静定刚架的内力计算及内力图
合集下载
第三章 静定结构的内力计算
FAy
1 3a 4 FP a M q 3a 3a 2 5
第三章
静定结构的内力计算
M
B
0
3a 4 FAy 3a M q 3a FP a 0 2 5 1 3a 4 FAy FP a M q 3a 3a 2 5
第三章
无荷载 平行轴线
Q图
静定结构的内力计算
均布荷载
集中力 发生突变
P
集中力偶
无变化 发生突变
m
斜直线
M图
二次抛物线 凸向即q指向
出现尖点
两直线平行 备 注
Q=0区段M图 Q=0处,M 平行于轴线 达到极值
集中力作用截 集中力偶作用 面剪力无定义 面弯矩无定义
在自由端、铰支座、铰结点处,无集中力偶作用,截面弯矩 等于零,有集中力偶作用,截面弯矩等于集中力偶的值。
第三章 静定结构的内力计算
第三章
静定结构的内力计算
§3-1单跨静定梁
一、静定结构概述 1.概念:是没有多余约束的几何不变体系。 2.特点:在任意荷载作用下,所有约束反力和内力都 可由静力平衡方程唯一确定。 平衡方程数目 = 未知量数目 3.常见的静定结构 常见的静定结构有:单跨静定梁、多跨静定梁、静 定平面刚架、三铰拱、静定平面桁架、静定组合结构等 (如下图)。
0 FYA FYA 0 FYB FYB
A
x
C
L
斜梁的反力与相应简支 梁的反力相同。
第三章
(2)内力
静定结构的内力计算
求斜梁的任意截面C的内力,取隔离体AC: a FP1 A
FYA x Fp1 FYA
0
MC
结构力学静定结构的内力计算图文
dM
q(x)
(1)微分关系 dx FQ
dx
dFQ q dx
q
FQ
M+d M
M d x FQ+d FQ
MA FQA
d 2M
q
Fy
dx2
FQ
m0 M
dx
M+ M
(2)增量关系
FQ+F Q
FQ Fy M m0
(3)积分关系 由dFQ = – q·d x
qy
FQB FQA
xB xA
q
y
dx
ቤተ መጻሕፍቲ ባይዱMB
静定结构内力计算过程中需注意的几点问题: (1)弯矩图习惯画在杆件受拉边、不用标注正负号,轴力图和剪力图可画 在杆件任一边,需要标注正负号。 (2)内力图要写清名称、单位、控制截面处纵坐标的大小,各纵坐标的长 度应成比例。 (3)截面法求内力所列平衡方程正负与内力正负是完全不同的两套符号系 统,不可混淆。
四、 分段叠加法作弯矩图
MA
q
MB
P
M
MA
M
MA
M
+
M
M M M
A
MA
MB
FNA
FyA MA
MB
Fy0A
MA
q q q
M M
B MB
FNB FyB
MB
Fy0B
MB
例:4kN·m
4kN
3m
3m
(1)集中荷载作用下
6kN·m
(2)集中力偶作用下
4kN·m 2kN·m
(3)叠加得弯矩图
4kN·m
4kN·m
§3-2 静定梁
❖ 静定梁分为静定单跨梁和静定多跨梁。单跨梁的结构形式有水平梁、斜
第3章 静定刚架
最后取结点为分离体,利用投影平衡由杆 端剪力求杆端轴力。 即:由剪力图----轴力图
15
qa2/2
B
q C qa2/2
qa2/8
A
a
qa
↑↑↑↑↑↑↑↑
+
qa2/2
C QCB
B
QBC
M图 a
↑↑↑↑↑↑↑↑
∑MC=qa2/2+ QBCa=0 QBC=QCB=-qa/2 qa2/2
QCA
-
qa/2
QAC
(下拉)
Fy 0, FQCD 7.5KN 9
3、作内力图
C 30 B A 30 M图(KN.m)
7.5 7.5 15 FQ图(KN) A
C
D
D
FN图(KN)
FQBA 15KN , FQCB 0, FQCD 7.5KN
C 2m 2m 15kn B 7.5KN 4m 7.5KN D
(c)
(d)
(d)
29
思考题 : 试找出下列M图的错误 。
P P
(e)
(e)
(f)
(f)
q P
(g)
(g)
(h)
(h)
30
思考题 : 试找出下列M图的错误 。
M
( j)
p
p
p
(k)
p
31
32
q
练习: 作图示结构弯矩图
q
ql l / 2
ql
l l
l/2
l
q
l
22
FPa
FPa
FPa
FPa 2FPa a a
FP
a
2FP a
a
平行
23
40
15
qa2/2
B
q C qa2/2
qa2/8
A
a
qa
↑↑↑↑↑↑↑↑
+
qa2/2
C QCB
B
QBC
M图 a
↑↑↑↑↑↑↑↑
∑MC=qa2/2+ QBCa=0 QBC=QCB=-qa/2 qa2/2
QCA
-
qa/2
QAC
