,验证624135787,3,323S S S S S S ===得,当2m =时,413S b S =成立.…………………12分②当t 为偶数时,1222144(4)331443124(4)134m m mm mm m SS m m m m +−−−+==+−−+−−++, 设231244m m m m c −+−=,则211942214m m m m m c c ++−+−=,由①知3m >,当4m =时,545304c c −−=<;当4m >时,10m m c c +−>,所以456c c c ><<,所以m c 的最小值为5191024c −=, 所以22130151911024m m S S −<<+<−+,令22214m m S b S −==,则2314312414mm m +=−+−+, 即231240m m −+−=,无整数解.综上,正整数m 的值2.………………………………………………………16分(第22BAC xyzB 1 A 1C 1 徐州市2019~2020学年度高三年级第一次质量检测数学Ⅱ参考答案与评分标准21.A .矩阵M 的特征多项式为23()(2)(1)31f t t λλλλλ−−==−−−−−.…………2分 因为矩阵M 的一个特征值为4,所以(4)630f t =−=,所以2t =.…………5分 所以2321⎡⎤=⎢⎥⎣⎦M ,所以11313213221324422112132213222−−⎡⎤⎡⎤−⎢⎥⎢⎥⨯−⨯⨯−⨯==⎢⎥⎢⎥−−⎢⎥⎢⎥⨯−⨯⨯−⨯⎣⎦⎣⎦M .……10分 B .由:cos sin 120l ρθρϕ+−=,及cos x ρθ=,sin y ρθ=,所以l 的直角坐标方程为120x y +−=. ………………………………………2分在曲线C 上取点()232sin M ϕϕ,,则点M 到l 的距离 ()4sin 12124sin 23cos 2sin 1233222d ϕϕϕϕππ+−−++−==,…………6分 当6ϕπ=时,d 取最小值428分此时点M 的坐标为()3,1.………………………………………………………10分 C .因为x y z ,,都为正数,且1x y z ++=,所以由柯西不等式得,1113()222x y y z z x +++++111()[(2)(2)(2)]222x y y z z x x y y z z x=++⋅++++++++ ………………………………………………………5分 2111(222)9222x y y z z x x y y z z x++++=+++≥, 当且仅当13x y z ===时等号成立,所以111222x y y z z x +++++的最小值为3.………………………………………………………10分 22.(1)因为四边形11AA B B 为正方形,所以1AB BB ⊥,因为平面11AA B B ⊥平面11BB C C ,平面11AA B B平面111BB C C BB =,AB ⊂平面11AA B B ,所以AB ⊥平面11BB C C . ……………………………2分以点B 为坐标原点,分别以BA ,1BB 所在的直线 为x ,y 轴,建立如图所示的空间直角坐标系B xyz −.不妨设正方形11AA B B 的边长为2,则()2 0 0A ,,,()10 2 0B ,,. 在菱形11BB C C 中,因为1160BB C ∠=︒, 所以1(0 1 3)C ,,,所以1( 2 1 3)AC =−,,. 因为平面11AA B B 的法向量为()0 0 1=,,n , 设直线1AC 与平面11AA B B 所成角为α, 则1|3|6sin |cos ,|221AC α=<>==⨯n ,即直线1AC 与平面11AA B B 6………………………6分(2)由(1)可知,(0 1 3)C −,,,所以()10 2 0CC =,,.设平面1ACC 的一个法向量为()1111 x y z =,,n ,因为11110,0,AC CC ⎧⋅=⎪⎨⋅=⎪⎩n n 即()(()()111111 2 1 0 0 2 00x y z x y z ⎧⋅−=⎪⎨⋅=⎪⎩,,,,,,,,,取1x =,10y =,11z =,即1 0 1)=,,n . 设平面1ABC 的一个法向量为()2222 x y z =,,n , 因为()2 0 0BA =,,,(10 1 BC =,, 所以()()()(222222 2 0 00 0 1 0x y z x y z ⋅=⎧⎪⎨⋅=⎪⎩,,,,,,,,取()20 1=−,n .…………8分设二面角1B AC C −−的平面角为θ,则121212 cos cos θ⋅=−<>=−==⋅,n n n n n n所以二面角1B AC C −−10分23.(1)因为4n =,所以0404216C ()381a ==,1314232C ()327a ==.……………………2分 (2)当13x =时,21C ()()33k k n k k k n a x −=, 又因为11!(1)!C C !()!(1)!()!k k n n n n k k n n k n k k n k −−−===−−−,………………………4分当1n =时,011022()C ()33nk k k n k a x =−==∑; …………………………………5分当2n ≥时,0021()()C ()()33n nk k n k kk n k k n k a x n k −==−=−∑∑012121C ()()C ()()3333n nk n k kk n k k n nk k n k −−===−∑∑ 1112121()C ()()3333n n k n k kn k n n −−−==+−∑ 1111121C ()()333n k n k k n k n n −−−−==−∑1121()333n n n −=−+23n =,当1n =时,也符合.所以0()nk k k n k a x =−∑的值为23n .………………………………………………10分。

2020届河北省衡水中学高三第一次教学质量检测数学(理)试题(解析版)

2020届河北省衡水中学高三第一次教学质量检测数学(理)试题(解析版)

