工程材料知识点总结
湖北汽车工业学院工程材料知识点总结
名词解释1奥氏体(A):C在yFe中的间隙固溶体,常用A或r表示,是一种硬度较低而塑性较高的固溶体。
2回复:在加热温度较低时,由于金属的点缺陷及位错近距离迁移而引起的晶内某些变化,回复后,组织不发生变化,硬度略有下降,塑性略有提高,可清除部分内应力。
3固溶体:组成合金的组元,在固态时相互溶解,所形成的单一均匀的物质。
4自然时效:自然时效是指经过冷、热加工或热处理的金属材料,于室温下发生性能随时间而变化的现象。
5加工硬化:金属材料随着冷塑变形程度的增大,强度和硬度逐渐升高,塑性和韧性逐渐降低的现象称为加工硬化或冷作硬化6过冷度:理论结晶温度与实际结晶温度之差。
7铁素体:碳熔与a-Fe中形成的间隔固溶体8莱氏体:奥氏体和渗碳体组成的机械混合物9淬透性:钢经淬火后所能获得的粹硬层深度10调质:淬火加上高温回火获得回火索氏体的工艺过程11晶胞:晶胞是能代表晶格中原子排列规律的最小几何单元。
12同素异构转变:固态金属的晶格结构随温度改变而改变的现象。
13固溶强化:通过溶入溶质元素形成固溶体,使材料的强度、硬度提高的现象14钢的淬透性:在规定条件下,钢在淬火时获得淬硬层(淬透层)深度的能力15调质处理:把淬火和高温回火相结合的热处理方法称为调质处理填空题:1石墨为片状的灰口铸铁称为普通灰口铸铁。
石墨为团絮状的灰口铸铁称为可锻铸铁,石墨为球状的灰口铸铁为球墨铸铁其中可锻铸铁的韧性最高,但不可以锻造。
2陶瓷材料中的气象是指气孔在烧结过程中形成的,它降低了陶瓷的强度。
3根据采用的渗碳剂的不同,将渗碳分为固体渗碳,液体渗碳,气体渗碳三种4工程中常用的特殊性能钢有不锈钢,耐热钢,耐磨钢。
5金属的断裂形式有脆性断裂和韧性断裂两种。
6金属元素在钢中形成的碳化物可分为合金渗碳体与特殊碳化物两类。
7常见的金属晶体结构有体心立方晶格面心立方晶格,密排六方晶格。
8铁素体是碳溶入a-Fe中的有限固溶体,它保持体心立晶格形式:奥氏体是碳溶r-Fe中的有限固溶体,它保持面心立方晶格形式。
土木工程材料知识点总结版
1. 弹性模量:用E 表示。
材料在弹性变形阶段内,应力和对应的应变的比值。
反映材料抵抗弹性变形能力。
其值越大,使材料发生一定弹性变形的应力也越大,即材料刚度越大,亦即在一定应力作用下,发生弹性变形越小,抵抗变形能力越强2. 韧性:在冲击、振动荷载作用下,能吸收较大能量产生一定变形而不致破坏的性质。
3. 耐水性:材料长期在饱和水作用下不被破坏,强度也不显著降低的性质,表示方法——软化系数:材料在吸水饱和状态下的抗压强度与枯燥状态下的抗压强度之比K R = f b /f g 软化系数大于0.8的材料通常可以认为是耐水材料;对于经常位于水中或处于潮湿环境中的材料,软化系数不得低于0.85;对于受潮较轻或次要构造所用的材料,软化系数不宜小于0.754. 导热性:传导热量的能力,表示方式——导热系数,材料的导热系数越小,材料的绝热性能就越好。
影响导热性的因素:材料的表观密度越小,其孔隙率越大,导热系数越小,导热性越差。
由于水与冰的导热系数较空气大,当材料受潮或受冻时会使导热系数急剧增大,导致材料保温隔热方式变差。
所以隔热材料要注意防潮防冻。
5. 建筑石膏的化学分子式:β-CaSO 4˙½H 2O 石膏水化硬化后的化学成分:CaSO 4˙2H 2O6. 高强石膏与建筑石膏相比水化速度慢,水化热低,需水量小,硬化体的强度高。
这是由于高强石膏为α型半水石膏,建筑石膏为β型半水石膏。
β型半水石膏结晶较差,常为细小的纤维状或片状聚集体,内比外表积较大;α型半水石膏结晶完整,常是短柱状,晶粒较粗大,聚集体的内比外表积较小。
7. 石灰的熟化,是生石灰与水作用生成熟石灰的过程。
特点:石灰熟化时释放出大量热,体积增大1~2.5倍。
应用:石灰使用时,一般要变成石灰膏再使用。
CaO+H 2O Ca(OH)2+64kJ8. 陈伏:为消除过火石灰对工程的危害,将生石灰和水放在储灰池中存放15天以上,使过火灰充分熟化这个过程叫沉伏。
道路工程材料知识点总结
道路工程材料石料的物理性质主要包括物理常数、吸水性、膨胀性和耐崩解性等。
石料最常用的物理常数主要有:真实密度、毛体积密度和孔隙率。
石料的力学性质道路工程中所用的石料除了应具有一定的抗压、抗折和抗剪强度外,还需具备抵抗冲击、抗磨光、抗磨耗等性能,其中石料的抗压强度和抗磨耗性是考察路用石料性能的两个主要指标。
石料的耐久性采用抗冻性试验和坚固性试验进行评价。
石料的化学性质酸碱性、黏附性。
酸碱性是按SIO2 的的含量进行分类:SIO2〉65%酸性岩类;52%〈SIO2〈65%中性岩类;45%〈SIO2〈52%碱性岩类。
酸性岩类强度高,耐磨性好;碱性岩类强度低,耐磨性差,但与沥青的黏附性好。
石料与沥青的黏附性不仅取决于石料,也取决于沥青。
从石料本身来看,主要因素有石料化学成分和石料表面的特征。
石料与沥青的黏附性试验采用水煮法和水浸法。
集料按粒径范围分为粗集料、细集料和矿粉。
在沥青混合料中,粗集料是指粒径大于2.36的碎石、破碎砾石和矿渣等。
细集料是指小于2.36的天然砂、人工砂和石屑等。
在水泥混凝土中,粗集料是指粒径大于4.75的碎石、破碎砾石和矿渣等。
细集料是指小于4.75的天然砂、人工砂和石屑等。
矿粉是指由石灰岩或者岩浆岩等憎水性碱性石料经磨细加工得到的,在混合料中起填充作用。
