反比例函数的知识点的总结
反比例函数知识点总结
![反比例函数知识点总结](https://img.taocdn.com/s3/m/c64bd5adb9f67c1cfad6195f312b3169a451eab7.png)
反比例函数知识点总结一、定义和性质y=k/x其中k为常数,称为反比例函数的比例常数。
1.y随着x的增加而减小,或随着x的减小而增加。
2.当x=0时,函数y无定义。
3.曲线y=k/x在第一象限中,以坐标轴为渐近线。
二、图像和图像特征第一象限:当x>0时,y>0,两者同号,图像在该象限中呈现右上方向的增长,且随着x增大而逐渐降低,但不会等于0。
这个分支与y轴无交点,但是它和x轴的交点是(1/k,k)。
第二象限:当x<0时,y<0,两者异号,图像在该象限中呈现左下方向的增长,且随着x减小而逐渐增大,但不会等于0。
这个分支与y轴无交点,但是它和x轴的交点是(-1/k,-k)。
三、定义域和值域四、解析表达式五、反比例函数的性质与变换1.反比例函数的比例常数k越大,曲线的形状越平缓,即曲线与坐标轴之间的夹角越小。
2.反比例函数的图像关于y轴对称。
3.对于反比例函数的图像,x轴和y轴是渐近线,即曲线会无限接近x轴和y轴。
4.若给定一个特定的函数值y0,可以通过求解方程y0=k/x,得到x 与y的关系式。
六、反比例函数的应用1.马力与速度的关系:汽车的马力与速度成反比例关系,马力越大,达到其中一速度所需的时间越短。
2.投资收益与投资金额的关系:在一些投资项目中,投资收益与投资金额成反比例关系,这意味着投资金额较小的项目可能会有更高的投资收益率。
3.速度与时间的关系:在物理学中,速度和时间是反比例关系,速度越大,所需的时间越短。
4.电阻与电流的关系:根据欧姆定律,电阻与电流成反比例关系,电阻越大,所能通过的电流越小。
总结:反比例函数是一类常见的函数关系,具有重要的应用价值。
对于反比例函数的定义和性质,需要了解其图像特征以及定义域和值域的范围。
同时,反比例函数可以通过解析表达式表示,并具有一些特殊的性质和变换规律。
在实际生活中,反比例函数有着广泛的应用,例如在汽车马力与速度的关系、投资收益与投资金额的关系、速度与时间的关系以及电阻与电流的关系等方面。
反比例函数知识点知识点总结
![反比例函数知识点知识点总结](https://img.taocdn.com/s3/m/3f3b14763069a45177232f60ddccda38376be190.png)
反比例函数知识点知识点总结反比例函数知识点总结一、反比例函数的定义一般地,如果两个变量 x、y 之间的关系可以表示成 y = k/x(k 为常数,k ≠ 0)的形式,那么称 y 是 x 的反比例函数。
其中,x 是自变量,y 是函数。
需要注意的是,反比例函数中自变量 x 的取值范围是x ≠ 0,因为在分式中,分母不能为 0。
二、反比例函数的表达式反比例函数常见的表达式有以下三种形式:1、 y = k/x(k 为常数,k ≠ 0)2、 xy = k(k 为常数,k ≠ 0)3、 y = kx^(-1)(k 为常数,k ≠ 0)这三种形式在本质上是相同的,只是表现形式有所不同,可以根据具体问题的情境选择合适的形式。
三、反比例函数的图象反比例函数的图象是双曲线。
当 k > 0 时,双曲线的两支分别位于第一、三象限,在每一象限内y 随 x 的增大而减小;当 k < 0 时,双曲线的两支分别位于第二、四象限,在每一象限内y 随 x 的增大而增大。
反比例函数的图象是以原点为对称中心的中心对称的两条曲线。
四、反比例函数图象的性质1、对称性关于原点对称:若点(a,b)在反比例函数图象上,则点(a,b)也在图象上。
关于直线 y = ±x 对称:若点(a,b)在反比例函数图象上,则点(b,a)和(b,a)也在图象上。
2、渐近线当x → 0 或x → ±∞ 时,曲线无限接近 x 轴和 y 轴,但永远不会与坐标轴相交。
3、增减性在每个象限内,函数值 y 随自变量 x 的变化而变化。
当 k > 0 时,在同一象限内,y 随 x 的增大而减小;当 k < 0 时,在同一象限内,y 随 x 的增大而增大。
五、反比例函数中 k 的几何意义1、过反比例函数 y = k/x(k ≠ 0)图象上任意一点 P 作 x 轴、y 轴的垂线 PM、PN,垂足为 M、N,则矩形 PMON 的面积 S = PM × PN =|y| ×|x| =|xy| =|k|。
反比例函数知识点集锦
![反比例函数知识点集锦](https://img.taocdn.com/s3/m/b8eaccd5f01dc281e53af0bd.png)
反比例函数知识点集锦一、反比例函数的概念1.反比例函数的概念 一般地,函数k y x=(k 是常数,k ≠0)叫做反比例函数.反比例函数的解析式也可以写成1y kx -=的形式.自变量x 的取值范围是x ≠0的一切实数,函数的取值范围也是一切非零实数.2.反比例函数k y x=(k 是常数,k ≠0)中x ,y 的取值范围 反比例函数k y x =(k 是常数,k ≠0)的自变量x 的取值范围是不等于0的任意实数,函数值y 的取值范围也是非零实数.二、反比例函数的图象和性质1.反比例函数的图象与性质(1)图象:反比例函数的图象是双曲线,它有两个分支,这两个分支分别位于第一、三象限,或第二、四象限.由于反比例函数中自变量x ≠0,函数y ≠0,所以,它的图象与x 轴、y 轴都没有交点,即双曲线的两个分支无限接近坐标轴,但永远达不到坐标轴. (2)性质:当k >0时,函数图象的两个分支分别在第一、三象限,在每个象限内,y 随x 的增大而减小.当k <0时,函数图象的两个分支分别在第二、四象限,在每个象限内,y 随x 的增大而增大.2.反比例函数图象的对称性反比例函数的图象既是轴对称图形,又是中心对称图形,其对称轴为直线y=x和y=-x,对称中心为原点.3.注意(1)画反比例函数图象应多取一些点,描点越多,图象越准确,连线时,要注意用平滑的曲线连接各点.(2)随着|x|的增大,双曲线逐渐向坐标轴靠近,但永远不与坐标轴相交,因为反比例函数kyx=中x≠0且y≠0.(3)反比例函数的图象不是连续的,因此在谈到反比例函数的增减性时,都是在各自象限内的增减情况.当k>0时,在每一象限(第一、三象限)内y随x的增大而减小,但不能笼统地说当k>0时,y随x的增大而减小.同样,当k<0时,也不能笼统地说y随x 的增大而增大.三、反比例函数解析式的确定1.待定系数法确定解析式的方法仍是待定系数法,由于在反比例函数kyx=中,只有一个待定系数,因此只需要一对对应值或图象上的一个点的坐标,即可求出k的值,从而确定其解析式.2.待定系数法求反比例函数解析式的一般步骤(1)设反比例函数解析式为kyx=(k≠0);(2)把已知一对x,y的值代入解析式,得到一个关于待定系数k的方程;(3)解这个方程求出待定系数k;(4)将所求得的待定系数k的值代回所设的函数解析式.四、反比例函数中|k|的几何意义1.反比例函数图象中有关图形的面积2.涉及三角形的面积型当一次函数与反比例函数结合时,可通过面积作和或作差的形式来求解.(1)正比例函数与一次函数所围成的三角形面积.如图①,S △ABC =2S △ACO =|k |;(2)如图②,已知一次函数与反比例函数k y x=交于A 、B 两点,且一次函数与x 轴交于点C ,则S △AOB =S △AOC +S △BOC =1||2A OC y ⋅+1||2B OC y ⋅=1(||||)2A B OC y y ⋅+; (3)如图③,已知反比例函数k y x =的图象上的两点,其坐标分别为()A A x y ,,()B B x y ,,C 为AB 延长线与x 轴的交点,则S △AOB =S △AOC –S △BOC =1||2A OC y ⋅–1||2B OC y ⋅=1(||||)2A B OC y y ⋅-. 五、反比例函数与一次函数的综合1.涉及自变量取值范围型当一次函数11y k x b =+与反比例函数22k y x=相交时,联立两个解析式,构造方程组,然后求出交点坐标.针对12y y >时自变量x 的取值范围,只需观察一次函数的图象高于。
反比例函数知识点总结
![反比例函数知识点总结](https://img.taocdn.com/s3/m/e053853cfad6195f312ba6c3.png)
反比例函数的定义:
(1)判定一个函数为反比例函数的条件:
①所给等式是形如y=k
x或y=kx-1或xy=k的等式;
②比例系数k是常数,且k≠0.