河北衡水中学2020年高三第一次教学质量检测数学试题(理科)(考试时间:120分钟满分:150分)第Ⅰ卷(满分60分)一、选择题:本大题共12小题,每小题5分,满分60分.在每小题给出的四个选项中,只一项是符合题目要求的.1.设集合{}1,2,4A =,{}240B x x x m =-+=.若{}1A B ⋂=,则B = ()A.{}1,3- B.{}1,0C.{}1,3D.{}1,5【答案】C 【解析】 ∵ 集合{}124A ,,=,{}2|40B x x x m =-+=,{}1A B =I∴1x =是方程240x x m -+=的解,即140m -+=∴3m =∴{}{}{}22|40|43013B x x x m x x x =-+==-+==,,故选C2.z 是z 的共轭复数,若()2,2(z z z z i i +=-=为虚数单位) ,则z =( )A. 1i +B. 1i --C. 1i -+D. 1i -【答案】D 【解析】【详解】试题分析:设,,,z a bi z a bi a b R =+=-∈,依题意有22,22a b =-=, 故1,1,1a b z i ==-=-. 考点:复数概念及运算.【易错点晴】在复数的四则运算上,经常由于疏忽而导致计算结果出错.除了加减乘除运算外,有时要结合共轭复数的特征性质和复数模的相关知识,综合起来加以分析.在复数的四则运算中,只对加法和乘法法则给出规定,而把减法、除法定义为加法、乘法的逆运算.复数代数形式的运算类似多项式的运算,加法类似合并同类项;复数的加法满足交换律和结合律,复数代数形式的乘法类似多项式乘以多项式,除法类似分母有理化;用类比的思想学习复数中的运算问题.3.根据有关资料,围棋状态空间复杂度的上限M 约为3361,而可观测宇宙中普通物质的原子总数N 约为1080.则下列各数中与MN最接近的是 (参考数据:lg3≈0.48) A. 1033 B. 1053 C. 1073 D. 1093【答案】D 【解析】试题分析:设36180310M x N == ,两边取对数,36136180803lg lg lg3lg10361lg38093.2810x ==-=⨯-=,所以93.2810x =,即MN最接近9310,故选D.【名师点睛】本题考查了转化与化归能力,本题以实际问题的形式给出,但本质就是对数的运算关系,以及指数与对数运算的关系,难点是令36180310x =,并想到两边同时取对数进行求解,对数运算公式包含log log log a a a M N MN +=,log log log a a aM M N N-=,log log na a M n M =. 4.已知奇函数()f x 在R 上是增函数,()()g x xf x =.若0.82(log 5.1),(2),(3)a g b g c g =-==,则,,a b c 的大小关系为( ) A. a b c << B. c b a <<C. b a c <<D. b c a <<【答案】C 【解析】 【分析】 根据奇函数()f x 在R 上是增函数可得()g x 为偶函数且在[)0,+∞上为增函数,从而可判断,,a b c 的大小.【详解】()gx 定义域为R .()()()()()g x xf x x f x xf x g x -=--=--==⎡⎤⎣⎦,故()g x 为偶函数.因为()f x 为R 上的奇函数,故()00f =,当0x >时,因为()f x 为R 上的增函数,故()()00f x f >=.设任意的120x x ≤<,则()()120f x f x ≤<,故()()1122x f x x f x <,故()()12g x g x <,故()gx 为[)0,+∞上的增函数,所以()()22log 5.1log 5.1a g g =-=,而0.82223log 8log 5.1log 422=>>=>,故()()()0.823log 5.12g g g >>,所以c a b >>.故选C.【点睛】本题考查函数的奇函数、单调性以及指对数的大小比较,注意奇函数与奇函数的乘积、偶函数与偶函数的乘积都是偶函数,指数对数的大小比较应利用中间数和对应函数的单调性来考虑. 5.如图,函数()f x 的图象为折线ACB ,则不等式()()2log 1f x x ≥+的解集是( )A. {}|10x x -<≤B. {}|11x x -≤≤C.{}|11x x -<≤D.{}|12x x -<≤【答案】C 【解析】试题分析:如下图所示,画出2()log (1)g x x =+的函数图象,从而可知交点(1,1)D ,∴不等式()()f x g x ≥的解集为(1,1]-,故选C .考点:1.对数函数的图象;2.函数与不等式;3.数形结合的数学思想.6.设直线l 1,l 2分别是函数f(x)=ln ,01,{ln ,1,x x x x -<<>图象上点P 1,P-2处的切线,l 1与l 2垂直相交于点P ,且l 1,l 2分别与y 轴相交于点A ,B ,则△PAB 的面积的取值范围是 A. (0,1) B. (0,2)C. (0,+∞)D. (1,+∞)【答案】A 【解析】 试题分析:设()()111222,ln ,,ln P x x P x x -(不妨设121,01x x ><<),则由导数的几何意义易得切线12,l l 的斜率分别为121211,.k k x x ==-由已知得12122111,1,.k k x x x x =-∴=∴=∴切线1l 的方程分别为()1111ln y x x x x -=-,切线2l 的方程为()2221ln y x x x x +=--,即1111ln y x x x x ⎛⎫-=-- ⎪⎝⎭.分别令0x =得()()110,1ln ,0,1ln .A xB x -++又1l 与2l 的交点为221111112222111121211,ln .1,1,0111211PAB A B P PAB x x x x P x x S y y x S x x x x Q ∆∆⎛⎫-++>∴=-⋅=<=∴<< ⎪++++⎝⎭,故选A . 考点:1.导数的几何意义;2.两直线垂直关系;3.直线方程的应用;4.三角形面积取值范围.7.(2017新课标全国Ⅲ理科)已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为 A. π B.3π4 C.π2D. π4【答案】B 【解析】绘制圆柱的轴截面如图所示,由题意可得:11,2AC AB ==,结合勾股定理,底面半径r ==由圆柱的体积公式,可得圆柱的体积是223ππ1π24V r h ⎛⎫==⨯⨯= ⎪ ⎪⎝⎭,故选B.【名师点睛】涉及球与棱柱、棱锥的切、接问题时,一般过球心及多面体中的特殊点(一般为接、切点)或线作截面,把空间问题转化为平面问题,再利用平面几何知识寻找几何体中元素间的关系,或只画内切、外接的几何体的直观图,确定球心的位置,弄清球的半径(直径)与该几何体已知量的关系,列方程(组)求解. 8.(2017新课标全国I 理科)记n S 为等差数列{}n a 的前n 项和.若4524a a +=,648S =,则{}n a 的公差为 A. 1 B. 2 C .4D. 8【答案】C 【解析】设公差为d ,45111342724a a a d a d a d +=+++=+=,611656615482S a d a d ⨯=+=+=,联立112724,61548a d a d +=⎧⎨+=⎩解得4d =,故选C. 点睛:求解等差数列基本量问题时,要多多使用等差数列的性质,如{}n a 为等差数列,若m n p q +=+,则m n p q a a a a +=+.9.设,m n u r r 为非零向量,则“存在负数λ,使得λ=u r r m n ”是“0m n ⋅<u r r”的( )A. 充分而不必要条件B. 必要而不充分条件C. 充分必要条件D. 既不充分也不必要条件【答案】A 【解析】 【分析】通过非零向量,m n u r r 的夹角为钝角,满足0m n ⋅<u r r,而λ=u r r m n 不成立,可判断出结论.【详解】解:,m n u r r 为非零向量,存在负数λ,使得λ=u r r m n ,则向量,m n u r r 共线且方向相反,可得0m n ⋅<u r r.反之不成立,非零向量,m n u r r 的夹角为钝角,满足0m n ⋅<u r r,而λ=u r r m n 不成立.∴,m n u r r为非零向量,则“存在负数λ,使得λ=u r r m n ”是0m n ⋅<u r r”的充分不必要条件. 故选:A.【点睛】本题考查了向量共线定理、向量夹角公式、简易逻辑的判定方法,考查了推理能力与计算能力,属于基础题.10.设x ,y 满足约束条件2330233030x y x y y +-≤⎧⎪-+≥⎨⎪+≥⎩则z =2x +y 的最小值是( )A. -15B. -9C. 1D. 9【答案】A 【解析】 【分析】作出不等式组表示的可行域,平移直线z =2x +y ,当直线经过B (-6,-3)时,取得最小值. 【详解】作出不等式组表示的可行域,结合目标函数的几何意义得函数在点B (-6,-3)处取得最小值 z min =-12-3=-15. 故选:A【点睛】此题考查二元一次不等式组表示平面区域,解决线性规划问题,通过平移目标函数表示的直线求得最值.11.已知椭圆()2212:11x C y m m +=>与双曲线()2222:10x C y n n-=>的焦点重合,1e 、2e 分别为1C 、2C 的离心率,则( ) A. m n >且121e e > B. m n >且111e e < C. m n <且121e e > D. m n <且121e e <【答案】A 【解析】【分析】根据椭圆1C 和双曲线2C 的焦点重合得出222m n -=,可得出m 、n 的大小,再由离心率公式可得出12e e 与1的大小关系,进而可得出结论.【详解】由于椭圆1C 和双曲线2C 的焦点重合,则2211m n -=+,则2220m n -=>,1m >Q ,0n >,m n ∴>.1e ==Q 2e ==,121e e ∴====>, 故选:A.【点睛】本题考查利用椭圆和双曲线的焦点求参数的大小关系,同时也考查了两曲线的离心率之积的问题,考查计算能力,属于中等题.12.若2x =-是函数21()(1)x f x x ax e -=+-的极值点,则()f x 的极小值为( ). A.1-B.32e --C.35e - D. 1【答案】A 【解析】由题可得()()()()121212121x x x f x x a e x ax e x a x a e ---⎡⎤=+++-=+++-⎣⎦',因为()20f '-=,所以1a =-,()()211x f x x x e -=--,故()()212x f x x x e --'=+,令()0f x '>,解得2x <-或1x >,所以()f x 在()(),2,1,-∞-+∞上单调递增,在()2,1-上单调递减, 所以()f x 的极小值为()()1111111f e -=--=-,故选A .【名师点睛】(1)可导函数y =f (x )在点x 0处取得极值的充要条件是f ′(x 0)=0,且在x 0左侧与右侧f ′(x )的符号不同;(2)若f (x )在(a ,b )内有极值,那么f (x )在(a ,b )内绝不是单调函数,即在某区间上单调增或减的函数没有极值.第Ⅱ卷(非选择题共90分)本卷包括必考题和选考题两部分,第(13)题~第(21)题为必考题,每个试题考生都必须作答.第(22)题、第(23)题为选考题,考生根据要求作答.二、填空题:本大题共4小题,每小题5分,满分20分.第16题第一空2分,第二空3分.把答案填在答题卡上的相应位置.13.定义在区间[0,3π]上的函数y=sin2x 的图象与y=cosx 的图象的交点个数是 . 【答案】7 【解析】由1sin 2cos cos 0sin 2x x x x =⇒==或,因为[0,3]x π∈,所以3551317,,,,,,,2226666x πππππππ=共7个考点:三角函数图像14.如图,三棱锥A BCD -中, 3,2AB AC BD CD AD BC ======,点,M N 分别是,AD BC 的中点,则异面直线,AN CM 所成的角的余弦值是________.【答案】78【解析】如下图,连结DN ,取DN 中点P ,连结PM ,PC ,则可知即为异面直线,所成角(或其补角)易得,,,∴,即异面直线,所成角的余弦值为.考点:异面直线的夹角.15.在平面直角坐标系xoy 中,若曲线2by ax x=+(,a b 为常数)过点(2,5)P -,且该曲线在点P 处的切线与直线7230x y ++=平行,则a b += . 【答案】3- 【解析】曲线2b y ax x=+过点(2,5)P -,则452b a +=-①,又2'2b y ax x =-,所以7442b a -=-②,由①②解得1,{2,a b =-=-所以3a b +=-. 【考点】导数与切线斜率.16.如图,圆C 与x 轴相切于点(1,0)T ,与y 轴正半轴交于两点,A B (在的上方),且2AB =.(Ⅰ)圆C 的标准方程为 ;(Ⅱ)过点A 任作一条直线与圆22:1O x y +=相交于,M N 两点,下列三个结论:①NA MA NBMB=; ②2NB MA NAMB-=; ③22NB MA NAMB+=.其中正确结论的序号是 .(写出所有正确结论的序号)【答案】(Ⅰ)22(1)(2)2x y -+-=;(Ⅱ)①②③ 【解析】 (Ⅰ)依题意,设(为圆的半径),因为,所以,所以圆心,故圆的标准方程为.(Ⅱ)联立方程组,解得或,因为在的上方,所以,, 令直线的方程为,此时,,所以,,,因为,,所以NAMA NBMB=.所以2221(21)22222NB MA NA MB -==-=-+, 222121222222NB MA NAMB+===-+ 正确结论的序号是①②③.考点:圆的标准方程,直线与圆的位置关系.三、解答题:本大题共6小题,满分70分,解答应写出文字说明、证明过程或演算步骤. 17.某同学用“五点法”画函数π()sin()(0,)2f x A x ωϕωϕ=+><在某一个周期内的图象时,列表并填入了部分数据,如下表:x ωϕ+π2π3π22πxπ35π6sin()A x ωϕ+55-(Ⅰ)请将上表数据补充完整,填写在答题卡上相应位置,并直接写出函数()f x 的解析式;(Ⅱ)将()y f x =图象上所有点向左平行移动θ(0)θ>个单位长度,得到()y g x =的图象.若()y g x =图象的一个对称中心为5π(,0)12,求θ的最小值. 【答案】(Ⅰ)π()5sin(2)6f x x =-;(Ⅱ)π6.【解析】(Ⅰ)根据表中已知数据,解得π5,2,A ωϕ===-.数据补全如下表:且函数表达式为π()5sin(2)6f x x =-. (Ⅱ)由(Ⅰ)知π()5sin(2)6f x x =-,得π()5sin(22)6g x x θ=+-.因为sin y x =的对称中心为(π,0)k ,k Z ∈.令π22π6x k θ+-=,解得ππ212k x θ=+-,k Z ∈. 由于函数()y g x =的图象关于点5π(,0)12成中心对称,令ππ5π21212k θ+-=, 解得ππ23k θ=-,k Z ∈.由0θ>可知,当1k =时,θ取得最小值π6. 考点:“五点法”画函数π()sin()(0,)2f x A x ωϕωϕ=+><在某一个周期内的图象,三角函数的平移变换,三角函数的性质.18. 某班的一次数学测试成绩的茎叶图和频率分布直方图都受到不同程度的破坏,但可见部分如下,据此解答如下问题:(1)求分数在[50,60)的频率及全班人数;(2)求分数在[80,90)之间的频数,并计算频率分布直方图中[80,90)间的矩形的高.【答案】(1)25;(2)0.016.【解析】试题分析:解题思路:(1)通过茎叶图得出数据即可求解;(2)观察频率直方图中的各个矩形的高与面积即可. 规律总结:以图表给出的统计题目一般难度不大,主要考查频率直方图、茎叶图、频率分布表给出. 试题解析:(1)分数在[50,60)的频率为0.00810=0.08,由茎叶图知:分数在[50,60)之间的频数为2,所以全班人数为20.08=25.(2)分数在[80,90)之间的频数为25-2-7-10-2=4,频率分布直方图中[80,90)间的矩形的高为425÷10=0.016. .考点:1.茎叶图;2.频率直方图.19.如图,几何体是圆柱的一部分,它是由矩形ABCD(及其内部)以AB边所在直线为旋转轴旋转120°得到的,G 是»DF的中点.(1)设P是»CE上的一点,且AP⊥BE,求∠CBP的大小;(2)当AB=3,AD=2时,求二面角E-AG-C的大小.【答案】(1)30o;(2)60o【解析】试题分析: (1)第(1)问,直接证明BE⊥平面ABP 得到BE⊥BP,从而求出∠CBP 的大小. (2)第(2)问,可以利用几何法求,也可以利用向量法求解. 试题解析: (1)因为AP⊥BE,AB⊥BE,AB ,AP ⊂平面ABP ,AB∩AP=A ,所以BE⊥平面ABP. 又BP ⊂平面ABP ,所以BE⊥BP.又∠EBC=120°,所以∠CBP=30°.(2)方法一:如图,取EC uuu r的中点H ,连接EH ,GH ,CH.因为∠EBC=120°,所以四边形BEHC 为菱形, 所以AE =GE =AC =GC =223213+=.取AG 的中点M ,连接EM ,CM ,EC , 则EM⊥AG,CM⊥AG,所以∠EMC 为所求二面角的平面角. 又AM =1,所以EM =CM =13123-=. 在△BEC 中,由于∠EBC=120°,由余弦定理得EC 2=22+22-2×2×2×cos 120°=12, 所以EC =23,所以△EMC 为等边三角形, 故所求的角为60°. 方法二:以B 为坐标原点,分别以BE ,BP ,BA 所在的直线为x ,y ,z 轴,建立如图所示的空间直角坐标系B -xyz. 由题意得A(0,0,3),E(2,0,0),G(133),C(-130), 故AE u u u r=(2,0,-3),AG u u u r =(13,0),CG u u u r=(2,0,3).设m u r=(x 1,y 1,z 1)是平面AEG 的一个法向量,由00m AE m AG ⎧⋅=⎨⋅=⎩u u u v v u u u v v可得11112300x z x -=⎧⎪⎨+=⎪⎩取z 1=2,可得平面AEG 的一个法向量m u r=(3,2).设n r=(x 2,y 2,z 2)是平面ACG 的一个法向量.由00n AG n CG u u u v v u u u v v ⎧⋅=⎨⋅=⎩可得22220230x x z ⎧=⎪⎨+=⎪⎩取z 2=-2,可得平面ACG 的一个法向量n =(32).所以cos 〈,m n u r r 〉=||||m n m n ⋅u r rur r =12. 故所求的角为60°.点睛:本题的难点主要是计算,由于空间向量的运算,所以大家在计算时,务必仔细认真.20.已知椭圆()2222:10x y E a b a b +=>>以抛物线28y x =的焦点为顶点,且离心率为12. (1)求椭圆E 的方程;(2)若直线:l y kx m =+与椭圆E 相交于A 、B 两点,与直线4x =-相交于Q 点,P 是椭圆E 上一点且满足OP OA OB =+u u u r u u u r u u u r(其中O 为坐标原点),试问在x 轴上是否存在一点T ,使得OP TQ ⋅u u u r u u u r 为定值?若存在,求出点T 的坐标及OP TQ ⋅u u u r u u u r的值;若不存在,请说明理由.【答案】(1)22143x y +=;(2)存在,且定点T 的坐标为()1,0-. 【解析】 【分析】(1)求出抛物线的焦点坐标可得出a 的值,由椭圆E 的离心率可得c 的值,进而可得出b 的值,由此可求得椭圆E 的方程; (2)设点()11,Ax y 、()22,B x y ,将直线l 的方程与椭圆E 的方程联立,列出韦达定理,求出点P 的坐标,由点P 在椭圆E 上得出22443m k =+,并求出点Q 的坐标,设点(),0T t ,计算出OP TQ ⋅u u u r u u u r ,由OP TQ ⋅u u u r u u u r为定值求出t ,由此可求得定点T 的坐标.【详解】(1)抛物线28y x =的焦点坐标为()2,0,由题意可知2a =,且12c e a ==,1c ∴=,则b == 因此,椭圆E 的方程为22143x y +=;(2)设点()11,Ax y 、()22,B x y ,联立22143y kx mx y =+⎧⎪⎨+=⎪⎩,消去y 并整理得()2224384120k x kmx m +++-=, 由韦达定理得122843kmx x k +=-+,则()121226243m y y k x x m k +=++=+, ()12122286,,4343km m OP OA OB x x y y k k ⎛⎫=+=++=- ⎪++⎝⎭u u u r u u u r u u u r Q ,即点2286,4343kmm P k k ⎛⎫- ⎪++⎝⎭, 由于点P 在椭圆E 上,则222281611434433km m k k ⎛⎫⎛⎫-⋅+⋅= ⎪ ⎪++⎝⎭⎝⎭,化简得22443m k =+, 联立4y kx m x =+⎧⎨=-⎩,得44x y m k=-⎧⎨=-⎩,则点()4,4Q m k --,设在x 轴上是否存在一点(),0T t ,使得OP TQ ⋅u u u r u u u r为定值,()4,4TQ t m k =---u u u r ,()()()22284642188634342km t m m k k t ktm km m OP TQ k m m ++-+++⋅===++u u u r u u u r 为定值, 则10t +=,得1t=-,因此,在x 轴上存在定点()1,0T -,使得OP TQ ⋅u u u r u u u r为定值.【点睛】本题考查椭圆方程的求解,同时也考查了椭圆中存在定点满足某条件问题的求解,考查计算能力,属于中等题. 21.已知函数()2ln ,f x ax ax x x =--且()0f x ≥.(1)求a ; (2)证明:()f x 存在唯一的极大值点0x ,且()2202e f x --<<.【答案】(1)a=1;(2)见解析. 【解析】 【分析】(1)通过分析可知f (x )≥0等价于h (x )=ax ﹣a ﹣lnx ≥0,进而利用h ′(x )=a 1x -可得h (x )min =h (1a),从而可得结论;(2)通过(1)可知f (x )=x 2﹣x ﹣xlnx ,记t (x )=f ′(x )=2x ﹣2﹣lnx ,解不等式可知t (x )min =t (12)=ln 2﹣1<0,从而可知f ′(x )=0存在两根x 0,x 2,利用f (x )必存在唯一极大值点x 0及x 012<可知f (x 0)14<,另一方面可知f (x 0)>f (1e )21e=. 【详解】(1)解:因为f (x )=ax 2﹣ax ﹣xlnx =x (ax ﹣a ﹣lnx )(x >0), 则f (x )≥0等价于h (x )=ax ﹣a ﹣lnx ≥0,求导可知h ′(x )=a 1x-. 则当a ≤0时h ′(x )<0,即y =h (x )在(0,+∞)上单调递减, 所以当x 0>1时,h (x 0)<h (1)=0,矛盾,故a >0.因为当0<x 1a <时h ′(x )<0、当x 1a>时h ′(x )>0, 所以h (x )min =h (1a),又因为h (1)=a ﹣a ﹣ln 1=0, 所以1a=1,解得a =1; 另解:因为f (1)=0,所以f (x )≥0等价于f (x )在x >0时的最小值为f (1), 所以等价于f (x )在x =1处是极小值, 所以解得a =1;(2)证明:由(1)可知f (x )=x 2﹣x ﹣xlnx ,f ′(x )=2x ﹣2﹣lnx ,令f ′(x )=0,可得2x ﹣2﹣lnx =0,记t (x )=2x ﹣2﹣lnx ,则t ′(x )=21x-, 令t ′(x )=0,解得:x 12=, 所以t (x )在区间(0,12)上单调递减,在(12,+∞)上单调递增, 所以t (x )min =t (12)=ln 2﹣1<0,从而t (x )=0有解,即f ′(x )=0存在两根x 0,x 2, 且不妨设f ′(x )在(0,x 0)上为正、在(x 0,x 2)上为负、在(x 2,+∞)上为正, 所以f (x )必存在唯一极大值点x 0,且2x 0﹣2﹣lnx 0=0, 所以f (x 0)20x =-x 0﹣x 0lnx 020x =-x 0+2x 0﹣220x =x 020x -, 由x 012<可知f (x 0)<(x 020x -)max 2111224=-+=;由f ′(1e )<0可知x 0112e <<, 所以f (x )在(0,x 0)上单调递增,在(x 0,1e)上单调递减, 所以f (x 0)>f (1e )21e=; 综上所述,f (x )存在唯一的极大值点x 0,且e ﹣2<f (x 0)<2﹣2.【点睛】本题考查利用导数研究函数的极值,考查运算求解能力,考查转化思想,注意解题方法的积累,属于难题.请考生在第22、23题中任选一题作答.注意:只能做所选定的题目,如果多做,则按所做的第一个题目计分,作答时,请用2B 铅笔在答题卡上,将所选题号对应的方框涂黑. 22.在直角坐标系xOy 中,圆C 的方程为22(6)25x y ++=.(Ⅰ)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,求C 的极坐标方程;(Ⅱ)直线l 的参数方程是cos sin x t y t αα=⎧⎨=⎩(t 为参数),l 与C 交于,A B 两点,||AB =,求l 的斜率.【答案】(Ⅰ)212cos 110ρρθ++=;(Ⅱ)3±. 【解析】试题分析:(Ⅰ)利用cos x ρθ=,sin y ρθ=化简即可求解;(Ⅱ)先将直线l 化成极坐标方程,将l 的极坐标方程代入C 的极坐标方程得212cos 110ρρα++=,再利用根与系数的关系和弦长公式进行求解. 试题解析:(Ⅰ)化圆的一般方程可化为2212110x y x +++=.由cos x ρθ=,sin y ρθ=可得圆C 的极坐标方程212cos 110ρρθ++=.(Ⅱ)在(Ⅰ)中建立的极坐标系中,直线l 的极坐标方程为()R θαρ=∈.设A ,B 所对应的极径分别为1ρ,2ρ,将l 的极坐标方程代入C 的极坐标方程得212cos 110ρρα++=. 于是1212cos ρρα+=-,1211ρρ=.12AB ρρ=-==由AB =23cos 8α=,tan α=.所以l .23.已知函数()123f xx x =+--.(I )在答题卡图中画出()y f x =的图像;(II )求不等式()1f x >的解集.【答案】(I )见解析(II )()()11353⎛⎫-∞+∞ ⎪⎝⎭U U ,,, 【解析】试题分析:(Ⅰ)化为分段函数作图;(Ⅱ)用零点分区间法求解 试题解析:(Ⅰ)如图所示:(Ⅱ)()413{3212342x x f x x x x x -≤-=--<<-≥,,,()1f x >当1x ≤-,41x ->,解得5x >或3x <1x ∴≤-当312x -<<,321x ->,解得1x >或13x < 113x ∴-<<或312x <<当32x ≥,41x ->,解得5x >或3x <332x ∴≤<或5x > 综上,13x <或13x <<或5x >()1f x ∴>,解集()()11353⎛⎫-∞⋃⋃+∞ ⎪⎝⎭,,, 考点:分段函数的图像,绝对值不等式的解法。