表观密度的测定方法,粗集料用的是网篮网,当颗粒较小时也采用的容量瓶法。
细集料采用容量瓶法,仅适用于含有少量大于2.36的部分细集料。
粗集料应该具备耐磨、抗磨耗和抗冲击的性能,这些性能用压碎值、磨光值、冲击值和磨耗值等指标来表示。
石料的磨光值越高表示抗滑性越好;石料的磨耗值越高表示,表示耐磨性越差。
细度模数越大,表示细集料越粗。
3.1-3.7,粗砂;2.3-3.0,中砂;1.6-2.2,细砂。
目前最常用的级配理论是最大密度曲线理论和粒子干涉理论。
水泥的施工和易性,也称工作性,是指混凝土拌合物在现有的施工条件下(气候条件、施工机具等),易于施工操作(搅拌、运输、浇筑、振捣和表面处理)并获得质量均匀、成型密实的混凝土的性能。
工程材料学知识点总结
工程材料学知识点总结一、材料的基本性质1. 密度:材料的密度是指单位体积内的质量。
密度越大,材料的质量就越大,密度越小,材料的质量就越小。
2. 弹性模量:材料的弹性模量是指材料在受力时产生弹性变形的能力。
弹性模量越大,材料的刚度就越大,抗压抗弯能力就越强。
3. 强度:材料的强度是指材料在受力时承受拉伸、压缩、剪切等力的能力。
强度越大,材料的抗拉强度、抗压强度、抗剪强度就越大。
4. 韧性:材料的韧性是指材料在受外力作用下能够吸收能量的能力。
韧性越大,材料的抗冲击性就越好。
5. 硬度:材料的硬度是指材料的抗划伤、抗刮伤能力。
硬度越大,材料就越难被划伤或刮伤。
6. 热膨胀系数:材料的热膨胀系数是指材料在温度变化时产生体积膨胀或收缩的程度。
热膨胀系数越大,材料在温度变化时的变形就越大。
二、金属材料1. 铁素体和奥氏体:铁素体是铁碳合金中的烤饼组织,具有较低的强度和硬度;奥氏体是铁碳合金中的馒头组织,具有较高的强度和硬度。
2. 钢的分类:钢可以按照成分分为碳钢、合金钢和特种钢;按照用途分为结构钢、工具钢和耐磨钢。
3. 铸铁的分类:铸铁可以按照形态分为白口铸铁和灰口铸铁;按照成分分为白口铸铁、灰口铸铁和球墨铸铁。
4. 不锈钢的特性:不锈钢具有耐腐蚀、耐高温、抗氧化等特性,适用于化工、食品加工、医疗器械等领域。
5. 铝合金的应用:铝合金具有轻质、耐腐蚀、导热性好的特性,广泛应用于航空航天、汽车、建筑等领域。
三、非金属材料1. 水泥混凝土:水泥混凝土应用广泛,常见于建筑、桥梁、水利工程等领域。
它具有强度高、耐久性好、施工方便等特点。
2. 砖瓦:砖瓦是建筑材料的重要组成部分,主要用于墙体、地面、屋面的施工。
它们具有隔热、隔音、防潮等特性。
3. 玻璃:玻璃具有透明、坚硬、抗腐蚀等特点,广泛应用于建筑、家具、日用品等领域。
4. 塑料:塑料具有轻质、耐腐蚀、可塑性好的特性,广泛应用于包装、日用品、建筑材料等领域。
5. 纤维素材料:纤维素材料主要包括木材、纸张、纺织品等,具有可再生、易加工、环保等特点。
材料工程基础知识点总结
材料工程基础知识点总结
第一章、材料的性能及应用
1、常用的力学性能,如:σS,σb,σe,σP 等所表示的含义,弹性模量E及其主要影响因素、塑性指标的意义。
不同材料所适用的硬度(HB、HR、HV)测量方法。
第二章、原子结构和结合键
1、结合键的类型(主要为金属键、离子键、共价键)及其主要特点,它们对材料性能的主要影响
第三章、晶体结构
1、晶面与晶向的标注和识别
2、BCC、FCC、HCP三种常见金属晶体结构中所含的原子数、它们的致密度。
3、相、固溶体、中间相、固溶强化的概念、固溶体的分类、中间相的分类以及固溶体和中间相的主要区别。
第四章、晶体缺陷
1、晶体缺陷的分类、位错的含义和分类及特点。
位错(及点缺陷)密度的变化对材料性能(主要是力学性能)的影响。
2、晶界原子排列?的特点及其分类,晶界的特性;相界的分类、润湿
第五章、固体材料中原子的扩散
1、Fick第一定律的含义、非稳态扩散的误差函数解的应用计算
2、扩散的机制及影响扩散的主要因素以及在工业上的应用(如:工业渗碳为何在奥氏体状态下进行)
第六章、相平衡与相图原理
1、Gibbs相律含义,二元匀晶、共晶相图分析,杠杆定律的应用计算;相图与合金使用性(强度、硬度)和工艺性(铸造)的关系
2、铁碳相图(简化版)及其标注上面主要的成分点和温度及相;不同含碳量的合金从高温到室温下组织的变化,利用杠杆定律计算组织或相组成物的含量(主要针对C%<2.11%的合金,即钢)第七章、材料的凝固
1、液态合金结构的特点,过冷度及其与冷却速率的关系?。
道路工程材料知识点考点总结
绪论• 道路工程材料是道路工程建设与养护的物质基础,其性能直接决定了道路工程质量和服务寿命和结构形式. • 路面结构由下而上有:垫层,基层,面层。
• 面层结构材料应有足够的强度、稳定性、耐久性和良好的表面特性。
第一章• 砂石材料是石料和集料的统称 • 岩石物理常数为密度和孔隙率 • 真实密度:指规定条件下,烘干岩石矿质实体单位真实体积的质量。
• 毛体积密度:指在规定条件下,烘干岩石矿质实体包括空隙(闭口、开口空隙)体积在内的单位毛体积的质量。
• 孔隙率:是指岩石孔隙体积占岩石总体积(开口空隙和闭口空隙)的百分率。
• 吸水性:岩石吸入水分的能力称为吸水性。
• 吸水性的大小用吸水率与饱和吸水率来表征。
• 吸水率:是岩石试样在常温、常压条件下最大的吸水质量占干燥试样质量的百分率。