(2)y是x的反比例函数⇔函数解析式为y=k
x或y=kx-1或xy=k (k为常数,k≠0).
求反比例函数的表达式,就是确定反比例函数表达式
y =k
x(k≠0)中常数k的值,它一般需经历:“设→代→求→还原”这四步.
即:(1)设:设出反比例函数表达式y=k
x(k≠0);
(2)代:将所给的数据代入函数表达式;
(3)求:求出k的值;
(4)还原:写出反比例函数的表达式.
要点分析:由于反比例函数的表达式中只有一个待定系数k,因此求反比例函数的表达式只需一组对应值或一个条件即可
反比例函数图象
图象的画法:
(1)反比例函数的图象是双曲线;
(2)画反比例函数的图象要经过“列表、描点、连线”这三个步骤.
对称性:
双曲线既是一个轴对称图形又是一个中心对称图形.
对称轴有两条,分别是直线y=x与直线y=-x;
对称中心是坐标原点,任何一条经过原点的直线只要与双曲线有两个交点,则这两个交点关于原点对称.
反比例函数的图象性质
反比例函数中k的几何性质:
过双曲线y=k
x(k≠0) 上任一点向两坐标轴作垂线所得的矩形面积等于|k|;
过双曲线y=k
x(k≠0) 上任一点向一坐标轴作垂线且与原点连线所得的三角形面积等于
2
1
|k|.。
反比例函数知识点梳理
![反比例函数知识点梳理](https://img.taocdn.com/s3/m/8217d890b8f3f90f76c66137ee06eff9aef8490d.png)
反比例函数知识点梳理
1. 反比例函数的定义
反比例函数是指当自变量 x 不为零时,函数值 y 的变化遵循比例关系,其中比例常数 k 不等于 0,即 y = k/x。
通常我们把它写成y = k/x+b,其中 b 为常数。
2. 反比例函数的图像
反比例函数的图像在 x 轴上有一个垂线渐近线,而在 y 轴上具有一个水平渐近线。
当 x 接近 0 时,y 显著变化,而当 x 变得很大时,y 变得很小。
例如,如果 k = 1,则函数 y = 1/x+b 的图像看起来如下:
3. 反比例函数的性质
反比例函数的图像不会穿过垂线渐近线和水平渐近线。
当自变量 x 非常大或非常小时,反比例函数的值渐近于 0。
反比例函数也不具有最大值或最小值。
4. 反比例函数的应用
反比例函数有很多实际应用,如工业、商业、科学等领域。
例如,在数学中,它可用于表征第一定律的 Ohm 定律,即电流与电压成反比例关系。
5. 反比例函数的问题解决
解决反比例函数问题的关键在于找到比例常数 k 和常数 b。
这可以通过已知的点对、图像或其他信息来确定。
以上是反比例函数的知识点梳理,希望对您有所帮助。
反比例知识点总结
![反比例知识点总结](https://img.taocdn.com/s3/m/6caf2b10bf23482fb4daa58da0116c175f0e1e93.png)
反比例是数学中一种重要的函数关系,主要出现在初中数学的学习内容中。
以下是反比例函数的相关知识点总结:1. 定义:两种相关联的变量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的乘积一定,那么我们就称这两种量成反比例关系。
表达式为:y = k/x (k ≠0),其中,k 是常数,x 是自变量,y 是因变量。
2. 图像特征:反比例函数的图像是一条双曲线,分布在第一、三象限或第二、四象限,具体分布取决于k的正负。
函数图像关于原点成中心对称。
3. 性质:在每个象限内,从左到右,y随x的增大而减小;反之,y随x 的减小而增大。
图像永远不会与坐标轴相交。
如果点(x1, y1)在反比例函数图像上,那么点(-x1, -y1)、(y1, x1)也在该图像上。
4. 应用:反比例关系广泛存在于现实生活中的各种问题,如物理学中的功率与时间的关系,化学中的反应速率与反应物浓度的关系,经济学中的价格与需求量的关系等。
5. 解题方法:遇到求反比例函数解析式的问题,通常可以通过找出满足函数关系的两个对应值,代入公式求解k值。
对于图像和性质的分析,可以根据上述性质进行判断和解答。
反比例函数在数学中的意义主要体现在它描述了一种特殊的变量关系,这种关系是两个变量之间乘积恒定的规律。
具体来说:1. 定义与形式:如果两个变量x和y之间的关系可以表示为y = k/x(其中k是不为零的常数),那么我们称y是x的反比例函数。
这里的k是比例系数,决定了曲线的形状和位置。
2. 关系特征:反比例函数反映的是两个变量成反向变化的关系,即一个变量增大时,另一个变量会按相同的比例减小,以保持它们乘积的不变性。
3. 几何意义:反比例函数在坐标平面上的图像是一条双曲线,分布在第一、三象限或第二、四象限,取决于系数k的正负。
双曲线具有对称性,并且永远不会与坐标轴相交。
4. 实际应用:反比例函数关系广泛存在于现实生活中的多个领域,如物理学中的力矩和力臂的关系、电流强度与电阻的关系(欧姆定律)、经济学中的价格和需求量的关系等。
初三反比例函数知识点
![初三反比例函数知识点](https://img.taocdn.com/s3/m/10efc2d86429647d27284b73f242336c1fb93067.png)
初三反比例函数知识点反比例函数知识点概述一、反比例函数的定义反比例函数是形如y = k/x (k ≠ 0,x ≠ 0) 的函数,其中 k 为常数,称为比例常数,x 为自变量,y 为因变量。
二、反比例函数的图象1. 形状:反比例函数的图象是一组双曲线。
2. 位置:当 k > 0 时,图象位于第一和第三象限;当 k < 0 0 时,图象位于第二和第四象限。
3. 对称性:反比例函数的图象关于原点对称。
三、反比例函数的性质1. 单调性:在每一象限内,随着 x 的增大,y 也增大;随着 x 的减小,y 也减小。
2. 无界性:当 x 趋向于 0 时,y 趋向于无穷大;当 x 趋向于无穷大时,y 趋向于 0。
3. 交点:反比例函数的图象不与 x 轴和 y 轴相交。
四、反比例函数的应用反比例函数常用于描述两个变量间的反比关系,如物理中的压力与体积的关系(波义耳定律),化学中的浓度与体积的关系等。
五、反比例函数的运算1. 复合函数:若有两个反比例函数 y = k1/x 和 w = k2/z,它们的复合函数为 v = (k1/x) / (k2/z) = (k1/k2) * z/x。
2. 反函数:反比例函数的反函数仍然是一个反比例函数,形式为 x =k/y。