江苏省南通、泰州市2020届高三第一次调研测试数学试题含附加题 Word版含答案

江苏省南通、泰州市2020届高三第一次调研测试数学试题含附加题 Word版含答案

南通市、泰州市2020届高三上学期期末联考数学试卷2020.1.14一、填空题1.已知集合 A = {-1,0,2}, B = {-1,1,2}, 则 A ∩B =________.2.已知复数 z 满足(1+ i ) z = 2i , 其中i 是虚数单位,则 z 的模为_______.3.某校高三数学组有 5名党员教师,他们一天中在“学习强国”平台上的学习积分依次为 35,35,41,38,51,则这5 名党员教师学习积分的平均值为_______.4.根据如图所示的伪代码,输出的 a 的值为_______.5.已知等差数列{a n } 的公差 d 不为 0 ,且 a 1,a 2,a 4 成等比数列,则1a d的值为_____. 6.将一枚质地均匀的硬币先后抛掷 3 次,则恰好出现 2 次正面向上的概率为______.7.在正三棱柱 ABC - A 1B 1C 1 中, AA 1=AB =2 ,则三枝锥 A 1 - BB 1C 1 的体积为______.8.已如函数.若当 x =6π时,函数 f (x ) 取得最大值,则ω 的最小值为______.9. 已 知 函 数 f (x ) = (m - 2)x 2 + (m - 8)x (m ∈R ) 是 奇 函 数 . 若 对 于 任 意 的 x ∈ R , 关 于 x 的 不 等 式f ( x 2 +1) < f (a ) 恒成立,则实数 a 的取值范围是______.10.在平面直角坐标系 xOy 中, 已知点 A ,B 分别在双曲线C : x 2 - y 2 =1 的两条渐近线上, 且双曲线C 经过线段 AB 的中点.若点 A 的横坐标为 2 ,则点 B 的横坐标为______.11.尽管目前人类还无法准确预报地震,但科学家通过研究,已经对地震有所了解,例如,地震时释放出的能量 E (单位:焦耳)与地震里氏震级 M 之间的关系为 lgE = 4.8 +1.5M . 2008 年 5 月汶川发生里氏8.0 级地震,它释放出来的能量是 2019 年 6 月四川长宁发生里氏 6.0 级地震释放出来能量的______倍.12. 已知△ABC 的面积为 3 ,且 AB = AC .若2CD DA =,则 BD 的最小值为______.13.在平面直角坐标系 xOy 中, 已知圆C 1 : x 2 + y 2 = 8 与圆C 2 : x 2 + y 2 + 2x + y -a = 0 相交于 A ,B 两点.若圆C 1 上存在点 P ,使得△ABP 为等腰直角三角形,则实数 a 的值组成的集合为______. 14.已知函数若关于 x 的方程 f 2 ( x ) + 2af (x )+1- a 2 = 0 有五个不相等的实数根,则实数a 的取值范围是______.二、解答题15. (本小题满分14 分)如图,在三棱锥P -ABC 中,P A ⊥平面ABC ,PC ⊥AB ,D,E 分别为BC,AC 的中点。

西城区2020届高三一模数学试题及答案解析

西城区2020届高三一模数学试题及答案解析

2020北京西城区高三一模数学 2020.4本试卷分第Ⅰ卷和第Ⅱ卷两部分,第Ⅰ卷1至2页,第Ⅱ卷3至6页,共150分。

考试时长120分钟。

考生务必将答案答在答题卡上,在试卷上作答无效。

考试结束后,将本试卷和答题卡一并交回。

第Ⅰ卷(选择题共40分)一、选择题:本大题共10小题,每小题4分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.设集合A={x|x<3},B={x|x<0,或x>2},则A∩B=(A)(−∞,0) (B)(2,3)(C)(−∞,0)∪(2,3)(D)(−∞,3)2.若复数z=(3−i)(1+i),则|z|=(A)2√2(B)2√5(C)√10(D)203.下列函数中,值域为R且为奇函数的是(A)y=x+2(B)y=sinx(C)y=x−x3(D)y=2x4.设等差数列{a n}的前n项和为S n,若a3=2,a1+a4=5,则S6=(A)10 (B)9 (C)8 (D)75.设A(2,−1),B(4,1),则以线段AB为直径的圆的方程是(A)(x−3)2+y2=2(B))(x−3)2+y2=8(C)(x+3)2+y2=2(D) (x+3)2+y2=86.设a,b,c为非零实数,且a>c,b>c,则(A)a+b>c(B)ab>c2(C)a+b2>c(D)1a+1b>2c7.某四棱锥的三视图如图所示,记S 为此棱锥所有棱的长度的集合,则 (A)2√2∉S,且2√3∉S (B)2√2∉S,且2√3∈S (C)2√2∈S,且2√3∉S (D)2√2∈S,且2√3∈S8.设a,b 为非零向量,则“|a +b|=|a|+|b|”是“a 与b 共线”的 (A)充分而不必要条件 (B)必要而不充分条件 (C)充要条件(D)既不充分也不必要条件9.已知函数f(x)=sinx1+2sinx的部分图象如图所示,将此图象分别作以下变换,那么变换后的图象可以与原图象重合的变换方式有①绕着x 轴上一点旋转180°; ②沿x 轴正方向平移; ③以x 轴为轴作轴对称;④以x 轴的某一条垂线为轴作轴对称. (A)①③(B)③④(C)②③(D)②④10.设函数f(x)={x 2+10x +1,x ≤0|lgx |, x >0若关于x 的方程f(x)=a(a ∈R)有四个实数解x i (i =1,2,3,4),其中x 1<x 2<x 3<x 4,则(x 1+x 2)(x 3−x 4)的取值范围是 (A)(0,101] (B)(0,99](C)(0,100](D)(0,+∞)第Ⅱ卷(非选择题共110分)二、填空题:本大题共5小题,每小题5分,共25分. 11.在(x +1x )6的展开式中,常数项为.(用数字作答)12.若向量a =(x 2,2),b =(1,x)满足a ·b <3,则实数x 的取值范围是. 13.设双曲线x 24−y 2b 2=1(b >0)的一条渐近线方程为y =√22x ,则该双曲线的离心率为.)的最小正周期为;若函数f(x)在区间(0,α)上单调递增,则α的最大值为14.函数f(x)=sin(2x+π4.15.在一次体育水平测试中,甲、乙两校均有100名学生参加,其中:甲校男生成绩的优秀率为70%,女生成绩的优秀率为50%;乙校男生成绩的优秀率为60%,女生成绩的优秀率为40%.对于此次测试,给出下列三个结论:①甲校学生成绩的优秀率大于乙校学生成绩的优秀率;②甲、乙两校所有男生成绩的优秀率大于甲、乙两校所有女生成绩的优秀率;③甲校学生成绩的优秀率与甲、乙两校所有学生成绩的优秀率的大小关系不确定.其中,所有正确结论的序号是.三、解答题:本大题共6小题,共85分.解答应写出必要的文字说明、证明过程或演算步骤.16.(本小题满分14分)如图,在四棱柱ABCD−A1B1C1D1中,AA1⊥平面ABCD,底面ABCD满足AD∥BC,且AB=AD=AA1=2,BD= DC=2√2.(Ⅰ)求证:AB⊥平面ADD1A1;(Ⅱ)求直线AB与平面B1CD1所成角的正弦值.17.(本小题满分14分),求sinC的值及△ABC的面积.已知△ABC满足,且b=√6,A=2π3从①B=π,②a=√3,③a=3√2sinB这三个条件中选一个,补充到上面问题中,并完成解答.4注:如果选择多个条件分别解答,按第一个解答计分.2019年底,北京2022年冬奥组委会启动志愿者全球招募,仅一个月内报名人数便突破60万,其中青年学生约有50万人.现从这50万青年学生志愿者中,按男女分层抽样随机选取20人进行英语水平测试,所得成绩(单位:分)统计结果用茎叶图记录如下:(Ⅰ)试估计在这50万青年学生志愿者中,英语测试成绩在80分以上的女生人数;(Ⅱ)从选出的8名男生中随机抽取2人,记其中测试成绩在70分以上的人数为X,求X的分布列和数学期望;(Ⅲ)为便于联络,现将所有的青年学生志愿者随机分成若干组(每组人数不少于5000),并在每组中随机选取m个人作为联络员,要求每组的联络员中至少有1人的英语测试成绩在70分以上的概率大于90%.根据图表中数据,以频率作为概率,给出m的最小值.(结论不要求证明)19.(本小题满分14分)设函数f(x)=alnx+x2−(a+2)x,其中a∈R.,求a的值;(Ⅰ)若曲线y=f(x)在点(2,f(2))处切线的倾斜角为π4(Ⅱ)已知导函数f′(x)在区间(1,e)上存在零点,证明:当x∈(1,e)时,f(x)>−e2.设椭圆E:x 22=1,直线l1经过点M(m,0),直线l2经过点N(n,0),直线l1∥直线l2,且直线l1,l2分别与椭圆E相交于A,B两点和C,D两点.(Ⅰ)若M,N分别为椭圆E的左、右焦点,且直线l1⊥x轴,求四边形ABCD的面积;(Ⅱ)若直线l1的斜率存在且不为0,四边形ABCD为平行四边形,求证:m+n=0;(Ⅲ)在(Ⅱ)的条件下,判断四边形ABCD能否为矩形,说明理由.21.(本小题满分14分)对于正整数n,如果k(k∈N∗)个整数a1,a2,…,a k满足1≤a1≤a2≤⋯≤a k≤n,且a1+a2+⋯+a k=n,则称数组(a1,a2,…,a k)为n的一个“正整数分拆”.记a1,a2,…,a k均为偶数的“正整数分拆”的个数为f n,a1,a2,…,a k均为奇数的“正整数分拆”的个数为g n.(Ⅰ)写出整数4的所有“正整数分拆”;(Ⅱ)对于给定的整数n(n≥4),设(a1,a2,…,a k)是n的一个“正整数分拆”,且a1=2,求k的最大值;(Ⅲ)对所有的正整数n,证明:f n≤g n;并求出使得等号成立的n的值.(注:对于n的两个“正整数分拆”(a1,a2,…,a k)与(b1,b2,…,b m),当且仅当k=m且a1=b1,a2=b2,…,a k=b m 时,称这两个“正整数分拆”是相同的.)西 城 区 高 三 统 一 测 试数学参考答案 2020.4一、选择题:本大题共10小题,每小题4分,共40分. 1.C 2.B 3.C 4.B 5. A 6. C7. D8. A9. D10. B二、填空题:本大题共5题,每小题5分,共25分. 11.2012.(3,1)-1314.π,π815.②③注:第14题第一问3分,第二问2分;第15题全部选对得5分,不选或有错选得分,其他得3分. 三、解答题:本大题共6小题,共85分. 其他正确解答过程,请参照评分标准给分. 16.(本小题满分14分)解:(Ⅰ)因为在底面ABCD中,2,AB AD BD ===所以222AB AD BD +=,即AB AD ⊥. ……………… 2分 因为1AA ⊥平面ABCD ,AB ⊂平面ABCD ,所以1AA ⊥AB , ……………… 4分 又因为1AA AD A =,1,AA AD ⊂平面11ADD A ,所以AB ⊥平面11ADD A . ……………… 6分(Ⅱ)由(Ⅰ),得1,,AB AD AA 两两垂直,故分别以AB ,AD ,1AA 为x 轴,y 轴,z 轴,如图建立空间直角坐标系, ……………… 7分 在底面ABCD 中,由题意,得224BC BD CD =+=.则(0,0,0)A ,(2,0,0)B ,(2,4,0)C ,1(2,0,2)B ,1(0,2,2)D ,所以(2,0,0)AB =,1(0,4,2)B C =-,11(2,2,0)B D =-, ……………… 8分 设平面11B CD 的法向量(,,)x y z =n ,由10B C ⋅=n ,110B D ⋅=n ,得420,220,y z x y -=⎧⎨-+=⎩令1y =,得(1,1,2)=n . ………………11分 设直线AB 与平面11B CD 所成的角为θ,则 6sin |cos ,|||6||||AB AB AB θ⋅=<>==⋅n n n , 直线AB 与平面11B CD 所成角的正弦值为66. ……………… 14分17.(本小题满分14分)解:(不可以选择②作为补充条件.)选择①作为补充条件. ……………… 2分 解答如下:因为在ABC △中,πA B C ++=,所以sin sin()C A B =+ ……………… 4分 sin cos cos sin A B A B =+ ……………… 6分B 1B DAA 1D 1CC yxz2ππ2ππsincos cos sin 3434=+=. ……………… 8分 在△ABC 中,由正弦定理sin sin a bA B=,得sin 3sin b A a B ==. ……………… 11分 所以△ABC的面积1sin 2S ab C ==. ……………… 14分选择③作为补充条件. ……………… 2分 解答如下:在△ABC中,由a B =,以及正弦定理sin sin a bA B=, ……………… 4分得2πsin sin3B B =,解得21sin 2B =. 由2π3A =,得B 为锐角, 所以π4B =,且3a B ==. ……………… 6分 因为在ABC △中,πA B C ++=,所以sin sin()C A B =+ ……………… 8分 sin cos cos sin A B A B =+ ……………… 10分2ππ2ππsincos cos sin 3434=+4=. ……………… 11分 所以△ABC的面积1sin 2S ab C ==. ……………… 14分18.(本小题满分14分)解:(Ⅰ)由图表可知,测试成绩在80分以上的女生有2人,占比为212010=,……… 3分 故在这50万青年学生志愿者中,英语测试成绩在80分以上的女生约为150510⨯=万人. ……………… 5分(Ⅱ)由图表知,选取的8名男生中,成绩在70分以上的有3人,70分及其以下的有5人,由题意,随机变量X 的所有可能取值为:0,1,2. ……………… 6分且205328C C 5(0)C 14P X ⋅===,115328C C 15(1)C 28P X ⋅===,025328C C 3(2)C 28P X ⋅===. ……………… 9分 所以随机变量的分布列为:……………… 10分所以51533()0121428284E X =⨯+⨯+⨯=. ……………… 11分 (Ⅲ)m 的最小值为4. ……………… 14分19.(本小题满分14分)解:(Ⅰ)由题意,得()2(2)f x x a xa'=+-+, ……………… 2分 X则π(2)tan 4f '=, ……………… 4分即224()1a a+-+=,解得2a =. ……………… 6分 (Ⅱ)(2()2(2))(1)x f x a a x x a x x '=+--+=-,其中(1,e)x ∈. ……………… 7分 令0(2())(1)a x f x x x'=-=-,得1x =,或2ax =. ……………… 8分由导函数()f x '在区间(1,e)上存在零点,得(1,e)2a∈,即(2,2e)a ∈. …… 9分随着x 变化,()f x '与()f x 的变化情况如下表所示:所以()f x 在(1,)2上单调递减,在(,e)2上单调递增.所以()f x 在(1,e)上存在最小值2()ln()224a a af a a =--. ……………… 11分设2()2ln 2g x x x x x =--,(1,e)x ∈. 则()()22a a g f =,(1,e)2a∈. …… 12分所以()2ln 2g x x x '=-.由(1,e)x ∈,得2ln (0,2)x ∈,2(2,2e)x ∈,则()2ln 20g x x x '=-<. 所以()g x 在区间(1,e)上单调递减.所以2()(e)e g x g >=-,即2()()e 22a a g f =>-故当(1,e)x ∈时,2()e f x >-. ……………… 14分20.(本小题满分15分)解:(Ⅰ)由题意,得a 1b =,则1c ==. ……………… 2分 根据椭圆的对称性,知四边形ABCD 是矩形.设0(1,)A y -,0(1,)B y --,0(1,)C y -,0(1,)D y ,将1x =-代入椭圆方程得2012y =. ……………… 3分 所以四边形ABCD的面积0||||2||2S AB AD y c =⋅=⋅=. ……………… 5分 (Ⅱ)设11(,)A x y ,22(,)B x y ,直线1()l y k x m =-:, ……………… 6分联立22(),1,2y k x m x y =-⎧⎪⎨+=⎪⎩消去y ,得22222(12)4220k x k mx k m +-+-=, …… 7分 则42222164(12)(22)0k m k k m ∆=-+->,2122412k m x x k +=+,221222212k m x x k -=+. ……………… 8分所以12|||AB x x -= ……………… 9分=同理,得||CD = 由四边形ABCD 为平行四边形,得||||AB CD =,即得22m n =. 由题意知m n ≠,所以m n =-,即0m n +=. ……………… 11分 (Ⅲ)结论:四边形ABCD 不可能为矩形. ……………… 12分由(Ⅱ)知,M N 两点关于原点对称.根据椭圆的对称性,可得,A C 两点关于原点对称,故C 的坐标为11(,)x y --.由题意,得221112x y +=,222212x y +=. ……………… 13分 于是,2221212122212121AB BC y y y y y y k k x x x x x x -+-⋅=⋅=-+-22212221112(1)2(1)2y y y y -==-≠----. 所以AB 不可能垂直于BC .所以四边形ABCD 不能为矩形. ……………… 15分21.(本小题满分14分)解:(Ⅰ)(1,1,1,1),(1,1,2),(1,3),(2,2),(4) . ……………… 3分(Ⅱ)由题意,知122k a a a n =≤≤≤≤,且12k a a a n +++=, 得122k n a a a k =+++≥,即2n k ≤. ……………… 5分 所以当n 是偶数时,k 的最大值是2n (此时,2(2,2,,2)k 共有个 是n 的一个“正整数分拆”); 当n 是奇数时,k 的最大值是12n -(此时,12(2,2,,2,3)k -共有个是n 的一个“正整数分拆”). ……………… 8分(Ⅲ)当n 为奇数时,由题意,得0n f =;且1(1,1,,1)n 共有个是n 的一个各位数字均为奇数的“正整数分拆”,所以0n g >,故n n f g <. ……………… 9分当n 为偶数时,由()n 是各位数字均为偶数的“正整数分拆”,1(1,1,,1)n 共有个是各位数字均为奇数的“正整数分拆”,得0n f >,0n g >.① 当2n =时,n 的“正整数分拆”只有(1,1)和(2),所以221f g ==; ② 当4n =时,由(Ⅰ)知,442f g ==; ……………… 11分 ③ 当n 为大于4的偶数时,因为对于n 的任意一个各位数字均为偶数的“正整数分拆”12(,,,)k a a a ,都存在一个与之对应的各位数字均为奇数的“正整数分拆”121(1,1,,1,1,1,,1)k k a a a ---共有个. 且当12(,,,)k a a a 不同时,其对应的121(1,1,,1,1,1,,1)k k a a a ---共有个也不相同,所以n n f g ≤.又因为在上述对应关系下,各位数字均为奇数的“正整数分拆”(3,3)n -不存在与之对应的各位数字都是偶数的“正整数分拆”,(注:因为6n ≥,所以(3,3)n -有意义) 所以n n f g <.综上,对所有的正整数n ,n n f g ≤;当且仅当2n =或4时等号成立. ……… 14分。