• 饱和吸水率:是岩石在常温及真空抽气条件下,最大吸水质量占干燥试样质量的百分率。
• 岩石的抗冻性:是指在岩石能够经受反复冻结和融化而不破坏,并不严重降低岩石强度的能力。
•集料:是由不同粒径矿质颗粒组成的混合料,在沥青混合料或水泥混凝土中起骨架和填充作用。
指在规定条件下,烘干集料矿质实体包在内的表观单位体积的质量。
料中各种粒径颗粒的搭配比例或分布情 •压碎值:用于衡量石料在逐渐增加的荷载下抵抗压碎的能力,也是石料强度的相对指标。
压碎值是对石料的标准试样在标准条件下进行加荷,测试石料被压碎后,标准筛上筛余质量的百分率。
(:试验后通过2。
36mm 筛孔的细集料质量) • 磨光值:是反映石料抵抗轮胎磨光作用能力的指标,是决定某种集料能否用于沥青路面抗滑磨耗层的关键指标. • 冲击值:反映粗集料抵抗冲击荷载的能力.由于路表集料直接承受车轮荷载的冲击作用,这一指标 对道路表层用料非常重要. • 磨耗值:用于评定道路路面表层所用粗集料抵抗车轮磨耗作用的能力。
• 级配参数: • 天然砂的细度模数,系度模数越大,表示细集料越粗。
工程材料知识点总结
工程材料复习总结第一部分项目一:工程材料1.金属材料一般是指具有金属特性的物质。
2.金属材料通常分为钢铁材料、非铁金属材料、粉末冶金材料。
3.钢铁材料是指以铁、碳为主要元素组成的铁碳合金,分为工业用钢、工程铸铁。
4.非合金钢(碳素钢),通常分为碳素结构钢、优质碳素结构钢、碳素工具钢、铸钢。
5.工业用钢是指碳的质量分数在%11.2以下并含有其他元素的铁碳合金;工程铸铁是指碳的质量分数在%.2以上并含有其他元素的铁碳合金。
116.钢材生产过程:轧制→锻造→拉拔→挤压7.钢材分类:板材、型材和管材。
项目二:工程材料性能1.力学性能:材料在力的作用下表现出来的特性。
2.力学指标:强度、塑性、硬度、韧性、疲劳强度。
实验:拉伸试验、硬度试验、冲击试验、疲劳试验。
3.变形:材料受到外力作用时,机器零件和部件在宏观上将表现出形状和尺寸的变化。
4.⎩⎨⎧变形外力之后被保留下来的产生不能自行恢复卸除外力继续加大,材料将塑性变形,变形随之消失外力不大时,去除外力弹性变形变形5. 荷载(负荷、负载):材料所受的力。
⎪⎩⎪⎨⎧化向随时间发生周期性变大小、方向或大小和方变动载荷突然增加的载荷冲击载荷载荷大小不变或变动很慢的静载荷分类6.强度:材料在外力作用下抵抗塑性变形和断裂的能力。
7.变形的五种基本形式:拉伸与压缩、剪切与挤压、扭转、弯曲。
8.力—伸长曲线()1Oe 弹性变形阶段:发生弹性变形()2eeL 微量塑性变形阶段:弹性变形(大部分)+塑性变形(小部分)()3'eLeL 屈服阶段:屈服现象(水平线段或锯齿形线段)()4M eL '均匀变形阶段:材料发生大量塑性变形()5mz 缩颈阶段:缩颈现象,在z 点发生断裂图2-1 力—伸长曲线9.强度指标强度指标是判定材料强度大小的量化数据,通常用应力表示。
应力是指试验过程中的力除以试样原始横截面积的商,即试样单位横截面积上所受到的力,用符号R 表示,单位为MPa (兆帕)。
材料的知识点总结
材料的知识点总结材料是制造任何产品的基础,因此对材料有深入的了解对于任何工程师或设计师来说都是至关重要的。
以下是一些关于材料的常见知识点总结:1. 材料分类- 金属材料:金属是最常用的材料之一,包括钢、铝、铜等。
金属具有优良的强度和导电性能,因此广泛应用于制造工业和建筑领域。
- 塑料材料:塑料是一种轻质,可塑性极强的材料,广泛用于制造各种产品,包括日常用品、电子产品、汽车零部件等。
- 陶瓷材料:陶瓷具有优良的耐磨、耐高温性能,因此常用于制造瓷器、砖块、陶瓷刀具等。
- 复合材料:复合材料是由两种或多种不同材料组合而成的新材料,具有综合性能优良的特点,如碳纤维复合材料、玻璃钢等。
2. 材料性能- 强度:材料的强度是指其抗拉、抗压、抗弯等力学性能。
不同的应用场景需要不同强度的材料,因此工程师需要根据实际需求选择合适的材料。
- 硬度:材料的硬度是指其抵抗划痕、压痕等的能力,常用来评价材料的耐磨性能。
- 导热性和导电性:金属材料通常具有良好的导热性和导电性,这些性能在电子产品和工业制造中非常重要。
- 耐腐蚀性:某些特定环境中,如潮湿、酸性或碱性环境中,材料的耐腐蚀性能非常重要,否则材料会迅速腐蚀损坏。
3. 材料加工- 铸造:铸造是最常见的金属加工方法,通过熔化金属,然后倒入模具中冷却成型,得到所需的零部件。
- 锻造:锻造是通过对金属进行加热处理,然后用压力将其塑形成所需形状的加工方法,得到的零部件具有优良的强度和韧性。
- 深冲:深冲是常见的塑料加工方法,通过给予塑料压力,使其成型为所需的零件。
4. 材料测试- 拉伸试验:通过拉伸试验可以测定材料的抗拉强度、屈服强度和延伸率等力学性能参数。
- 硬度测试:硬度测试可以通过硬度计测定材料的硬度数值,包括布氏硬度、洛氏硬度等。
- 金相分析:金相分析可以通过显微镜观察材料的组织结构,帮助工程师了解材料的组织性能。
5. 材料选型- 在进行产品设计时,工程师需要根据产品所需的功能、强度、耐磨性等性能来选择合适的材料。
大一工程材料考试知识点
大一工程材料考试知识点工程材料是工程领域中非常重要的一门学科,它涉及到各种建筑、桥梁、道路、水利等工程中所使用的材料及其性能。
对于大一学生来说,掌握工程材料的基本知识点,不仅对于学习和理解后续专业课程有很大的帮助,而且也为将来从事相关工作打下了基础。