六、反比例函数的图像变换1. 平移:若原函数为 y = k/x,将其向右平移 a 个单位,向上平移b 个单位,新函数为 y = k/(x-a) + b。
2. 伸缩:若原函数为 y = k/x,将其横向伸缩 m 倍,纵向伸缩 n 倍,新函数为 y = k/(m*x)。
七、反比例函数的极值问题反比例函数没有最大值和最小值,但可以通过求导数来分析函数的增减性。
八、反比例函数的积分与微分1. 微分:对于函数 y = k/x,其导数为 dy/dx = -k/x^2。
2. 积分:对于函数 y = k/x,其不定积分为∫(k/x)dx = k*ln|x| + C。
九、反比例函数的方程求解1. 解析解:通过交叉相乘法等代数方法求解。
反比例函数知识点汇总
![反比例函数知识点汇总](https://img.taocdn.com/s3/m/75776466a4e9856a561252d380eb6294dd8822d8.png)
反比例函数知识点汇总1.定义与图像特征:反比例函数的定义为y=k/x,在此函数中,x不等于0,k为常数。
反比例函数的图像特点是:经过第一、二象限两点,以y轴和x轴为渐进线,图像在x轴的正半轴和y轴的正半轴上都不会出现,图像呈现出一种双曲线的形状。
2.反比例函数的基本性质:(a)定义域:x≠0,即x不能为0。
(b)值域:排除0,即y不能为0。
当x趋近于0时,y趋近于无穷大;当x趋近于无穷大时,y趋近于0。
(c)对称中心:该函数关于原点(0,0)对称。
(d)渐进线:图像与x轴和y轴都有渐进线,即当x趋近于无穷大时,y趋近于0;当y趋近于无穷大时,x趋近于0。
(e)单调性:反比例函数在定义域内是单调递减的。
(f)异号性:当x与y异号时,k为负数;当x与y同号时,k为正数。
(g)零点:当x与y相等时,即x=y≠0。
3.确定反比例函数的常数k:y1=k/x1和y2=k/x2通过消去k,可以得到:y1*y2=k因此,可以通过已知点的y值的乘积来确定k的值。
4.反比例函数的应用:(a)正比例与反比例的混合问题:当一个问题与正比例和反比例函数有关时,可以通过组合两种函数来解决问题。
例如,当一个物体的质量与加速度成反比例关系,而力与加速度成正比例关系时,可以通过设置两个函数来解决问题。
(b)流速与管道宽度:根据波的传播速度,流速与管道宽度成反比例关系。
当管道宽度较小时,流速较大;当管道宽度较大时,流速较小。
(c)投资与收益率:投资的利润与投资金额成反比例关系。
当投资金额较小时,相对的利润率较大;当投资金额较大时,相对的利润率较小。
(d)电阻与电流:电阻与电流成反比例关系,即当电阻较大时,电流较小;当电阻较小时,电流较大。
总结起来,反比例函数是一种特殊的函数关系,其图像呈现出一种双曲线的形状。
反比例函数具有一些基本性质,如定义域、值域、对称中心和渐进线等。
确定反比例函数的常数k可以通过已知点进行求解。
反比例函数在实际生活中有很多应用,特别是与强度、速度和功率等相关的问题。
反比例函数知识点总结,比例系数k的几何意义和七大常考模型
![反比例函数知识点总结,比例系数k的几何意义和七大常考模型](https://img.taocdn.com/s3/m/e4f2f553ff4733687e21af45b307e87100f6f858.png)
反比例函数知识点总结,比例系数k的几何意义和七大常考模型一.反比例函数的概念1.概念:一般地,函数y=k/x(k是常数,k≠0)叫做反比例函数。
反比例函数的解析式也可以写成的形式。
自变量x的取值范围是x≠0的一切实数,函数的取值范围也是一切非零实数。
注意:(1)比例系数k≠0是反比例函数的定义的重要部分;(2)在反比例函数的解析式中,k,x,y均不等于0;(3)反比例函数中的两个变量一定成反比例关系,反之,则不一定成立例 1 给出的六个关系式:①x(y+1); ②y=2/(x+2); ③y=1/x²;④y=1/2x; ⑤y=x/2 ; ⑥y=-3/x.其中y是x的反比例函数的是 ( )A.①②③④⑥B.③⑤⑥C.①②④D.④⑥例2 若函数是y关于x的反比例函数,则m= .例3 关于正比例函数y=-x/3和反比例函数y=-1/3x的说法正确的是 ( )A.自变量x的指数相同B.比例系数相同C.自变量x的取值范围相同D.函数y的取值范围相同2.易错点解析漏掉k≠0这一条件解答与反比例函数有关的问题时,要注意系数k≠0是反比例函数定义中必不可少的一部分,不能漏掉这一条件.例4已知函数为反比例函数,则k= .二.反比例函数的图像和性质1.反比例函数的图像是双曲线,它有两个分支,这两个分支分别位于第一、三象限,或第二、四象限,它们关于原点对称。
由于反比例函数中自变量x≠0,函数y≠0,所以,它的图像与x轴、y轴都没有交点,即双曲线的两个分支无限接近坐标轴,但永远达不到坐标轴。
2.反比例函数的性质注意:y随x变化的情况必须指出“在每个象限内”或“在每一分支上”这一条件。
例5 关于反比例函数y=3/x的图象,下列说法正确的是 ( )A.图象经过点(1,1)B.两个分支分布在第二、四象限C.两个分支关于x轴成轴对称D.当x<0时,y随x的增大而减小例6.当x<0时,下列表示函数y=-1/x的图象的是 ( ) 例7.下列反比例函数中,图象位于第二、四象限的是( )A.y=2/x B.y=0.2/x C.y=√2/x D.y=-2/5x 例8.对于反比例函数y=(k-√10)/x,在每个象限内,y随x的增大而增大,则满足条件的非负整数k有 ( )A.1个B.2个C.3个D.4个三.反比例函数解析式的确定由于在反比例函数中,只有一个待定系数,因此只需要一对对应值或图像上的一个点的坐标,即可求出k的值,从而确定其解析式。
反比例函数知识点归纳
![反比例函数知识点归纳](https://img.taocdn.com/s3/m/e391ccd4900ef12d2af90242a8956bec0975a56f.png)
反比例函数知识点归纳定义:形如函数y=k/x(k为常数且k≠0)叫做反比例函数,其中k叫做比例系数,x 是自变量,y是自变量x的函数,x的取值范围是不等于0的一切实数。
函数y=k/x 称为反比例函数,其中k≠0,其中x是自变量,1.当k>0时,图象分别坐落于第一、三象限,同一个象限内,y随x的减小而增大;当k<0时,图象分别坐落于二、四象限,同一个象限内,y随x的减小而减小。