(下拉)
Fy 0, FQCD 7.5KN 9
3、作内力图
C 30 B A 30 M图(KN.m)
7.5 7.5 15 FQ图(KN) A
C
D
D
FN图(KN)
FQBA 15KN , FQCB 0, FQCD 7.5KN
C 2m 2m 15kn B 7.5KN 4m 7.5KN D
(c)
(d)
(d)
29
思考题 : 试找出下列M图的错误 。
P P
(e)
(e)
(f)
(f)
q P
(g)
(g)
(h)
(h)
30
思考题 : 试找出下列M图的错误 。
M
( j)
p
p
p
(k)
p
31
32
q
练习: 作图示结构弯矩图
q
ql l / 2
ql
l l
l/2
l
q
l
22
FPa
FPa
FPa
FPa 2FPa a a
FP
a
2FP a
a
平行
23
40
工程力学31 静定平面刚架的内力计算
35
F
C
XE E
B
YE
YE
A
XE
33
FP
FP a
D
F
2FPa 2FP 0
A
E0
FP 2FP
FP
C
D
F
FP
B
0 XE E
FP
2FP YE
FP
2FP
34
C
B
FRB FP FP
变形曲线
结构的变形曲线:
1. 必须符合支座的约束条件和杆件的联结条件; 2. 必须正确反映结点线位移和角位移的方向; 3. 必须正确反映杆件的弯曲方向。
静定平面刚架的内力
1
31
❖ 由多根直杆组成 ❖ 杆件之间的结点多为刚结点
2
刚结点
❖变形特点:限制相对的转动和移动 ❖受力特点:可传递弯矩、剪力和轴力
3
32
悬臂刚架 简支刚架
三铰刚架
4
3 ❖内力类型:弯矩、剪力、轴力 ❖计算方法:截面法 ❖内力的符号规定:
弯矩:取消正负规定,弯矩图画在受拉一侧。 剪力:符号规定不变。 轴力:符号规定不变。 轴力图和剪力图习惯上同号画在同侧,标明正负
(2) 作M图
10
(3) 作FQ图
由隔离体平衡条件求杆端剪力
FQAD 1.384kN
FQBE 1.384kN
FQDC
1 6.23 6 3 3.83kN
6.23
FQCD
1 6.23
6.23
6 3
1.86kN
FQCE
1 6.23
6.23
0.985kN
11
1.384 4.5
1.384
(4) 作FN图 由结点平衡条件求杆端轴力
F
C
XE E
B
YE
YE
A
XE
33
FP
FP a
D
F
2FPa 2FP 0
A
E0
FP 2FP
FP
C
D
F
FP
B
0 XE E
FP
2FP YE
FP
2FP
34
C
B
FRB FP FP
变形曲线
结构的变形曲线:
1. 必须符合支座的约束条件和杆件的联结条件; 2. 必须正确反映结点线位移和角位移的方向; 3. 必须正确反映杆件的弯曲方向。
静定平面刚架的内力
1
31
❖ 由多根直杆组成 ❖ 杆件之间的结点多为刚结点
2
刚结点
❖变形特点:限制相对的转动和移动 ❖受力特点:可传递弯矩、剪力和轴力
3
32
悬臂刚架 简支刚架
三铰刚架
4
3 ❖内力类型:弯矩、剪力、轴力 ❖计算方法:截面法 ❖内力的符号规定:
弯矩:取消正负规定,弯矩图画在受拉一侧。 剪力:符号规定不变。 轴力:符号规定不变。 轴力图和剪力图习惯上同号画在同侧,标明正负
(2) 作M图
10
(3) 作FQ图
由隔离体平衡条件求杆端剪力
FQAD 1.384kN
FQBE 1.384kN
FQDC
1 6.23 6 3 3.83kN
6.23
FQCD
1 6.23
6.23
6 3
1.86kN
FQCE
1 6.23
6.23
0.985kN
11
1.384 4.5
1.384
(4) 作FN图 由结点平衡条件求杆端轴力
《工程力学》课题十二:静定结构的内力计算
只需求出与杆轴线垂直的反力。
1.悬臂刚架
可以不求反力,由自由端开始直接 求作内力图。
L
q ½qL²↓↓↓↓↓↓↓↓↓
L
qL² qL²
2.简支刚架弯矩图
简支型刚架绘制弯矩图时,往往
只须求出一个与杆件垂直的支座
反力,然后由支座作起。
q
l
D
qa2/2
C
l/2
l/2
q
↓↓↓↓↓↓↓↓↓↓↓↓
ql2/2
qL2/2
(3)绘制内力图(弯矩图 剪力图 轴力图)
由已求得各杆端力,分别按各杆件作内力图。
弯矩图可由已知杆端弯矩,按直杆段的区段叠加法作杆
件的弯矩图。
连接两个杆端的刚结点,若 结点上无外力偶作用,则两 个杆端的弯矩值相等,方向 相反.
M图(KN·m)
拆成单个杆,求出杆两端的所 有内力,按与单跨梁相同的方法 画内力图.