本文将介绍一些大一工程材料考试的重点知识点,希望能够对大家有所帮助。
一、材料的分类工程材料可以按照不同的性质和用途进行分类。
一般而言,它们可以分为金属材料、无机非金属材料和有机非金属材料三类。
其中,金属材料具有良好的导电、导热和机械性能,包括钢、铁、铝等常见的金属。
无机非金属材料主要由无机化合物组成,可以分为陶瓷材料、玻璃材料、胶凝材料等。
而有机非金属材料则是由碳和其他元素组成,包括塑料、橡胶等。
二、材料的结构与性能材料的结构与性能密切相关。
在考试中,常常会考察材料的晶体结构和非晶体结构。
晶体结构是指材料中的原子或分子按照一定的规则排列形成的有序结构,而非晶体结构则是指材料中的原子或分子没有明确的长程有序排列。
晶体结构和非晶体结构的不同会影响材料的性能,如硬度、韧性、导热性等。
三、力学性能在工程实践中,我们经常需要考虑材料的力学性能,包括强度、刚度、韧性等。
强度是指材料在受力时能够承受的最大应力,通常通过拉伸试验来测试。
刚度是指材料在受力时的变形程度,可以通过弹性模量来表示。
而韧性则是指材料在受力时能够吸收变形能量的能力。
四、热学性能热学性能是指材料在受热或受冷时的行为。
考试中,我们需要了解材料的热膨胀性、导热性和热传导性等性能。
热膨胀性是指材料在受热或受冷时体积的变化情况。
而导热性和热传导性则分别用来描述材料传热的能力和方式。
五、耐久性在实际工程中,材料的耐久性是一个重要考量因素。
考试中,我们需要了解材料的耐腐蚀性、耐磨性和耐疲劳性等。
耐腐蚀性指材料在受到化学物质或其他环境因素侵蚀时的稳定性。
而耐磨性则是指材料抵抗磨损和刮擦的能力。
耐疲劳性则是指材料在受到循环加载时的抗损伤能力。
工程材料知识点总结
工程材料知识点总结一、工程材料的分类工程材料是指在建筑、道路、桥梁等工程中使用的各种材料。
工程材料按用途和性能可分为结构材料、装饰材料、防护材料。
结构材料主要用于承受力学作用,包括混凝土、钢材、木材等;装饰材料主要用于美观和环境保护,包括瓷砖、玻璃、涂料等;防护材料主要用于防水、隔热、防腐等,包括防水材料、隔热材料、防腐材料等。
二、混凝土及混凝土材料1. 混凝土的组成:混凝土是由水泥、骨料、粉煤灰、矿渣粉等混合配制而成的人工石料。
水泥是混凝土的胶凝材料,骨料是混凝土的填充材料,粉煤灰和矿渣粉是混凝土的掺合材料。
2. 混凝土的性能指标:混凝土的性能指标包括抗压强度、抗折强度、抗渗性、耐久性等。
三、钢材及钢材结构1. 钢材的种类:钢材主要包括普通碳素结构钢、低合金高强度结构钢、不锈钢、耐候钢等。
2. 钢材的性能:钢材具有优良的强度、韧性和可塑性,广泛应用于建筑结构中。
3. 钢结构的设计:钢结构的设计主要包括受力分析、结构优化、节点设计等。
四、木材及木结构1. 木材的种类:木材主要包括软木、硬木、板材等,不同种类的木材具有不同的物理力学性能。
2. 木结构的特点:木结构轻质、强度高、易加工、热工性能好,在建筑中得到广泛应用。
3. 木结构的设计:木结构的设计主要包括结构设计、连接设计、防腐设计等。
五、砖瓦及建筑装饰材料1. 砖瓦的种类:砖瓦主要包括粘土砖、红砖、瓷砖、玻璃砖等,根据用途和性能不同分为墙砖、地砖、护墙板等。
2. 建筑装饰材料的种类:建筑装饰材料主要包括大理石、花岗岩、涂料、墙纸等,用于装饰、改善建筑室内外环境。
六、防护材料1. 防水材料:防水材料主要包括沥青防水卷材、聚合物防水涂料等,用于建筑屋面、地下室、卫生间等防水工程。
2. 隔热材料:隔热材料主要包括聚苯板、岩棉、玻璃棉等,用于建筑外墙、屋面、地面隔热保温。
3. 防腐材料:防腐材料主要包括防腐漆、防腐涂料等,用于建筑结构、设备等的防腐蚀。
工程材料知识点总结(全)
第二章材料的性能1、布氏硬度布氏硬度的优点:测量误差小,数据稳定.缺点:压痕大,不能用于太薄件、成品件及比压头还硬的材料。
适于测量退火、正火、调质钢,铸铁及有色金属的硬度(硬度少于450HB)。
2、洛氏硬度HRA用于测量高硬度材料,如硬质合金、表淬层和渗碳层。
HRB用于测量低硬度材料, 如有色金属和退火、正火钢等.HRC用于测量中等硬度材料,如调质钢、淬火钢等。
洛氏硬度的优点:操作简便,压痕小,适用范围广.缺点:测量结果分散度大。
3、维氏硬度维氏硬度所用载荷小,压痕浅,适用于测量零件表面的薄硬化层、镀层及薄片材料的硬度,载荷可调范围大,对软硬材料都适用。
4、耐磨性是材料抵抗磨损的性能,用磨损量来表示.分类有黏着磨损(咬合磨损)、磨粒磨损、腐蚀磨损。
5、接触疲劳:(滚动轴承、齿轮)经接触压应力的反复长期作用后引起的一种表面疲劳剥落损坏的现象.6、蠕变:恒温、恒应力下,随着时间的延长,材料发生缓慢塑变的现象。
7、应力强度因子:描述裂纹尖端附近应力场强度的指标。
第三章金属的结构与结晶1、晶体中原子(分子或离子)在空间的规则排列的方式为晶体结构.为便于描述晶体结构,把每个原子抽象成一个点,把这些点用假想直线连接起来,构成空间格架,称为晶格。
晶格中每个点称为结点,由一系列原子所组成的平面成为晶面。
由任意两个原子之间连线所指的方向称为晶向。
组成晶格的最小几何组成单元称为晶胞。
晶胞的棱边长度、棱边夹角称为晶格常数.①体心立方晶格晶格常数用边长a表示,原子半径为√3a/4,每个晶胞包含的原子数为1/8×8+1=2(个)。