2.k>0时,函数在x<0上同为减函数、在x>0上同为减函数;k<0时,函数在x<0上为增函数、在x>0上同为增函数。
3.x的值域范围就是:x≠0;y的取值范围是:y≠0。
4..因为在y=k/x(k≠0)中,x无法为0,y也无法为0,所以反比例函数的图象不可能将与x轴平行,也不可能将与y轴平行。
但随着x无穷减小或是无穷增加,函数值无穷收敛于0,故图像无穷吻合于x轴5. 反比例函数的图象既是轴对称图形,又是中心对称图形,它有两条对称轴 y=xy=-x(即第一三,二四象限角平分线),对称中心是坐标原点。
(k为常数,k≠0)的形式,那么表示y就是x的反比例函数。
其中,x是自变量,y是函数。
由于x在分母上,故取x≠0的一切实数,看函数y的取值范围,因为k≠0,且x≠0,所以函数值y也不可能为0。
补足表明:1.反比例函数的解析式又可以译成: (k就是常数,k≠0).2.要求出反比例函数的解析式,利用待定系数法求出k即可.反比例函数解析式的特征⑴等号左边是函数,等号右边是一个分式。
分子是不为零的常数(也叫做比例系数),分母中含有自变量,且指数为1。
⑵比例系数⑶自变量的取值为一切非零实数。
⑷函数的值域就是一切非零实数。
形如y=k/x(k为常数且k≠0)的函数,叫做反比例函数。
自变量x的值域范围就是不等同于0的一切实数。
反比例函数的图像为双曲线。
由于反比例函数属奇函数,存有f(-x)=-f(x),图像关于原点等距。
反比例函数常用知识点总结
![反比例函数常用知识点总结](https://img.taocdn.com/s3/m/30e57e20571252d380eb6294dd88d0d233d43c06.png)
反比例函数常用知识点总结一、反比例函数的定义反比例函数也叫做倒数函数,通常用y=k/x表示,其中k为非零常数。
这种函数的图像是一个双曲线,具有对称轴。
二、反比例函数的性质1. 反比例函数的定义域和值域反比例函数的定义域为x≠0,值域为y≠0。
2. 反比例函数的奇偶性反比例函数通常不具有奇偶性。
3. 反比例函数的单调性反比例函数在定义域内单调递减或递增。
4. 反比例函数的渐近线反比例函数的图像有两条渐近线,分别是x轴和y轴。
5. 反比例函数的对称性反比例函数的图像关于原点对称。
6. 反比例函数的零点和极限反比例函数有唯一的零点,即x=±√k。
当x→0时,y→±∞。
三、反比例函数的图像1. 反比例函数的基本图像反比例函数的基本图像是一个双曲线,具有对称轴。
2. 反比例函数的平移和缩放改变k的值可以使反比例函数的图像进行平移和缩放。
3. 反比例函数的特殊情况当k为正数时,反比例函数的图像在第一和第三象限。
当k为负数时,反比例函数的图像在第二和第四象限。
四、反比例函数的应用1. 反比例函数在物理学中的应用反比例函数可以用来描述两个物理量之间的关系,比如牛顿定律中的万有引力定律就是一个反比例函数。
2. 反比例函数在经济学中的应用反比例函数可以用来描述供求关系,比如需求曲线和供给曲线都是反比例函数。
3. 反比例函数在工程学中的应用反比例函数可以用来描述工程中的一些量与距离的关系,比如声音的传播距离与声音的强度之间的关系。
五、反比例函数的解题方法1. 求反比例函数的定义域和值域根据函数的定义,可以求出反比例函数的定义域和值域。
2. 求反比例函数的零点和极限根据函数的性质,可以求出反比例函数的零点和极限。
3. 求反比例函数的图像可以根据函数的性质和图形变换的知识,画出反比例函数的图像。
4. 求反比例函数的应用问题可以根据反比例函数在物理学、经济学和工程学中的应用问题,解决实际问题。
六、反比例函数的常见错误1. 关于定义域和值域的错误很多学生容易忽略反比例函数的定义域和值域,导致在解题过程中出现错误。
反比例函数知识点
![反比例函数知识点](https://img.taocdn.com/s3/m/8e648f06ce84b9d528ea81c758f5f61fb7362898.png)
反比例函数知识点在反比例函数中,当x增大时,y会减小;反之,当x减小时,y会增大。
这与正比例函数的规律相反,因此被称为反比例函数。
1.图像特点:反比例函数的图像一般为一个开口朝下(或者朝上)的双曲线,其渐近线分别为x轴和y轴。
2.定义域:由于反比例函数中的x不能为0,所以其定义域为除去原点之外的所有实数。
3.值域:反比例函数的值域为除去y轴之外的所有实数。
4.对称性:反比例函数在原点处有对称性,即关于原点(x轴和y轴)对称。
5.渐近线:反比例函数的图像有两条渐近线,分别为x轴和y轴。
举例来说,假设一个工厂生产的产品数量与每个产品的价格成反比,即产品数量和价格满足反比例关系。
如果知道了产品的价格和数量之间的反比例关系,就可以通过反比例函数来找出二者之间的精确数学关系,并据此做出合理的生产规划和价格设定。
在学习反比例函数时,需要掌握一些基本的解题方法和技巧,这些方法和技巧包括:1.求解反比例函数的图像:通过分析反比例函数的性质,可以确定其图像的特点,如开口朝上或者朝下的双曲线形状,以及渐近线的位置等。
2.求解反比例函数的定义域和值域:通过对函数表达式的分析,可以确定反比例函数的定义域和值域,从而限定函数的取值范围。
3.求解反比例函数的性质:通过对反比例函数的性质进行深入分析,可以更好地理解函数的行为和特点,帮助解决实际问题。
4.求解反比例函数的应用问题:通过将反比例函数应用到具体的问题中,可以帮助理解函数的实际意义,以及如何利用反比例函数解决实际生活中的问题。
综上所述,反比例函数是一种重要的数学模型,其在实际生活中有广泛的应用,掌握反比例函数的相关知识和技巧对理解和解决实际问题具有重要的意义。
希望通过学习和掌握反比例函数的知识,可以更好地应用数学知识解决现实生活中的问题,并提高数学分析和解决问题的能力。
反比例函数知识点总结
![反比例函数知识点总结](https://img.taocdn.com/s3/m/7271e10a86c24028915f804d2b160b4e777f8175.png)
反比例函数知识点总结知识点1 反比例函数的定义一般地,形如xky =(k 为常数,0k ≠)的函数称为反比例函数,它可以从以下几个方面来理解:⑴x 是自变量,y 是x 的反比例函数;⑵自变量x 的取值范围是0x ≠的一切实数,函数值的取值范围是0y ≠; ⑶比例系数0k ≠是反比例函数定义的一个重要组成部分; ⑷反比例函数有三种表达式:①xky =(0k ≠),②1kx y -=(0k ≠), ③k y x =⋅(定值)(0k ≠);⑸函数xk y =(0k ≠)与y kx =(0k ≠)是等价的,所以当y 是x 的反比例函数时,x 也是y 的反比例函数。