铰拱的合理拱轴线的纵
只限于三铰平拱受 竖向荷载作用
坐标与相应简支梁弯矩 图的竖标成正比。
试求图示对称三铰拱在均布荷载作用下 的合理拱轴线。
MC0=ql2/8 H=ql2/8f M0(x)=qlx/2-qx2 /2 =qx(l-x)/2
y=4fx(l-x)/l2
抛物线
拱的合理拱轴线的形状与相应的简支梁的弯矩 图相似。
三铰拱在竖向集中荷载作用下的的无荷载区段上, 合理拱轴是一条直线,并在集中荷载作用点出现转折; 在均布荷载作用区段上,合理拱轴是一条抛物线。
(2)计算杆端力 取AB杆B截面以下部分, 计算该杆B端杆端力:
MBA = 160kN·m (右侧受拉) 同理:取BD杆B截面以右部 分,计算该杆B端杆端力: MBD = 160kN·m (下侧受拉)
静定梁和刚架内力分析
(0<x<l ) (0≤x<l)
M
(-)
(c)
x
2.作剪力图和弯矩图:
由剪力方程可知,当 0 <x <l,时(即 AB 段上),剪力为 常数,因此剪力图为一条水平的直线;由弯矩方程可知,AB 梁段上沿着轴线方向弯矩呈线性变化,因此,弯矩图为一条斜 直线,只需求出两个端截面上
F A FQ x m m l
在列平衡方程求解内力时,需事先确定截面内力的方向, 而此时截面内力为未知力,因此,一般假定截面内力沿其正向 作用,则计算得到的正负号就是该截面内力的正负号。 另外,在利用截面法求解前,通常先确定支座反力,因支 座反力并无正负规定,在求支反力前可任意假设正方向。
若结果为正,则表示支反力实际方向与假设方向相同;
上所有外力对该截面形心的力矩的代数和。
其中外力对横截面形心之矩正负号选取规律为: (1)力——不论横截面左侧还是右侧,只要向上就取正,
反之取负;
(2)力偶——横截面左侧顺时针或右侧逆时针取正,反之 取负。 利用上述结论,可以不画分离体的受力图、不列平衡方 程,直接得出横截面的剪力和弯矩。这种方法称为直接法。 直接法将在以后求指定截面内力中被广泛使用。
2
求梁指定截面上的内力的方法: 剪力:梁任一横截面上的剪力在数值上等于该截面一侧梁段 上所有外力在平行于截面方向投影的代数和。 其中外力正负号选取规律为: 横截面左侧梁段上向上的外力取正,横截面右侧梁段上
向下的外力取正;反之取负。
简记为左上右下取正,反之取负。
弯矩:梁任一横截面上的弯矩在数值上等于该截面一侧梁段
若外力或外力偶矩使所考虑的梁段产生向下凸的变形(即 上部受压,下部受拉)时,等式右方取正号,反之,取负号。 此规律可简化记为“下凸弯矩正”或“左顺,右逆弯矩 正” ,相反为负。
第七章静定结构的内力计算
C
B
q a
qa 2
qa
A
a
qa
2
1.求支反力 2.分段 3.截面法求各段杆端内力值 4.用直线或曲线连接各段 5.标出数据、正负、图名
M CB
qa2 2
(下拉)
M CA
qa2 2
(右拉)
qa 2
C2
B
qa 2
2
qa 2
8
A
M
内力图的作法——剪力图
C
B
qa 2
qa
FQAC qa
FQCA 0
3m 1m
5kN
A
C
D
B
5kN 4kN
5m
4kN
5kN
FQDA
M DA
FDA
截面法计算D截面杆端内力
5kN
A
C
D
FNDC
M DC
FDC
4kN
3m 1m
B
5kN 4kN
5m
4kN
截面法计算D截面杆端内力
3m 1m
5kN
A
C
D
B
5kN 4kN
5m
4kN
FNDB
M DB
FQDB
5kN
4kN
内力图的作法——弯矩图
超静定结构
对于具有多余约束的几何不变体系,却不 能由静力平衡方程求得其全部反力和内力,这 类结构称为超静定结构
杆件类型
杆件
内力:轴力、剪力、弯矩 梁式杆
类型:梁、刚架、拱
链杆
内力:轴力 类型:桁架
梁
概念:是一种受弯构件,其轴线为直线, 有单跨和 多跨之分
单跨静定梁
6-2-2静定平面刚架的内力计算和内力图绘制.
(1)刚架任一横截面上的弯矩,其数值等于该截面任一边刚架
上所有外力对该截面形心之矩的代数和。力矩与该截面上规定的 正号弯矩的转向相反时为正,相同时为负。 (2)刚架任一横截面上的剪力,其数值等于该截面任一边刚架上 所有外力在该截面方向上投影的代数和。外力与该截面上正号剪 力的方向相反时为正,相同时为负。
作用点、分布荷载作用的起点和终点等)和杆件的连接点作为控
制截面,按刚架内力计算规律,计算各控制截面上的内力值。
国家共享型教学资源库
四川建筑职业技术学院
(3)按单跨静定梁的内力图的绘制方法,逐杆绘制内力图, 即用区段叠加法绘制弯矩图,由微分关系法绘制剪力图和轴 力图;最后将各杆的内力图连在一起,即得整个刚架的内力 图。
M BE 0
M EB FBx 4.5 62.1 kN m (右侧受拉)
M CE 0
M EC M EB 62.1 kN m
(上侧受拉)
四川建筑职业技术学院
国家共享型教学资源库
(3)绘剪力图。
FS AD FS DA 13.8 kN
FS BE FS EB 13.8 kN
四川建筑职业技术学院
例6-3 绘制图所示简支刚架的内力图。
解 (1)求支座反力。 FAx=16 kN, FBx=12 kN, FBy=24 kN
国。将刚架分为AC、CE、CD和DB
四段,取每段杆的两端为控制截面。这些截面上的内力为
MAC=0 MCA=-2kN/m×6m×3m=-36kN· m (左侧受拉) MCD= MCA=-36 kN· m (上侧受拉) MDC=-12kN×6m +12 kN· m =-60 kN· m (上侧受拉) MDB=-12kN×6m =-72 kN· m (右侧受拉) MBD=0 FSAC=0 FSCA=-2kN/m×6m=-12 kN FSCE= FSEC=16kN FSED=FSDE=-24kN FSDB=FSBD=12kN FNAC=FNCA=-16kN FNCD=FNDC=-12kN FNDB=FNBD=-24kN