属于体心立方晶格的金属有铁、钼、铬等。
②面心立方晶格原子半径为√2a/4,每个面心立方晶胞中包含原子数为1/8×8+1/2×6=4(个)典型金属(金、银、铝、铜等)。
③密排六方晶格每个面心立方晶胞中包含原子数为为12×1/6+2*1/2+3=6(个)。
典型金属锌等.2、各向异性:晶体中不同晶向上的原子排列紧密程度及不同晶面间距是不同的,所以不同方向上原子结合力也不同,晶体在不同方向上的物理、化学、力学间的性能也有一定的差异,此特性称为各向异性。
土木工程材料知识点总结版
土木工程材料知识点总结版土木工程材料是指在土木工程建设中使用的各类材料,包括金属材料、无机非金属材料和有机高分子材料等。
这些材料在土木工程中承担着不同的功能和作用,对工程的性能、耐久性和可靠性有着重要影响。
以下是关于土木工程材料的一些知识点总结:1.金属材料金属材料是土木工程中最常见的材料之一,主要包括钢材、铝材、铜材等。
其中,钢材是应用最广泛的金属材料之一,其优点是强度高、韧性好、可塑性强。
钢材主要用于制作钢筋混凝土结构、钢结构和桥梁等。
铝材和铜材则主要用于制作轻型结构和输电线路等。
2.无机非金属材料无机非金属材料主要包括水泥、石料、石膏、砂子等。
其中,水泥是土木工程中使用最广泛的材料之一,主要用于制作混凝土。
混凝土是一种由水泥、砂子、石料和水按一定比例搅拌而成的材料,具有良好的耐久性和抗压性能。
石料主要用于制作路面和筑堤等。
3.有机高分子材料有机高分子材料主要包括塑料、橡胶等。
这些材料具有较好的耐候性和耐腐蚀性,可以用于制作管道、绝缘材料和密封材料等。
其中,塑料是土木工程中使用最广泛的有机高分子材料之一,常见的有聚乙烯(PE)、聚氯乙烯(PVC)和聚丙烯(PP)等。
4.混凝土混凝土是由水泥、砂子、石料和水按一定比例搅拌而成的一种建筑材料。
其主要特点是强度高、韧性好、耐久性好、易于施工等。
混凝土广泛应用于建筑物、地下结构、路面等土木工程中。
5.钢筋钢筋是一种具有很高强度和韧性的金属材料,主要用于加强混凝土结构的抗拉能力。
钢筋广泛应用于钢筋混凝土结构中,如柱、梁、板等。
6.地基材料地基材料是指用于填充、加固和改良地基的材料,主要包括黏土、砂土、砾石等。
地基材料的选择和处理对土木工程的稳定性和耐久性起着重要作用。
7.沥青沥青是一种由石油加工而成的胶状材料,具有良好的粘结性、抗水性和防腐性能。
沥青主要用于制作路面和屋顶等。
8.防水材料防水材料主要用于防止土木工程中的渗水问题,包括防水涂料、防水卷材、玻璃纤维网格布等。
土木工程材料知识点总结版
土木工程材料知识点总结版土木工程材料是指在土木工程中使用的各种材料,它们在建筑物的结构和功能中起到了至关重要的作用。
土木工程材料种类繁多,有金属材料、非金属材料、建筑材料等,每一种材料都有其独特的性能和特点。
本文将对土木工程材料的几个重要知识点进行总结。
第一,金属材料是土木工程中最常用的一类材料。
其特点是具有较高的强度和刚性,能够承受较大的荷载。
常见的金属材料有钢铁、铝、铜等。
其中,钢铁是土木工程中最常使用的金属材料之一,其具有良好的可塑性和可焊性,因此被广泛应用于桥梁、建筑物等工程结构中。
铝具有较轻的重量和良好的耐腐蚀性,常用于航空、轨道交通等领域。
第二,非金属材料在土木工程中也有重要的应用。
非金属材料主要包括水泥、混凝土、玻璃等。
水泥是一种常见的建筑材料,其主要成分是石灰和硅酸盐。
水泥具有较高的强度和耐久性,广泛应用于建筑物的基础、墙体等部位。
混凝土是水泥、砂石、骨料等材料按一定比例混合而成的坚硬材料,其具有很好的抗压强度和耐久性,是建筑物中最常用的结构材料之一、玻璃是一种透明的非晶体材料,具有优良的光学性能和装饰性能,常用于建筑物的窗户、墙面等部位。
第三,建筑材料是土木工程中不可或缺的一种材料。
建筑材料主要包括砖、石、木材等。
砖是一种常见的建筑材料,具有较好的抗压强度和隔热性能,常用于建筑物的墙体和隔墙。
石材具有很好的抗压强度和耐久性,常用于建筑物的地面、立面等部位。
木材是一种天然的建筑材料,具有良好的隔热性能和吸音性能,常用于建筑物的框架结构、地板等。
第四,复合材料是近年来土木工程中兴起的一种新型材料。
复合材料由两种或两种以上的材料按一定比例混合而成,其具有更好的综合性能和特殊功效。
常见的复合材料有纤维增强塑料、纤维增强水泥等。
纤维增强塑料具有很好的耐腐蚀性和抗拉强度,常用于桥梁、管道等工程结构中。
纤维增强水泥具有较高的抗拉强度和耐久性,常用于隧道、地下工程等。
总之,土木工程材料是构成土木工程结构和功能的基础,不同种类的材料具有不同的性能和特点。
工程材料力学性能知识点总结
第五章,金属疲劳
1,变动载荷是引起疲劳破坏的外力,它是指载荷大小,甚至方向随时间变化的载荷。
2,按照断裂寿命和应力高低不同,可分为高周疲劳,低周疲劳,这是最基本的分类方法。
3,典型疲劳断口具有三种形貌不同的区域,疲劳源,疲劳区,瞬断区。
4,疲劳极限是材料抵抗无限次应力循环也不疲劳断裂的强度指标。
5,金属材料抵抗疲劳过载损伤的能力用过载损伤界或过载损伤区表示。
1,观察并记录疲劳长度a随N循环扩展增长的情况,便可作出疲劳裂纹扩展曲线。
2,疲劳裂纹不扩展的临界值称为疲劳裂纹扩展门槛值。
3,。
工程材料学知识点总结
工程材料学知识点总结材料的基本性质:密度:指单位体积内的质量,密度越大,材料的质量就越大。