(k 为常数,0k ≠)是反比例函数的一部分,当k=0时,xky =,就不是反比例函数了,由于反比例函数xky =(0k ≠)中,只有一个待定系数,因此,只要一组对应值,就可以求出k 的值,从而确定反比例函数的表达式。
知识点2用待定系数法求反比例函数的解析式由于反比例函数xky =(0k ≠)中,只有一个待定系数,因此,只要一组对应值,就可以求出k 的值,从而确定反比例函数的表达式。
知识点3反比例函数的图像与画法反比例函数的图像是双曲线,它有两个分支,这两个分支分别位于第一、第三象限或第二、第四象限,它们与原点对称,由于反比例函数中自变量函数中自变量0x ≠,函数值0y ≠,所以它的图像与x 轴、y 轴都没有交点,即双曲线的两个分支无限接近坐标轴,但永远达不到坐标轴。
反比例的画法分三个步骤:⑴列表;⑵描点;⑶连线。
再作反比例函数的图像时应注意以下几点: ①列表时选取的数值宜对称选取;②列表时选取的数值越多,画的图像越精确;③连线时,必须根据自变量大小从左至右(或从右至左)用光滑的曲线连接,切忌画成折线; ④画图像时,它的两个分支应全部画出,但切忌将图像与坐标轴相交。
知识点4反比例函数的性质☆关于反比例函数的性质,主要研究它的图像的位置与函数值的增减情况,如下表:反比例函数xky =(0k ≠)k 的符号0k > 0k <图像性质①x 的取值范围是0x ≠,y 的取值范围是0y ≠②当0k >时,函数图像的两个分支分别在第一、第三象限,在每个象限内,y 随x 的增大而减小。
关于反比例函数的知识点
![关于反比例函数的知识点](https://img.taocdn.com/s3/m/91e36e5b640e52ea551810a6f524ccbff121cab8.png)
关于反比例函数的知识点反比例函数是数学中常见的一种函数形式,也称为倒数函数。
在反比例函数中,当自变量的值增大时,因变量的值会相应地减小,反之亦然。
本文将介绍反比例函数的基本概念、特点、图像和应用。
一、基本概念反比例函数是一种特殊的函数,可以用以下形式表示:f(x) = k / x其中,f(x)表示因变量的值,x表示自变量的值,k表示常数。
在反比例函数中,自变量和因变量之间呈现出反比例的关系,即当自变量x的值增加时,因变量f(x)的值减小;而当自变量x的值减小时,因变量f(x)的值增大。
二、特点1. 零点:反比例函数的图像除了原点(0, 0)外,没有其他交点。
2. 定义域:反比例函数的定义域为除了x=0的所有实数。
3. 值域:反比例函数的值域为除了f(x)=0以外的所有实数。
4. 对称轴:反比例函数的图像关于y轴对称,即对于每一个点(x, f(x)),如同点(-x, f(-x))也在图像上。
三、图像反比例函数的图像通常呈现出以下特点:1. 斜渐进线:当x的取值趋近于正无穷大或负无穷大时,f(x)趋近于0。
这意味着反比例函数的图像有两条与坐标轴都平行的渐进线。
2. 反比例曲线:除了渐进线以外,反比例函数的图像是一条经过原点的弧线,呈现出“倒U”字型的形状。
四、应用反比例函数在实际生活中有很多应用。
以下是几个常见的应用场景:1. 电阻和电流关系:欧姆定律中的电阻和电流的关系可以用反比例函数来表示。
根据欧姆定律,电阻R等于电压U与电流I的比值,即R = U / I。
2. 货币兑换:在外汇市场中,货币兑换的汇率通常也遵循反比例的关系。
汇率就是两种货币之间的比值,较低的汇率意味着兑换一单位的本国货币可以获得更多的外币。
3. 速度和时间关系:当物体的速度恒定时,物体在一段时间内所走的距离与时间成反比。
即物体走的距离等于速度乘以时间,d = v / t。
总结:反比例函数是数学中常见的一种函数形式,具有许多特点和应用。
反比例函数知识点总结
![反比例函数知识点总结](https://img.taocdn.com/s3/m/358eb95c53ea551810a6f524ccbff121dd36c5b2.png)
反比例函数知识点总结一、反比例函数定义反比例函数是形如y = k/x (k ≠ 0,x ≠ 0) 的函数,其中 k 为常数,称为比例常数,x 为自变量,y 为因变量。
二、图象特征1. 反比例函数的图象是一组双曲线。
2. 当 k > 0 时,双曲线的两支分别位于第一象限和第三象限。
3. 当 k < 0 时,双曲线的两支分别位于第二象限和第四象限。
4. 双曲线的对称轴是 y 轴。
三、性质1. 反比例函数不是定义在全体实数上的函数,其定义域为 (-∞, 0) ∪ (0, +∞)。
2. 反比例函数的值域为全体实数 R。
3. 反比例函数是奇函数,具有对称性,其对称中心为原点 (0, 0)。
4. 当 x 的值增大时,y 的值减小;当 x 的值减小时,y 的值增大。
5. 反比例函数没有渐近线,但当 x 趋向于 0 时,y 趋向于无穷大或负无穷大。
四、运算法则1. 反比例函数的加法法则:若 y1 = k1/x1,y2 = k2/x2,则 y1 + y2 = (k1x2 + k2x1) / (x1x2)。
2. 反比例函数的减法法则:若 y1 = k1/x1,y2 = k2/x2,则 y1 - y2 = (k1x2 - k2x1) / (x1x2)。
3. 反比例函数的乘法法则:若 y1 = k1/x1,y2 = k2/x2,则 y1 * y2 = (k1 * k2) / (x1 * x2)。
4. 反比例函数的除法法则:若 y1 = k1/x1,y2 = k2/x2,则 y1 /y2 = (k1 / k2) * (x2 / x1)。
五、实际应用反比例函数在物理学、经济学、生物学等领域有广泛的应用。
例如,在电路分析中,电流与电阻的关系可以由欧姆定律表示为 I = V/R,其中 V 为电压,I 为电流,R 为电阻,这可以看作是反比例函数的一个特例。
六、常见问题及解析1. 问题:如何确定反比例函数的定义域和值域?解析:反比例函数的定义域为除去 0 的所有实数,即 (-∞, 0) ∪ (0, +∞)。
反比例函数知识点