工程力学中静定结构的内力计算
a
a
B XB X
YB
∑X=0 XC=XB=25kN ∑Y=0 YC=60-55=5kN ∑X=0 XA=25-40= -15kN
a
5kN
25kN
C
2m
y
25kN Fs 图
C
60kN
55kN
A
20kN· m
15k B N A 5kN
4m
25kN
B 4m
C
25kN 55kN
X
C
P2 P1 k y H A VA a3 b3 B VB H x 三铰拱与相应之简 支梁反力比较: VA =VA ° P3 B VB ° VB =VB ° HA=HB=H= MC°/f k C
P3
a2
a1 b1
b2
H=0
A VA°
P1
k1
P2 C
t
Mk
P1
y
n
k
Nk
∑Mk(F)=0, MK=[VAxk - P1 (xk- a1 )]-Hyk
FVb ×16 – 20 × 4 – 5 ×8 ×12=0
FVa=25KN FVb=35KN FHa=FHb
ΣMc=0
P=20Kn
FHa×4+20 ×4 – 25 ×8=0
FHc
FVc
FHa=30KN
FHa
4m 4m
FVa=25KN
4m
Σ Mo=0 . Mad=0 ΣХ=0. FQad+30=0
桁架的名称
上弦杆
桁高
斜杆 竖杆 下弦杆 跨度
1、按桁架的外形分为:
桁架的分类
a、三角形桁架
b、矩形桁架
《结构力学》静定结构内力计算
只承受竖向荷载和弯矩
FP1 A
FP2
B
C
基本部分:能独立承受外载。 附属部分:不能独立承受外载。
FP
A
B
C
■作用在两部分交接处的集 中力,由基本部分来承担。
FP1
FP2
A B
■基本部分上的荷载不影响附 属部分受力。
■附属部分上的荷载影响基本 部分受力。
先算附属部分, 后算基本部分。
例 确定x值,使支座B处弯矩与AB跨中弯矩相等,画弯矩图
ql ql/2
FQ图 ql
7ql/4 ql
5ql/4 ql/2
3ql/4
ql/2
练习
10kNm 20kN 10kN
10kN/m
1m 1m 1m 1m
1m 1m 10kN/m
10kNm
20kN 10kN 0
0
30kN
10kNm
20kN 10kNm
10kNm
10kNm
20kN 10kN 0
0
30kN
2m 2m
解 (1)求支反力
q=20kN/m FP=40kN
70kN
50kN
(2)取隔离体,求截面内力
MC C FQC
FP=40kN
B 50kN
(2)叠加法作弯矩图
120kNm
+
40kNm
40kNm
=
120kNm
40kNm
40kNm M图
例 试绘制梁的弯矩图。
40kNm
FP=40kN q=20kN/m
26
26
8 FQ图(kN)
6
12
M图(kNm)
24 12
例
解 (1)求支反力
建筑力学第11章静定结构的内力计算
2)联合桁架 由几个简单桁架按几何不变规律 联合组成的桁架(图 11.28(c)所示)。 3)复杂桁架 不按上述两种方式组成的其他形 式的桁架(图 11.28(d)所示)。 46
11.4.2 静定平面桁架的内力计算 (1)结点法 结点法是以桁架的结点为研究对象,适用于计 算简单桁架。当截取桁架中某一结点为隔离体后, 得到一平面汇交力系,根据平面汇交力系的平衡条 件可求得各杆内力。又因为根据平面汇交力系的平 衡条件,对于每一结点只能列出两个平衡方程,因 此每次所选研究对象(结点)上未知力的个数不应 多于两个。
13
图 11.9
14
图 11.10
15
图 11.11 静定多跨梁与简支梁的受力比较
16
11.2 静定平面刚架 11.2.1 刚架的特征 刚架是由若干根梁和柱主要用刚结点组成的结 构。当刚架各杆轴线和外力作用线都处于同一平面 内时称为平面刚架,如图 11.12(b)所示。 在刚架中,它的几何不变性主要依靠结点 刚性来维持,无需斜向支撑联系,因而可使结构内 部具有较大的净空便于使用。如图 11.12(a)所 示桁架是一几何不变体系,如果把 C 结点改为刚 结点,并去掉斜杆,则该结构即为静定平面刚架, 如图 11.12( b)所示。
6
图 11.3
7
图 11.4
8
(3)斜梁的内力图 在建筑工程中,常会遇到杆轴倾斜的斜梁,如 图11.5所示的楼梯梁等。 当斜梁承受竖向均布荷载时,按荷载分布情况 的不同,可有两种表示方式。一种如图 11.6 所示 ,斜梁上的均布荷载 q按照沿水平方向分布的方式 表示,如楼梯受到的人群荷载的情况就是这样。另 一种如图 11.7所示,斜梁上的均布荷载 q′按照沿 杆轴线方向分布的方式表示,如楼梯梁的自重就是 这种情况。
11.4.2 静定平面桁架的内力计算 (1)结点法 结点法是以桁架的结点为研究对象,适用于计 算简单桁架。当截取桁架中某一结点为隔离体后, 得到一平面汇交力系,根据平面汇交力系的平衡条 件可求得各杆内力。又因为根据平面汇交力系的平 衡条件,对于每一结点只能列出两个平衡方程,因 此每次所选研究对象(结点)上未知力的个数不应 多于两个。
13
图 11.9
14
图 11.10
15
图 11.11 静定多跨梁与简支梁的受力比较
16
11.2 静定平面刚架 11.2.1 刚架的特征 刚架是由若干根梁和柱主要用刚结点组成的结 构。当刚架各杆轴线和外力作用线都处于同一平面 内时称为平面刚架,如图 11.12(b)所示。 在刚架中,它的几何不变性主要依靠结点 刚性来维持,无需斜向支撑联系,因而可使结构内 部具有较大的净空便于使用。如图 11.12(a)所 示桁架是一几何不变体系,如果把 C 结点改为刚 结点,并去掉斜杆,则该结构即为静定平面刚架, 如图 11.12( b)所示。
6
图 11.3
7
图 11.4
8