四川省资阳中学2020届高三数学上学期第一次诊断性考试试题 理

四川省资阳中学2020届高三数学上学期第一次诊断性考试试题 理

四川省资阳中学2020届高三数学上学期第一次诊断性考试试题 理注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其它答案标号。

回答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知集合{2101}A =--,,,,{|1}B x y x ==+,则A B =IA .{2101}--,,,B .{210}--,,C .{01},D .{101}-,, 2.复数3i1i-=-A .2i +B .2i -C .1i +D .1i -3.已知向量(2,1)=a ,(,2)m =b ,若⊥a b ,则实数m 的值为A .2-B .1-C .2D .4 4.已知各项为正数的等比数列{}n a 中,21a =,4664a a =,则公比q =A .4B .3C .2D .25.空气质量指数AQI 是反映空气质量状况的指数,AQI 指数值越小,表明空气质量越好,其对应关系如下表:AQI 指数值 0~50 51~100 101~150 151~200 201~300 >300 空气质量 优 良 轻度污染 中度污染 重度污染 严重污染 下图是某市10月1日—20日AQI 指数变化趋势:下列叙述错误的是A .这20天中AQI 指数值的中位数略高于100B .这20天中的中度污染及以上的天数占14C .该市10月的前半个月的空气质量越来越好D .总体来说,该市10月上旬的空气质量比中旬的空气质量好6.定义运算a b ⊗为执行如图所示的程序框图输出的S 值,则式子(tan )(cos )43π2π⊗的值是A. -1B.12 C. 1D.327.在直角坐标系xOy 中,角α的始边为x 轴的非负半轴,其终边上的一点P 的坐标为(2)m m ,(其中0m <),则cos2α= A .45 B .35C .35-D .45-8.函数||()e 2||1x f x x =--的图象大致为9.已知向量,a b 满足0⋅=a b ,||m +=|a b |a ,若+a b 与-a b 的夹角为32π,则m 的值为 A .2B 3C .1D .1210.已知偶函数()f x 在(-∞,0]上单调递增,令21(log 2a f =,4(log 5)b f =,32(2)c f =,则a ,b ,c 满足 A .a <b <cB .b <a <cC .c <a <bD .c <b <a11.若函数()sin cos f x a x x =+在ππ[,]44-为单调函数,则实数a 的取值范围是A. (,1][1,)-∞-+∞UB. (,1]-∞-C. [1,)+∞D. [1,1]-12.已知函数()e x f x x =,要使函数2()[()]()1g x k f x f x =-+的零点个数最多,则k 的取值范围是 A. 2e k <- B. 2e e k <-- C. 2e e k >--D. 2e k >-二、填空题:本大题共4小题,每小题5分,共20分。

2020届高三毕业班第一次综合质量检测数学(理)试题—附答案

2020届高三毕业班第一次综合质量检测数学(理)试题—附答案

5.
已知函数
f
(
x)
1
x x
2
sin x ,则函数 y
f (x) 的图像大致为
A.
B.
C.
D.
6.从区间 0,1随机抽取 2n 个数 x1, x2 ,, xn , y1, y2 ,, yn ,组成坐标平面上的 n 个点
(x1, y1 ) ,(x2 , y2 ) ,… (xn , yn ) ,其中到原点距离小于1的点有 m 个,用随机模拟的
A.20100
B.20200
C.40200
D.40400
12.在棱长为 4 的正方体 ABCD A1B1C1D1 中, E, F 分别为 AA1, BC 的中点,点 M 在
棱 B1C1 上, B1M
1 4
B1C1
,若平面
FEM

A1B1 于点 N
,四棱锥 N
BDD1B1 的五
个顶点都在球 O 的球面上,则球 O 半径为
A(3, 0, 0) , B(0, 3, 0) , S(0, 3 , 3 3 ) , C(1,0,0) , 22
上.
(1)求曲线 C 的普通方程及直线 l 的直角坐标方程. (2)求△PAB 面积的最大值.
23.(本小题满分 10 分)选修 4-5:不等式选讲
已知函数 f (x) | 2x t | ,若 f (x) 1的解集为 (1,0) . (1)求 t 并解不等式 f (x) x 2 ; (2)已知: a,b R ,若 f (x) 2a b | 2x 2 | ,对一切实数 x 都成立, 求证: a 2b 1 .
3
2
根据所给数据用事件发生的频率来估计相应事件发生的概率,估计该顾客支付的平均费用

2020届湖南省郴州市高三第一次教学质量监测(12月) 数学(文)Word版含答案

2020届湖南省郴州市高三第一次教学质量监测(12月) 数学(文)Word版含答案

科目:数学(文科)(试题卷)注意事项:1.答题前,考生务必将自己的姓名、准考证号写在答题卡和该试题卷的 封面上,并认真核对条形码上的姓名、准考证号和科目。

2.学生作答时,选择题和非选择题均须作在答题卡上,在本试题卷上作 答无效。

考生在答题卡上按答题卡中注意事项的要求答题。

3.考试结束后,将本试题卷和答题卡一并交回。

4.本试题卷共5页。

如缺页,考生须声明,否则后果自负。

姓 名 准考证号 绝密★启用前郴州市2020届高三第一次教学质量监测试卷文科数学(命题人:郴州市2020届高三文科数学专家组成员一、选择题:本大题共12小题,每小题5分,共60分.每小题有且只有一项是符合题目要求的.1.设集合A={21<1|x x ≤-},B={1x <0|≤x },则=B A A. )21,0( C. )0,1[- D. )1,21[ B. ]1,1[-2.若复数11--=iaZ 为纯虚数,则实数=aA.-2B.-1C.1D.23. 若角α的终边过点A(3,-4),则=-)sin(α A. 54-B. 53-C. 53D.54 4.函数x x x f cos )(+=的大致图象是5.在等差数列{n a }中,142,a a 是方程0682=++x x 的根,则8133a a a 的值为 A. 104+- B. 6 C. 6- D. 6-或66. 定义域为R 的函数)(x f 是偶函数,且对任意0<)()(),,0(,212121x x x f x f x x --+∞∈.设)1(),(),2(-===f c f b f a π,则A.b<a<cB. c<a<bC. c<b<aD.a<c<b7.已知向量=(1,3),),4(m =,且⊥-)(,则向量与夹角为 A.3π C. 2π D. 4π B. 6π 8.下列结论中正确的个数是①在ABC ∆中,若sin24=sin2B ,则ABC ∆是等腰三角形; ②在ABC ∆中,若 sinA>sinB ,则A>B③两个向量,共线的充要条件是存在实数λ,使λ= ④等差数列的前n 项和公式是常数项为0的二次函数. A. 0B. 1C. 2D. 39. 郴州市正在创建全国文明城市,现有甲、乙、丙、丁 4人,平均分成两组,其中一组指挥交通,一组打扫街道卫生,则甲、乙不在同一组的概率为 A.21 B. 31 C. 32 D.6110.已知双曲线)0>>(1:2222b a by a x C =+的左、右焦点分别为21,F F ,以21F F为直径的圆与双曲线的四个交点依次连线恰好构成一个正方形,则双曲线的离心率为 A.2 B. 22+ C.2 D.22+11. 唐代诗人李颀的诗《古从军行》开头两句说:“白日登山望烽火,黄昏饮马傍交河。