弹性模量:反映材料在受力时产生弹性变形的能力,弹性模量越大,材料的刚度越大。
强度:指材料在受力时承受拉伸、压缩、剪切等力的能力,强度越大,材料的抗拉、抗压、抗剪能力就越强。
韧性:表示材料在受外力作用下能够吸收能量的能力,韧性好的材料抗冲击性更佳。
硬度:指材料的抗划伤、抗刮伤能力,硬度大的材料更不容易被损伤。
热膨胀系数:反映材料在温度变化时产生体积膨胀或收缩的程度。
钢的分类与特性:分类:钢按成分可分为碳钢、合金钢和特种钢;按用途可分为结构钢、工具钢和耐磨钢。
特性:以铁素体为例,它是碳在α-Fe中的间隙固溶体,硬度低而塑性高,具有铁磁性。
金属的塑性变形与加工硬化:滑移变形:单晶体金属在拉伸塑性变形时,晶体内部沿特定晶面和晶向发生相对滑移。
加工硬化:随塑性变形增加,金属晶格的位错密度增加,导致金属的强度和硬度提高,而塑性和韧性降低。
晶体缺陷与强化:晶体缺陷:包括点缺陷、线缺陷和面缺陷。
强化机制:室温下,金属的强度随晶体缺陷的增多而迅速下降,但当缺陷增加到一定数量后,金属强度又会随缺陷的增加而增大。
结晶与过冷:结晶过程:金属结晶是晶核不断形成和长大的过程。
过冷现象:实际结晶温度低于理论结晶温度,过冷度与冷却速度有关。
这些只是工程材料学的一部分知识点,实际上该领域涉及的内容远不止这些。
在学习工程材料学时,需要深入理解各种材料的性质、制备工艺、应用领域以及相关的工程实践。
同时,也需要关注新材料的发展趋势和研究动态,以便更好地应对工程实践中的挑战和需求。
建筑施工常用知识点总结
建筑施工常用知识点总结建筑施工是一个复杂的过程,需要施工人员具备专业的知识和技能。
以下是一些建筑施工常用知识点的总结:一、安全知识1. 安全意识:施工人员应具备安全意识,严格遵守施工现场的安全规定,做好个人防护。
2. 安全设施:施工现场应设置各种安全设施,如防护网、防护墙等,确保施工人员和周围环境的安全。
3. 安全教育:施工人员应接受安全教育培训,了解各种施工安全规定和操作技能。
二、材料知识1. 建筑材料:施工人员应了解各种建筑材料的类型、性能和用途,如水泥、钢筋、混凝土等。
2. 材料使用:施工人员应掌握正确的材料使用方法,如掺合料的比例、搅拌时间等。
3. 材料质量:施工人员应检查材料的质量,确保使用的材料符合国家标准和施工要求。
三、施工工艺1. 基础施工:施工人员应了解各种基础施工方法,如桩基施工、梁基施工等。
2. 结构施工:施工人员应熟悉各种结构施工方法,如钢结构施工、混凝土结构施工等。
3. 装饰施工:施工人员应掌握各种装饰施工技术,如瓷砖铺贴、涂料喷涂等。
四、施工管理1. 进度管理:施工人员应制定合理的施工进度计划,保证项目按时完成。
2. 质量管理:施工人员应加强对施工质量的监督和检查,确保施工质量符合要求。
3. 安全管理:施工人员应加强对施工安全的管理和监督,确保施工过程中没有安全事故发生。
五、技术标准1. 施工标准:施工人员应严格按照施工标准进行施工,确保施工质量和安全。
2. 质量标准:施工人员应遵守施工质量检验标准,确保施工质量符合要求。
3. 安全标准:施工人员应遵守施工安全标准,做好施工安全保障工作。
六、环保知识1. 施工废弃物处理:施工人员应合理处理施工废弃物,做到资源化利用和减少排放。
2. 污染防治:施工人员应加强对施工环境的管理和保护,防止污染环境。
3. 节能减排:施工人员应采取节能减排措施,减少能源消耗和排放。
七、施工机械1. 施工机械使用:施工人员应掌握各种施工机械的操作方法和维护知识。
土木工程材料知识点总结
土木工程材料知识点总结土木工程材料知识点总结一、土1、土的性质土是由砂、粉砂、粘土、泥石等组成的一种物质,具有许多物理性质和力学性质。
土的物理性质有密度、渗透性、吸水性、含水率等;力学性质有抗压强度、剪切强度、抗拉强度、抗剪切比、杨氏模量等。
2、土的结构土体的结构由三种不同形态的颗粒组成,即粒子、孔隙和胶结复合体。
粒子是指土体中的颗粒,形状各式各样,有规则的、不规则的和复杂的。
孔隙是土体中的空间,它是由粒子之间的间隙构成的,孔隙的形状和大小也是各式各样的。
胶结体是指孔隙中的胶结物,它能够将土体中的粒子联系起来,使其形成一个整体,从而增大土体的强度。
二、水泥1、水泥的来源水泥是由石灰、石膏、石膏粉和外加剂经过烧制而成的。
石灰是来自硅藻土或石灰岩的熟料,石膏是从硫酸钙矿石中取得的,而石膏粉则是从石膏的细末中分离出来的,外加剂包括硅灰石和重晶石等。
2、水泥的性质水泥具有良好的流动性和细致度,具有良好的抗碱性和耐腐蚀性,具有较高的抗压强度、抗剪切强度和抗仰角强度。
水泥的抗压强度取决于烧制的温度和时间,能够达到200MPa以上的抗压强度。
三、钢1、钢的来源钢的主要原料是矿石和焦炭,经过冶炼得到的钢是一种有色金属,具有良好的机械性能、耐腐蚀性和热强度。
2、钢的性质钢的力学性质取决于它的组分,组分不同,性能也不同。
一般来说,钢的抗拉强度较高,具有良好的疲劳强度、耐磨性和耐冲击性,耐蚀性也很强。
四、砖1、砖的来源砖是由粘土、石灰石、石膏等经过烧制而成的,烧制的温度一般在900-1100℃之间。
2、砖的性质砖具有良好的抗拉强度和抗压强度,密度一般为2.2-2.6g/cm3,耐火温度一般为1000℃以上。