(3)斜梁的内力图 在建筑工程中,常会遇到杆轴倾斜的斜梁,如 图11.5所示的楼梯梁等。 当斜梁承受竖向均布荷载时,按荷载分布情况 的不同,可有两种表示方式。一种如图 11.6 所示 ,斜梁上的均布荷载 q按照沿水平方向分布的方式 表示,如楼梯受到的人群荷载的情况就是这样。另 一种如图 11.7所示,斜梁上的均布荷载 q′按照沿 杆轴线方向分布的方式表示,如楼梯梁的自重就是 这种情况。
建筑力学与结构选型第4章 静定杆系结构内力分析
A
2 k N /m A D F Ax F Ay
6kN B C F By
由
2m
F
2m
y
C
0
2m
B
则 解得
FAy FBy 2 2 6
FAy 8kN
( ↑)
解得
由
F
x
0
FAx 0
6kN (2)用截面法求指定截面的内力 k N /m A C 求截面C的弯矩 2m 2m B 2m D
第 4章
静定杆系结构内力分析
4.1 杆件的基本变形与内力 4.2 单跨静定梁的内力计算与内力图 4.3 多跨静定梁的内力计算与内力图 4.4 静定平面刚架的内力计算与内力图
4.5 静定三铰拱
4.6 静定平面桁架
4.1 杆件的基本变形及内力
4.1.1 内力和截面法
内力是荷载在构件内部的传递方式。
F F F F F F
非圆截面等直杆(如巨型截面梁和箱形梁)的扭转较复杂,截 面将发生翘曲
4.2 单跨静定梁的内力计算与内力图
梁的特点: 荷载垂直于杆件轴线的横向荷载,变形以挠曲为主。 起横向连接作用,是间接传力构件。
简支梁的变形图
悬臂梁的变形图
4.2.1单跨静定梁的基本形式
简支梁
简支斜梁
悬臂梁
伸臂梁
4.2.2 梁式杆指定截面内力的计算
2 k N /m A F Ax F Ay
6kN B C F By
由 解得
M
C
0
FNC
MC
C FQC右
B 2kN
M C FBy 2 4kN m()
2kN/m B D A
求A左截面的剪力 MC
由
2 k N /m A D F Ax F Ay
6kN B C F By
由
2m
F
2m
y
C
0
2m
B
则 解得
FAy FBy 2 2 6
FAy 8kN
( ↑)
解得
由
F
x
0
FAx 0
6kN (2)用截面法求指定截面的内力 k N /m A C 求截面C的弯矩 2m 2m B 2m D
第 4章
静定杆系结构内力分析
4.1 杆件的基本变形与内力 4.2 单跨静定梁的内力计算与内力图 4.3 多跨静定梁的内力计算与内力图 4.4 静定平面刚架的内力计算与内力图
4.5 静定三铰拱
4.6 静定平面桁架
4.1 杆件的基本变形及内力
4.1.1 内力和截面法
内力是荷载在构件内部的传递方式。
F F F F F F
非圆截面等直杆(如巨型截面梁和箱形梁)的扭转较复杂,截 面将发生翘曲
4.2 单跨静定梁的内力计算与内力图
梁的特点: 荷载垂直于杆件轴线的横向荷载,变形以挠曲为主。 起横向连接作用,是间接传力构件。
简支梁的变形图
悬臂梁的变形图
4.2.1单跨静定梁的基本形式
简支梁
简支斜梁
悬臂梁
伸臂梁
4.2.2 梁式杆指定截面内力的计算
2 k N /m A F Ax F Ay
6kN B C F By
由 解得
M
C
0
FNC
MC
C FQC右
B 2kN
M C FBy 2 4kN m()
2kN/m B D A
求A左截面的剪力 MC
由
静定刚架内力计算
-3
3m
3m 9kN
cos 2 5
lDC lEC 3.35m
-
0.45
-
5.82
-
N图(kN)
9
6D
ααQQC1CCN.CENC7DE9D↓C↓↓47α↓k.↓1N↓α6↓/m3.58 E
1.79 3.13QDC2
Q 2
EC
NC 9E
校∑Q核NX∑Q∑QNXMCCNMMECEDEDCE=XC(D=CE==N1C3=2=6.C07-3-66+EYN.9.-+4+N55Q(7D5333k83.kC.C(.E.8N131.31kN×DCc532.)63N×o18×=)kkks23cQ4N3NN+1o×.D4.0s3+7C5.5149×1=.×+57.()51973s02+..si.5n51i3n8+6.+03+315(+..1731Q2.975)E9QsC50in=C3E.5=008)00cos
绘制图示刚 架的弯矩图
仅绘M图,并不需要 求出全部反力.
先由AD ∑Y=0
得 YA=80kN
A ↓↓↓↓↓↓↓↓↓↓
D 120
E q=20kN/m
80kN 90
120 ↓↓↓↓↓↓↓↓
F
C
180 MEA=80×6-½ ×2200×k6N²=120
60
120
62.5
180
再由整体
∑X=0 得 XB=20kN
状特征和绘制内力图的叠加法。
4.会恰当选取分离体和平衡方程计算静定结构的内力。如何选取视具体情况(结构情 况、荷载情况)而定。当不知如何下手时,宜考察结构的几何组成。
3m
3m 9kN
cos 2 5
lDC lEC 3.35m
-
0.45
-
5.82
-
N图(kN)
9
6D
ααQQC1CCN.CENC7DE9D↓C↓↓47α↓k.↓1N↓α6↓/m3.58 E
1.79 3.13QDC2
Q 2
EC
NC 9E
校∑Q核NX∑Q∑QNXMCCNMMECEDEDCE=XC(D=CE==N1C3=2=6.C07-3-66+EYN.9.-+4+N55Q(7D5333k83.kC.C(.E.8N131.31kN×DCc532.)63N×o18×=)kkks23cQ4N3NN+1o×.D4.0s3+7C5.5149×1=.×+57.()51973s02+..si.5n51i3n8+6.+03+315(+..1731Q2.975)E9QsC50in=C3E.5=008)00cos
绘制图示刚 架的弯矩图
仅绘M图,并不需要 求出全部反力.