吉林省长春市2020届高三质量检测(一)文科数学试题 Word版含解析

吉林省长春市2020届高三质量检测(一)文科数学试题 Word版含解析

长春市2020届高三质量监测(一)文科数学本试卷共4页.考试结束后,将答题卡交回. 注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在考生信息条形码粘贴区.2.选择题必须使用2B 铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚.3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效.4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑.5.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀. 一、选择题:本题共12小题,在每小题给出的四个选项中,只有一项是符合题目要求的. 1.复数2z i +=-,则它的共轭复数z 在复平面内对应的点位于( ) A. 第一象限 B. 第二象限 C. 第三象限 D. 第四象限【答案】C 【解析】试题分析:复数2z i =-+的共轭复数为2z i =--,在复平面内对应点的坐标为,所以位于第三象限.选C 考点:复数的概念及运算2.已知集合{2A x x =≥或}2x ≤-,{}230B x x x =->,则AB =( )A. ∅B. {3x x >或}2x ≤-C. {3x x >或}0x < D. {3x x >或}1x <【答案】B 【解析】 【分析】可以求出集合B ,然后进行交集的运算即可.【详解】解:{}230B x x x =->{|0B x x ∴=<或3}x >,{2A x x =≥或}2x ≤-,{|2AB x x ∴=-或3}x >.故选:B .【点睛】考查描述法的定义,绝对值不等式和一元二次不等式的解法,以及交集的运算,属于基础题.3.已知等差数列{}n a 的前n 项和为n S , 515S =,45a = ,则9S =( ) A. 45 B. 63C. 54D. 81【答案】B 【解析】 【分析】根据给出条件求出3a ,利用3a ,4a ,5a 成等差数列计算5a ,再根据前n 项和性质计算9S 的值.【详解】由515S =得33a =,45a =,∴57a = ∴95963S a == 故选B.【点睛】等差数列性质:2(2)m n p q c a a a a a m n p q c +=+=+=+=; 等差数列前n 项和性质:12121()(21)(21)2n n n a a n S n a --+-==-.4.已知条件:1p x >,条件:2q x ≥,则p 是q 的( ) A. 充分不必要条件 B. 必要不充分条件 C. 充要条件 D. 既不充分也不必要条件【答案】B 【解析】 【分析】利用集合间的关系推出p q 、之间的关系.【详解】{|1}x x>{|2}x x ≥,则p 是q 的必要不充分条件,故选B.【点睛】p 成立的对象构成的集合为A ,q 成立的对象构成的集合为B :p 是q 的充分不必要条件则有:A B ;p 是q 的必要不充分条件则有:BA .5.2019年是新中国成立七十周年,新中国成立以来,我国文化事业得到了充分发展,尤其是党的十八大以来,文化事业发展更加迅速,下图是从2013 年到 2018 年六年间我国公共图书馆业机构数(个)与对应年份编号的散点图(为便于计算,将 2013 年编号为 1,2014 年编号为 2,…,2018年编号为 6,把每年的公共图书馆业机构个数作为因变量,把年份编号从 1到 6 作为自变量进行回归分析),得到回归直线ˆ13.7433095.7yx =+,其相关指数2R 0.9817=,给出下列结论,其中正确的个数是( )①公共图书馆业机构数与年份正相关性较强 ②公共图书馆业机构数平均每年增加13.743个 ③可预测 2019 年公共图书馆业机构数约为3192个 A. 0 B. 1C. 2D. 3【答案】D 【解析】 【分析】根据ˆb和2R 确定是正相关还是负相关以及相关性的强弱;根据ˆb 的值判断平均每年增加量;根据回归直线方程预测2019年公共图书馆业机构数.【详解】由图知点散布在从左下角到右上角的区域内,所以为正相关,又2R 0.9817=趋近于1,所以相关性较强,故①正确;由回归方程知②正确; 由回归方程,当7x =时,得估计值为3191.9≈3192,故③正确. 故选D.【点睛】回归直线方程中的ˆb 的大小和正负分别决定了单位增加量以及相关型的正负;相关系数2R 决定了相关性的强弱,越接近1相关性越强.6.已知直线0x y +=与圆22(1)()2x y b -+-=相切,则b =( )A. 3-B. 1C. 3-或1D.52【答案】C 【解析】 【分析】根据直线与圆相切,则圆心到直线的距离等于半径来求解.=∴|1|2b +=∴13b b ==-或 故选C.【点睛】本题考查直线与圆的位置关系中的相切,难度较易;注意相切时,圆心到直线的距离等于半径.7.已知31()3a =,133b =,13log 3c =,则( )A. a b c <<B. c b a <<C. c a b <<D. b c a <<【答案】C 【解析】 【分析】分析每个数的正负以及与中间值1的大小关系.【详解】因为311()()133a <<=,103331>=,1133log 3log 10<=,所以01,1,0a b c <<><,∴c a b <<,【点睛】指数、对数、幂的式子的大小比较,首先确定数的正负,其次确定数的大小(很多情况下都会和1作比较),在比较的过程中注意各函数单调性的使用. 8.已知,,a b c 为直线,,,αβγ平面,则下列说法正确的是( ) ①,a b αα⊥⊥,则//a b ②,αγβγ⊥⊥,则αβ⊥ ③//,//a b αα,则//a b ④//,//αγβγ,则//αβ A. ①②③ B. ②③④C. ①③D. ①④【答案】D 【解析】 【分析】①可根据线面垂直的性质定理判断;②③④可借助正方体进行判断.【详解】①由线面垂直的性质定理可知垂直同一平面的两条直线互相平行,故正确;②选取正方体的上下底面为αβ、以及一个侧面为γ,则//αβ,故错误;③选取正方体的上底面的对角线为a b 、,下底面为α,则//a b 不成立,故错误;④选取上下底面为αβ、,任意作一个平面平行上底面为γ,则有 //αβ成立,故正确.所以说法正确的有:①④. 故选D.【点睛】对于用符号语言描述的问题,最好能通过一个具体模型或者是能够画出相应的示意图,这样在判断的时候能更加直观. 9.函数2sin()y x ωϕ=+(0,||)2πωϕ><的图象(部分图象如图所示) ,则其解析式为( )A. ()2sin(2)6f x x π=+ B. ()2sin()6f x x π=+C. ()2sin(4)6f x x π=+D. ()2sin()6f x x π=-【答案】A【分析】(1)通过(0,1)以及ϕ的范围先确定ϕ的取值,再根据()f x 过点11(,0)12π计算ω的取值. 【详解】由2sin(0)1,||2πωϕϕϕ⋅+=<π,∴=6, 由111111242sin()0,,,002121261211k k Z T πωπϕωππωπωω⋅+=⋅+=∈>>∴<<=∴即2sin(2)6y x π=+,即为()f x 解析式.【点睛】根据三角函数的图象求解函数解析式时需要注意:(1)根据周期求解ω的值;(2)根据图象所过的特殊点求解ϕ的值;(3)根据图象的最值,确定A 的值.10.中国传统扇文化有着极其深厚的底蕴. 一般情况下,折扇可看作是从一个圆面中剪下的扇形制作而成,设扇形的面积为1S ,圆面中剩余部分的面积为2S ,当1S 与2S 的比值为51-时,扇面看上去形状较为美观,那么此时扇形的圆心角的弧度数为( )A. (35)π-B. 51)πC. 51)πD.(52)π【答案】A 【解析】 【分析】根据扇形与圆面积公式,可知面积比即为圆心角之比,再根据圆心角和的关系,求解出扇形的圆心角.【详解】1S 与2S 所在扇形圆心角的比即为它们的面积比, 设1S 与2S 所在扇形圆心角分别为,αβ,则αβ=,又2αβπ+=,解得(3απ=- 【点睛】本题考查圆与扇形的面积计算,难度较易.扇形的面积公式:21122S r lr α==,其中α是扇形圆心角的弧度数,l 是扇形的弧长.11.已知F 是抛物线24y x =的焦点,则过F 作倾斜角为60︒的直线分别交抛物线于,A B (A 在x 轴上方)两点,则||||AF BF 的值为( )B. 2C. 3D. 4【答案】C 【解析】 【分析】根据抛物线的焦半径的倾斜角和焦准距的表示形式将||||AF BF 表示出来,然后代入相应值计算即可.【详解】||1cos60p AF =-︒,||1cos60pBF =+︒∴||10.53||10.5AF BF +==-. 【点睛】焦点在x 轴上的抛物线,过抛物线的焦点倾斜角为θ的直线与抛物线交于,A B 两点,且||||AF BF >,则有||1cos p AF θ=-,||1cos p BF θ=+,22||sin pAB θ=. 12.已知函数1(0)()(0)xe xf x x -⎧-≤⎪=>,若存在0x R ∈ 使得00()(1)1f x m x --≤成立,则实数m 的取值范围为( ) A. (0,)+∞B. [1,0)(0,)-+∞ C. (,1][1,)-∞-+∞D.(,-∞-∞1](0,+)【答案】D 【解析】 【分析】数形结合去分析,先画出()f x 的图象,然后根据直线过(1,1)-将直线旋转,然后求解满足条件的m 取值范围.【详解】如图, 直线0(1)1y m x =--过定点(1,1)P -,m 为其斜率,0m >满足题意,当0m <时,考虑直线与函数1xy e -=-相切,此时000(1)11x x m x e m e --⎧--=-⎨=-⎩,解得010m x =-⎧⎨=⎩,此时直线与1x y e -=-的切点为(0,0),∴1m ≤-也满足题意.选D【点睛】分段函数中的存在和恒成立问题,利用数形结合的思想去看问题会更加简便,尤其是直线与曲线的位置关系,这里需要注意:(1)直线过定点;(2)临界位置的切线问题. 二、填空题:本题共4小题. 13.已知1sincos225αα-=,则sin α=_____. 【答案】2425【解析】 【分析】将所给式子平方,找到sin α与sin cos22αα-的关系.【详解】1sincos225αα-=平方得242sin cos 2225αα= ∴24sin 25α=.【点睛】sin cos αα±与sin cos αα的关系:2(sin cos )12sin cos αααα±=±;14.设变量x ,y 满足约束条件03420x y x y x -≤⎧⎪+≤⎨⎪+≥⎩,则3z x y =-的最小值等于______.【答案】8- 【解析】 【分析】作出不等式组对应的平面区域,3z x y =-得1133y x z =-,利用数形结合即可的得到结论. 【详解】解:画出可行域如图,3z x y =-变形为1133y x z =-,过点(2,2)A --,z 取得最大值4, 过点(2,2)C -取得最小值8-. 故答案为:8-.【点睛】本题主要考查线性规划的应用,利用z 的几何意义,通过数形结合是解决本题的关键. 15.三棱锥P ABC -中,PA ⊥平面ABC ,AB AC ⊥,10PA =2,2AB AC ==,则三棱锥P ABC -的外接球的表面积为_____. 【答案】16π 【解析】 【分析】根据题设位置关系,可知以,,AB AC PA 为长、宽、高的长方体的外接球就是三棱锥P ABC -的外接球,根据这一特点进行计算.【详解】设外接球的半径为R ,则2222(2)16R PA AB AC =++= ∴16S π=【点睛】对于求解多条侧棱互相垂直的几何体的外接球,可考虑将该几何体放入正方体或者长方体内,这样更加方便计算出几何体外接球的半径. 16.已知△ABC 的内角,,A B C 的对边分别为,,a b c ,若(,)m b c a b =--,(sin ,sin sin )n C A B =+,且m n ⊥,则A =____;若△ABC 的面积为3ABC 的周长的最小值为_____.【答案】 (1). 3π(2). 6 【解析】【分析】先根据向量垂直得出边角关系,然后利用正、余弦定理求解A的值;根据面积以及在余弦定理,利用基本不等式,从而得到周长的最小值(注意取等号条件).【详解】由m n ⊥得(,)(sin ,sin sin )()sin ()(sin sin )0m n b c a b C A B b c C a b A B ⋅=--⋅+=-+-+=()()()0b c c a b a b -+-+=得222a b c bc =+-,∴2221cos 22b c a A bc +-==∴3A π=;1sin 2S bc A ==4bc =又222224a b c bc b c =+-=+-所以6a b c b c ++=+(当且仅当2b c ==时等号成立) 【点睛】(1)1122(,),(,)a x y bx y ==,若a b ⊥垂直,则有:12120x x y y +=;(2)222(0,0)a b ab a b +≥>>取等号的条件是:a b =.三、解答题:解答应写出文字说明、证明过程或演算步骤.第17-21题为必考题,每个试题考生都必须作答.第22-23题为选考题,考生根据要求作答. (一)必考题:17.已知数列{}n a 中,12a =,1122n n n a a ++=+,设2nn na b =. (Ⅰ)求证:数列{}n b 是等差数列; (Ⅱ)求数列11{}n n b b +的前n 项和n S . 【答案】(Ⅰ)见证明;(Ⅱ)111n S n =-+ 【解析】 【分析】(1)证明1n n b b c --=(c 为常数)即可;(2)将11n n b b +采用裂项的方式先拆开,然后利用裂项相消的求和方法求解n S .【详解】(Ⅰ)证明:当2n ≥时,111121222n n n n n n n n n a a a a b b ------=-== 11b =,所以{}n b 是以为1首项,为1公差的等差数列.(Ⅱ)由(Ⅰ)可知,n b n =,所以+11111n n b b n n =-+,所以1111111122311n S n n n =-+-++-=-++. 【点睛】常见的裂项相消形式: (1)111(1)1n n n n =-++;(2=(3)1111()(21)(21)22121n n n n =--+-+; (4)112311(31)(31)3131n n n n n ++=-----. 18.环保部门要对所有的新车模型进行广泛测试,以确定它的行车里程的等级,下表是对100辆新车模型在一个耗油单位内行车里程(单位:公里)的测试结果.(1)做出上述测试结果的频率分布直方图,并指出其中位数落在哪一组;(2)用分层抽样的方法从行车里程在区间[)38,40与[)40,42的新车模型中任取5辆,并从这5辆中随机抽取2辆,求其中恰有一个新车模型行车里程在[)40,42内的概率. 【答案】(1)图见解析;中位数在区间[)36,38 (2)35【解析】 【分析】(1)由频率分布表可画出频率分布直方图,由图可求出中位数所在区间.(2)由题意,设从[38,40)中选取的车辆为A ,B ,C ,从[40,42)中选取的车辆为a ,b ,利用列举法从这5辆车中抽取2辆,其中恰有一个新车模型行车里程在[40,42)内的概率. 【详解】(1)由题意可画出频率分布直方图如图所示:由图可知,中位数在区间[)36,38.(2)由题意,设从[)38,40中选取的车辆为A ,B ,C , 从[)40,42中选取的车辆为a ,b ,则从这5辆车中抽取2辆的所有情况有10种,分别为AB ,AC ,Aa ,Ab ,BC ,Ba ,Bb ,Ca ,Cb ,ab ,其中符合条件的有6种,Aa ,Ab ,Ba ,Bb ,Ca ,Cb ,所以所求事件的概率为35. 【点睛】本题考查概率与统计的相关知识,考查频率分布直方图、古典概型、列举法等基础知识,考查运算求解能力,属于基础题.19.在三棱柱111ABC A B C -中,平面ABC 、平面1ACC A 、平面11BCC B 两两垂直.(Ⅰ)求证:1,,CA CB CC 两两垂直;(Ⅱ)若1CA CB CC a ===,求三棱锥11B A BC -的体积. 【答案】(Ⅰ)见证明;(Ⅱ)316a 【解析】 【分析】(1)通过辅助线以及根据面面垂直的性质定理可证1,,CA CB CC 中任意一条直线垂直于另外两条直线构成的平面,即垂直于另外两条直线;(2)采用替换顶点的方式计算体积,计算出高和底面积即可计算体积. 【详解】(Ⅰ)证明:在ABC ∆内取一点P ,作,PD AC PE BC ⊥⊥,因为平面ABC ⊥平面11ACC A ,其交线为AC ,所以PD ⊥平面11ACC A ,1PD CC ⊥, 同理1PE CC ⊥,所以1CC ⊥平面ABC ,11,CC AC CC BC ⊥⊥, 同理AC BC ⊥,故1,,CC AC BC 两两垂直.(Ⅱ)由(Ⅰ)可知,三棱锥11A BCB -的高为11A C a =,1211122BCB S BC BB a ∆=⋅=,所以三棱锥11B A BC -的体积为316a . 【点睛】(1)面面垂直的性质定理:两个平面垂直,一个平面内垂直于交线的直线与另一个平面垂直;(2)计算棱锥的体积时,有时候可考虑采用替换顶点的方式去简化计算.a 20.已知点(1,0),(1,0)M N -,若点(,)P x y 满足||||4PM PN +=. (Ⅰ)求点P 的轨迹方程;(Ⅱ)过点(Q 的直线l 与(Ⅰ)中曲线相交于,A B 两点,O 为坐标原点, 求△AOB 面积的最大值及此时直线l 的方程.【答案】(Ⅰ)22143x y +=;(Ⅱ)AOB ∆面积的最大值为,此时直线l 的方程为3x y =±. 【解析】 【分析】(1)根据椭圆的定义求解轨迹方程;(2)设出直线方程后,采用1||2AB d ⨯⨯(d 表示原点到直线AB 的距离)表示面积,最后利用基本不等式求解最值.【详解】解:(Ⅰ)由定义法可得,P 点的轨迹为椭圆且24a =,1c =.因此椭圆的方程为22143x y +=.(Ⅱ)设直线l的方程为x ty =-与椭圆22143x y +=交于点11(,)A x y ,22(,)B x y ,联立直线与椭圆的方程消去x可得22(34)30t y +--=,即12234y y t +=+,122334y y t -=+. AOB ∆面积可表示为1211||||22AOB S OQ y y =⋅-=△2216223434t t ===++u =,则1u ≥,上式可化为26633u u u u=++≤当且仅当u=t = 因此AOB ∆l的方程为x y =-【点睛】常见的利用定义法求解曲线的轨迹方程问题:(1)已知点(,0),(,0)M c N c -,若点(,)P x y 满足||||2PM PN a +=且22a c >,则P 的轨迹是椭圆;(2)已知点(,0),(,0)M c N c -,若点(,)P x y 满足||||||2PM PN a -=且22a c <,则P 的轨迹是双曲线. 21.设函数1()ln x f x x x+=+. (Ⅰ)求函数()f x 的极值;(Ⅱ)若(0,1)x ∈时,不等式1ln 2(1)xx a x +<--恒成立,求实数a 的取值范围.【答案】(Ⅰ)()2f x =极小值,无极大值;(Ⅱ)01a <≤ 【解析】 【分析】(1)求导后,求解导函数零点,并用列表法分析极值;(2)对所给不等式进行变形,将ln x 分离出来便于求导,同时构造新函数2(1)()ln (01)1a x g x x x x -=-<<+,分析(0,1)x ∈时,()0>g x 恒成立时a 的范围.【详解】解:(Ⅰ)令21()0x f x x-'==,1x =()= (1)2f x f ∴=极小值,无极大值;(II )由题意可知,0a >,则原不等式等价于2(1)ln 01a x x x -->+,令2(1)()ln (01)1a x g x x x x -=-<<+,22((24)1)()(1)x a x g x x x -+-+'=+,①当01a <≤时,2(24)10x a x +-+≥,()0g x '≤,()g x 在(0,1)上单调递减,()(1)0g x g >=,成立;②当1a >时,2000(0,1),(24)10x x a x ∃∈+-+=,使得当0(0,)x x ∈时,()0g x '<,()g x 单调递减,当0(,1)x x ∈时,()0g x '>,()g x 单调递增,故当0(,1)x x ∈时,()(1)0g x g <=,不成立;综上所述,01a <≤.【点睛】根据不等式恒成立求解参数范围的问题常用的方法:(1)分类讨论法(所给不等式进行适当变形,利用参数的临界值进行分析); (2)参变分离法(构造新的函数,将函数的取值与参数结合在一起).(二)选考题:请考生在22、23题中任选一题作答,如果多做则按所做的第一题计分.22.在平面直角坐标系xOy 中,直线l的参数方程为12x y ⎧=⎪⎪⎨⎪=⎪⎩(t 为参数),以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,圆C 的极坐标方程为24cos 3ρρθ-=. (Ⅰ)求直线l 的普通方程和圆C 的直角坐标方程;(Ⅱ)直线l 与圆C 交于,A B 两点,点(1,2)P ,求||||PA PB ⋅的值.【答案】(Ⅰ)直线l 的普通方程为30x y +-=,圆C 的直角坐标方程为22430x y x +--=.(Ⅱ)2 【解析】 【分析】(1)求直线l 的普通方程,消去参数t 即可;求圆的直角坐标方程利用cos sin x y ρθρθ=⎧⎨=⎩互化即可.(2)根据直线所过定点,利用直线参数方程中t 的几何意义求解||||PA PB ⋅的值. 【详解】解:(Ⅰ)直线l 的普通方程为30x y +-=, 圆C 的直角坐标方程为22430x y x +--=. (Ⅱ)联立直线l 的参数方程与圆C的直角坐标方程可得22(1)(2)4(1)30++---=,化简可得220t +-=. 则12||||||2PA PB t t ⋅==.【点睛】(1)直角坐标和极坐标互化公式:cos sin x y ρθρθ=⎧⎨=⎩;(2)直线过定点P ,与圆锥曲线的交点为A B 、,利用直线参数方程中t 的几何意义求解:||||||AB PA PB 、,则有12||||AB t t =-,12||||||PA PB t t =.23.已知函数()|3||1|f x x x =+-- . (Ⅰ)解关于x 的不等式()1f x x +≥ ;(Ⅱ)若函数()f x 的最大值为M ,设0,0a b >>,且(1)(1)a b M ++=,求+a b 的最小值. 【答案】(Ⅰ)(,5][1,3]-∞--;(Ⅱ)最小值为2 【解析】 【分析】(1)采用零点分段的方法解不等式;(2)计算出()f x 的最大值,再利用基本不等式求解+a b 的最小值.【详解】(Ⅰ)由题意(3)(1),34,3()(3)(1),3122,31(3)(1),14,1x x x x f x x x x x x x x x x ----<--<-⎧⎧⎪⎪=+---≤≤=+-≤≤⎨⎨⎪⎪+-->>⎩⎩当3x <-时,41x -+≥,可得5x ≤-,即5x ≤-.当31x -≤≤时,221x x ++≥,可得1x ≥-,即11x -≤≤. 当1x >时,41x +≥,可得3x ≤,即13x <≤. 综上,不等式()1f x x +≥的解集为(,5][1,3]-∞--.(Ⅱ)由(Ⅰ)可得函数()f x 的最大值4M =,且14ab a b +++=, 即23()()2a b a b ab +-+=≤,当且仅当a b =时“=”成立, 可得2(2)16a b ++≥,即2a b +≥,因此+a b 的最小值为2.【点睛】(1)解绝对值不等式,最常用的方法就是零点分段:考虑每个绝对值等于零时x 的值,再逐段分析;(2)注意利用||||||x a x b a b -+-≥-,||||||x a x b a b ---≤-求解最值.。

重庆市南开中学2020届高三数学上学期第一次教学质量检测考试试题 理(含解析)

重庆市南开中学2020届高三数学上学期第一次教学质量检测考试试题 理(含解析)