砖具有较好的绝热性能,耐水性强,能够防止建筑物受到潮湿的影响,具有良好的抗酸碱性能。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二章材料的性能1、布氏硬度布氏硬度的优点:测量误差小,数据稳定。
缺点:压痕大,不能用于太薄件、成品件及比压头还硬的材料。
适于测量退火、正火、调质钢,铸铁及有色金属的硬度(硬度少于450HB)。
2、洛氏硬度HRA用于测量高硬度材料, 如硬质合金、表淬层与渗碳层。
HRB用于测量低硬度材料, 如有色金属与退火、正火钢等。
HRC用于测量中等硬度材料,如调质钢、淬火钢等。
洛氏硬度的优点:操作简便,压痕小,适用范围广。
缺点:测量结果分散度大。
3、维氏硬度维氏硬度所用载荷小,压痕浅,适用于测量零件表面的薄硬化层、镀层及薄片材料的硬度,载荷可调范围大,对软硬材料都适用。
4、耐磨性就是材料抵抗磨损的性能,用磨损量来表示。
分类有黏着磨损(咬合磨损)、磨粒磨损、腐蚀磨损。
5、接触疲劳:(滚动轴承、齿轮)经接触压应力的反复长期作用后引起的一种表面疲劳剥落损坏的现象。
6、蠕变:恒温、恒应力下,随着时间的延长,材料发生缓慢塑变的现象。
7、应力强度因子:描述裂纹尖端附近应力场强度的指标。
第三章金属的结构与结晶1、晶体中原子(分子或离子)在空间的规则排列的方式为晶体结构。
为便于描述晶体结构,把每个原子抽象成一个点,把这些点用假想直线连接起来,构成空间格架,称为晶格。
晶格中每个点称为结点,由一系列原子所组成的平面成为晶面。
由任意两个原子之间连线所指的方向称为晶向。
组成晶格的最小几何组成单元称为晶胞。
晶胞的棱边长度、棱边夹角称为晶格常数。
①体心立方晶格晶格常数用边长a表示,原子半径为√3a/4,每个晶胞包含的原子数为1/8×8+1=2(个)。
属于体心立方晶格的金属有铁、钼、铬等。
②面心立方晶格原子半径为√2a/4,每个面心立方晶胞中包含原子数为1/8×8+1/2×6=4(个)典型金属(金、银、铝、铜等)。
③密排六方晶格每个面心立方晶胞中包含原子数为为12×1/6+2*1/2+3=6(个)。
典型金属锌等。
2、各向异性:晶体中不同晶向上的原子排列紧密程度及不同晶面间距就是不同的,所以不同方向上原子结合力也不同,晶体在不同方向上的物理、化学、力学间的性能也有一定的差异,此特性称为各向异性。
晶体中的缺陷1)点缺陷包括空位、间隙原子、置换原子。
点缺陷的形成主要就是由于原子在以各自的平衡位置为中心不停的作热振动的结果。
2)线缺陷:在三维空间中两维方向尺寸较小,另一维方向的尺寸相对较大的缺陷。
位错就是晶格中的某处有一列或若干列原子发生了某些有规律的错排现象。
位错的基本形式:刃型位错、螺型位错。
提高位错密度就是金属强化对重要途径之一。
1)面缺陷:尺寸在一维很小,另两维较大的缺陷。
常见的就是:晶界与亚晶界1.2凝固1)晶体的结晶自由能的减少量等于在变化过程中所研究的物质可对外界做功的能量。
一个变化的自由能减少,则自发;自由能增加,则非自发。
结晶的温度条件:在该温度下固态自由能<液态自由能过冷度:理论结晶温度与实际结晶温度之差。
过冷度越大,液固之间能量状态差越大,促使液体结晶的驱动力越大。
驱动力达到一定值时,结晶才能进行。
冷却速度越快,过冷度越大。
2)非晶体的结晶非晶体就是一种长程无序,短程有序的混合结构;性质上表现为各向同性。
非晶体的凝固就是在一个温度范围内逐渐完成的。
1、2、2金属的结晶1、液态金属在理论结晶温度以下开始结晶的现象称过冷。
理论结晶温度与实际结晶温度的差T称过冷度, T= T0 –T12、金属的结晶过程金属就是由许多外形不规则,位向不同,大小不同的晶粒组成的多晶体。
金属结晶过程中,晶核形成有两种形式:均匀形核与非均匀形核。
由液体中排列规则的原子团形成晶核称均匀形核。
以液体中存在的固态杂质为核心形核称非均匀形核。
3、影响形核与长大的因素及晶粒大小控制影响形核与长大的重要因素:冷却速度(或过冷度)与难熔杂质。
过冷度较小时,形核率变化低于长大速度,晶核长大速度快,得粗晶粒。
过冷度较大时,形核率的增长快些,得细晶粒。
改变过冷度可控制结晶后晶粒的大小,过冷度可通过冷却速度来控制。
冷却速度越快,过冷度越大,晶粒越细,金属的性能越好(强度、塑性、韧性)。
4、细化晶粒就是提高金属材料性能的重要途径之一。
(细晶强化)(1)增大过冷度1、金属型代替砂型2、增大金属型厚度3、降低金属型预热温度4、提高液态金属的冷却能力。
(2)变质处理,在金属浇注前添加变质剂来改变晶粒的形状或大小的处理方法。
作用:1、增大形核率;2、降低长大速率。
附加振动法(机械振动、超声波振动、电磁振动等)。
5、金属塑性变形后的加热三个阶段: 回复----再结晶-----晶粒长大(1)、回复:1、温度:回=(0、25~0、3)熔2、注:要消除残余内应力,可采用回复处理,进行一次250~300摄氏度的低温回火(2)、再结晶:1、再结晶:固态下,晶粒外形变化,但晶格类型不变2、影响:冷变形强化现象消失,残余内应力完全消失3、温度:T 再=0、4T 熔4、冷加工-----在T 再以下的加工过程热加工-----在T 再以上的加工过程第四章 二元合金合金:由两种或两种以上的金属元素或金属元素与非金属元素组成的,具有金属特性的物质。
组元:组成合金的、最基本的单元。
(组成合金的元素或稳定的化合物)相: 合金中具有相同的物理、化学性能并与该系统的其余部分以界面分开的物质部分。