先由AD ∑Y=0
得 YA=80kN
A ↓↓↓↓↓↓↓↓↓↓
D 120
E q=20kN/m
80kN 90
120 ↓↓↓↓↓↓↓↓
F
C
180 MEA=80×6-½ ×2200×k6N²=120
60
120
62.5
180
再由整体
∑X=0 得 XB=20kN
状特征和绘制内力图的叠加法。
4.会恰当选取分离体和平衡方程计算静定结构的内力。如何选取视具体情况(结构情 况、荷载情况)而定。当不知如何下手时,宜考察结构的几何组成。
静定平面刚架内力图的绘制(精)
静定平面刚架
M CD
F NDA M
DA
FNCD
F QDA
F
N C B
FQCD M CB
FQCB FNCB
M
C B
F
Q C B
M=30kNm
F A x= 2 0 k N F Ay= 2 .5 k N
FQDA MDA
MDC FNDC FQDC
FNDA
(c)
F
B y
= 2 .5 k N
静定平面刚架
3)内力图的制作
静定平面刚架
刚架的内力分析和内力图的绘制
(1)先求出支座反力,一般支座反力只有三个,由平衡方 程求得。三铰刚架支座反力有四个,可利用中间铰处弯矩为 零的条件建立一个补充方程,求出后应校核。 (2)根据外荷载的作用情况,将刚架分成若干段,求出各控 制截面的内力值(分段、定点)。 (3)画M图时,将各杆段两端弯矩竖标画在受拉侧,连以直 线,在此连线的基础上再叠加上同跨度上作用相同荷载的简支梁 的弯矩图(连线)。
M图(kN· m)
Q图(kN)
N图(kN)
NDA 2.5kN QDA 40kN
左侧受拉
M DA 120kN m M DC 90kN m
上侧受拉
QDC 2.5kN
N DC 40kN
NCB 2.5kN QCB 40kN
右侧受拉
QCD 2.5kN
上侧受拉
NCD 40kN
M CB 80kN m M CD 80kN m
(4)绘剪力图、轴力图必须标正、负号,可以画在杆件的任
一侧;绘弯矩图不必标正负号,弯矩图绘在受拉一侧。
静定平面刚架
例:作图示刚架的内力图
建筑力学,第六章内力及内力图,武汉理工
6.1 轴心拉压杆件的内力及内力图
6.1 轴心拉压杆件的内力及内力图
6.1 轴心拉压杆件的内力及内力图
6.1 轴心拉压杆件的内力及内力图
6.1 轴心拉压杆件的内力及内力图
轴力:杆横截面上分布内力的合力沿杆轴线方向的分量 称为轴力,用符号N表示。 轴力N的正负号规定:拉为正、压为负。 轴力方程:轴力N与杆横截面位置坐标x之间 P 的函数关系表达式。 轴力图:用来表示轴力随截面位置不同 而变化的情况的图形。
3. 绘制扭矩图
Tmax 2.87kN m
T3 2.87
AC段为危险截面。
– 0.95
1.59
T (kN m)
讨论题
6.3 平面弯曲梁的内力及内力图
受力特点:杆件受有作用线垂直于杆轴 的横向力或作用面与杆轴共面的外力偶 作用。 变形特点:杆轴线由直线变为曲线;杆 的横截面形心在垂直于杆轴的方向有位 移(挠度);杆的横截面绕某个轴发生 转动(转角)。
例11 作图示简支梁的内力图。
例12 求作图示伸臂梁的FQ、M图
例12 续
例13 比较图示斜梁和简支梁的异同
多跨静定梁的内力分析 多跨静定梁是由相互在端部铰接、水平放置的若干直杆件 与大地通过支座连接而成的结构。
多跨静定梁的组成及传力特征
多跨静定梁的组成及传力特征
对图示梁进行几何组成分 析:……根据各杆之间的依赖、 支承关系,引入以下两个概念: 基本部分:结构中不依赖于其它 部分而独立与大地形成几何不变 体的部分。 附属部分:结构中依赖基本部分 的支承才能保持几何不变的部分。
解 (1) 计算外力偶矩 PA M eA 9549 n 120 9549 Nm 300 3819.6N m 3.82kN m
飞机结构力学课件3-2
五、静定结构的主要特性
由基本特性可以派生出以下几个特性:
(1)静定结构无初内力:支座微小位移、温度改变、 元件的制造误差不产生反力和内力。 (2)当平衡力系作用在静定结构的某一几何不变部分 上时,只有该几何不变部分受力,其它部分不受力。 (3)在结构某几何不变部分上载荷做等效变换时,载 荷变化部分之外的反力和内力不变。
建立静力平衡方程:
N (x1) H1 500kg
Q( x1 )
R1
375kg
M (x1) H1 h R1 x1
125000 375x1
(0 x1 b / 2)
例1 求图示刚架的内力
2、求内力 (2)求截面内力
再在右段上任取一截面IV-IV,截取分离体:
建立静力平衡方程:
QN((xx22))
空间梁
y
z
x
二、静定刚架组成规则
1、平面刚架的组成规则 (1)逐次连接杆子法:简单刚架
从某一基础或几何不变体开始,每增加一个平面 杆件,用一个刚性接头将该杆件连接在基础上,这样 依次用刚性接头连接杆子,将组成静定的简单刚架。
二、静定刚架组成规则
1、平面刚架的组成规则