重庆市南开中学2020届高三数学上学期第一次教学质量检测考试试题 理(含解析)注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其它答案标号。

回答非选择题时,将答案写在答题卡上,写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一个选项是符合题目要求的。

1.已知集合{}2|230A x x x =--≤,{}|21xB y y ==+,则A B =I () A. ∅ B. (]1,3C. (]0,3D. ()1,+∞【答案】B 【解析】 【分析】根据一元二次不等式的解集和指数函数的值域求得. 【详解】由已知解得[]()1,3,1,A B =-=+∞, 所以(]1,3A B =I ,故选B.【点睛】本题考查一元二次不等式的解集、指数函数的值域和集合的交集运算,属于基础题.2.已知复数z 满足()()12z i i i -+=,则z =() A. 12i + B. 12i -C. 12i -+D. 12i --【答案】B 【解析】 【分析】根据复数的除法运算和复数的共轭复数的概念求得. 【详解】由已知得21i z i i-=+,所以()()()211211i i z i i i i -=+=++-,所以12.z i =- 故选B.【点睛】本题考查复数的除法运算和复数的共轭复数的概念,属于基础题.3.命题“若220x y +=,则0x =,0y =”的否命题为()A. 若220x y +=,则0x ≠,0y ≠B. 若220x y +=,则0x ≠或0y ≠ C. 若x y +≠220,则0x =,0y =D. 若x y +≠220,则0x ≠或0y ≠【答案】D 【解析】 【分析】根据否命题是对命题的条件和结论均要否定求得. 【详解】否命题是对命题的条件和结论均要否定,故选D.【点睛】本题注意区分“否命题”和“命题的否定”,属于基础题.4.关于函数()y f x =与()ln y f x =,下列说法一定正确的是() A. 定义域相同 B. 值域相同C. 单调区间相同D. 奇偶性相同 【答案】B 【解析】 【分析】根据函数的定义域、值域、单调性和奇偶性的判断解得.【详解】对于A 答案:()y f x =的定义域是R ,而()ln y f x =的定义域是()0,∞+,故A 错误;对于C 答案:()ln y f x =是复合函数,其单调需遵循“在定义域上,同增异减”的原则,故C 错误;对于D 答案:()ln y f x =的定义域是()0,∞+的子集,故()ln y f x =不具有奇偶性,故D 错误;因为ln y x =的值域是R ,故B 正确.【点睛】本题考查函数的的定义域、值域、单调性和奇偶性,属于基础题.5.下列函数既是偶函数,又在(),0-∞上单调递减的是()A. 12xy ⎛⎫= ⎪⎝⎭B. 23y x -=C. 1y x x=- D.()2ln 1y x =+【答案】D 【解析】 【分析】根据函数的奇偶性和单调性求解.【详解】由函数的奇偶性的判定方法,知C 选项是奇函数,所以排除C 选项, 又因为在(),0-∞上单调递减,在,,A C D 选项中,只有D 选项符合, 故选D .【点睛】本题考查函数的奇偶性和单调性,属于基础题.6.已知函数()()1,022,0xx f x f x x ⎧⎛⎫≥⎪ ⎪=⎨⎝⎭⎪+<⎩,则21log 5f ⎛⎫= ⎪⎝⎭()A.516B.54C.52D. 5【答案】A 【解析】 【分析】先判断自变量的范围是分段函数的某一段,再代入相应的解析式中求函数的值.【详解】22221114log 0,log log 2log 5555f f f ⎛⎫⎛⎫⎛⎫<∴=+= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭Q ,222244416log 0,log log 2log 5555f f f ⎛⎫⎛⎫⎛⎫<∴=+= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭Q ,()22216log 516log 5log 116522161615log 0,log 2255216f⎛⎫ ⎪-⎝⎭⎛⎫⎛⎫>∴====⎪ ⎪⎝⎭⎝⎭Q , 故选A.【点睛】本题考查分段函数和对数运算,属于基础题.7.黎曼函数是一个特殊的函数,由德国数学家黎曼发现提出,在高等数学中有着广泛的应用.黎曼函数()R x 定义在[]0,1上,且()()1,,,0,010,1q q x p q p p p R x x ⎧⎛⎫=⎪ ⎪=⎨⎝⎭⎪=⎩当为正整数为既约真分数当或或内的无理数,则以下说法:①()R x 的值域为[]0,1;②方程()R x x =有无穷多个解;③()R x 的图像关于直线12x =对称;其中正确的个数为() A. 0 B. 1C. 2D. 3【答案】C 【解析】 【分析】由函数的定义判断选项,可以选取特殊的值验证求解. 【详解】由黎曼函数的定义可知()R x 的值域为1110,,,,,23p ⎧⎫⎨⎬⎩⎭L L (其中p 是大于或等于2的自然数),故①错误;方程()R x x =的解有:11111,,,,,,234pL L ,(其中p 是大于或等于2的自然数),故②正确; 对于任何的自然数2p ≥,根据()()f f 1x x =-,所以()R x 的图像关于直线12x =对称,故③正确; 故选C.【点睛】本题考查新定义函数,思考时牢牢抓住函数的定义,属于中档题.8.设0.30.2a =,0.3log 0.2b =,0.20.4c =,则() A. a b c <<B. a c b <<C. c a b <<D.b ac <<【答案】B 【解析】 【分析】运用中介值“1 ”,和指数的同指或同底时的大小比较得解. 【详解】0.30.3log 0.2log 0.31b =>=Q , 0.30.20.20.20.20.41a =<<<,b c a ∴>>故选B.【点睛】本题考查指数、对数的大小比较,属于中档题.9.若函数()()213log 28f x ax x =++的值域为[)2,-+∞,则()f x 的单调递增区间为() A. (),2-∞- B. (]2,1- C. [)1,4D. ()4,+∞【答案】C 【解析】 【分析】根据函数的值域得真数的最大值,从而求出参数的值,再根据复合函数的单调性的判断求解. 【详解】由已知得令228t ax x =++的最大值是9,所以解得1a =-,所以()()213log 28f x x x =-++, 又因为228t ax x =++在()2,4-上0,t >且在(],1-∞上单调递增,在[)1,∞上单调递减, 根据复合函数的单调性得C 选项正确. 故选C.【点睛】本题考查对数函数的值域和单调性,属于中档题.10.下图可能是下列哪个函数的图像()A. ()221x x y x -=- B. ()2ln 1x x y x -=-C. 2ln 1y x x =- D. ()tan ln 1y x x =⋅+【答案】C 【解析】 【分析】可考虑用排除法,从函数的定义域和特殊点的函数的正负着手.【详解】由图像可知,()tan ln 1y x x =⋅+在02π⎛⎫⎪⎝⎭,上单调递增,故可排除D ;当13x =时,A 、B 选项中的0,y >C 选项中的0,y < 故选C.【点睛】本题考查函数的定义域和特殊点的函数值辨别图像,属于基础题.11.已知()'f x 是奇函数()()f x x R ∈的导函数,()20f =,当0x ≠时,()()2'f x f x x>,则不等式()()10x f x -<的解集为() A. ()(),20,2-∞-U B. ()()2,02,-+∞U C. ()(),21,2-∞-U D. ()()2,01,2-U【答案】D 【解析】 【分析】将已知的含导函数的不等式构造成某个函数的导函数,得这个函数的单调性,再根据奇偶性得这个函数的大致图像趋势,并且得出其函数值的正负,从而得出()f x 的函数值的正负求解. 【详解】当0x >时,由()()2'f x f x x >得()()2'0f x f x x ->,即()()'20xf x f x x->,所以()()24'20x f x xf x x ->,即()'20f x x ⎛⎫> ⎪⎝⎭, 所以令()()2f x g x x=,则()g x 在()0,∞+上单调递增,且()20g =, 又因为()f x 上奇函数,所以()g x 也是奇函数,且在()()2,02,-+∞U 时()0g x >,在()()2,0,2-+∞⋃时()0g x <, 又因为20x >,所以在()()2,02,-+∞U 时()0f x >,在()()2,0,2-+∞⋃时()0f x < 解不等式()()10x f x -<中,当1x >时,()0f x <,所以其解集为()1,2; 当1x <时,()0f x >,所以其解集为()2,0-. 故得解.【点睛】本题的关键在于构造函数分析其单调性、奇偶性和函数值的正负,从而得出()f x 的函数值的正负的取值范围,属于难度题.12.已知函数()f x 对x R ∀∈满足:()()2f x f x +=-,()()()12f x f x f x +=⋅+,且()0f x >,若()14f =,则()()20192020f f +=()A.34B. 2C.52D. 4【答案】A 【解析】 【分析】由抽象函数关系式赋值得特殊点的函数值,找出其函数值的周期规律得解. 【详解】因为()()()12f x f x f x +=⋅+, ∴()()()213f x f x f x +=+⋅+,又()0f x > 故()()13f x f x +=,即()()6f x f x += 所以函数的周期为6, 由已知可得当0x =时,()()20f f =,()()()102f f f =⋅,又()0f x >,所以()()202f f ==,并且()()()()1113,4,5,62242f f f f ====, 所以()()()()1132019202034244f f f f +=+=+=,故选A.【点睛】本题考查抽象函数的求值,考查函数的周期性,属于中档题.二、填空题:本题共4小题,每小题5分,共20分。

2020届河南省郑州市高三第一次质量预测数学(理)试题(解析版)

2020届河南省郑州市高三第一次质量预测数学(理)试题(解析版)

2020届河南省郑州市高三第一次质量预测数学(理)试题一、单选题1.设集合A=(xeZ||x|<2},B={y\y=l-x1},则AcB的子集个数为()A. 4B.8C.16D.32【答案】C【解析】分析:求出集合A,B,得到AC8,可求AnB的子集个数详解:A={xeZ|国<2}={xg Z|-2<x<2}={-2,-1,0.1,2},B={y|y=l_J}={y|y〈l},An B={-2,-1,0,1},AoB的子集个数为24=16.故选C.点睛:本题考查集合的运算以及子集的个数,属基础题.2.复数z=——在复平面内对应的点位于()iA.第一象限B.第二象限C.第三象限D.第四象限【答案】D【解析】化简复数为z=。

+初的形式,求得复数对应点的坐标,由此判断所在的象限.【详解】。

I.z=b=l-2Z,该复数对应的点为(1,一2),在第四象限.故选D.【点睛】本小题主要考查复数的运算,考查复数对应点的坐标所在象限.3.某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2016年1月至2018年12月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图,根据该折线图,下列结论错误的是()A.各年的月接待游客量高峰期大致在7,8月份B.年接待游客量逐年增加C.月接待游客量逐月增加D.各年1月至6月的月接待游客量相对7月至12月,波动性更小,变化比较平稳【答案】C【解析】根据折线图依次判断各个选项,可通过反例得到。

错误.【详解】由折线图可知,每年游客量最多的月份为:7,8月份,可知A正确;年接待游客量呈现逐年递增的趋势,可知B正确;以2018年8月和9月为例,可得到月接待游客量并非逐月增加,可知C错误;每年1月至6月的月接待游客量相对于7月至12月的变化较小,数量更加稳定,可知。

正确.本题正确选项:C【点睛】本题考查根据统计中的折线图判断数据特征的问题,属于基础题.4.定义在R上的函数=偶函期«=/(log2|),Z,=/((l)3),c=f(m),贝ijA.c<a<bB.a<c<bC.a<b<cD.b<a<c【答案】C【解析】由偶函数得到m=0,明确函数的单调性,综合利用奇偶性与单调性比较大小即可.【详解】/■⑴=(<)E—2为偶函数,.•.m=0,即/(x)=(|)W-2,且其在[0,+8)上单调递减,11又0<(一)3<1,111c=/(m)=f(0)罚=/((-)3)〉a=/(log2-)=/(1)故选:C【点睛】本题考查函数的性质,考查函数的奇偶性与单调性,考查转化思想,属于中档题.5. “纹样”是中国艺术宝库的瑰宝,“火纹”是常见的一种传统纹样,为了测算某火纹纹样(如图阴影部分所示)的面积,作一个边长为3的正方形将其包含在内,并向该正方 形内随机投掷2000个点,己知恰有800个点落在阴影部分,据此可估计阴影部分的面 积是16A,—5B.18C. 1032D,—5【答案】B【解析】边长为3的正方形的面积S 正您=9,设阴影部分的面积为S 网,由几何概型得S 阴 800了」=房而,由此能估计阴影部分的面积.'正方形【详解】解:为了测算某火纹纹样(如图阴影部分所示)的面积,作一个边长为3的正方形将其 包含在内,则边长为3的正方形的面积S 正",=9,设阴影部分的面积为S 耕..•该正方形内随机投掷2000个点,已知恰有800个点落在阴影部分,..S 阴 800S 正方形2000… 800 ° 800 八 18解得S 阴=-----x ‘中方形=------x 9 =——2000 正方形 2000 51 Q..•估计阴影部分的面积是;.故选:B.【点睛】本题考查阴影面积的求法,考查几何概型等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.6.已知向量q与》夹角为;,且\a\=\,|2a-Z?|=V3,贝\\\b\=A.也B.y/2C.1D.亟2【答案】C【解析】对\2a-b\=yf3两边平方,结合数量积的定义与法则即可得到结果.【详解】I,向量a与Z?夹角为:,且|«|=1 >|2a—Z?|=^3,p*一外=3,即4a2-4a-b+b2=3••.4一2种+祥=3,所以\b\=l,故选:C【点睛】本题考查利用数量积求模,考查数量积定义与运算法则,考查运算能力.7.宋元时期数学名著《算学启蒙》中有关于“松竹并生”的问题,松长三尺,竹长一尺,松日自半,竹日自倍,松竹何日而长等,如图是源于其思想的一个程序框图,若输人的a,。

2020届高三数学上学期第一次质量检测试题理[含答案]

2020届高三数学上学期第一次质量检测试题理[含答案]
3
13.已知向量 a=(1,1).},|b|=2,且 a 与 b 的夹角为 ,则 a·(a+b)=
4
14.定义在 R 上的函数 f(x)满足:①对任意的 x,y∈R,都有 f(x-y)=f(x)-f(y);②当
x<0 时,f(x)>0,则函数 f(x)的解析式可以是

15.设数列{an}的前 n 项和为 Sn,且 2Sn=3(an+1),若 a10=ka8,则 k=
2020 届高三数学上学期第一次质量检测试题 理
注意事项 1.本试卷分第 I 卷(选择题)和第 II 卷(非选择题)两部分。答卷前,考生务必将自己的姓名、 准考证号、座位号填写在答题卡相应位置上。 2.请在答题卡上作答,写在本试卷上效。
第 I 卷(选择题 共 60 分) 一、选择题:本大题共 12 小题,每小题 5 分,在每小题给出的四个选项中,只有一项是符 合题目要求的。 1.已知集合 A={-2,-1,0,1,2},B={x|x2-x+2>0},则 A∩B= A.{-1,0} B.{0,1} C.{-1,0,1} D.{-2,-1,0,1,2}
每个试题考生都必须作答。第 22、23 题为选考题,考生根据要求作答。
(-)必考题:共 60 分。
17.(12 分)
我国在贵州省平塘县境内修建的 500 米口径球面射电望远镜(FAST)是目前世界上最大单口径 射电望远镜。使用三年来,已发现 132 颗优质的脉冲星候选体,其中有 93 颗已被确认为新 发现的脉冲星,脉冲星是上世纪 60 年代天文学的四大发现之一,脉冲星就是正在快速自转 的中子星,每一颗脉冲星每两脉冲间隔时间(脉冲星的自转周期)是-定的,最小小到 0.0014 秒,最长的也不过 11.765735 秒。某-天文研究机构观测并统计了 93 颗已被确认为新发现 的脉冲星的自转周期,绘制了如图的频率分布直方图。