组织:用金相观察法,在金属及合金内部瞧到的涉及晶体或晶粒的大小、方向、形状、排列状况等组成关系的构造情况。
相变:在一定条件下一种相转变成另一称相。
二、1、固态合金中有两类基本相:固溶体与金属化合物。
①固溶体:合金在固态下,组元间会相互溶解,形成在某一组元晶格中包含其她组元的固相。
溶剂:基础金属 溶质:合金元素固溶体一般具有与溶质金属相同的晶体结构a ) 置换固溶体:溶质原子代替一部分溶剂原子占据溶剂晶格中某些结点的位置。
b ) 间隙固溶体:溶质原子嵌入各结点间的间隙中。
固溶强化:由于溶质原子的溶入,使固溶体的晶格发生畸变,变形抗力增大,合金的强度、硬度升高。
②金属间化合物:合金组元形成晶格类型与任一组元都不相同的新相。
表达式:A m B n特点:熔点较高,硬度很高,脆性高。
例如:渗碳体 F e3C弥散强化:金属间化合物作为强化相弥散分布在固溶体基础上,以提高其强度、硬度及耐磨性。
二元合金相图一、相图:表达温度、成分与相之间的关系,表明合金系中不同成分合金在不同温度下,由哪些相组成以及这些相之间平衡关系的图形。
二、类型1)匀晶相图①定义:两组元在液态与固态均能无限互溶。
②杠杆定律③枝晶偏析:晶粒的成分不均匀现象。
均匀化退火2)共晶相图:①两组元在液态无限互溶,在固态有限溶解,并发生共晶反应时所构成的相图。
②共晶反应:L c→共晶温度αd +βe 产物就是由两个固相组成的机械混合物,称为共晶体。
共晶体显微组织:两相交替分布,细小分散。
3)包晶相图及其她相图包晶相图:两组元在液态下无限互溶,在固态有限溶解,并发生包晶反应时的相图。
铁碳合金相变基础知识铁碳平衡相图1、主要特性点2.主要特性线a 、ACD 线与AECF 线 ACD 线就是液相线,AECF 线就是固相线。
b 、ECF 线 共晶线温度1148℃。
c 、PSK 线 共析线温度727℃,又称A1线。
d 、GS 线 A3线。
e 、ES 线 Acm 线。
f 、PQ 线 碳在铁素体中的溶解度线。
3.相区单相区 F 、A 、L 与Fe3C 四个。
两相区 L+A 、L+Fe3C 、A+F 、F+Fe3C 与A+Fe3C 五个。
一、基本相固溶体:铁素体F 奥氏体A金属间化合物:渗碳体 Fe3C1)F:碳在α-Fe 中形成的间隙固溶体(体心立方)特性:强度、硬度不高,塑性与韧性良好。
2)A:碳在γ-Fe 中形成的间隙固溶体(体心立方)特性:良好的塑性与较低的变形抗力,适于压力加工。
3)Fe3C:碳浓度超过固溶体溶解度后,多余的碳与铁形成金属间化合物,含碳量为6、69%。
特性:硬度高、脆性大,作为强化相存在。
二、相图分析1)共晶反应 ECF 为共晶线 L 4、30%→1148℃A 2、11% + Fe3CLd 莱氏体:共晶混合物2)共析反应 PSK 为共析线 A 0、77%→727℃F 0、02185 + Fe3CP珠光体:共析混合物四、含碳量对铁碳合金组织性能的影响1.铁碳含金的组织随着含碳量的增加,其铁素体相对量减少,珠光体相对量增多,渗碳体与莱氏体相对量增多;2.铁碳合金的力学性能随着含碳量的增加,其强度、硬度增高,而塑性、韧性降低。
但当WC>1、0%时,因为有网状Fe3C存在,所以强度下降。
五、钢在加热时的转变1、奥氏体形成过程钢在加热时珠光体向奥氏体的转变过程称为奥氏体化。
该过程遵循形核与长大的相变基本规律,它通过以下四个基本阶段来完成,如图3、33所示。
1) 奥氏体形核2) 奥氏体晶核长大3) 残余渗碳体溶解4) 奥氏体成分均匀化(a) 形核 (b) 长大 (c) 残余Fe3C溶解 (d) A均匀化图3、33 共析钢的奥氏体形成过程示意图2、奥氏体晶粒度及其影响因素钢加热时所获得的奥氏体晶粒大小,对冷却转变后钢的性能影响很大。
晶粒细小均匀,冷却后钢的组织则弥散,强度与塑性、韧性较高。
a)起始晶粒度:奥氏体化刚刚完成时的晶粒大小特点:难以测量,在实际生产中意义不大b)实际晶粒度:钢在某一具体加热条件下获得的奥氏体晶粒大小(直接影响钢冷却后的力学性能)特点:细小均匀,但提高温度或延长保温时间会使晶粒长大。
c)本质晶粒度:钢在规定加热条件下(930℃±10℃保温3h~8h)加热时奥氏体晶粒长大的倾向,可分为两类:○1本质细晶粒钢:晶粒长大倾向小○2本质粗晶粒钢:晶粒长大倾向大钢中加入合金元素对奥氏体化主要有下列影响:1)延缓钢的奥氏体化过程2)细化奥氏体晶粒2、合金的结晶只有在缓慢冷却条件下才能得到成分均匀的固溶体。
但实际冷速较快,结晶时固相中的原子来不及扩散,使先结晶出的枝晶轴含有较多的高熔点元素(如Cu-Ni合金中的Ni), 后结晶的枝晶间含有较多的低熔点元素(如Cu-Ni合金中的Cu)。
3、在一个枝晶范围内或一个晶粒范围内成分不均匀的现象称作枝晶偏析。
4、冷速越大,液固相线间距越大,枝晶偏析越严重。
5、当两组元在液态下完全互溶,在固态下有限互溶,并发生共晶反应时所构成的相图称作共晶相图。
6、在一定温度下,由一定成分的液相同时结晶出两个成分与结构都不相同的新固相的转变称作共晶转变或共晶反应。
7、共晶组织,固态金属自高温冷却时,从同一母相中同时析出,紧密相邻的两种或多种不同的相构成的组织。
8、共晶组织中的相称共晶相。
9、共析反应(共析转变)就是指在一定温度下,由一定成分的固相同时析出两个成分与结构完全不同的新固相的过程。