(2)逐次连接刚架法:复合刚架
例2 绘制图示刚架的内力图。
(说明:题中如无特别指明,仅绘制弯矩图。)
解:
1、作几何特性分析
1-2-5、5-3-4为两个简 单刚架,并和基础一起形 成三个平面刚片,利用三 刚片规则可知,该刚架为 无多余约束的几何不变体, 故为静定的。
例2 绘制图示刚架的内力图。
(说明:题中如无特别指明,仅绘制弯矩图。)
无多余约束,可 以承弯。
• 平面刚性接头:相当于起3个约束; • 空间刚性接头:相当于起6个约束。
静定结构的内力计算
编辑ppt
基本部分: 结构中不依赖于其它部分而独立与 大地形成几何不变的部分。
附属部分: 结构中依赖基本部分的支承才能保 持几何不变的部分。
把结构中各部分之间的这种依赖、支承关系形象 的画成如图示的层叠图,可以清楚的看出多跨静定 梁所具有的如下特征: 1) 组成顺序:先基本部分,后附属部分; 2) 传力顺序:先附属部分,后基本部分。
基线接力法概念。
3、直杆段弯矩图的区段叠加法 直杆区段的弯矩图叠加可利用简支梁的弯矩图叠加 法。其步骤是: (1)计算直杆区段两端的最后弯矩值,以杆轴为 基线画出这两个值的竖标,并将两竖标连一直线; (2)将所连直线作为新的基线,叠加相应简支梁 在跨间荷载作用下的弯矩图。
编辑ppt
编辑ppt
例16-1-2 作图示简支梁的内力图。
力。剪力图的控制截面在C、DL和DR,而弯矩
图取截面C即可,综合考虑,取控制截面为截面C、
DL和DR。
编辑ppt
(2)计算控制截面的剪 力并作FQ图 取支座B以左: FQBC= 60×4/5= 48 kN 取支座B以左: FQBD = 60×4/5
–140.67 = - 92.67 kN编辑ppt
解:(1)画层叠图
(2)计算各单跨梁的约束力
按层叠图以次画出各单跨梁的受力图,注意杆
BC在杆端只有竖向约束力,并按由上向下的顺序
分别计算。
(3)作内力图
编辑ppt
说明:本例中杆BC是不直接与大地相连的杆件, 称这类杆为有悬跨多跨静定梁。当仅有竖向荷载作 用时,悬跨梁可视为附属部分;当是任意的一般荷 载作用时,杆BC不能视为附属部分,杆CE部分 也不能作为基本部分。
∑MC=0 FAy×4-20 +(5×√2×√2/2-10)×2
基本部分: 结构中不依赖于其它部分而独立与 大地形成几何不变的部分。
附属部分: 结构中依赖基本部分的支承才能保 持几何不变的部分。
把结构中各部分之间的这种依赖、支承关系形象 的画成如图示的层叠图,可以清楚的看出多跨静定 梁所具有的如下特征: 1) 组成顺序:先基本部分,后附属部分; 2) 传力顺序:先附属部分,后基本部分。
基线接力法概念。
3、直杆段弯矩图的区段叠加法 直杆区段的弯矩图叠加可利用简支梁的弯矩图叠加 法。其步骤是: (1)计算直杆区段两端的最后弯矩值,以杆轴为 基线画出这两个值的竖标,并将两竖标连一直线; (2)将所连直线作为新的基线,叠加相应简支梁 在跨间荷载作用下的弯矩图。
编辑ppt
编辑ppt
例16-1-2 作图示简支梁的内力图。
力。剪力图的控制截面在C、DL和DR,而弯矩
图取截面C即可,综合考虑,取控制截面为截面C、
DL和DR。
编辑ppt
(2)计算控制截面的剪 力并作FQ图 取支座B以左: FQBC= 60×4/5= 48 kN 取支座B以左: FQBD = 60×4/5
–140.67 = - 92.67 kN编辑ppt
解:(1)画层叠图
(2)计算各单跨梁的约束力
按层叠图以次画出各单跨梁的受力图,注意杆
BC在杆端只有竖向约束力,并按由上向下的顺序
分别计算。
(3)作内力图
编辑ppt
说明:本例中杆BC是不直接与大地相连的杆件, 称这类杆为有悬跨多跨静定梁。当仅有竖向荷载作 用时,悬跨梁可视为附属部分;当是任意的一般荷 载作用时,杆BC不能视为附属部分,杆CE部分 也不能作为基本部分。
∑MC=0 FAy×4-20 +(5×√2×√2/2-10)×2
结构力学§3-3静定平面刚架
截面法与轴力图
截面法
截面法是结构力学中一种常用的求内 力的方法。通过在需要求内力的截面 上施加一个假想的单位力,然后根据 平衡条件求出该截面上的内力。
轴力图
轴力图是一种表示杆件轴向力的图形 ,可以直观地展示杆件在不同位置的 轴向力大小和方向。通过轴力图可以 方便地分析杆件的受力情况。
弯矩与剪力分析
刚架的稳定性分析
01
02
03
04
稳定性分析是静定刚架设计中 非常重要的一环,主要关注的 是刚架在载荷作用下是否会发 生屈曲或失稳。
稳定性分析是静定刚架设计中 非常重要的一环,主要关注的 是刚架在载荷作用下是否会发 生屈曲或失稳。
稳定性分析是静定刚架设计中 非常重要的一环,主要关注的 是刚架在载荷作用下是否会发 生屈曲或失稳。
稳定性分析是静定刚架设计中 非常重要的一环,主要关注的 是刚架在载荷作用下是否会发 生屈曲或失稳。
刚架的优化设计