江苏省苏锡常镇四市2020届高三数学第一次教学情况调研试卷

江苏省苏锡常镇四市2020届高三数学第一次教学情况调研试卷

江苏省苏锡常镇四市2020届高三数学第一次教学情况调研试卷一、填空题 (共14题;共14分)1.(1分)已知i 为虚数单位,复数 z =11+i,则 |z| = . 2.(1分)已知集合A = {x|0≤x ≤1} ,B = {x|a −1≤x ≤3} ,若A ∩B 中有且只有一个元素,则实数a 的值为 .3.(1分)已知一组数据1.6,1.8,2,2.2,2.4,则该组数据的方差是 .4.(1分)在平面直角坐标系xOy 中,已知双曲线 x 2a2−y 24=1 (a >0)的一条渐近线方程为 y =23x ,则a = . 5.(1分)甲、乙两人下棋,两人下成和棋的概率是 12 ,乙获胜的概率是 13,则乙不输的概率是 .6.(1分)下图是一个算法的流程图,则输出的x 的值为 .7.(1分)“直线l 1: ax +y +1=0 与直线l 2: 4x +ay +3=0 平行”是“a =2”的条件(填“充分不必要”、“必要不充分”、“充分必要”或“既不充分又不必要”).8.(1分)已知等差数列 {a n } 的前n 项和为 S n , a 1=9 , S99−S 55=−4 ,则 a n= .9.(1分)已知点M 是曲线y =2lnx +x 2﹣3x 上一动点,当曲线在M 处的切线斜率取得最小值时,该切线的方程为 .10.(1分)已知 3cos2α=4sin(π4−α) , α∈ ( π4 , π ),则 sin2α = .11.(1分)如图,在矩形ABCD 中,E 为边AD 的中点, AB =1 , BC =2 ,分别以 A 、 D 为圆心, 1 为半径作圆弧 EB 、 EC ( 在线段 AD 上).由两圆弧 EB 、 EC 及边BC 所围成的平面图形绕直线AD 旋转一周,则所形成的几何体的体积为 .12.(1分)在△ABC 中,( AB ⃗⃗⃗⃗⃗⃗ −λAC ⃗⃗⃗⃗⃗ )⊥ BC ⃗⃗⃗⃗⃗ ( λ >1),若角A 的最大值为 π6 ,则实数 λ 的值是 .13.(1分)若函数 f(x)=a x (a >0且a ≠1)在定义域[m ,n ]上的值域是[m 2,n 2](1<m <n ),则a 的取值范围是 .14.(1分)如图,在△ABC 中,AB =4,D 是AB 的中点,E 在边AC 上,AE =2EC ,CD 与BE 交于点O ,若OB = √2OC ,则△ABC 面积的最大值为 .二、解答题 (共11题;共100分)15.(10分)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且满足bcosA ﹣ √3 asinB =0.(1)(5分)求A ;(2)(5分)已知a =2 √3 ,B = π3 ,求△ABC 的面积.16.(10分)如图,在四棱锥P —ABCD 中,四边形ABCD 为平行四边形,BD ⊥DC ,△PCD 为正三角形,平面PCD ⊥平面ABCD ,E 为PC 的中点.(1)(5分)证明:AP∥平面EBD;(2)(5分)证明:BE⊥PC.17.(10分)某地为改善旅游环境进行景点改造.如图,将两条平行观光道l1和l2通过一段抛物线形状的栈道AB连通(道路不计宽度),l1和l2所在直线的距离为0.5(百米),对岸堤岸线l3平行于观光道且与l2相距1.5(百米)(其中A为抛物线的顶点,抛物线的对称轴垂直于l3,且交l3于M),在堤岸线l3上的E,F两处建造建筑物,其中E,F到M的距离为1 (百米),且F恰在B的正对岸(即BF⊥l3).(1)(5分)在图②中建立适当的平面直角坐标系,并求栈道AB的方程;(2)(5分)游客(视为点P)在栈道AB的何处时,观测EF的视角(∠EPF)最大?请在(1)的坐标系中,写出观测点P的坐标.18.(10分)如图,在平面直角坐标系xOy中,已知椭圆C:x2a2+y2b2=1(a>b>0)的离心率为1 2.且经过点(1,32),A,B分别为椭圆C的左、右顶点,过左焦点F的直线l交椭圆C于D,E两点(其中D在x轴上方).(1)(5分)求椭圆C的标准方程;(2)(5分)若△AEF与△BDF的面积之比为1:7,求直线l的方程.19.(10分)已知函数f(x)=23x3−mx2+m2x(m∈R)的导函数为f′(x).(1)(5分)若函数g(x)=f(x)−f′(x)存在极值,求m的取值范围;(2)(5分)设函数ℎ(x)=f′(e x)+f′(lnx)(其中e为自然对数的底数),对任意m∈R,若关于x的不等式ℎ(x)≥m2+k2在(0,+∞)上恒成立,求正整数k的取值集合.20.(10分)已知数列{a n},{b n},数列{c n}满足c n={a n,n为奇数b n,n为偶数,n∈N∗.(1)(5分)若a n=n,b n=2n,求数列{c n}的前2n项和T2n;(2)(5分)若数列{a n}为等差数列,且对任意n∈N∗,c n+1>c n恒成立.①当数列{b n}为等差数列时,求证:数列{a n},{b n}的公差相等;②数列{b n}能否为等比数列?若能,请写出所有满足条件的数列{b n};若不能,请说明理由.21.(5分)已知矩阵A=[1321],B=[−2311],且二阶矩阵M满足AM=B,求M的特征值及属于各特征值的一个特征向量.22.(10分)在平面直角坐标系xOy中,曲线l的参数方程为{x=2+cosθy=√3+2√3cos2θ2(θ为参数),以原点O为极点,x轴非负半轴为极轴建立极坐标系,曲线C的极坐标方程为r=4sinθ.(1)(5分)求曲线C的普通方程;(2)(5分)求曲线l和曲线C的公共点的极坐标.23.(5分)已知正数x,y,z满足x+y+z=t(t为常数),且x24+y29+z2的最小值为87,求实数t的值.24.(10分)某商店举行促销反馈活动,顾客购物每满200元,有一次抽奖机会(即满200元可以抽奖一次,满400元可以抽奖两次,依次类推).抽奖的规则如下:在一个不透明口袋中装有编号分别为1,2,3,4,5的5个完全相同的小球,顾客每次从口袋中摸出一个小球,共摸三次,每次摸出的小球均不放回口袋,若摸得的小球编号一次比一次大(如1,2,5),则获得一等奖,奖金40元;若摸得的小球编号一次比一次小(如5,3,1),则获得二等奖,奖金20元;其余情况获得三等奖,奖金10元.(1)(5分)某人抽奖一次,求其获奖金额X的概率分布和数学期望;(2)(5分)赵四购物恰好满600元,假设他不放弃每次抽奖机会,求他获得的奖金恰好为60元的概率.25.(10分)已知抛物线C:x2=4py(p为大于2的质数)的焦点为F,过点F且斜率为k(k≠0)的直线交C于A,B两点,线段AB的垂直平分线交y轴于点E,抛物线C在点A,B处的切线相交于点G.记四边形AEBG的面积为S.(1)(5分)求点G的轨迹方程;(2)(5分)当点G的横坐标为整数时,S是否为整数?若是,请求出所有满足条件的S的值;若不是,请说明理由.答案解析部分1.【答案】√22【解析】【解答】z=11+i =12−12i⇒|z|=√22.故答案为:√22.【分析】先把复数进行化简,然后利用求模公式可得结果.2.【答案】2【解析】【解答】由题意A∩B中有且只有一个元素,所以a−1=1,即a=2. 故答案为:2.【分析】利用A∩B中有且只有一个元素,可得a−1=1,可求实数a的值. 3.【答案】0.08【解析】【解答】首先求得x̅=15(1.6+1.8+2+2.2+2.4)=2,S2=15[(1.6−2)2+(1.8−2)2+(2−2)2+(2.2−2)2+(2.4−2)2]=0.08.故答案为:0.08.【分析】先求解这组数据的平均数,然后利用方差的公式可得结果.4.【答案】3【解析】【解答】因为双曲线x 2a2−y24=1(a>0)的渐近线为y=±2ax,且一条渐近线方程为y=23x,所以a=3.故答案为:3.【分析】双曲线的焦点在x轴上,渐近线为y=±2a x,结合渐近线方程为y=23x可求a .5.【答案】56【解析】【解答】乙不输的概率为12+13=56,故答案为:56.【分析】利用互斥事件概率加法公式列式,即可求出乙不输的概率。

2020-2021年福建省福州市质检一:福州市2020届高三第一次质量检测数学(理)试题含答案

2020-2021年福建省福州市质检一:福州市2020届高三第一次质量检测数学(理)试题含答案

福建省福州市2020届高三第一次质量检测
理科数学
注意事项:
1.答题前,考生务必用0.5毫米黑色签字笔将自己的姓名、座号、考生号、县区和科类填写到答题卡和试卷规定的位置上。

2.选择题每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号。

写在本试卷上无效。

3.必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置;如需改动,先划掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸、修正带。

不按以上要求作答的答案无效。

第Ⅰ卷(共60分)
一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.(5分)已知集合A={x|x2﹣x﹣6<0},集合B={x|x﹣1>0},则(∁R A)∩B=()
A.(1,3)B.(1,3]C.[3,+∞)D.(3,+∞)2.(5分)若iz=1+i(其中i是虚数单位),则复数z的共轭复数在复平面内对应的点位于()
A.第一象限B.第二象限C.第三象限D.第四象限
第1页(共23页)。

2020届徐州高三一检数学试卷参考答案

2020届徐州高三一检数学试卷参考答案

2020届徐州⾼三⼀检数学试卷参考答案徐州市2019~2020学年度⾼三年级第⼀次质量检测数学I 参考答案与评分标准⼀、填空题:1.{12}x x ?<< 2.2i ? 3.45 4.20 5.[4,+)∞ 6.127.48.14 9.135 10.3π 11.22(2)8x y ++= 12.3 13.47 14.34⼆、解答题: 15.(1)在PBC △中,因为M ,N 分别为棱PB ,PC 的中点,所以MN // BC . ………………………………3分⼜MN ?平⾯AMN ,BC ?平⾯AMN ,所以BC //平⾯AMN .…………………………6分(2)在PAB △中,因为AP AB =,M 为棱PB 的中点,所以AM PB ⊥.………………………………8分⼜因为平⾯P AB ⊥平⾯PBC ,平⾯P AB平⾯PBC PB =,AM ?平⾯P AB ,所以AM ⊥平⾯PBC .…………………………………………………………12分⼜AM ?平⾯AMN ,所以平⾯AMN ⊥平⾯PBC . …………………………14分 16.(1)在中,由余弦定理2222cos b c bc A a +?=得,2520225255b b +=,即2450b b ??=, …………………………4分解得5b =或1b =?(舍),所以5b =. ………………………………………6分(2)由5cos A =及0A <<π得,22525sin 1cos 1()5A A =?=?=,…8分所以210cos cos(())cos()(cos sin )42C A B A A A π=π?+=?+=??=,⼜因为0C <<π,所以2210310sin 1cos 1()10C C =?=?=,从⽽310sin 10tan 3cos 1010C C C ===,………………………………………………12分所以222tan 233tan 21tan 134C C C ?===?.………………………………………14分 17.(1)在SAO △中,2222534SO SA AO =?=?=, …………………………2分由1SNO △∽SAO △可知,1SO r SO R=,所以143SO r =,……………………4分所以1443OO r =?,所以223144()π(4)π(3),03339V r r r r r r =?=?<<.…7分(2)由(1)得234()π(3),039V r r r r =?<<,所以24()π(63)9V r r r '=?,令()0V r '=,得2r =,………………………9分当(0,2)r ∈时,()0V r '>,所以()V r 在(0,2)上单调递增;ABC △AP NMCB当(2,3)r ∈时,()0V r '<,所以()V r 在(2,3)上单调递减.所以当2r =时,()V r 取得最⼤值16π(2)9V =.答:⼩圆锥的体积V 的最⼤值为16π9.………………………………………14分 18.(1)直线l 的⽅程为)(a x k y ?=,即0=??ak y kx ,因为直线l 与圆222b y x O =+:相切,所以b k ak=+?12,故2222b a b k ?=.所以椭圆C的离⼼率e ==4分(2)设椭圆C 的焦距为2c ,则右准线⽅程为2a x c=,由??=?=c ax a x k y 2)(得c ac a k a c a k y ?=?=22)(,所以))(,(22c ac a k c a Q ?,…6分由==+)(12222a x k y b y a x 得02)(2224232222=?+?+b a k a x k a x k a b ,解得222223k a b ab k a x p +?=,则22222222232)(k a b k ab a k a b ab k a k y p +?=?+?=,所以)2-2222222223ka b kab k a b ab k a P ++?,(,……………………………………………10分因为0=?,所以02)(2 22222222232=+++??k a b kab c ac a k k a b ab k a c a ,即)(2)(22222c a k b b k a a ?=?,………………………………………………12分由(1)知,2222b a b k ?=,所以22422222)(2)(ba c ab b b a b a a ??=??,所以c a a 22?=,即c a 2=,所以21=a c ,故椭圆C 的离⼼率为21.……16分19.(1)()2111()ln f x x a x x x'=+?,因为曲线()y f x =在点(1,(1))f 处的切线⽅程为10x y +?=,所以(1)11f a '=?=?,得0a =.……………………………………………2分(2)因为21ln ()ax x f x x+'=存在两个不相等的零点.所以()1ln g x ax x =?+存在两个不相等的零点,则1()g x a x'=+.①当0a ≥时,()0g x '>,所以()g x 单调递增,⾄多有⼀个零点.……4分②当0a <时,因为当1(0)x a∈?,时,()0g x '>,()g x 单调递增,当1(+)x a∈?∞,时,()0g x '<,()g x 单调递减,所以1x a =?时,max 11()()ln()2g x g a a=?=??. …………………………6分因为()g x 存在两个零点,所以1ln()20a>,解得2e 0a ??<<.………7分因为2e 0a ??<<,所以21e 1a>>.因为(1)10g a =?<,所以()g x 在1(0)a,上存在⼀个零点. …………8分因为2e 0a ??<<,所以211()a a>.因为22111[()]ln()1g a a a ?=?+?,设1t a=?,则22ln 1(e )y t t t =??>,因为20t y t'=<,所以22ln 1(e )y t t t =??>单调递减,所以()2222ln e e 13e 0y=+<,所以()g x 在1()a+∞,上存在⼀个零点.综上可知,实数a 的取值范围为2(e ,0)??.…………………………………10分(3)当2a =时,1()(2)ln f x x x =?,() 2211121ln ()ln 2x x f x x x x x x+'=+=,设()21ln g x x x =?+,则1()20g x x'=+>.所以()g x 单调递增,且11()ln 022g =<,(1)10g =>,所以存在01(1)2x ∈,使得0()0g x =,……12分因为当0(0)x x ∈,时,()0g x <,即()0f x '<,所以()f x 单调递减;当0(+)x x ∈∞,时,()0g x >,即()0f x '>,所以()f x 单调递增,所以0x x =时,()f x 取得极⼩值,也是最⼩值,此时()0000000111()(2)ln (2)12(4)4f x x x x x x x =?=??=?++,……………14分因为01(1)2x ∈,,所以0()(10)f x ∈?,,因为()f x λ≥,且λ为整数,所以1λ?≤,即λ的最⼤值为1?.………16分20.(1)由11n n a ka +=?,13a =可知,231a k =?,2331a k k =??,因为{1}n a ?为等⽐数列,所以2213(1)(1)(1)a a a ?=??,即22(32)2(32)k k k ?=,即231080k k ?+=,解得2k =或4k =,…2分当43k =时,143(3)3n n a a +?=?,所以3n a =,则12n a ?=,所以数列{1}n a ?的公⽐为1,不符合题意;当2k =时,112(1)n n a a +?=?,所以数列{1}n a ?的公⽐1121n n a q a +?==?,所以实数k 的值为2. …………………………………………………………4分(2)由(1)知12n n a ?=,所以4n n n n b n ? , ??=?2, ??为奇数,为偶数,则22(41)4(43)4[4(21)]4m m S m =?++?+++??+2(41)(43)[4(21)]444m m =?+?++??++++144(4)3m m m +?=?+,……………………………………………………6分则212244(4)3m m m m S S b m m ??=?=?+,因为22+1324m m m b b m +=?+,⼜222+322+1()()3420m m m m m b b b b ++?+=??>,且2350b b +=>,130b =>,所以210m S ?>,则20m S >,设2210,m t m Sb t S ?=>∈*N ,…………………………………………………………8分则1,3t =或t 为偶数,因为31b =不可能,所以1t =或t 为偶数,①当2121=m m S b S ?时,144(4)3344(4)3m mm m m m +??+=??+,化简得2624844m m m ?+=??≤,即242m m ?+≤0,所以m 可取值为1,2,3,验证624135787,3,323S S S S S S ===得,当2m =时,413S b S =成⽴.…………………12分②当t 为偶数时,122214(4)331443124(4)134m m mm mm m SS m m m m ++==+??+??++,设231244m m m m c ?+?=,则211942214m m m m m c c ++?+?=,由①知3m >,当4m =时,545304c c ??=<;当4m >时,10m m c c +?>,所以456c c c ><<,所以m c 的最⼩值为519 1024c ?=,所以22130151911024m m S S ?<<+314312414mm m +=?+?+,即231240m m ?+?=,⽆整数解.综上,正整数m 的值2.………………………………………………………16分(第22BAC xyzB 1 A 1C 1 徐州市2019~2020学年度⾼三年级第⼀次质量检测数学Ⅱ参考答案与评分标准21.A .矩阵M 的特征多项式为23()(2)(1)31f t t λλλλλ??==.…………2分因为矩阵M 的⼀个特征值为4,所以(4)630f t =?=,所以2t =.…………5分所以2321??=M ,所以11313213221324422112132213222==????M .……10分 B .由:cos sin 120l ρθρ?+?=,及cos x ρθ=,sin y ρθ=,所以l 的直⾓坐标⽅程为120x y +?=. ………………………………………2分在曲线C 上取点()232sin M ??,,则点M 到l 的距离 ()4sin 12124sin 23cos 2sin 1233222d ππ+??++?==,…………6分当6π=时,d 取最⼩值428分此时点M 的坐标为()3,1.………………………………………………………10分 C .因为x y z ,,都为正数,且1x y z ++=,所以由柯西不等式得,1113()222x y y z z x +++++111()[(2)(2)(2)]222x y y z z x x y y z z x=++?++++++++ ………………………………………………………5分 2111(222)9222x y y z z x x y y z z x++++=+++≥,当且仅当13x y z ===时等号成⽴,所以111222x y y z z x +++++的最⼩值为3.………………………………………………………10分 22.(1)因为四边形11AA B B 为正⽅形,所以1AB BB ⊥,因为平⾯11AA B B ⊥平⾯11BB C C ,平⾯11AA B B平⾯111BB C C BB =,AB ?平⾯11AA B B ,所以AB ⊥平⾯11BB C C . ……………………………2分以点B 为坐标原点,分别以BA ,1BB 所在的直线为x ,y 轴,建⽴如图所⽰的空间直⾓坐标系B xyz ?.不妨设正⽅形11AA B B 的边长为2,则()2 0 0A ,,,()10 2 0B ,,.在菱形11BB C C 中,因为1160BB C ∠=?,所以1(0 1 3)C ,,,所以1( 2 1 3)AC =?,,.因为平⾯11AA B B 的法向量为()0 0 1=,,n ,设直线1AC 与平⾯11AA B B 所成⾓为α,则1|3|6sin |cos ,|221AC α=<>==?n ,即直线1AC 与平⾯11AA B B 6………………………6分(2)由(1)可知,(0 1 3)C ?,,,所以()10 2 0CC =,,.设平⾯1ACC 的⼀个法向量为()1111 x y z =,,n ,因为11110,0,AC CC ??==??n n 即()(()()111111 2 1 0 0 2 00x y z x y z ==??,,,,,,,,,取1x =,10y =,11z =,即1 0 1)=,,n .设平⾯1ABC 的⼀个法向量为()2222 x y z =,,n ,因为()2 0 0BA =,,,(10 1 BC =,,所以()()()(222222 2 0 00 0 1 0x y z x y z ?==??,,,,,,,,取()20 1=?,n .…………8分设⼆⾯⾓1B AC C ??的平⾯⾓为θ,则121212 cos cos θ?=?<>=?==?,n n n n n n所以⼆⾯⾓1B AC C ??10分23.(1)因为4n =,所以0404216C ()381a ==,1314232C ()327a ==.……………………2分(2)当13 x =时,21C ()()33k k n k k k n a x ?=,⼜因为11!(1)!C C !()!(1)!()!k k n n n n k k n n k n k k n k ===,………………………4分当1n =时,011022()C ()33nk k k n k a x =?==∑; …………………………………5分当2n ≥时,0021()()C ()()33n nk k n k kk n k k n k a x n k ?==?=?∑∑012121C ()()C ()()3333n nk n k kk n k k n nk k n k ??===?∑∑ 1112121()C ()()3333n n k n k kn k n n ==+?∑ 1111121C ()()333n k n k k n k n n ==?∑1121()333n n n ?=?+23n =,当1n =时,也符合.所以0()nk k k n k a x =?∑的值为23n .………………………………………………10分。