![反比例函数知识点](https://img.taocdn.com/s3/m/542f30c5856a561252d36f31.png)
反比例函数知识点:1.定义:形如y =xk (k 为常数,k ≠0)的函数称为反比例函数。
其中x 是自变量,y 是函数,自变量x 的取值是不等于0的一切实数。
说明:1)y 的取值范围是一切非零的实数。
2)反比例函数可以理解为两个变量的乘积是一个不为0的常数,因此其解析式也可以写成xy=k ;1-=kx y ;xk y 1=(k 为常数,k ≠0) 3)反比例函数y =xk (k 为常数,k ≠0)的左边是函数,右边是分母为自变量x 的分式,也就是说,分母不能是多项式,只能是x 的一次单项式,如xy 1=,x y 213=等都是反比例函数,但21+=x y 就不是关于x 的反比例函数。
2. 用待定系数法求反比例函数的解析式由于反比例函数y =xk 只有一个待定系数,因此只需要知道一组对应值,就可以求出k 的值,从而确定其解析式。
3. 反比例函数的画法:1)列表;2)描点;3)连线注:(1)列表取值时,x ≠0,因为x =0函数无意义,为了使描出的点具有代表性,可以“0”为中心,向两边对称式取值,即正、负数各一半,且互为相反数,这样也便于求y 值(2)由于函数图象的特征还不清楚,所以要尽量多取一些数值,多描一些点,这样便于连线,使画出的图象更精确(3)连线时要用平滑的曲线按照自变量从小到大的顺序连接,切忌画成折线(4)由于x ≠0,k ≠0,所以y ≠0,函数图象永远不会与x 轴、y 轴相交,只是无限靠近两坐标轴4. 图像:反比例函数的图像属于双曲线。
反比例函数的图象既是轴对称图形又是中心对称图形。
有两条对称轴:直线y=x 和 y= -x ;对称中心是:原点5. 性质:说明:1)反比例函数的增减性不连续,在讨论函数增减问题时,必须有“在每一个象限内”这一条件。
2)反比例函数图像的两个分只可以无限地接近x 轴、y 轴,但与x 轴、y 轴没有交点。
3)越大,图象的弯曲度越小,曲线越平直. 越小,图象的弯曲度越大.4)对称性:图象关于原点对称,即若(a ,b )在双曲线的一支上,则(,)在双曲线的另一支上.图象关于直线对称,即若(a ,b )在双曲线的一支上,则(,)和(,) 在双曲线的另一支上.6. 反比例函数y =xk (k ≠0)中的比例系数k 的几何意义表示反比例函数图像上的点向两坐标轴所作的垂线段与两坐标轴围成的矩形的面积。
反比例函数知识点总结
![反比例函数知识点总结](https://img.taocdn.com/s3/m/44577788fc0a79563c1ec5da50e2524de518d099.png)
反比例函数知识点总结反比例函数知识点归纳知识点1 反比例函数的定义反比例函数是指形如 y = k/x(k为常数,k≠0)的函数。
其中,自变量x的取值范围为x≠的一切实数,而函数值y的取值范围为y≠0.知识点2 用待定系数法求反比例函数的解析式由于反比例函数只有一个待定系数k,因此只要一组对应值,就可以求出k的值,从而确定反比例函数的表达式。
知识点3 反比例函数的图像及画法反比例函数的图像是双曲线,有两个分支,分别位于第一、第三象限或第二、第四象限,与原点对称。
由于自变量x≠,函数值y≠,所以它的图像与x轴、y轴都没有交点。
画反比例函数的图像应该先列表,再描点,最后用光滑的曲线连接。
知识点4 反比例函数的性质反比例函数的图像位置与函数值的增减情况与k的符号有关。
当k>0时,函数图像的两个分支分别在一、三象限,在每个象限内,y随着x的增大而减小;当k<0时,函数图像的两个分支分别在二、四象限,在每个象限内,y随着x的增大而增大。
反比例函数的图像位置和函数的增减性由反比例函数系数k的符号决定。
在每个象限内,当k>0时,y随x的增大而减小;当k0.反比例函数y=k/x中,k的几何意义可以通过双曲线上任一点P(x,y)分别作x轴、y轴的垂线,得到矩形OEPF的面积S=k=xy=x*y=PF*PE。
在反比例函数y=k/x中,k越大,双曲线y=k/x越小,离坐标原点越远;k越小,双曲线y=k/x越大,离坐标原点越近。
双曲线是中心对称图形,对称中心是坐标原点;双曲线又是轴对称图形,对称轴是直线y=x和直线y=-x。
练题:1、反比例函数是y=k/x,其中k≠0.2、函数y1=kx和y2=1/2x的图象如下所示,自变量x的取值范围相同的是第四象限。
3、函数y=m/x和y=mx-m(m≠0)在同一平面直角坐标系中的图像可能是第一象限和第三象限。
4、反比例函数y=k/x的图象的两个分支分别位于第一象限和第三象限。
初三反比例知识点总结数学
![初三反比例知识点总结数学](https://img.taocdn.com/s3/m/cca2d8b6c9d376eeaeaad1f34693daef5ef713b3.png)
初三反比例知识点总结数学一、反比例的性质和规律1. 反比例函数的定义反比例函数是指一个变量的变化导致另一个变量的变化与之成反比的函数。
通常表示为y=k/x,其中k是常数。
2. 反比例函数的图像特点反比例函数的图像呈现出一种特殊的曲线,即双曲线。
当x无限增大时,y趋于0;当x无限接近于0时,y趋于无穷大。
3. 反比例函数的性质(1)当x增大时,y减小;当x减小时,y增大。
(2)当x1>x2时,y1<y2;当x1<x2时,y1>y2。
4. 反比例函数与直线的关系反比例函数的图像在第一象限内有一条反比例函数的零点在原点的直线。
其斜率为常数k,而且直线关于原点对称。
二、反比例函数的应用1. 反比例函数在实际中的应用反比例函数在实际生活中有很多应用,比如说人均时间和工作效率、工程材料的数量和造价、飞机的飞行时间和速度、光合作用的速率和光照强度等。
这些都可以用反比例函数来表示并解决实际问题。
2. 反比例函数的解决问题在解决实际问题中,可以使用反比例函数来理解和分析问题,比如说通过反比例函数计算出两个变量之间的关系,由此得出一个变量的值;或者通过反比例函数的特性分析出两个变量之间的变化规律。
三、反比例函数的解析式与图像的绘制1. 反比例函数的解析式反比例函数的一般形式为y=k/x,其中k是比例系数。
在实际问题中,可以根据已知条件求出k,然后写出反比例函数的解析式。
2. 反比例函数的图像绘制绘制反比例函数的图像时,可以取三个以上的点,并将这些点连成光滑的曲线。
反比例函数的图像总是呈现出一种双曲线的形状,且与x轴和y轴都有渐近线。