优化设计是静定刚架设计中非常重要的一环,主 要目的是在满足各种限制条件的前提下,使刚架 的结构更加合理、经济和高效。
优化设计需要考虑各种可能的载荷组合和边界条 件,同时还需要考虑材料、制造和安装等方面的 因素。
02
静定平面刚架的内力分析
内力的概念与计算
内力的概念
内力是指物体在受力过程中,各部分之间相互作用力。在结 构力学中,内力是描述结构内部各部分之间相互作用的力。
内力的计算
内力的计算方法主要有截面法和偏心距法。截面法是通过在 需要求内力的截面上施加一个假想的单位力,然后根据平衡 条件求出该截面上的内力。偏心距法则是利用杆件轴线上的 偏心距来计算内力。
结构力学§3-3静定平面刚架
目
CONTENCT
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
叠加大小集中力点处:力的方向叠加 (特别地,当α=b时代入式子为 )均布荷载中点:
MAB=0MBA=qα2(左)MDC=0MCD=qα×2α=2qα2(右)
MBC=qα2(上)MCB=2qα2(上)
CD段间无荷载,直接用斜线连接即可。
受力处E点的弯矩向力的方向移M= = ,与原有的弯矩叠加后为0,再用直线连接即可。
静定刚架的内力计算及内力图(步骤)
求如图所示的刚架内力图:
解:(1)求支座反力。
ΣΧ=0求得XD=qα( )ΣMA=0求得YD= qα( )ΣY=0解得YA= qα( )
(2)画轴力图N
NAB=- qα(压)NAC=-qα(压)NCD=- qα(压)
求轴力可以从任一侧求,可设为正(即拉),按平衡求出为正值即为拉,负值即为压。
注:不管是简支梁与否,受力处的叠加都是加上M= 。
受均布荷载的中点处叠加的弯矩的大小是向力的方向移动M= 注:此处所说的简支是两端有支撑即可。
在刚节点处无集中力偶,则节点处横杆与竖杆的弯矩图均在内或均在外,且该点弯矩均相等。如本例中的两个刚节点。
最大弯矩的位置,剪力为0处弯矩最大,弯矩在距端点处的断点处剪力除以均布荷载即是最大弯矩到该端点的距离。
(4)画弯矩图(刚架内侧受拉为正,外侧受拉为负)
区段叠加的控制点为1端部2均布荷载的起止点3其他的位置可分开求或叠加(一般在一个段内有集中力作用在均布荷载的位置上时,在集中力处分开。)
先求每根杆两端的弯矩,用虚线连接,段间空载的直接连接,有力的叠加。
M图特点:1均布荷载:抛物线2无荷载:直线3集中力:与力一致的方向产生尖点
注:轴力图画在哪侧皆可,但V
VAE=0VEB=-qαVDC=qαVBC= qαVCB=- qαvcd=qα
特点:没有荷载部分为平直线,有均布荷载部分为斜直线。剪力图V如下
剪力图画在哪侧皆可,但一定要标出正负号。求剪力时外力相对截面型心为顺时针即为正,逆时针即为负。
注:在计算弯矩时,物体上不管对哪一点求弯矩,力偶都必须加在内。不管力偶过不过该点。(所说为分离出来计算的部分上得弯矩)
MAB=0MBA=qα2(左)MDC=0MCD=qα×2α=2qα2(右)
MBC=qα2(上)MCB=2qα2(上)
CD段间无荷载,直接用斜线连接即可。
受力处E点的弯矩向力的方向移M= = ,与原有的弯矩叠加后为0,再用直线连接即可。
静定刚架的内力计算及内力图(步骤)
求如图所示的刚架内力图:
解:(1)求支座反力。
ΣΧ=0求得XD=qα( )ΣMA=0求得YD= qα( )ΣY=0解得YA= qα( )
(2)画轴力图N
NAB=- qα(压)NAC=-qα(压)NCD=- qα(压)
求轴力可以从任一侧求,可设为正(即拉),按平衡求出为正值即为拉,负值即为压。
注:不管是简支梁与否,受力处的叠加都是加上M= 。
受均布荷载的中点处叠加的弯矩的大小是向力的方向移动M= 注:此处所说的简支是两端有支撑即可。
在刚节点处无集中力偶,则节点处横杆与竖杆的弯矩图均在内或均在外,且该点弯矩均相等。如本例中的两个刚节点。
最大弯矩的位置,剪力为0处弯矩最大,弯矩在距端点处的断点处剪力除以均布荷载即是最大弯矩到该端点的距离。
(4)画弯矩图(刚架内侧受拉为正,外侧受拉为负)
区段叠加的控制点为1端部2均布荷载的起止点3其他的位置可分开求或叠加(一般在一个段内有集中力作用在均布荷载的位置上时,在集中力处分开。)
先求每根杆两端的弯矩,用虚线连接,段间空载的直接连接,有力的叠加。
M图特点:1均布荷载:抛物线2无荷载:直线3集中力:与力一致的方向产生尖点
注:轴力图画在哪侧皆可,但V
VAE=0VEB=-qαVDC=qαVBC= qαVCB=- qαvcd=qα
特点:没有荷载部分为平直线,有均布荷载部分为斜直线。剪力图V如下
剪力图画在哪侧皆可,但一定要标出正负号。求剪力时外力相对截面型心为顺时针即为正,逆时针即为负。
注:在计算弯矩时,物体上不管对哪一点求弯矩,力偶都必须加在内。不管力偶过不过该点。(所说为分离出来计算的部分上得弯矩)