哈三中2020届高三学年第一次调研考试文科数学试卷答案

哈三中2020届高三学年第一次调研考试文科数学试卷答案

2020届高三学年第一次调研考试数学科(文史类)参考答案1. A .2. D .3. A . 4.D 5. A . 6. C .7. B . 8. D . 9. C 10. B 11. C .12.C .13. 250x y +-= 14.92 15. 2 16.32a 17.解:(1)在ABC ∆中,,,解得2BC =,∴.(2)Q,∴,∴在ABC ∆中,,∴,,∴13CD =.18:解:(1)因为在长方体中,平面, 平面,所以, 又,,且平面,平面, 所以平面.(2)设长方体侧棱长为,则,由(1)可得,所以,即,又,所以,即,解得,取中点,连结,因为,则,所以平面,所以四棱锥的体积为.19.解:(1)通过系统抽抽取的样本编号为:4,8,12,16,20,24,28,32,36,40 则样本的评分数据为:92,84,86,78,89,74,83,78,77,89. (2)由(1)中的样本评分数据可得1(92848678897483787789)8310x =+++++++++=,则有22222222221[(9283)(8483)(8683)2(7883)(8983)(7483)(8383)(7783)(8983)]3310s =-+-+-+⨯-+-+-+-+-+-=所以均值83x =,方差233s =.1111ABCD A B C D -11B C ⊥11AA B B BE ⊂11AA B B 11B C BE ⊥1BE EC ⊥1111B C EC C =I 1EC ⊂11EB C 11B C ⊂11EB C BE ⊥11EB C 2a 1AE A E a==1EB BE ⊥22211EB BE BB +=2212BE BB =3AB =222122AE AB BB +=222184a a +=3a =1BBF EF 1AE A E =EF AB ∥EF ⊥11BB C C 11E BB C C -1111111136318333E BB C C BB C C V S EF BC BB EF -=⋅=⋅⋅⋅=⨯⨯⨯=矩形(3)由题意知评分在(83即(77.26,88.74)之间满意度等级为“A级”, 由(1)中容量为10的样本评分在(77.26,88.74)之间有5人, 从5人中选2人共有10种情况,而80-分以上有3人, 从这3人选2人共有3种情况,故310P =.20. 解(1)设),(y x P ,因为)0,(),0,(a B a A -,则点P 关于x 轴的对称点H ),(y x -。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高三数学一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题纸相应位置上. 1.设集合A ={x |x 2–5x +6>0},B ={x |x –1<0},则A ∩B =▲.2.已知平面α,直线m ,n 满足m ⊄α,n ⊂α,则“m ∥n ”是“m ∥α”的▲条件. 3.在公比为q 且各项均为正数的等比数列{a n }中,S n 为{a n }的前n 项和.若a 1=1q 2,且S 5=S 2+7,则首项a 1的值为▲.4.已知0.20.32log 0.220.2a b c ===,,,则a ,b ,c 的大小关系为▲. 5.在天文学中,天体的明暗程度可以用星等或亮度来描述.两颗星的星等与亮度满足m 2−m 1=2152lg E E , 其中星等为m k 的星的亮度为E k (k =1,2).已知太阳的星等是−26.7,天狼星的星等是−1.45,则太 阳与天狼星的亮度的比值为▲.6.已知()f x 是定义域为(),-∞+∞的奇函数,满足()()11f x f x -=+.若()12f =,则()()()123f f f +++⋯+f (50)=▲.7.等差数列{}n a 的首项为1,公差不为0,若a 2,a 3,a 6成等比数列,则数列{}n a 的通项公式 为▲.8.在棱长为2的正方体1111ABCD A B C D -中,点是棱1BB 的中点,则三棱锥11D DEC -的体积为▲. 9.等差数列{}n a 的前n 项和为n S ,33a =,410S =,则11nk kS==∑▲.10.若f (x )=lg(x 2-2ax +1+a )在区间(-∞,1]上递减,则a 的取值范围为▲.11.设函数10()20x x x f x x +≤⎧=⎨>⎩,,,则满足1()()12f x f x +->的x 的取值范围是▲.12.几位大学生响应国家的创业号召,开发了一款应用软件.为激发大家学习数学的兴趣,他们推出 了“解数学题获取软件激活码”的活动.这款软件的激活码为下面数学问题的答案:已知数列1,1,2, 1,2,4,1,2,4,8,1,2,4,8,16,…,其中第一项是20,接下来的两项是20,21,再接下来 的三项是20,21,22,依此类推.求满足如下条件的最小整数N :N >100且该数列的前N 项和为2的整 数幂.那么该款软件的激活码是▲.13.已知当x ∈[0,1]时,函数y =(mx −1)2的图象与y =√x +m 的图象有且只有一个交点,则正实数m 的取值范围是▲.14.设函数f(x)的定义域为R ,满足f(x +1)=2 f(x),且当x ∈(0,1]时,f(x)=x(x −1).若对任意x ∈(−∞,m],都有f(x)≥−89,则m 的取值范围是▲.二、解答题:本大题共6小题, 共计70分. 请写出文字说明、证明过程或演算步骤.15.(本小题满分14分)已知P ={x |x 2-8x -20≤0},集合S ={x |1-m ≤x ≤1+m }.若x ∈P 是x ∈S 的必要条件,求m 的取值范围.16.(本小题满分14分)如图,在直三棱柱ABC -A 1B 1C 1中,D ,E 分别为BC ,AC 的中点,AB =BC .求证:(1)A 1B 1∥平面DEC 1; (2)BE ⊥C 1E .17.(本小题满分15分)已知函数2()1f x x =-,()1g x a x =-,()()()F x f x g x =-. (1)2a =,[]0,3x ∈,求()F x 值域; (2)0a >,解关于x 的不等式()0F x ≥.18.(本小题满分15分)如图,某隧道的剖面图是由半圆及矩形ABCD 组成,交通部门拟在隧道顶部安装通风设备(视作点P ),为了固定该设备,计划除从隧道最高点Q 处使用钢管垂直向下吊装以外,再在两侧自,A B 两点分别使用钢管支撑.已知道路宽8AB cm =,设备要求安装在半圆内部,所使用的钢管总长度为L .(1)①设PQ x =,将L 表示为关于x 的函数; ②设PAB θ∠=,将L 表示为关于θ的函数;(2)请选用(1)中的一个函数关系式,说明如何设计,所用的钢管材料最省?19.(本小题满分16分)在数列{}n a 中,已知12a =,13()n n a a f n +=+. (1)若()f n k =(k 为常数),314a =,求k ;(2)若()21f n n =-.①求证:数列{}n a n +为等比数列;②记(1)n n b a n λ=+-,且数列{}n b 的前n 项和为n T ,若3T 为数列{}n T 中的最小项,求λ的取值范围.20. (本小题满分16分)已知函数2()(1),()ln (,)f x x a x a g x x b x a b R =++-=-∈ (1)当2b =时,求函数()g x 的单调区间;(2)设函数(),1()(),1f x x h x g x x ≤⎧=⎨>⎩若0a b +=,且()0h x ≥在R 上恒成立,求b 的取值范围;(3)设函数()()()u x f x g x a =-+,若2a b +≥,且()u x 在(0,)+∞上存在零点, 求b 的取值范围.高三数学一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题纸相应位置上. 1.(–∞,1)2.充分不必要条件3.144.a c b <<5.1010.16.27.a n =3-2n8.439.2nn+110.[1,2) 11.1,4⎛⎫-+∞ ⎪⎝⎭12.44013.(0,1]∪[3,+∞)14.(−∞,73]二、解答题:本大题共6小题, 共计70分. 请写出文字说明、证明过程或演算步骤. 15.解 由x 2-8x -20≤0,得-2≤x ≤10, ∴P ={x |-2≤x ≤10},由x ∈P 是x ∈S 的必要条件,知S ⊆P . (1)当S =∅1−m >1+m ⟹m <0 (2)当S ≠∅则⎩⎪⎨⎪⎧1-m ≤1+m ,1-m ≥-2, ∴0≤m ≤3.1+m ≤10,∴当m ≤3时,x ∈P 是x ∈S 的必要条件,即所求m 的取值范围是[−∞,3].16.解:(1)因为D ,E 分别为BC ,AC 的中点, 所以ED ∥AB .在直三棱柱ABC−A 1B 1C 1中,AB ∥A 1B 1, 所以A 1B 1∥ED .又因为ED ⊂平面DEC 1,A 1B 1⊄平面DEC 1, 所以A 1B 1∥平面DEC 1.(2)因为AB =BC ,E 为AC 的中点,所以BE ⊥AC . 因为三棱柱ABC−A 1B 1C 1是直棱柱,所以CC 1⊥平面ABC . 又因为BE ⊂平面ABC ,所以CC 1⊥BE .因为C 1C ⊂平面A 1ACC 1,AC ⊂平面A 1ACC 1,C 1C ∩AC =C , 所以BE ⊥平面A 1ACC 1.因为C 1E ⊂平面A 1ACC 1,所以BE ⊥C 1E .17.1)22221(13)()()()12123(01)x x x F x f x g x x x x x x ⎧-+≤≤⎪=-=---=⎨+-≤<⎪⎩………2分13x ≤≤,221[0,4]x x --∈……………………………4分 01x ≤<,223[3,0)x x +-∈-……………………………6分所以()()()F x f x g x =-的值域为[3,4]-……………………………7分(2)(1)(1) (1)()(1)(1) (1)x x a x F x x x a x -+-≥⎧=⎨-++<⎩……………………………9分1x ≥,()0F x ≥,0a >,令(1)12a a --=-①当2a ≥时,(1)1a -≥,所以1x ≤或1x a ≥-,即:1x =或1x a ≥- ②当02a <<时,(1)1a -<,所以1x a ≤-或1x ≥,即:1x ≥1x <,()0F x ≥,0a >得:1x a ≤--或1x ≥1x a ⇒≤--……………………13分综上:当2a ≥时不等式()0F x ≥的解为:1x a ≤--或1x =或1x a ≥- 当02a <<时不等式()0F x ≥的解为:1x a ≤--或1x ≥……………………15分18.解(1)延长QP 交AB 于点E ,则⊥QE AB ,且E 为AB 的中点, 所以142EA EB EQ AB ====,由对称性可知,PA PB =. ①若PQ x =,则04x <<,4EP x =-,在Rt PAE ∆中,PA ==所以)204L PQ PA x x =+=+<<,②若PAB θ∠=,则04πθ<<,在Rt PAE ∆中,4cos cos AE PA θθ==,tan 4tan PE AE θθ==, 所以44tan PQ QE PE θ=-=-, 所以42sin 244tan 2440cos cos 4L PQ PA θπθθθθ-⎛⎫=+=-+⨯=+⨯<< ⎪⎝⎭. (2)选取②中的函数关系式,2sin 440cos 4L θπθθ-⎛⎫=+⨯<< ⎪⎝⎭,记()2sin 0cos 4fθπθθθ-⎛⎫=<< ⎪⎝⎭,则由()22sin 10cos f θθθ-'==及04πθ<<可得,6πθ=, 当0,6πθ⎛⎫∈ ⎪⎝⎭时()0f θ'<,此时()fθ单调递减,当,64ππθ⎛⎫∈⎪⎝⎭时()0f θ'>,此时()f θ单调递增, 所以当6πθ=时,()fθ取得最小值,从而钢管总长度为L 取得最小值,即所用的钢管材料最省.19.解:(1)k 的值为﹣1; (2)①②。

相关文档
最新文档