四、反比例函数的解决问题1. 反比例函数的基本解法(1)一元一次反比例函数问题的解法:可以通过列方程,代入已知条件,解出未知量的值。
(2)一元二次反比例函数问题的解法:可以通过列方程,利用二次函数的解法来求得未知量的值。
2. 反比例函数问题的实例分析通过反比例函数的性质、规律,可以应用到各种实际问题中,比如有关时间、速度、数量、工作效率等各种问题。
反比例函数知识点归纳重点
![反比例函数知识点归纳重点](https://img.taocdn.com/s3/m/8fd367b8aff8941ea76e58fafab069dc51224747.png)
反比例函数知识点归纳重点1.定义和性质:反比例函数是由自变量与其函数值的乘积为常数所表示的函数。
它的图像是一个双曲线。
当自变量x趋近于0时,函数值趋近于正无穷大;当自变量x趋近于正无穷大或负无穷大时,函数值趋近于0。
反比例函数的反比例因子k可以用来确定函数的特征。
2.图像与参数的关系:反比例函数的图像是一个双曲线,其具体形状与参数k有关。
当k为正数时,双曲线位于第一象限和第三象限;当k为负数时,双曲线位于第二象限和第四象限。
参数k的绝对值越大,双曲线的曲率越大。
3.变形形式:反比例函数除了常见的y=k/x形式外,还可以有其他的变形形式。
例如,y=k/(x-a)+b表示平移后的反比例函数,参数a和b分别表示水平和垂直方向上的位移。
4.变量关系:反比例函数中的自变量和因变量之间是一个反比例关系,即一个数的大小与另一个数的大小呈反比例关系。
如果自变量增大,那么函数值会减小,反之亦然。
这种关系在实际问题中经常出现,例如牛顿第二定律中的力和加速度的关系。
5.应用问题:反比例函数在许多实际问题中都有应用。
例如,速度与时间的关系、电阻与电流的关系、密度与体积的关系等都可以用反比例函数来描述。
因为反比例函数在自变量过小或者过大时函数值会变得非常大或者非常小,所以它在处理极限问题时也经常被使用。
总之,反比例函数是一种常见的函数形式,在数学的各个领域中都有广泛的应用。
理解反比例函数的定义、图像与参数的关系、变形形式、变量关系以及应用问题,可以帮助我们更好地理解数学和解决实际问题。
反比例函数知识点总结
![反比例函数知识点总结](https://img.taocdn.com/s3/m/1914ffb57d1cfad6195f312b3169a4517623e56e.png)
反比例函数知识点总结反比例函数,又称为倒数函数,是数学中重要的函数类型之一。
它是一种特殊的函数关系,其中一个量的变化与另一个量的变化成反比。
在反比例函数中,当一个变量增加时,另一个变量会以相应的速度减少,反之亦然。
本文将通过定义、性质、图像和应用等方面,对反比例函数进行详细的知识点总结。
1. 定义与表示:反比例函数是指一种函数关系,其中一个变量的值与另一个变量的值成反比。
一般来说,反比例函数可以通过以下形式来表示:y = k/x其中k是常数,称为比例常数,x和y分别是两个变量的值。
2. 性质:(1) 定义域和值域:反比例函数的定义域为除了x=0外的所有实数,值域也为除了y=0外的所有实数。
(2) 对称性:反比例函数在原点(0,0)处具有对称性,即在x轴和y轴上分别关于原点对称。
(3) 单调性:反比例函数在其定义域内是单调递减的,即当x增加时,y会减小。
(4) 渐进线:反比例函数y=k/x在x趋近正无穷大或负无穷大时,都会逼近x轴和y轴,即有两条渐进线x=0和y=0。
(5) 变换:反比例函数可以通过平移、伸缩等变换来得到相应的函数图像。
3. 图像:反比例函数的图像呈现出一条曲线,并且具有特定的形状。
以y=k/x为例,当k为正数时,函数的图像将出现在第一和第三象限,形状类似于右上方向的双曲线;当k为负数时,图像将出现在第二和第四象限,形状类似于左下方向的双曲线。
同时,倒数函数的图像都会与x轴和y轴有两条渐进线,即x=0和y=0。
4. 应用:反比例函数在现实生活中有着广泛的应用。
以下是一些常见的应用场景:(1) 电阻与电流关系:欧姆定律中,电阻与电流的关系就是一个反比例函数关系。
当电流增大时,电阻会相应减小,反之亦然。
(2) 时间与速度关系:在行驶过程中,车辆在相同的距离内,速度与时间呈反比例。
当时间增加时,速度会相应减小,行驶速度与时间的乘积保持一定的常数。
(3) 人均用水量与总用水量关系:一般情况下,社会的总用水量与人口的数量成反比例。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
反比例函数知识点总结 李苗
知识点1 反比例函数的定义 一般地,形如x
k y =(k 为常数,0k ≠)的函数称为反比例函数,它可以从以下几个方面来理解:
⑴x 是自变量,y 是x 的反比例函数;
⑵自变量x 的取值范围是0x
≠的一切实数,函数值的取值范围是0y ≠;
⑶比例系数0k
≠是反比例函数定义的一个重要组成部分; ⑷反比例函数有三种表达式: ①x k y =(0k ≠),
②1kx y -=(0k ≠),
③k y x =⋅(定值)(0k ≠); ⑸函数x
k y =(0k ≠)与y k x =(0k ≠)是等价的,所以当y 是x 的反比例函数时,x 也是y 的反比例函数。
(k 为常数,0k ≠)是反比例函数的一部分,当k=0时,
x k y =,就不是反比例函数了,由于反比例函数x
k y =(0k ≠)中,只有一个待定系数,因此,只要一组对应值,就可以求出k
的值,从而确定反比例函数的表达式。
知识点2用待定系数法求反比例函数的解析式
由于反比例函数x
k y =(0k ≠)中,只有一个待定系数,因此,只要一组对应值,就可以求出k 的值,从而确定反比
例函数的表达式。
知识点3反比例函数的图像及画法
反比例函数的图像是双曲线,它有两个分支,这两个分支分
别位于第一、第三象限或第二、第四象限,它们与原点对称,由于反比例函数中自变量函数中自变量0x ≠,函数值0y ≠,所以它的图像与x 轴、y 轴都没有交点,即双曲线的两个分支无限接近坐标轴,但永远达不到坐标轴。
反比例的画法分三个步骤:⑴列表;⑵描点;⑶连线。
再作反比例函数的图像时应注意以下几点:
①列表时选取的数值宜对称选取;
②列表时选取的数值越多,画的图像越精确;
③连线时,必须根据自变量大小从左至右(或从右至左)用
光滑的曲线连接,切忌画成折线;
④画图像时,它的两个分支应全部画出,但切忌将图像与坐
标轴相交。
知识点4反比例函数的性质
☆关于反比例函数的性质,主要研究它的图像的位置及函数
值的增减情况,如下表:
注意:描述函数值的增减情况时,必须指出“在每个象限内……”否则,笼统地说,当0k >时,y 随x 的增大而减小“,就会与事实不符的矛盾。
反比例函数图像的位置和函数的增减性,是有反比例函数系数k 反比例 函数
x k y =(0k ≠) k 的
符号 0k >
0k < 图像
性质 ①x 的取值范围是0x ≠,y 的取值范围是0y ≠ ②当0k >时,函数图像的两个分支分别在第一、
第三象限,在每
个象限内,y 随x
的增大而减小。
①x 的取值范围是0x ≠,
y 的取值范围是0y ≠
②当0k
<时,函数图像的两个分支分别在第二、
第四象限,在每个象限内,
y 随x 的增大而增大。
的符号决定的,反过来,由反比例函数图像(双曲线)的位置和函数的增减性,也可以推断出k 的符号。
如x k y =在第一、第三象限,则可知0k >。
☆反比例函数x k y =(0k ≠)中比例系数k 的绝对值k 的几何
意义。
如图所示,过双曲线上任一点P (x ,y )分别作x 轴、y 轴的垂线,E 、F 分别为垂足,
则
OEPF S PE PF y x xy 矩形=⋅=⋅==k
☆ 反比例函数x k y =(0k ≠)中,k 越大,双曲线x
k y =越远离坐标原点;k 越小,双曲线x k y =越靠近坐标原点。
☆ 双曲线是中心对称图形,对称中心是坐标原点;双曲线又是
轴对称图形,对称轴是直线y=x 和直线y=-x 。
☆ 经典例题透析
类型一 反比例函数的概念
☆ 1.判断下列各式是否表示y 是x 的反比例函数,若
是,指出比例系数k 的值;若不是,指出是什么函数.
(1)8;y x =- (2)1;9xy = (3)43;y x =- (4)1;7y x =-
(5)2=x y ; (6) x y 76-=;(7)x k y =(k 为常数,k 0≠)
☆ 2. 根据题意列出函数关系式,并判断是什么函数.
☆ (1)面积为常数m 的长方形的长y 与宽x 之间的关系; ☆
☆ (2)一本500页的书,每天看15页,x 天后尚未看完
的页数y 与天数x 之间的关系.
☆
专题2 反比例函数图象的位置与系数的关系
☆ 【专题解读】 反比例函数k y x =的图象是由两个分支组
成的双曲线,图象的位置与比例系数k 的关系有如下两种情况:
☆ (1)0k >⇔双曲线的两个分支在第一、三象限⇔
在第一象限内,y 随x 的增大而减小. ☆ (2)0k
<⇔双曲线的两个分支在第二、四象限⇔在第一象限内,y 随x 的增大而增大.
☆ 3. 函数y ax a =-+与(0)a y a x -=≠在同一坐标系中
的图象可能是( )
专题3 反函数的图象
☆ 【专题解读】 如左下图所示,若点A (x ,y )为反比
例函数k y x =图象上的任意一点,过A 作AB ⊥x 轴于B ,
作AC ⊥y 轴于C ,则S △AOB =S △AOC =12
S 矩形ABOC =1||2k . ☆
☆ 4. 如右上图所示,点P 是x 轴正半轴上的一个动点,
过P 作x 轴的垂线交双曲线1y x =于点Q ,连接OQ ,当
点P 沿x 轴正方向运动时,Rt △QOP 的面积( )
A .逐渐增大
B .逐渐减小
C .保持不变
D .无法确定 ☆ 5.在反比例函数x y 1-=的图像上有三点(1x ,)1y ,
(2x ,)2y ,(3x ,)3y 。
若3210x x x >>>则下列各式正确的是( )
A .
213y y y >> B .123y y y >> C .321y y y >> D .231y y y >> ☆
6. 如果函数222-+=k k kx y 的图像是双曲线,且在第二,
四象限内,那么k 的值是多少?
☆ 7.如果一次函数
()的图像与反比例函数x m n y m n mx y -=≠+=30相交于点(221,),那么该直线与双曲线的另一个交点为
( )
☆ 8. 已知一次函数y kx b =+的图象与反比例函数
6y x =的图象相交于A ,B 两点,点A 的横坐标是3,点B
的纵坐标是-3.
☆ (1)求一次函数的表达式;
☆ (2)当一次函数值小于0时,求x 的取值范围.
9. 已知反比例函数k y x =的图象经过点A (-2,3).
☆ (1)求这个反比例函数的表达式;
☆ (2)经过点A 的正比例函数
y k x '=的图象与反比例函数k y x =的图象还有其他交点吗?若有,
求出交点坐标;若没有,说明理由.
☆ 10.如图,在AOB Rt ∆中,点A 是直线m x y +=与
双曲线x m y =在第一象限的交点,且2=∆AOB S ,则m 的值
是_____.
☆
☆ 11.如右上图所示,在反比例函数2(0)y x x =>的图象上
有点1234,,,P P P P ,它们的横坐标依次为1,2,3,4,分别过些点作x 轴与y 轴的垂线,图中所构成的阴影部分的面积从左到右依次为1234,,,S S S S ,则123S S S ++= ________ .
☆ 求n S S ++++......S S 321的值(用含n 的代数式来表示)
_________________
☆ 中考真题精选:
☆ 1.(江苏扬州)某反比例函数的图象经过点(-1,6),则
下列各点中,此函数图象也经过的点是( )
☆ A. (-3,2) B. (3,2) C.(2,3) D.
(6,1)
☆ 2.(重庆江津区)已知如图,A 是反比例函数k y x =的
图象上的一点,AB 丄x 轴于点B ,且△ABC 的面积是3,
则k的值是()
☆A、3 B、﹣3 C、6 D、﹣6
☆ 3.(吉林)反比例函数的图象如图所示,则k的值可能是()
☆
☆A、﹣1 B、 C、1 D、2
☆ 4.(辽宁阜新)反比例函数
6
y
x
=与3
y
x
=在第一象限的
图象如图所示,作一条平行于x轴的直线分别交双曲线于A、B两点,连接OA、OB,则△AOB的面积为()
☆
☆ A.3
2
B.2
C.3
D.1
☆ 5.(玉林)如图是反比例函数y=x k 1和y=x k 2(k 1<k 2)
在第一象限的图象,直线AB ∥x 轴,并分别交两条曲线于
A 、
B 两点,若S △AOB =2,则k 2﹣k 1的值是( ) ☆ A 、1 B 、2
C 、4
D 、8。